REFERENCE STORAGE

University ${ }^{\text {of }}$ Scrantion The Library

For Reference

Compliments of
E. E. II adhams,

Semate,
-

R E P ORTS

OF THE

INSPECTORS OF MINES

OF THE

Anthracite Coal Regions

OF

PENNSYLVANIA,

FOR THE

YEAR 1875.

HARRISBURG:
B. F. MEyERS, State pfanter.

1876!
$+$
\square

\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square

CONTENTS.

PAGE. PAGE.
Commmuncation Inspectors' interrogatories 50
Report 7 County statistics 56
Employnnent in mines 8 Total anthracite tonnage to date 56
Monthly casualties 9. Wire ropes 57
Names of persons killed 10 T rail weights 58
Names of the injured persons. 13 Air currents. 58
District casnalties 21 Barometer tests 59
Seven years' casualties, Schuylkill co., 22 Atmospheric pressure 60
Seven years' casualties, Northumber-land22
Seven years' casualties, Columbia 23
Seven years' casualties, Dauphin23
Character of casualtiesNumber of maimed persons24
Casualties in counties26
Review26
Operators
27 S
Mine accidentsNannes and character of collieries.First district collieries
62
62
Philadelphia and Reading Coal and Iron Company's collieries 62
Ventilation of mines 63

Of gases in coal mines 64Second district collieries64Third district collieries37 Ventilation law, use of miners.
67
Tonnage of coal per acre
68
Basis of wages for miners68
Inspectors' districts (new) 69
Mine regulations for safety 7040 Inspector Parton's address71
Lists of mine maps42 Deaths in Pottsville district72Schuylkill county collieries45
Northumberland county collieries46
Colnmbia county collieries 46
Dauplin county collieries 47
Anthracite tonnage for four years.47
Colliery capacity in Scluyylkill district,48
49
District statistics 50

$$
\begin{gathered}
202+\cdot 7: 1 \\
1
\end{gathered}
$$

COMMUNICATION.

To His Excellency, Joun F. Hartranet, Governor of the Commonwealth of Pennsylvania:
Sir:-In compliance with the requirements of an act of General Assembly of the Commonwealth, approved the fifth day of April, 1870, "An Act fur the preservation of the records of the inspectors of mines," etc., I have the honor to herewith submit an annual report of all matter of information that came under my official notice, and such other information as had been furnished me by the inspectors of mines during the year, detailing the number of fatal and non-fatal accidents that occurred in their respective districts; and the number of collieries in operation, showing their character and condition, the power used and force of hands employed in each. I find by comparison that the fatalities are somewhat less than last year, yet the roll is not as favorable as was anticipated. Since resumption in $J u n e$ fatal accidents were numerous.

In Pottsville district 59 collieries were in operation and produced 3,853,629 tons of coal; 28 fatal and 88 non-fatal accidents occurred, learing 17 widows and 62 orphans. In Shenandoah district 54 collieries were in opcration, producing 3,$000 ; 179$ tons of coal ; 26 fatal and 114 non-fatal accidents occurred, learing 11 widows and 49 orphans. In Shamokin district 60 collieries were in operation, producing $3,388,726$ tons; 38 fatal and 106 non-fatal accidents occurred, learing 13 widows and 30 orphans. Making an aggregate of 92 deaths, 308 cases of maimed persons, leaving 41 widows and 141 orphaus. The character of these casualties will be found detailed in tabulated form hereto subjoined.

Investigation into these fatalities will justify the assertion that fully onehalf of them are the result of carelessness, improper attention and undue disregard of safety, occasioned, to a large extent, by the long suspension, the non-repair of the mines, and the hurry consequent upon resumption.

From a review of the coal tomnage produced in the last six months of the year, which equaled the entire shipment of 1874 , from this we must conclude the work of production and preparation of coal was pushed forward with undiminished cnergy, and although prices ruled steady, wages declined much below the rates of former years. The collieries are again idle since the first of December most generally, and resumption is a question of time.

1 Mine Rep.

Emipoyafent in Mines.

The cmployees in coal mines are handled so as their labor shall realize the largest amount of profit to the employer, and this at the risk of life and limb, consequent apon the diversity of their labor, besides the danger to be encountered in working in deep mines that are so often idle that, from standing gas, decay of timber, the absence of proper ventilation, and standing water, not only makes the mine unsafe but virtually dangerous. It is practically demonstrated that mines and machinery that are kept eonstantly in operation are much safer than those that ate only kept temporary in use.

In mines that generate large quantities of gas, and have a large foree employed, say 400 persons, it can not be expected this force to be so well organized as to strietly conform with the rules of the colliery, because their occupations and interests are so different that, to gain a temporary advantage, their fellow workmen's lives, as well as their own, might be sacrificed by the merest mishap. No amount of practice can warrant a miner secnrity at all times.

Experience stimulates him to acts of daring, and would think it folly in him to become intimidated by the appearances of things around him, not timely realising the consequences that would result in death. There is no amount of human knowledge, however practical, that can detect the different dangers hidden from view, and not until the stroke of death is delivered and received can the victim of an aceident of this sort realize his misfortune, though he be ever so much burthened with care and responsibility.

He laving no other choice of employment than working in the mine for his support, surrounded on all sides by threatening dangers, however much he may be at fault on some occasions, yet his condition should meet with public sympathy. His oceupation as a miner at best is but a temporary uncertainty, and in some cases but little better than semi-slavery, becanse by his occupation, from habit he becomes inured to a life dependent on his employer, and gradually submits to the drudgery of the mine, having no higher ambition for any other field of usefulness; and succeeded in the same calling by his children. But were it not for the social impressions he receives from his association with his fellow workmen his life would be extremely burthensome.

Nevertheless, miners in general are full of rare courage and kindheartedness, cultivated by their mutual intercourse with each other, as shown in times of dreadful accidents occurring in the mines, to see with what alacrity and resolution they enter in and approach those horrible dangers to relieve their fellow workman, where the ontside world wonld be appaled with terror at the sight of those dangers. Then to see with what sublime courage they will risk their owin lives and all interests most dear to them in aiding and relieving those of them that may be in distress. While the greater the danger may be the higher the order of courage they display, even to ahandomment of self-safety. No pen can describe nor properly explain, to those who are not accustomed to mine horrors, no more than a faint portraiture of the intensity of the agony and sufferings of the miner who falls a victim to explosions of gases, and crushes of coal and rocks, not noticing the unfortnnates who fall through rollers and shafts, etc., and the misery which these numerous casualties entails upon already very indigent fanilies is beyond my desire to describe; as my observations are founded upon facts 1 am impelled by a sense of justice to bring this subject to yonr notice in comection with this report, hoping that all proper and houorable efforts will be made that may be conducive for the security of the lives of this class of citizens.

The Philadelphia and Reading coal and iron compony lave instituted a very creditable measure of relief for the families of miners who meet with fatal accidents while in their employ, by defraying expenses of sepulture, and paying to the widow three dollars per week, and to each child under twelve years of age one dollar per week; this donation is sufficient to maintain the families without they being in fear of becoming a burthen to socicty, or inmates of a charitable institution. If other operators will be moved by this good example toward their employees, what a large amonnt of snffering and destitution would be prevented amongst those people. The public gratitude is certainly due this tompany for their timely aid in relieving the distress that generally follows such unfortuate casualties.

> Monthly Statement of Cascalities.

The fullowing statement will exhibit the number of fatal and non-fatal accidents that took place during the year 1875, in the district of Schuylkill:

Months.	Filled.	Maimed.	Widows.	Ornhans.	Total.
Januars'.	5	5	5	17	32
February		2			2
March....	3	8	1	:	15
April.	3	8	1	\because	14
May..	3	10	2	5	20
June	7	22	4	5	38
July ...	${ }^{6}$	44	3	4	57
August.	14	46	5	21	86
September	14	52	8	44	118
October ...	13	53	2	7	74
November	18	45	9	31	106
December.	7	10	1	2	20
. Aggregate.......	92	308	41	141	582

To the above statement nine slight injuries are added to the November list of injuries, which by reference to our files is correct. The fact of the increase in the accidents in the latter months of the year as being occasioned by undue negligence, inexperience and rashess is very evident. The straightened circumstances of the men of fumilies precipitated th fesults.

FATAL ACCIDENTS IN MINES.
Names of porsons who were kolled and of those who died subsequently of injuries in and about the collieries of the mining district of Schuylkill during the year ending December 31, A. D. $18: 5$.

 result.

DA'		Ninmes of deceased porsons.	Names of collierios.	号	里	Remarks.
Nov.	20,	Cluristian Kopl	Cast Franklin	1	5	```killed in a breast with coal. killerl by a foll of coal. Killed in the small rollers. Killed in the large rollers. Died of injuries Irom a lall of slate. Killed by a blast. The chain broke and the men stambing at foot of slop were killed by splinters.```
	27,	Win. 'I'. Morris	Heechwood.	1	2	
	27,	Anson Smith.	Shenandoah			
	27,	Anthony Derrish	Mahanoy City	1	4	
	28,	Etwatrd Corcoran	Taggle...			
	28,	A. IInnsiker	Hazlerlell			
	30,	Hugh Sharp...	13uckvillo	1	1	
	30,	Patrick M'Intyre	. . . 10.	1	4	
	30,	Hugh Mathews.	. l (0	1	2	
Dee.	1,	Thomas Kline..	(ireenwood	1	1	Killed by a fall of a trestling. Killed by falling into the rollers. Died; fatally burned by fire-damp. Died ; fatally injured by falling into a breast. Died; fatally burned by fire-damp. Died; fitally burned by firo-damp. Killed in the sereens.
	4 ,	Anthony Lee, boy	Big Mine Ra			
	5,	Nicholas Bergen	Hllengowen			
	11,	Margaret Fogle.	'Thomas.			
	I2,	Edward Koar	Ilickory Shaf			
	13 ,	1lugh Calloran ilo			
	20,1	Willian Watkins, boy	Went Lehigh			

Malsing a total of 92 fatal acciclents during the year against $10 \pm$ casualtics last year, or $1 \geq$ cases less in Is75.

NON-FATAL ACCIDENTS IN MINES.
Aames of persons who were maimed and injured in and about the collieries of the mining district of Schuylkill during the year ending December 31, A. D. 1875.

HATE.

Nimes of maimed persons.
Names of the colliories.

Remarks.

[^0]| Dati： | Names of maimed persons． | Names of the eollieries． | Jemarks． |
| :---: | :---: | :---: | :---: |
| June 11， | Andrew feary | | Mingers cut off by a fall of slate． |
| 16. | Jobln Wire．． | Delaware shaits | llead sererely ent hy am axe． |
| 16， | A miner | Lentz di Bownan | Leg lorken hy atall of cont． |
| 1：1， | Alexins g ghatrieh | luke Finller． | Severely ernsher hy a ball of eoal． |
| 21, | Peter Monaghan | Shenandorla（ity | Severely burned by tire－tamp． |
| 21, | Frederick lamiseovieh | Thominas | Severely inmmed liy wagom of eoal． |
| $\underset{\sim}{21}$ | Michmel Semkafski | | Severely injured，lie fell throngh a shate． |
| 21， | Jacol Mamball． | Luka Fic | 11and erushed hy a fall off coal． severely crushed by wamens． |
| 21, | Joseph Murry | Preedhwond | Ceverely jujured by a hist． |
| \％ | Josprs cole： | Bownam＇s． | Leg lmoken by a fall of coai． |
| 22, | John Exams | Prue | Leg brokeu hy a fall of rocks． |
| $\stackrel{22}{ }$ | Almi．Stranser | tieorge Fales | Severely crushed by a lall of coal． Soveroly crushed liva fall of wall． |
| 它， | John Thomats． | Thomaston | Severely ernshed hiy slope waghos． |
| 22， | Johm Reere | Tiecehwom 1 | Severely ernshed liy a fall of coal． |
| 23， | Miehael lionavi | Ranch（＇reek | Shoubler broken by a latl of emat． |
| 22， | Johm lawson． | Coal Mountain | Severely fugred hoy a fall of mal． |
| 2in， | Thomas Itoolin | Thomastou | Back broken hy loaded wagons． |
| 20， | Commad Neilbat | Plank Ridge | Severely injured lyy mast． |
| 20゙， | A broy ．．．．．． | Coal Momitin | Foot crisherl by wagons． |
| Whly é | Thomas lhagh | Hickory shat | Horribly marned liy tire－damp． |
| | James Itais． | | Homribly burned liy tire－tanip． |
| 学， | Frank M Commack
 lleury Commers | Luke Fialler | Horribly emushed liv a liall of coal． |
| ： | W＇illian Jomes． | Tunnel | Arm broken；he fell into a slunte． |
| ti， | Patrick Naughtorn | lig Mine Run | Severely erushed hy wagons． |
| 6， | William stanford | Cilen Carhon． | Neverely erushed by a fall of emal． |
| （i） | James fergen． | Oakdale statt | Severely erushed loy wagons． |
| 111 | John Willians | Bear Rum． | Slightly burned by fire－famp． |
| 111, | Daniel Sardan | Oak lfollow | Soverely injurerl in the mines． |
| 311, | Jolm Simmons | Cameron | Severely injured by a fall of eonal． |
| 12, | Jolm Martin． | ．${ }^{\text {d }}$ do | Severely injured liy a fall of coal． |
| 15， | John Johns．． | West Shenandoah． | Soverely injured by a fall of coat． |
| 16, 16, | Patrick Jlaughney | Focht \＆Whitfaker | Severely injured by a fall of coal． |
| 16, 16, | John Thomas．．．． Micliael Cascady | Indian Pitlge | Armand ankle injured lyy a fall of coat． lingers cut off by a fall ol rocks． |

17,	Michael Sinllivan	Plank Fidge.
17,	d:uncs M'latnghlin	Howey lbook
17,	Jolna Ellard	('anteron
17,	Senjumin Kantuer	West shenam
1!	Jerrs liaily	('olket
14,	Johir I'rofisgar	E. Franklin
20,	Wilham Wire.	C'olket
20,	Lewis Weihl:	Anchor
24),	John Eickles	dilen Carloon.
21),	Wnı. l'omple	Shenandoalı
211,	A miner.	Fulfolk
24,	fohon bolan (boy)	Oakdale
$\cdots 1$,	${ }^{\text {W }}$ William 'Jhomas	C'anmeron
21 ,	Thonnas Ilewett	. 10
24,	Edward lrittain	-..do
21.	Niclolas Hantz.	West End
21,	Tenry txciss.	Beaver Rum
24,	Charley Mand	Colket
2i),	John Nagnire	Boston Run
25,	Fdwatd Magilligan	do
2\%,	David Pott	Miedale Úreek
36,	Willian Ityon	tilendon
20,	George LTron	do
23,	Michacl Monaghan	Hickory
220	John Datigherty.	${ }_{r}$ Lost Crieek
28,	A miner	TRaven liun
29,	Michael fiallir	${ }^{\text {Prank }}$ Plady
264	Patrick M ${ }^{\text {a }}$ (2):ad	
20,	Whoch Walters	New Boston
$\stackrel{\square}{4}$	Edward Comus	Shenandoali
\because	Gdward Valentine.	Thomas
\because,	William Lukentill	Tunnel Ridye
4.	!'homas Kavantugh	Plank Ridge
7,	John Ellard	Cameron ..
7,	Martin Kavanagh	. do.
10,	Robert ${ }^{\text {'ann }}$,	Relianco.
10,	Richatel Phillips.	Bir Mountain
11,	Henry Neadhammer	West End
11.	'Thomas Brammath	Big Mountain
11,	Morris Downey.	Hickory Ridyr
12,	Edward Gellings	St. Niclıolas
12,	Robert Gone.	Shenandoah
12,	Frank Pershing	Hemy Clay

Shockingly injured by : blast
Fiatally injured by a fall of coal
severely injurea by at lall ol coal.
Arm broken by a fall of mocks.
severely injurerl lyy atall ol slite.
severuly ent with in axe.
Arikle erusherl by a domper.
Torribly injured in getting oft a wagin).
Geverely immer by fire-18mmp.
Arat and fingers broken.
Len broken by a fill of coal
Fool erashed by wagous.
Severely injured by a blatat.
severcly injured by a blas.
severcly mujured by a blasi.
Soverely injured by a hlast.
Severely bumed by tire-damm.
Severely burned by tire-damm.
seribly injured by a fall of eonal.
Hand simashed by a fall of eoal.
Severely burmed by fire-damp.
severely burned liy fire-tilinip.
Severely injurerl; he fell 100 feet ins the shait.
Severely burned by fire-lamaf.
Severely burned by fire-danip).
Severely hurt by a discharee of a shon.
Mortally injured by a fall ot rosl: (lied Angu: 20.
Severely eut by a fall of coal.
Nearly sultocated by oras.
Leg broken offi by a fall of coall.
severely injured by a blast.
Leg moken by a fill or coal.
Foot crushed by wacons.
Severety injured by a dimpper.
Thigh broken by a fall of coal
Severely erushed by fall of́ a coal pillar.
Severdy erushed by a fall of coal pillam.
Severely crushed by a tall of coal.
Severels crushed by a fall oí rocks.
Severely crushed by a fall oi
Severely erashed by waoous.
Severely erlashed by wagons.
Back injored by a fiall of clay.
Hand cut olf by a fall of coal.
Hand craslaed by sirags.
Arm broken by a fall of coal. *

os. Broomal

Bir Momintain
(ireenback.
Short Monntain
..

Leg lmoken by a fall of coal
Foot severely erushed by wagoms.
Both father and son nearly drowned by the (aviner in of a large boty of water.
Excelsior
Exackson Drift
Shenandoah City .
Excelsior.
Thonnas
Eagle.
Sirard
Plank Kidge
Koh-i-11oor
Shenandoath Cit
Shenandoah City .
Bear Ridge.

Shenandoah City
 Shemandoa Mt. Pillar

Turkey Run
Thomas
Inke Fidler
Excelsior.
Girardsville
Eagle.
. ilo.
Hickory Shaft
Bir Mine Run
Big Momstain
Girardsville
Girard.
Colket
Cameron
Camero
IIickory '. . . .
fililherton.
(iilberton.
Bear Ridge
Otto

Severely crushed by a fall of coal.
Severely crushed by a fall of coill.
Ribs broken by a fall ol conl.
Severely injured by a fall of eoal.
Fingers crushed ofi by wagons.
severely injured by a fall of coal.
Head injured by a falling plank.
severely crasherl by wagons.
Head injured by a fall of tols
Shoulder crusheal by at fall of coal.
Legs broken hy a fall of coal.
Legs broken hy a fall of coal.
Lyes injured by a piece of coal.
Nearly sullocated by a fiall of comal.
Severely injured by it fall of coal.
Severely injured by a fiall of coal.
Ifead severely injured by a fall of eoal.
Less crushed by a tall of coal.
Hand severely injured by a fall of coal.
Severely erushod by a fiall of coal.
Severely erushed by wauons.
Severely crushed by watons.
Severely crushed by a fall of conl.
Severely crushed by a fall of coal.
Severely crushed by a fall of coal.
Severely crushed by a fall of coal.
Severely crushed between wacrons and pillitr.
Severely crushed between warons and
Hips and eyes injured by a dall of conal.
Hand severely cut by a fall ol coall.
Hack crushed by a fall of coal.
Severely injured by a 26 feet collar fallius on him.
Eye destroyed by a piece of coal.
Leg broken by the breaking of a chain.
Severely injured by the above acciclent.
severely huried by fire-damp.
Severely hurned by fire-damp.
lody pierced by an oil can spont
lody pierced by ancoil can spo
Badly injured in the mine.
Severely burmed by fire-damp.

4,	Henry Osman, Jr.	Otto	Severely burned hy firedamp.
6,	Edward Burns	Inurnside	Taeg broken by a fall of eoal.
G,	Joseph Hove	Franklin	Head and foot crushed by a fall of coal.
S,	Joseph Falconbridge	Bumside	IIead and feet crushed lyy a finll of conl.
8,	Frank Barlow	Tocust (ity)	Nearly killet by a fall of coal.
9 ,	Edward Williams.	Sutiolk	Arm erushed by wagons.
9	Jolnn Burns	Buck Ridgo	Leg amputated; cut oft by wagons.
9,	Frank Lowis, boy	Wm. Pemm	Fell off a mule into the smmp.
\cdots	George Quinu	Plank Ridge	lland erushed by a fill of coal.
10,	Thomas Dooloy	Tunkey Lum	Soverely crushed by a log.
11,	IIugh Colton ...	Pig Mountain	Severely crushed by a tall of coal.
11,	Frank Heaton	Mahanoy City	Fatally crushed by slate; died next day.
14,	James Harris.	Tawrence....	Severely burned hy fire-damp.
11,	Reeso Reesse	Tmmel Ridgre	Hand erushed while conpling wagons.
15,	James Bogry	Thomaston	Fatally injured by a runaway wagon-died.
15,	Peter Koibel	Franklin	Severely crushed by wagons.
15,	James Boole.	Big Mountain	Hand burned by the explosion of a keg of powder.
15,	Thomas Magee	Thonaston	Arm cut off in the cog wheels.
18,	Benjannin Tiblyy.	Whar. Penn	Legr erushed by a fall of coal.
18,	Michael Garvey	Koli-i-noor)Nearly crushed to doath by a fill of coal ; took 10 hours
15,	An assistant	do	\} to get extricated.
18,	Johm Leary	Sulfotk	Horribly brnised and burned by tive-damp.
19,	Patrick Walslı	Hickory Shalt	Fatally burned by tire-dannp-died.
19,	'Phonnas Walsh	. . do .	Terribly burned at the same time.
19,	Martin Glemm	. ${ }^{\text {do }}$	Soverely burned by sime oxplosion.
22,	Wen. Bramman.	Enterprise	Ifead cut by a lall oll eoal.
29 ,	Thomas Auderson	Big Mountain	Terribly injured by a liall of rocks.
22,	Elits Koons	. . do	Foot erushed by prop timbers.
23,	John Lemary	Luke Fidle	Intermally injured by a diall of rocks.
23,	Charles Newman.	Cameron	llead erushed by a fall of rocks.
23,	William Leahy	Auchor	Slightly burned by iire-dannp.
$\stackrel{3}{3}$	John Kendriek, boy	. i do .	Slightly bumed by dire-damp.
34,	Joscph Dilman	West Slicuant	Severely crushed by a filll of coal.
24,	Jacob Shracder	. do	Severely crushed by a fill of coal.
24,	Wash. Brocius	do.	Severely erushed by a fall of coal.
2S,	Michael Monaghatı	Uicknry Shati	Severely bumed by fire-tamp.
30,	Peter Franks.	Anclior	Severely burned by fire-damp.
30,	Miehael Butler . .	do	Severely burned by fire-dan?
:30,	Moses James, boy	do	Severely burned by tire-damp.
30,	Joseph Murplyy	Bear Ridgr	
30,	David Evans	do	were covered up with a largo mass of loose coal and in
30, 30	Ebenozer Evans.	do	f turn had to be relieved by others.
30,	Two miners	do	

Date.
Names of maimed persons.
Henmy miller
Sept. 30, Henry Miller.

Oet. 4, John Felly
, Michael Seall
5 , John Harrold.
5, Daniel Murry
5, Frank Thomas
5, Niehael Corne
6, Thomas Cain.
7, William Thomas
7, William Manger
!, Nathan Beecher.
?, John Egan
11, Patrick Donohoe
11, ITugh Cottou
le, William Southers
$1 \ddot{2}$, William Jackson.
Nathan Wagner
Patriek Burk.
Johm Mason.........
Lawrence Whemm.
John Hock
John Regan
Henry Walker
James Cirant.
John Morgan
, James Devlin...
Wichael Loftus.
John Yuram
Charley Quinn
Niehael Jurkin
Miehael Durkin.
Nicholas Finnerai
John Pritehard (boy)
Two miners ..
Two miners. do

Almost smothered by a fall of coal.
Fatally injured by a fall of meks-dica.
Severely burned by an explosion of powder.
Thish broken by a fall ot coal.
shoulder eruslied by a fall of coal.
Leg broken by a fall of eoal.
Leer broken by a fall of coal.
Slightly burned by fire-damp.
Thioh broken by a fall conl.
Leg broken by a fill of coal.
Toes cut off, run over by wagnus.
Soverely lint, he fell flown the slope.
Leg fraetured by a fall of conl.
Leir broken, run over by wagons.
Legs, feet and shoulder crushed by a fitl of foal
Leg amputated, injured by a filll of coml.
Spine injured by a fall of coal.
Fitally injured by earbonic aeid cas-died.
Soverely injured by a fall of slate.
Leg broken, aud burned by fire-damp.
Severely burned by the same explosion.
Leg ent by a hlast exploded in the coal.
Fatally injured by a fall of coal-died.
Ankle brriken by a fall of coal.
Fatally injured by eoal-subsequently diod.
Ilip broken by a fall of coal.
Severely injured by a fall of coal.
Severely burned by an explosion of tirc-damp.
Ribs lroken by a fall of eoal.
Fye clestroyed by a piece of coal.
Leg broken by a fall ot coal.
severely injured by a blast.
Arm broken by a blast.
Severely burned by fire-damp.
Sevarely burned by fire-damp.
Severely bumed by fire-damp.
Severely burned by fire-damp.

Pyno.
Focht is Whittaker
Beaver Run
\qquad
Kalmia
T"uninel Jivge
Canteron .
Beenhwoor
Henry Clay.
. . . ilo
. 10
Focht e Whittaker
sihemandoal
Junek Ritlgo
Hagle ilili.
Flimwoorl.
Palmer Veir.
.... 10
do.
Locust bale
. lor
. 110
.do
.ito
Fisk.
Monitar.

. . . .da

1. Jiatuch (reek
. . dor.
Lust Creck
...do.
3cerhword
(E aloriado.
Coloratho.
Koh-i-1oor
Koh-i-1oor.
そ...da.
sultolk
('ontemnita).
Mahatony lity
1'reston, Nu. 3
...do.
. d .
Berekville.
Bercivil

Severcly injured by a drill.
Foot severely injured by a spike run in it.
Shoubler broken by a fall of ecat.
Leg broken by a fall of coal.
Leg broken, run over by witgons.
Arm broken, run over by it wasen.
Severely ermahert by a fill of eoal.
Torribly injured by a blast.
Terribly injured by a blasit.
'Terribly injured by al blast.
slightly injured by the screens.
Fatally injured hy a fall of coal-died.
llead badly cut by a lall of coal.
legampntated by the above aceident
Body erushed by the discharge of at blast.
Leg broken, rum wver by wagons.
Fatally burned by powdor-died
SSoverely harmed by a keg of powder exploting form a \} sipark.
1dip brokent, erushed by wagons.
All four died of injuries, seated on a powder chest taking (fimmer, when at sudden explosion took phate from at spark lalling frotn a lands.

leng broken hy a lall ol coal.
Head fracturoe by the same aceislent.
lfead and body armalied hy a liall of coal.
Slionthy ermished by the sithe fiall.
slishtly impured by a liall of coal.
Slightly injomed liva fall of coal.
Sieverely bimmed by tire-damp.
severely bumed hiratu explosion of jumaler.
severely bruised by a rush of eoal.
severely braiser hy at rush ot coad.
Neverely burned by liredlatha.
Meverely eut by a chisel.
Legs hooken lyy a fall of eoal.
severely indared hy a hasad.
Severely injured by it blast.
cererely emblea by a lox rolliln orer him
\}atally injured. i link of sprealer ebalin heoke and pre(eipstated wagon down slope wherea number of men stood.

Date.	Names of maimel persons.	Names of the collieries.	Remarks.
	James Mullen. Patrick Dnffy	Buckville	\} Severely injured. A link of spreader chain broke and pre- \{ cipitated waron down slope where a mumber of men stood
	Nicholas Borgowin	Suftol	
	Jacob Grimm Walter Gibls		a naked light in the hands of one of the nien where its
	A miner		use had been prohibited.
	John Con	Hickory	Slightly ernshed by a rush of loose conl.
		Additional names returned of injurcd persons.	
	Luke Heenan .	Plank Ridge Knickerlocker St. Nicholas Stanton . West Shenandoali. Boston Ran do Turkey Iidge	Slightly injured by a fall of coal. Head injured by a piece of coal. Leg injured; crushed by a truck. Slightiy injured by a blast. slightly injured by a blast. Slightly injured by fire-damp. Slightly injured by fire-damp. Ribs broken by a fall of coal. Leg broken by a fall of coal. Shoulder broken by getting on a wagon. Leg broken by a fall of coal. Arm broken by a fall of coal. Arm broken by the wagon. Sieverely injured by tire-damp. Sevcrely injured by fire-damp. Severely injured; he fell into a sliuto. Slightly injured by a fall of coal. Thigh broken by the dirt wagon. Leg broken in the elevator. Leg broken by a fall of slate. Leg broken by a wagon. slightly injured by a fall of coal.
	Richard Farrell		
	Edward Lavell.		
	Robert looverts		
	Michael Uoogan		
	Martin Murply		
	Henry Cosgrove		
	Bernard Rafferty	Focht \& C'o...	
Nor. 9,	George Bower Simon Kazakieoski	Draper	
	Daniel Galvin..		
	Adam Blass..	Giraral ...	
	Nicholas Menzer		
	Jacob Giemm		
	Frederick Sieners		
	Henry Scheetz	Indian Ridg	
	William Roinel	Draper	
	Hester Brandon	Copley	
	Matthew Mock	do	
	Thomas Taylor	Lost Creek	

Making 308 cases of injurios during the jear, against 311 during last yoar.

It will be noticed that since the resumption on the 23 d of June the principal portion of those accidents took place consequent upon hurry and negligence ; that with ordinary care, and a proper discipline in managing the collieries, very many of these accidents would be avoided. A large portion of the coal of the region is mined by contractors. These men must labor steadily in order to make a day's wages and be able to pay their assistants and expenses. They commonly prepare the timber, props, sills, rails, put down their own tracks, make their air-courses, and a number of other jobs, besides cutting the coal, and unless he can succeed well in the forenoon he camot expect to do so in the afternoon. In view of this extraordinary labor, things are hurried on to their utmost. Besides the daily shipments, cars must be loaded and orders filled in a business-like manner, that in a colliery where 300 or 400 persons are employed, the running of loaded and empty trains and mining materials, it is not surprising to learn of the many accidents that occurred in our mines.

To those not familiar with the amount of labor performed in our high pitching Anthracite mines it would appear surprising, when it is known that an equal amount of rock, slate and refuse is handled to the amount of coal produced, which is not the case in flat or Bituminous mines, to estimate the waste at fifty millions of tons is not out of the way, and of course the risk to fatal accidents is equally occasioned thereby.

A condensed exhibit of the fatal casualties in the district of Schuylkill in the
seven years cnding December $31,1875$.
Character of the Casualtes. 1875. 1874. 1873. 1872. 1871. 1570. 1860. Total.

Falls of coal	23	31	47	25	34	38	18	216
Falls of rocks and slate	9	6	3	9	7	7	2	43
Falls into slopes, shafts and open b	2	4	8	10	5	26	5	60
F'alls of timbers, props, etc..	5	4	1	,	4		1	18
Explosions of fire-damp.	7	19	24	17	26	6		101
Explosions of powaler	7	1	2	3	5	1	6	25
Explosions of blasts and shots.	2	1	6	1	6	6	2	24
Explosions of steam boilers	3	2	1		1	6		13
Crushed by wagons and timbers, e	5	12	12	14	12	9	4	68
Falling off slope and slaft cages.	3	2			2	2	5	14
Breaking of ropes and chains	6	3	7	1	2	1		21
Crushed in wheels and machinery	2		2	2	4	6	5	21
Crushed in the rollers	6	1	4	2		4	1	21
Suffocated by noxious gases	1	2		3	2			
Injured by animals.		t	1		,	2		8
Miscellancous accidents	11	12	9	2	21	15	5	75
Total annual cleaths	92	104	127	92	135	129	56	735
Total annual maimed and injured	308	342	379	255	406	298	91	2,03?
Total annual widows	39	43	74	49	66	81	30	352
Total ammual orphans.	141	160	273	169	257	280	150	1,430
Total.	550	649	853	575	864	788	327	4.636

A condensed exhibit of fatal casualties in Schuylkill couniy collieries during seven years ending December 31, 1875.

Fatal Clsualties.	1875.	1874.	1573.	1872.	1871.	1570.	1569.	Total.
Falls of coal	15	24	37	21	26	37	18	178
Falls of rocks and top slate	S	2	3	4	5	5	2	29
Falls into slopes and sliafts	1	4	7	8	6	4	5	35
Falls of timber and props		2	1	3	1	1	1	9
Explosions of fre-damp		16	10	15	26	8	2	84
Explosions of powder	1	1	1	9	2	1	6	21
Explosions of blasts and shots		1	2		5	4	2	14
Explosions of steam bollers	3	2			1	5		11
Crushed by wagons.	3	7	7		S	15	4	H
Falling off slopes and shaft cage	2	2		2	2	6	5	19
Rreaking of slope and shaft cha	4		6	1	3	12		30
Crushed in machinery.	1	2	6	1	5		5	20
Crushed in rollers	4		4	2	3	4	1	18
Suffocated by noxious gases	1							1
Injured by mules.		2				3		6
Sundry accidents.	8	9	6	3	9	7	5	47
Total deaths	55	78	91	69	102	112	56	566
Total maimed and injured	-217	226	321	226	339	252	86	1,667
Total widows . .	29	36	47	39	57	70	30	308
Total orphans.	115	140	153	12 S	162	250	150	1,128
Aggregate	419	450	642	462	660	684	352	3, 660

A condensed exhilit of fatal casualties in Northumberland county collieries during the seven years ending December 31, 1875.

Fatal Casualftes.

A condensed exhitit of fatal casualties in Columbia county collieries during. the seven years ending December 31, 1875.

A condensed exhibil of fatal casualties in Dauphin county collieries during the seven years ending December 31, 1875.

Fatal Casualities.

A statement of the non-fatal accidents in and about the collieries of the three districts in the year 1875.

Cifaracter of Lnjuries.	Pottsville	Shenandoah.	Shamokin.	Total.
Injured from falls of coal	18	54	17	119
Falls of rocks and slate	1	6	15	22
Falls into slopes and shafts.		3	5	8
Falls of timber and props .	2	1	3	6
Explosions of gases	28	15	2	45
Explosions of powder	3	3	6	11
Explosions of hlasts..	5	4	9	18
Explosions of hoilers.	1	1		2
Injured by wagons..	11	18	11	40
Suffocations .		1	2	3
Falling ofir cages				
Broken ropes and chains	\pm	2	\because	8
In machinery.	2	1		3
In rollers.	1			1
By drills and tools.	- 1	1	1	3
By fall of planks	1	1		2
Cut by axes...	1			1
Falls of trestleingr		1		1
Flooding of mine.			2	\bigcirc
Yicions animals		1		1
Miscellimeous cases	9	2	1	12
Totals	88	114	106	308
To 22d Soptember	42	76	71	19.5
From 22 d to Decemiver 31.	16	38	29	113
Totals	88	114	106	308
Of this mumber died of their injuries	5	3	3	11

A statement of the character of the injuries sustained by persons employed in
and about the collieries of the respective districts during the year ending December 31, 1875.

Chiracter of Injuries Received and Number of Malmed Persons.	Pottsrille district.	Shenandoah district.	Shamokin district.
11 persons had their heacls crushed	4	3	4
2 persons had their backs broken.	1		1
17 persons had each an armi broken.	2	12	3
1 person had both his arms broken	- 1		
31 persons had each a leg broken....	5	13	13
2 persons hat an arm cht off.	1	1	
1 person had both legs cut off.	1		
3 persons had a leg cut off.			2
3 persons had their fingers cut off		3	
1 person had his toes cut oft.	1		
3 persons had their sides crushed in.		3	
3 persons had their shoulders crushed.		2	
12 persons had their hands crushed and injured	2	4	6
13 persons had their feet crnshed and injured	1	$\stackrel{3}{3}$	10
5 persons had their bodies crushed and injured	,	$\stackrel{3}{3}$	1
3 persons had their thighs broken.	1	2	
1 person hat his hand cut oft by coal		$\mathrm{l}^{\text {c }}$	
4 persons had lost an eye each..		2	2
3 persms had their hips broken	1		2
	23	52	44

119 persons were maimed during life; 189 others were severely injured, making in all 308 cases, injuries not resulting in death, against 342 cases of a like character last year, or 43 less. The collieries of Schuylkill connty very generally were idle from the 9 th of December, 1874 , to the 23 d of June, 1875.

Pottsmile District Casualties and Character of the Fatalities.

Twenty-eight fatal accidents occurred in and about the collieries of this district during the year; but since the 2.2 of September last the district had been increased by the addlition to it of New Boston basin collieries, and all collieries now west of the West Branch of the Schuylkill river and south of Broad mountain, in Schnylkill county, except Brookside colliery ; it extends from Carbon county to Dauphin county line, and is 35 miles in extent.

> Charicter of these Fathities.

persons lost their lives by falls of coal. do do. falls of rock and slate	
	explosions of fire-damp
	person lost his life by . . . explosion of powder.
. . . do. do. . . . explosion of a blast.	
.... do do.... . being crushed by wagons.	
ersons lost their lives by breaking of slope chain.	
...... do......... do..... falling into slopes and shafts, \&c.do......... do..... falling of cages.	
	crushed by trestleing.

28 persons came to their death by the above accidents, leaving it widows and 62 orphans, and SS non-fatal accidents.

Shenandoah District Castalties and their Character.

Twenty six fatal accidents occurred in this district during the year: but since the $22 d$ of September the district was divided, and all the collieries situated west of the eastern limit of Girardsville and north of Broad mountain, in Schuylkill county, and all the collieries in Colambia county, were cut off and the same added to Shamokin district, which accounts for the increase in fatal casualties in the Shamokin district this year.

Character of these Fatalities.
8 persons lost their lives by falls of coal.
$3 . \ldots$. do........do. . . . fills of rocks and slate.
1 person lost his life by breaking of ropes and chains.
1do......... do. falling into slopes and shafts.
3 persons lost their lives by explosions of boilers.
$3 \ldots \ldots$. do........ do..... heing crusher in the rollers.
\because.......do.........do...... being erushed in machinery.
2 10 do. falling into open breasts
1 person lost his life byan explosion of fire-damp. .
1 do........ do. being erushed by wagous.
1 do.
26 persons came to their death from the above canses, leaving 11 widows and 49 orphans, and $11+$ persons were maimed and injured.

Shamokin District Cascalities and their Fatal Character．

Thirty－eight persons came to their deaths in this district during the year； but since the $22 d$ of September last the district has been re－formed．At present it comprises all the collieries in Sehuylkill county north of the Broad mountain and west of the eastern boundary line of the borough of Girards－ ville，together with all the collieries in Columbia，Northumberland and Dau－ phin counties，and the Brookside colliery，in western Schuylkill．

> Character of these Fatalities.

14 persous lost their lives by falls of coal．

38 cases of fatal accidents occurred in this new district during the year， leaving 13 widows and 30 r－phans，and 106 non－fatal accidents， 49 of which were maimed for life．

County casualties condenstd for the seven years ending December 31， 1875.

K		HU1	KI			LHL	MB			Lu	ibIA			AU	HIN		$\stackrel{\text { c }}{ \pm}$
\vdots	$\begin{aligned} & 5 \\ & \stackrel{y}{0} \end{aligned}$	光 シ 气	$\begin{aligned} & z \\ & \frac{2}{3} \\ & \frac{1}{4} \\ & \hline \end{aligned}$		들		$\underset{\substack{3 \\ 3}}{\substack{3 \\ 3}}$	曷	炛	突	K		$\begin{aligned} & \text { ت} \\ & \stackrel{y}{c} \end{aligned}$			第	
1869	59	86	30	150													322
1870.	112	252	70	250	14	\％5	7	26	2	9	1	4	1	2	1	3	789
1871.	102	339	57	162	20	54	8	26	7	12	1	1	6	14	1	6	816
1872.	69	226	39	128	8	26	4	16	7	10	3	12	S	13	3	11	583
1873.	91	321	47	183	32		20	42	1	7	1	，	3	5	2		805
1874.	78	226	36	140	16	92	6	16	2	8			S	16	1	6	651
1875 ． 58		215	29	115	23	78	9	16	8	7			，		3	10	580
To this number add slight injuries																	
																	4，636

The above exhibit will show the number of fatal and injured accidents and the nember of widows and orphans in the different connties cansed by mine aceidents fur the seren years ending December 31， 1875.

Review．

Obdurate iudeed must he be who claims any pretentions to feelings of lumanity and review those death rolls and accidents and then consider the amount of hardships and suffering endured by these people without being moved by compunction and charity for then condition，even while many of which are the victims of their own tashess or muwarranted negligence．

Their employment is so entirely different and dangerous from others they become oblivious from custom to that state of things that the most benerolent feelings become blunted by the constant repetition of these frightful casualties. Sad as this spectacle may appear it becomes the more sadder by the unsettled state of society that tends to embitter public sympathy against them, and turns aside friends and benefactors from real deserving cases and calls down the indignant frown of public opinion on the community that the innocent spectators must suffer the severity of critical reflections as well as the very fow participators in follies and evil misdeeds meets with universal condemnation.

Suspensions.

Forcible suspensions of labor and production of the district collieries are fruitful agencies of distress, entailing a scries of ill feeling and discredit, as is consequent upon such condition of affairs in as large communities as are met with in the coal region. The masses are obliged to maintain themselves by their carnings; being otherwise non-productive, the policy of steady employment at moderate wages when the state of the trade is unsettled would be of more real benefit. As labor is far in excess of the demand the state of society becomes excited. As the questions at issue do not appear to be very popular outside the localities that are direetly interested, it appears that no intermediate agencies desires to come forward that could or would effect a solution of this vexed question, but leave the antagonists to treat the matter after their own manner of thinking. But whilst all this is going on it not alone affects these rival elements, bnt the whole community at large is sustaining incaleulable injury.

Might not a law be enacted that could set limits to such difficulties by authorizing the executive to appoint a commission of judges of our courts, and an equal number of persons representing the disputing interests, that are fully competent to discuss questions relating to both, fully and fairly, and the act of two-thirds of such commission should be binding after the same would be reviewed by the Attorney General and approved by the Governor ; and this commission to be to all intents and purposes a commission for adjusting such claims from whose decision there should be no appeal? The parties refusing to comply with the award could be held accountable for infringement on the law. Some such system would at once remore the disputation out of the power of agitators. No suspensions or coercion should be permitted on either side, and the community could follow their accustomed employment and business as all good citizens should and ought to.

Operators.

Operators of coal mines, as a class of business merchants, generally labor under many expensire disadrantages. When the mine has been worked to the third or fourth lift the power needed for drainage, mining and rentilation is exceedingly expensire, besides the large amonat of dead or unproductive work that must consequently ensue; and unless the veins are profitable to work abandonment must be the result. In that case the current belief is the operator wronged some one and got rich, while the truth is the reverse.

There are few collieries that do or can work over two-thirds of the year under farorable circumstances, and many not that, either while the other part of the year or time while idle does not tend to reduce the current expenses, and unless he has the good fortune of haring in his employ practical, prudent officers, fully competent under every emergency to do the man.
agement properly and well, the standing of his colliery will sink down with the pressure of miscellaneous expenses, only to be seen in his books.

Practice in a manager or boss is a pre-requisite qualification, but it requires more than practice and experience in a boss. He should possess the executive ability and be fully conversant with the details of modern systems of mining and mine machinery, and have the independent firmness of a just arbiter, to see that the just rights of either party should not suffer in his hands.

Mine Accidexts.

Accidents arising from falls of coal are generally the result of bad timbering. They are the most numerous of all other accidents connected with coal mining, and all miners understand this; yet there are many men to be found, and who are practical enough, that grossly neglect timely propping, and fall victims to their own folly. There is no adequate apology to be made for this class of persons.

Explosions of fire-damp are the next great source of casualties amongst miners, many of which conld be avoided by a rigid enforcement of the mine regulation and a proper degree of circumspection on the part of the miners themselves. In many of the collicries explosive gases are generated to an alarming extent, and become even fearful and hazardons to work in. Notwithstanding all this danger the miner elearly understands all this, but he is often so circumstanced that to evade his rosponsibilities to his family and others, that he becomes oblivious to impending dangers, and manfully risks his life for a principle that thousands more fortunately circumstanced would shriuk from. The operator who neglects to establish mine regulations, or if established neglects to put them into force, is, to a certain extent, accountable for the injuries thereby sustained, nor can he waive the responsibility of the injury, having all the authority and direction of affairs in his own lands, and under a laxity of duty permits the men in his employ to disregard the law or mine rules.

Name＇s of Colleries in operation in the mining district of Schuylhill，comprising the countics of Schuylhill，Northumberland， Columbia and Dauphin，during the year endiny Decembir 31，A，D． 1875.

Nos，AND NAMIN OF THE C＇OLAERIES．	Locations of Col－ liories．	Counties wherein loeated．	Natues of the operators；and the lotter I denotos lamel－owners and uporator．	Class of Collieries worked．
A．				
1．Ilto，Nount	Frackvillo．．．	Schtuylkill ．．．．．	1．0ngoncrered Co．，I．	
3．Maska，Ño．1．．．．．	Mount Carmel	Northumberland	1，R．Cosland Iron（＇omipuny，L	1 shatt．
$\therefore \text { Alaska, No. } \because .$ B．	＇Tammidua ．．	Sclumylkill．．．．．．．	Gell．1I．L．Cake．	$2 \text { drifts. }$
4．Buckville．	Tamarqua ．．．	Schuylkill	1）．R．C＇oal amd Ironl Compansy，	
5．IBeceliwood	Mount Latióco	．．．ito．．．．	．．．．drs．．．．．．．．．．．（l）．．．．．．．．．	1 stope． 1 slope．
（i．I ionston Iturn．	（xilberton．．	$.10$	clu (la)	2 slopes．
7．Iball liun．	T＇annargia．	tlo	Lehigh and iV．C．（onn］raiy，is	1 slope．
8．liear kialgo	Planes．．．	$.10$	lijratid estate ．．．．．．．．．．．．．．．．．	$1 \text { slope. }$
	M＇Neal ．．．．．．．．	do		$1 \text { sloje. }$
11．Bix Mine Jinn II．Jear Run ．．．．	Sig Mine Jinn．	do	Tayder amd Simatsy ．．．．．．．．．	3 drilts．
11．Bear liun．	fiilberton． Shamokin	－．．do ．．．．．．．．	I＇R．Coad and lion（＇ommpany．	1 slope．
13．Buck Ritige	．．．do ．．．．	．．．do		4 clrifts．
11．13urasido ．．	．．．．do	．．．． 1 do	P．R．Coal and Jron（iominain	2 slopes． 2 slopes．
15．Bear Valley	．．．do	．．．dlo	．．．．do ．．．．．．．．．．ilo ．．．．．	I slope．
16．Boar Valley 大hatt．	．do	．do	do ．．．．．．．．．．．dio	$1 \text { shaft. }$
17．Inookside．．	Itrooksicle．	Schnylkill．	．rio．．．．．．．．．． 1 In	1 slope．
18．IBje Monntaia．	Northumberlami co．	Northumberlatir	．do．．．．．．．．．．do	6 drifts．
19．Vig lick．	Williamstown．	Hatjhin．	Sthmmit Ibranch liailmad（ionixamy，L	3 lift slopes．
20．Wen Franklin．	Helfenstine．．	Northimmherland		1 slope， 1 drili．
21．Jig Run（iajl．	（ivalztown ．．．．	Waturhin．	Sinmonit IFranch Railroad Comprasy	
路．Beaver Ikun． 2：1．．．Baltimore．	Mahandoy（ity	Schnylkill		1 drift．
コー．．Bathmore．	Silver Creck．	Cl_{1}		1 slope．
23．（＇alodoniat．	Shamokin	Northomberland	Memry Naxtor．	
＂2I．（＇anmeron	．．．．do ．．．．．	\ldots ．．．do ．．．．		$\ddot{2}$ siopes， 5 drifts．
35．（＇nlket．	Hontalstsin．	Seltuylkill	（＇olket and others ．．．．．．．．．．．．．．．．．．．	I slopo.
36．Cuyler．	Rascen Ratr	．．do	lleatorl de Bros．	2 drifis．
27．（oat hidige	Montanat Ashlamd	Columbia	Cireenlatid（＇ondransy	1 siopre．
20．Contralia．．．．．．．．．．．	Centralia．	Columbia．	Stins， Dr．P＇ovost．	Islope idle． 1 slopo itle．

Nanes of Colidertre in Operatton in tife Mining Distritct of Somtithethl-Continued.

Nos. ant Nambs of The COLADERIGS.	Locations of ('ollicrios.	Commties whercin located.	Names of the operators; and the letter L denotes land-owners and operator.	Class of "ollieries worked.
33. Coal Monntain.	Shamokin	Northmmberland	Freenland Company	1 slope idle.
31. Copley	Mahanoy City	Schuylkill..	P. R. Coal and Iron Company	I slope.
33. ('nlorado...)	Girardsville		Philadelphia Coal C'ompany..	1 slope, 2 drifts.
:31. (coaldale... D.	Summit 1Lill.	Schnylkill.	L. and W. Coal Company, I.	2 slopes.
:3. Dianont	Forestville.	Schuylkill	P. R. Coal and Iron Company	1 slope.
3i. Diamond, No. 2.	Eagle Hill	do	.do	1 slope, 1 shaft.
37. 1 1raper	Gilberton.	do	Giilbert and others...........	2 slopes.
:35. Delaware, East.. 15.	Pottsville.	.do	P. 11. Coal and Iron Company.	2 slaits.
33. Enterprise	Shamokin	Northomberland	P. R. Coal and Tron Company	2 slopes.
40. Wast Franklin.	Donaldson.	Schuylkill..... do do	2 slopes.
41. Jureka	...dodo......		1 slope.
12. Emory.	shamokin	Northumberland	do	2 drifts.
43. Jixcelsior	do.	,	6 dritts.
44. Elmwood ...	Mahanoy City	Schuylkill.	.do.... do	1 slope.
45. Enterprise, No. 2 .	Malanoy city	Northumber do	1 shalt.
46. Ellangowen......	Mapledale	Schuylkill.		1 shalt, 3 drifts.
47. Eagle.	St. Clair	... do	George ${ }^{\text {W }}$. Johinl....	2 slopes.
48. Fagle Mill........ 49. Wast Mammoth	Eagle lilil... Raven Run	.do	P. R. Coal and Iron Company	1 shatit, 1 slope.
49. Fast Mammoth 50. East Pine Knot...	Raven Run St. Clair ...	$\begin{array}{r} .10 \\ .10 \end{array}$	Donaldson \& Bro..............	I slope, I frift. 1 shatt, 1 slope.
51. Ellsworth..........	New Castle	 do do	I slope.
52. East Mahanoy	Mahanoy City	.do	.. do do do	1 slope.
F.				
53. Forestrille	Minersville	Schnylkill.	P. R. Coal and Tron Company	1 slope, 1 drift.
54. Furnace.	Gilberton. $10 . .$. .	Gilbert and others............	1 drilt.
55. Focht \& Whittaker,	Mahanoy City.		Greenland Coal Company	1 slope.
	Northumberland	Northumberland	P. R. Coal and Iron Company	3 slopes, 3 drints,
58. Gcorge Falos.	Shamokin	Northmmberland	do do do	1 slope. 1 slope, 1 drilt.
59. Grant	Mahanoy City	Schuylkill.		2 drilts, 1 slope.

60. Cirard Mammoth. 61. Girardsville 62. Girard \qquad
61. Glendower
62. Greenwood, No. 1. 65. Greenwood, No. 2.

H

66. Hiekory Shatt
67. Hollman
68. Millsirle
69. Hazlerleli

- 70. IFoney Brook

71. Henry Clay..
72. Hickory Ridge 73. Hickory Swamp 7. Hellenstine
I.
73. Indian Ridge
J.
74. Jackson
75. Joseph Tayler
K.

7S. Kear
79. Kentucky
80. Kevstone

81, Kolt-i-noor
\&2. Kniekerbocker
s.3. Kimble
4. Kalmia
85. Kangaroo
I.
86. Julie Fidler
87. Lambert.
88. 1 nelsit spring.

8! 1. Jabutister.
90. Jower Ranchi'reel
11. Lineoln
12. Locust Creat

Raven Run. Girardswille
.do
Glen Carbon.
'Tamaqua
. . . do
Wadesville
Mahanoy City.
. . . do
Centralia
New Pottsville
Shamokin
. . . do
.10
llelfenstine
Shenandoah
St. Clair
Minersville
Mine ILill Gap.
Tuscarora. .
Ashland
Shenandoah
M'Neil.
Loeust Gap
.
Shamokin
. . . do
. . do
.lo
Ratmeh Creek
. . . do
Lost Creek.

Cuyler den.
Philadelplia eity
Girard estate
P. R. Coal and Iron Company .

Lehigh and Wilkesbarre Coal Company.
do

Hickory Coa! Company
Greenland Coal Company................................ 1 shaft
P. R. Coal and Company................................ 1 drift.

Greenland and Iron Company.
Honey Brook Coal Company
P. 12. Coal and Iron Company
. . . . do do
. 10.
1 slope.
I slope, 1 drift. 4 slopes.
1 slope, 2 drifts.
1 slope, 1 drift.
1 slope, zd drifts.
1 slope.

1 sluaft.

1 slope
1 dritt.

3 slopes.
1 slope.
2 slopes.
1 shaft.
1 slope.
1 slope.
I clrift.

1 slope, 1
3 drifts.
2 slopas.
1 drift.
2 slopes.

Nos. and Names of the Collifites.	Location of Colliories.	Counties wherein located.	Names of the operators; and the letter LI denotes lamd-owners and operator.	Class of Collieries worked.
158. Tunnel Ridge. 159. Trenton	Mahanoy City	Schuylkill.ddo	P. R. Coal and Iron Company	1 slope. 1 slope.
U.				
160. Union, No. 1.....	Big Mine Run.	Schuylkili.	P. R. Coal and Iron Company	1 slope, 1 dritt.
161. Union, No. 2...... W.	Ceutralia	Columbia		1 slope, 1 drift.
162. West Shenandoath,	Shemandoah	Schuylkill	P. R. Coal and fron Company	1 slope.
163. Whn. Pemm.	do		Giibert and others.	1 shaft.
164. West Miahanoy	Mahanoy City		P. R. Coal and Iron Company	1 slope.
165. West End	Donaldson....		Miller, Hock \& Co........	1 slope.
166. Williamstown 167 Welster Daniel	Williamstown Shamokiu	Dauphin. Northumberland	Summit Branch Railroad Company	1 slope. 1 slope, idle.
167. Weluster, Daniel . . 168. Wilson, George . .	Shamokin Delaware.	Northumberland Schuylkill.	Y, R. Coal and 1ron Compan	1 slope, idle. 1 drift.
169. West Lehigh......	Shenandoah. do	Gilberi and others............	1 stope.
Y.				
170. York Farm, No. 1,	Pottsville.	Schuylkill.	P. F. Coal and Iron Company	1 slope.
171. York Farm	do	do	do .	1 slope.
172. Yorkville.		do	Richardson's estate	1 slope.
173. York, now slope	צ...do		P. R. Coal and Iron Company	1 slope.
174. Yatesville	Y:		do	1 slope, 3 drifts.

A statement of names, power and capacity of the respective collieries in Poltsville district in the year 1875.

Namen of Cotateries.

Cagle Alto, Mount Hiekory Shaft Delaware Shafts. Pine Forest Shaft Peach Mountain Kentucky Buckville New Kirk Reevestale Tamaqua. freenwood. Bull Run. Tumel, No. 10 Coaldale Llewellyn. Taylor's Drift Sharp Mountain Sharp Mountain, No. 2 York Farm. Fisher's York Farm Yorkville West Delaware, No. 1 . West Delaware, No. 2. East Delaware	

A Statement of names, power and capacily of the collicries of the Second district in the year 1875.

Statement of Second District Collieries.

Racapitulation of the collieries of Shenandoah district, showing their shipments, the power and force employed, the number of fatal and nonfatal accidents that occurred during the year, to wit:

There are 47 slopes, 10 shafts and 48 drifts in operation, 1,470 breasts of coal are worked, 277 steam engines with 548 steam boilers are in nse, 43 stean fans of 866 -horse power are in use for ventilating the collieries ; 7,176 men and 2,850 boys $=10,026$ hands are employed- 868 mules and 3,297 wagons are in use ; 26 fatal and 114 non-fatal accidents occurred, leaving 11 widows and 49 orphans. $2,520,179$ tons of coal had been sent to market. and 480,000 tons had been locally used, making an aggregate of $3,000,179$ tons of coal mined ; making one fatal accident for every 116,319 tons mined, and one fatal accident for every 385 persons employed. Visits on official duty, 178 ; number of miles traveled, - .

A statement of nomes, porier and capacity of the respective collieries in the Shamokin district in the year 1875.

Names of Cothtelifes.	$\frac{\boxed{\pi}}{\frac{\pi}{6}}$			$\begin{gathered} \text { 皆 } \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{gathered}$		紫	Horse power....		$\begin{gathered} - \\ 0 \\ 0 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \end{gathered}$	$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	$\frac{2}{8}$	$\begin{gathered} 4 \\ 0 \\ 0 \end{gathered}$		$\begin{aligned} & 5 \\ & \vdots 0 \\ & 0 \\ & \frac{n}{\circ} \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	" stronirs oulzt	$\stackrel{\text { H }}{\stackrel{\rightharpoonup}{\omega}}$	 shotsojdxy	
Pronkside.	1	. 1	73	7	220	1	20	2	C0	22	230	60	290						$\begin{aligned} & 68,547 \\ & 76,428 \end{aligned}$
Williamstown	3	1	60	6	650	2	50			21	560	60	620	...					315, 714
Short Mountain	2	4			1,600	1	50			50	542	110	683						173,694
Marshall.......	1			4	\&					6	8		8						2,911
Trevorton.	3	${ }_{0}$	50	4	365	1	20			25	293	110	403						76, 419
Imke Fidller	1	2	46	5	175	1	20			§	21	40	263						10S, 500
Hemry (lay.	1	2	20	$\stackrel{2}{2}$	90 200					$1{ }^{19}$	14.5	40 49	185						85, 945
lunck Rillese	2		20	4	200 320	1				110	150	49 30	199						110,000
Enterprise.	2			4	320 245	1				10	160	80	150						52, 665
Reliance	2	6		3	245 70	1	20			11	850	100	450						38,920 198,135
Pig Monntain.	2	6	40	4	3	1	25			20	190	(1.5)	245						198, 630
Mariam	2		24	4	328	1	20			15	180	60	$2+11$						48, 855
Iameaster		3	10	1	20					1	51	16	70						24,998
Iocust riap	1			2	270	1	20			12	200	40	210						18, 830
Jacust Spring	1	5	-	2	170	1	20			11	90	100	140						21,393
Cameron......	2	5	49	4	90	1	30			17	450	100	550						280, 189
Pen. Franklin	1	2	21	1	25					:	100	80	130						46,905
Inorton		2		,	15					1	30	15	45						20, 803
Aluska Shaft	1	2		4	385	2	50			10	200	65	255	10	50	1			20,925
Cieorge Fales	1	- 1		,	40					6	SU	15	95						37,576
Enterprise, No. 3.		1		1	40					,	54		54						2,500
Pig Mine Rum, Weat		3		4	190	1	20			13	66	66	132						55, 000
Piady		4		1	50					5	70	$2 \overline{3}$	95						20,377
Excelsior		6		1	65					5	120	60	180						43, 46?
Coal Ridge	1			2	150	1	20			16	40	25	65						12, 411
Black Diamond.	1	2		4	120					4	53	17	70						5, 338
Furmside.	2			4	180	1	20			11	211	90	201			4			108, 521
Pear Yalley		. 1		1	$: 8$					2	172	50	292						91,931
Hickory Swamp	1	2	12	2	110	1	20			7	170	55	235						71,019

Hickory Rirlge 1		1	20	3	190	1	20			9	(12)	30	122			23, 415
liear Valloy Shatt	1	1		1	150	1	20			10	20	4	21	. . .		5,338
liranklin.		2		1	8					1	39		30			10,000
Fioyal Oak		1									4		4			815
Helfonstino........ 1		1	12	3	165	1	20			5	140	25	165			15,974
lige Run Gap)		2									15	5	20			3,345
Bear Valley Dritt		1		1	S					1	12		12			1,000
Northside.........		1		1	10					1	S		8			3,529
Koystone 2				9	918	1	40			35	200	61	264			23,648
Locustdale . 2			25	6	790	1	40			25	159	71	230			40,910
Locust Run 1		1	25	4	270	1	20			24	210	62	274			43,053
'Tunnel ${ }^{\text {a }}$		1		10	1,445	1	40			36	169	17	216	1		50,073
Contraliat 2		1		2	340					11	15		18			11,000
Continental.......................... 1				2	310	1				S						48, 861
		1		$\stackrel{3}{2}$						S						56,469
Hazledell...........................		1	16	4	360					12	16i)	-10	203			21,000
Lijg Mine IVm, East		1		5	330	1	40			25	$16: 3$	121	254			72, 122
Stewartsville ${ }^{2}$		2	$\underline{6}$	2	50	1	20			6	120	80	200			44,694
Preston, Nus. 1 antl 3 ${ }^{2}$		3	72	4	175	3	81			13	320	55	375			37,747
1'reston, Nos. 3 and 4 ${ }^{2}$		1	30	5	815	1	20			20	100	50	150			16,355
lieno 1			\because								6		6			1,000
Littlo Dianmond		1		1	15					1	12		12			2,000
Vaughias Drift		1									6		6],000
Lilly brilt . 1				1	10					1	9	5	11			9,326
Wadley Slopre				1	60					4	6		6			Pumping
Out Crop Drilt.		1									15		6			500
Centralia, out erop.		1									10		10			1,000
Red Ash 'J'unnel.		1	1	1	50					2	20	10	30			New.
Bryson's Drili		1	2								5		5			340
Sisty sollicries 55	3	78	646	151	12,965	36		21		592	17,259	4, 296	9,585	38		$3,3 \mathrm{SS}, 736$

Recapitulation.

Sixty-fom working collieries in the district, 3 shafts, 55 slopes, 23 tumnels, 55 drifts, 151 engines $=12,965$-horse power ; 592 boilers, 14 pole and 7 bull pumps, 36 steam fans, 7 furnaces ; 7,289 men and 2,296 boys $=9,585$ hands employed. 186 visits, making 5,168 miles traveled. 38 fatal and 111 non-fatal accidents occurred during the year, leaving 13 widows and 30 orphans. $2,848,726$ tons of coal had been shipped, 542,000 tons had been consumed in the district, making $3,388,726$ tons mined; making one fatal accident to each 89,177 tons, and one non-fatal accident to each 252 persons employed in the district.

Maps of Collieries for 1875.

A list of maps of coal mines and collieries furnished by land owners, agents and superintendents for use of inspectors of coal mines and collieries of their respective districts, being prepared from actual surveys in compliance with the act of Assembly of March 5, 1870, and are now of record in this office.

Puttsville District Maps.

Number and Nanie
of Colliery.

Liery. \quad Remarks.

Pottsullle District Maps-Continued.

Number and Name of Colliely.	Location of Collieri.	Remaries.
43. Glentworth	Eagle Hill	1 slope.
44. Eagle Hillclo.	1 slope, active.
45. Live Dak	Mine Hill Gap	1 slope, abandoned.
46. York Firm	Pottsville, West	1 slope, active.
47. Tork		1 slope, active.
48. Palmer	Combola	1 slope, active.

Shenandoah District Maps for 1875.

Shamokin District Maps for 1875

Number and Name of Colliery.	Names of Locations.	Remarks, Etc.	Gross Tonnage.
1. Brookside	Brookside	1 slope..........	68,547
2. Short Mountain	Williamstown.	1 slops, 1 tumel	290, 878
3. Williamstown.	. . do	3 slopes	315, 714
4. Big Lick	do	1 slope.	76,428
5. Stewartsville	Mount Carmel	1 slope.	44,694
6. Morton	Shamokin	1 slope.	20, 803
7. Cameron	. do	1 slope, 4 drifts..	270, 199
8. Hickory Swamp.	do		70,519
9. Hickary Ridge	do		18,940
10. Burnside..	do		108,520
11. Buck Ridge	do		110, 237
12. Hemry Clay	do		85, 915
13. Bear Valley	do		91, 977
14. George Fales	do		32,576
15. Trevorton	do		76,419
16. Daniel Webster	do		Abandoned
17. Big Mountain .	do		198, 135
18. Franklin	do		46,905
19. Helfenstine	Helfenstine		15,974
21). Reliance	Shamokin		38, 920
21. Enterprise	do		52,665
22. Locust Spring	do		31, 864
23. Locust Gap 21. Mariam	do		18,839 86,631
25. A. S. Toolf	do		A bandoned
20. Coal Ridge	Columbia		12, 411
27. Shamokin.	Shamokin		Abandoned
28. Greenback	. do		20,377
29. Keystone	Locustale		25, 648
30. Franklin, No. 2	Shamokin		43, 516
31. Locustdale	Columbia county		40,911
32. Locust Run do		43, 053
33. Centralia	do		11,000
34. Reno	do		1,000
35. Hazledell	do		21, 000
36. Union, No. 1	Big Mine Run, Sch'kill co		72, 122
37. Continental	Columbia		48, 861
38. Union, No. 2	do	1 slope, 1 drift	50, 469
39. Big Mine Run	Big Mine Run, Sch'kill co		55, 000
40. Tinnel	. 10		50, 072
41. Preston, Nos. 1 and 2.	do		37, 747
42. Preston, Nos. 3 and 4.	do		16,356
43. Frank Gower	Shamokin		Idle.
44. North Franklin	. 10		37, $05 \pm$
45. Alaska Shaft	Mount Carmel		21,393
40. Luke Fidler	Shamokin		105, 800
47. Monitor	do		4S, 855
48. Excelsior	do		43,463
49. Lancaster	do		24,953
50. Franklin	do		10, 667
51. Black Diamond	. do		5,338
52. Marshall	. do		2,911
53. Royal Oak	. do		800
54. Lambert	. ${ }^{\text {do }}$		169
55. Stewartsville	ivount Carmel	1 slope	4t,694
56. Little Diamond	Schuylkill county		2,000
57. Vaughan's Drift do		1,000
58. Lilly Drift..	do		9, 329
59. Out Crop Drift.	Columbia		500
60. Centralia Drift	. do		1,000
61. Red Ash Tumnel	do	1 tunnel	Sew.
62. Bryson's Drift..	. .do	1 drift	340

Sixty-four collieries were in operation in Shamokin district during the year, which produced 2,848,726 tons. Tounage consumed in the district, estimated 540,000 tous. The aggregate amount of tons mined $=3,388,726$ tons.

Schuyldill County Collieries in 1875.

	Tons in 1855.		in 1853.
1. Brookside	68,547	63. Oak Follow.	26, 266
2. Tower City		64. Hartford	1,000
3. Lincoln.		65. Tumnel Ridge	5f, 901
4. Kalmia		66. Boston Run	39,084
5. Lower Rauch Cree		67. Draper	57, 0 ± 2
${ }_{\text {ti. Franklin, East }}$	26,340	68. Lawrenc	67,417
7. Colket		69. Girard	45, 969
S. West En		70. Bear Ridge \} consol.,	87, 876
9. Eureka $10 . .$.	9,025	71. Bear Ridge tumel, 72. Stanton	61,792
11. Pyne...		73. Gilberton	50,437
12. Otto	35, 694	74. Furnace	62, 521
13. Phœnix, No. 2 , con	27,061	75. Bear Run	57, 411
14. Phenix, No. 1 f	3:3,738	76. St. Nichola	47,335 25,740
15. Diamond		78. Mahanoy City	51,402
17. Taylorville		79. Silliman	40, 080
15. Glendower	21, 322	80. Primrose	54,776
19. Oakdale	31, 279	S1. Crlendon	67,969
20. Richardson	4,907	82. Bearer Rim	15,653
21. Anchor	19,662	83. Hillside (abandoned)	
2.2. Thomaston slop	41,104	84. Copley..	6n, 808
2:3. Thomaston shalt	11,104	85. Malrern	$13,501$
24. West Pine Knot 2.5. East Pine Kunt	1, 2,202	86. Trenton	$\begin{aligned} & 15,653 \\ & 13,501 \end{aligned}$
26. Kear Gap	21,076	SS. N'Neal, No. 1 (imundated)	
27. Beechwood	44,722	89. N'Neal, No. 2 (imundated)..	
2s. Ilewellyn (new)	1,200	90. Suftolk	23, 245
29. James Taylo	1,000	91. Ellengowan	3:3,981
30. J. R. Deam	S00	92. Fnickerbocker	64, 593
31. George Wilson	1,500	93. Wm. Pemn shaft	107,640
3\%. Plack Valley	2,000	94. West Shenandoalı	30, 069
33. Ellsworth ...		95. Shenandoah City	67, $\mathrm{SNO}^{\text {a }}$
34. Atammoth		96. Turkey Rum	61, 359
35. Alto, Mount		97. Indian Rum.	98, 569
36. Eagle		98. Plank Ridge	81,737
37. M 0 anitor		99. Thomas	6it, 4i7
38. Hickory sha		100. Kioh-i-moor	95, 63s
39. Delaware sh	1,810	101. Lehigh, No. 3.	88, 581
40. Tracy Vein.		102. Wood d Oli	11,000
41. Devlin slop		103. Bank d C'o	1,000
42. Torkville.		104. Lost Creek	68, 995
43. Sharp MLount		105. Lost C'reek, No. 2, new slope,	1, 200
4. York Farm.		106. Colorado.....................	16, 803
4. York Farm, No. 2		107. Girardsville	39, 371
t6. Pine Forest.	26,910	108. M'Michael.	87,610
47. Palmer Vein		109. Cuyler	52,571
45. Ledger Vein		110. Girard Manimoth	39, 407
49. Peach Mountain		111. Preston, Nos. 1, 2, 3 and	56, 105
50. Kentucky.		112. Big Mine Ran, East	72, 121
51. New Boston	81, 340	113. Big Mine Run, TVest	55, 000
52. Tuscarora.		114. Tunnel	50,072
53. Buckville	16, 12	115. Key'stone	23, 648
54. New Kirk		116. Excelsior	$\stackrel{2}{2}, 000$
55. Reevesdale		117. Diamond	2,000
56. Alaskia		118. Eagle Hill	26,953
57. Timarua		119. Preston, No.	\&, 220
5S. Crreenwood		120. Davis \& Co	1,500
59. Bull Ruu		121. Preston, Nos, 1 amil 2	37, 7-17
60. Tummel, No.		122. Preston, Nos. 3 and	16, 3.56
61. Coalclate		123. Jones if Co.	11,031
e2. Grant drifts	21,37		

Tonnage of Northumberland County Collieries in 1875.

Name of Collitery.	Operators.	Tonnage.
1. Cameron	Mineral Railroad and Mining Co.	270, 199
2. Big Mountain.	Patterson \& Llewellyn	198,135
3. Buck Ridge...	May de Audenreid....	110, 237
4. Burnside	Isaic May \& Co..	108,521
5. Luke Fidler	Mineral Railroad Company	103,801
6. Bear Valley.	Heim \& Goodw 11	91, 917
7. Henry Clay	Langdon \& Co.	S5, 945
\&. Trevorton..	P. and R. Coal and Iron Company	-6,420
9. Hickory Swamp	Mineral Railroad Company	70,520
10. Enterprise	Enterprise Coal Company..	52,665
11. Monitor.	G. W. Johns...	48, 856
12. Ben. Franklin	Douty © Baumgarden	46,905
13. Stewartville	Wm. Mortelius.	44,694
14. Exceilsior	Excelsior Mining Company	43, 463
15. Reliance	Reliance Coal Company..	38, 920
16. George Fales.	Heim \& Goodwell	32,577
17. Locust Spring	P. and R. Coal and Iron Company	31,750
15. Lancaster..	Smith i Keiser	24,954
19. Alaska Shaft	P. and R. Coal and Iron Company	21,393
20. Morton	Thomas Morton	20, 804
21. Greenback	Guiteman \& Gorman	20,377
22. Hickory lidge	Mineral Railroad Company	18,940
23. Locust Gap ...	Grieber \& Kımble	18, 831
24. Helfenstine	P. and R. Coal and Iron Company	15,974
25. Coal Ridge	Burton \& Bro's	12,411
26. Franklin	Lovel, Booth e Elms	10,667
27. Black Diamon	Schwenk \& Co.	5,338
28. Marshall	Reese i Bro's	2,912
29. Royal Oak	Tillet \& Bro.	800
30. Lambert.	Whi. Brown.	370
Thirty collieries Estimated local consump	Aggregate tomage	$\begin{array}{r} 1,629,156 \\ 70,000 \end{array}$
		1,699,156
A gain orer 1874 of.	407,606

There is one fatal accident to each 73,876 tons of coal that was mined in the county in 1875.

Tonnage of Columbia County Collieries in 1875.

Name of Collieries.	Location of Colimmeies.	Rhmares.	$\begin{gathered} \text { Gross } \\ \text { Tonnage. } \end{gathered}$
Coal Ridge		1 slope	12,411
Reno		1 slope ..	1,000
Mariam ...	Locustdale	1 slope.	86,630
Locustclale .	. . do	2 slopes	40,910
Locust Run	Ashland	1 slope	43, 053
C'entralia	Centralia	1 inundated.	
Centralia ont-crop	do	1 drift	11,000
Hazledell...	do	1 slope	21,000
Continental.	do	1 slope	48, 861
Union, No. 2.... Red Ash tunnel	$.10$	1 slope, I drift	56, 169
Red Ash tunnel	. do	1 tunnel.	1,000
Bryson's drift		1 drift	
Twel re collieries shipped the following tonnage			322, 674
			42,000
Aggregate tonnage of Columbia county collieries			354, 674

There is one fatal accident to each 52,096 tons of coal mined in the county in 1875.

Tonizage of Daunhin County C'ollieries in 1875.			
NAME OF Collientes.	LOCATION OF COLLIERIES.	Remarks.	$\begin{gathered} \text { GROAS } \\ \text { TONNAGE. } \end{gathered}$
Big Lick	L.vkeustown	1 slope	76,428
Williamstown	Williannstown	3 slopes, 1 tumnel	315,714
Short Mountain	Wiconisco	1 slope	173,694
Big Run Gap	Gratztown	2 drifts	3,345
Northside do	1 drift	3,599
Agreregate tonnage of	uphin county collieries		$57.2,710$

There is one fatal accident to each 143,177 tons of coal mized in the county in 1875.

Coal Tonnage of Shlylimle County in 1875.
By a return of tonnage of 85 collieries, there had been transported to market $3,119,607$ tons. Thirty-five collierjes made no returns so far; we estimate $1,284,544$ tons $=1,404,151$ tons. Coal consumed in county, 595,849 tons, which figures will approximate to the actual number of tous of coal mined in the county, or say, in round numbers, $5,000,000$ tons.

The number of fatal casualties in the county this year was 58 , which will give one fatal accident for each 86,207 tons mined. There are three collieries whose tonnages had been consolidated with the old collieries, giving the actual number of active collieries in the county in 1875 as 123 against 112 in 1874.

Anthracite coal mined in the region, showing the amount marketed and consumed in the several counties during the four years ending December 31, A. D. 1875, to wit:
1872.

	Marketed.	Local.	Total tons.
Schuylkill	4, 135,908	875,000	$5,000,908$
Northumberland	1,221,327	170,000	1,391, 327
Columbia	319,220	- 2 , 000	344,220
Dauphin	450, 325	30,000	480, 323
Linzerne	$9,194,808$	1,500, 010	10, 694, 808
Carbon.	3,610, 674	500,000	4,110,674
	18,932, 265	$3,100.000$	22, 032. 265

1873.

Schuylhill	4,252, 043	880,000	$5,132,043$
Northumberland	1,234, 070	170,000	1, 404,070
Columbia	358, 741	25, 090	383, 141
Dauphin	449,915	30,000	$4{ }^{4} 9,915$
Luzerne.	10,047, 241	1,675,000	11, $722,2+1$
Carbon	3,243, 165	463, 000	3,706, 168
	19, 585,178	3.243.000	22, 829,178

1874.

A Condensed Statement of the collieries of the Schuylkill district, giving their number, casualties, power and capacities.

| REMARLs. | | |
| :--- | :--- | ---: | ---: |

County Slatistics for 1875 and 1874.

REMARES.	Schuylkill county.		Northumberl'd county.		Columbia county.		Dauphin county.	
	1575.	157.	1575.	1874.	1875.	1874.	1575.	187.
Collicries	175	130		39	8	6	5	
Visits marle.	544	560		424		24		IX
Mileage.....	11,970	9,696		2, 802		160		720
Men emploved		11,234		3,240		836		1, 11I
Boys emplojed.		3,796		1,049		215		303
Total force employed		15,030		4,216		1,051		1,414
Deaths...............	58	78	23	16	8	\because	3	
Naimed	217	036		92	7	8	6	16
Widows	29	36		6			3	
Orphans	115	140		16			110	
slopes..		115		28		8		
Shafts		13		\because		1		
lrifts..		72		49		2		
Tannels		59		25		2		
Railroad track		19 S		122		9		$2)$
Ereasts of coal		1,961		595		62		-1
Steam engines		537		99		33	\$1
Horse power.		30,207		2,309		2,3359		2, 492
Tentilating fans		SS		9		5		2,
Horse porrer.		2,151		307		100		87
All prinps...		132		27		10		?
Horse power.		14,446		2,238		1,316		1,310
Steam boilers.		11,094		285		92		83
Fiplosions of gas.		3 S		4				
Explosions of powder and blasts		8		4		1		
Explosions of steam boilers	2	2						

Recapitulation of collicry power, force employed, and the coal tonnage mined during the year 1875.

District Colliery Statistics for 1875 and 1871.

Requirenents of the Mine Ventilation Act of March 3, 1876.
Persons in charge of Mines are required to furnish me his answers to the following questions:

In mining law.
QUESTIONS.
Sect. 1. 1. Have you intelligent maps of your mines and workings for Inspector's use, as required by law?
2. Have you furnished statements of mining progress and improvements to the Inspector?
3. Have you abandoned any lift or level in your mines without due notice to Inspector of such act?
Sect. 2. 4. Hare you neglected to furnish the necessary information on the condition of your mines to the Inspector, being requested to do so?
Secr. 3. 5. Have you two safety inlets and outlets for ingress and egress always available in case of accident, to secure the safety of miners?
6. Have you unfinished inlets or ontlets or air-courses not heretofore completed, or in progress of completion?
7. Have intervening lands prerented the execution of safety roads in your mines, when the safety of miners' lives may be involved?
Sict. 6. 8. Hare you a suitable place where miners may change dress and wash in if required?

Sect. 7. 9. Have you an adequate amount of ventilation circulating in splits in each working district of your mine, as required by law?
10. What mode or apparatus do you use to produce ventilation in your mine in summer and winter?
Sect. 8. 11. Have you a competent practical boss miner and firemen who do their duty to your miners and mines properly?
Sect. 9. 12. Have you to use safety lamps-in what condition kept, aud if kept locked for better safety?
13. Does your mines generate noxious gases?
14. Do you need bore holes in certain places to protect miners from the dangers of lodgement water or gas?
Sect. 10. 15. Have you in use, or need of speaking tubes, in shaft or slope, for better safety of men?
16. Have you secured your drums by brakes, horns and flanges, with proper machinery attached, to keep the ropes in sate position?
17. Have you employed persons under twelve years of age to work in your mines?
Sect. 11. 18. Have you provided careful, trustworthy, competent and intelligent engineers and firemen to handle your engines and machinery with care?
19. Have you permitted persons not engineers in good practice to meddle with engines and machinery in the place of competent engincers?
Sect. 12. 20. Have you neglected to notify inspector and coroner in cases of death or accidents to your miners or hands?
Sect. 13. 21. Have you had your boilers examed, as required by law, by competent persons, and report of their condition recorded?
22. Have you wholly secured all dangerous places about your establishment to prevent accidents?
Sect. 14. 23. Hare you furnished intelligent maps and plans, showing the situation of buildings, roads, streams, and how the same are secured from danger?
24. Have you ascertained the complement of air traversing gangway and reported the same monthly?

Inspector's Requirements.

1. Have you sufficient covers on cages or calriages, if in shaft, to secure men from injury or death?
2. Have you a spreader-chain on crosshead attached to slope and shaft ropes sufficiently safe?
3. Have you safety catches in use? If so, have you proved them to be secure and good?
4. Have you good ropes or chains in use and adequate brake-power to command them in case of accident to machinery?
5. Have you air-courses of sufficient section area to admit of sufficient rentilation?
6. Do you permit persons to ride on loaded wagons or cages out of your mines when traveling roads are available?
7. Do you permit more than ten (10) persons to ascend and descerd on cage or wagou in slope or shaft at any time?
8. Do you measure the quantity and motion of air in face of gangways weekly and record the same?
9. Do you, as manager or operator, understand your duty to your men in casc of death or injury?
10. Have you ascertained all dangerous places from caving in of mines and fenced the same securely?
11. Du you fully understand the meaning of the Mining Act of 1870, and the penalties it imposes for neglect or failures to comply ; and further the right of action by the heirs of any person that may lose their lives thereby as provided by law?
12. Have you prescribed your own rules and regulations for the government of your mines, and posted the same rules and regulations in conspicuous places in and about the colliery, that all your men may fully understand your instructions and mode of government of the same and carry the same into effect; or do you permit unskillful persons to work where gases are evolved, where, by their ignorant acts, they may endanger the lives of your men and property?
13. Have you employed or eutrusted any persons, other than intelligent and practical persons, to do duty as top and bottom men in your slope or shaft, and whom you know will take an interest in doing justice to your property and the safety of mon, and enforce the rules and duties prescribed for them?
14. Have you discharged reckless or incompetent persons from responsible stations, knowing them to be such, and again restored them to places where their acts may endanger the safety of men and property?
15. Are jou satisfied that your mines are properly managed for the security of your men and your own interest under the present system, or does it require some improvement and time to offect the desired and bencfited change.
———: Boss Briner.
Dear Sir :--I hereby notify you to comply with the requirements of the mining law, passed and approved the third day of March, A. D. 1870, and especially in all things that are herein marked deficient, or consider yourself open and subject to the operations of the law itself, as approved for in many sections, but particularly in sections five and tweuty-four.

> Inspector of Mines, No. - District.

Ventilation Report.
For the month ending
Name and location of colliery
Operator's name. Superintendent's namc. Mine boss' name.
To . Inspector of. District.
Sir:-In conformity with the provisions of the eighth section of the act of Assembly, entitled "An Act providing for the health and safety of persons employed in coal mines, approved the 3d day of March, A. D. 1870," I herewith report measurements of the quantum of air supplied for ventilating each panel, district and gangway, tested weekly by instruments ; also the temperature outside and inside the mine.

How Tentilation is Produced.

Sort of gas generated.
Accidents, their canse and character, with name, age and employment of persons; if married, the number in family.

Note.
Fatal Accidents.
The canses of fatal accidents are the fruitful oecasion of grare discussions among intel!igent, practical miners, as to why are they so numerons and how should they be prevented, and it would be better had this subject been more thoroughly discussed and remedies proposed for their abatement to a certain extent. It cannot be expected that an end can ever be put to mine accidents, but there is no erasion of the question but what by a strict observance of law and mine regulations, and by a compulsory obedience to rules, and a better order of goverument in and about the collieries, fully one-half these accidents could be averted.

There is another phase to this question that lias apparently escaped the notice of those who appear to become interested in the subject, or, if not, it has not appeared in their discussions so far. The point that appears to me to have escaped notice is this: That the reasons put forward treat of the collieries as if they are all alike in their general character and structure, when it is well known this is not the case, but quite the reverse, for scarcely no four collieries ean be found agreeing in their general appointments, nor are they governed by the same rules or local regulations; and this state of things is attributable to sundry conditions of the coal seams, their different angles of dip, the working of anticlinal and synclinal measures, and level and inclined working of all eonjointly through the same openings, the means and manner how ventilation is effected, the means used for lowering men into and hoisting them out of the different mines.

There is another feature connected with the working of many of these collieries that has a tendency to influence accidents to employees, from the fact that a large part of the work is let to contractors, such as the delivery of miners' supplies, the loading of coal and haulage of the same, contracts by the wagon and yardage, the employer furnishing the necessary power and general convenience for the expedition of the same, while by this course he expects to have less responsibility and better and more work rendered than wonld be had the case been otherwise.

When we consider this state of the case properly it must be admitted that where there are so many interests, independent of each other, and all exerting their best endeavors to earn all they can as per contract, it is erjdent there will be confusions that eanot otherwise be but result in acci4 Mine Rep.
dent, and that the fore and latter part of the day are the periods most prolific of fatal accidents. In such collieries the bosses are but mere figureheads, not evidently having the desire or power to check irregularities, and are rendered semi-officials or mere time-keepers only.

To account in some manuer for this state of things, as the letting of contract system, the operator could not honestly be blamed for it, for it would, under days' wages, require him to employ a larger force of hands and a staff of bosses to execute the same amount of work, and the expenses thus incurred would perhaps over-balance his profits and finally end in his ruin, and the roll of fatal accidents would not be diminished thereby; but under the contract system he may possibly be able to continue operations until the close of his lease, without any detriment to himself or the abandonment of his colliery.

TYe are able to say, from our relation to the keeping of records of accident, that under the common contract system over two-thirds of all mine accidents take place duriug the fore and after parts of the day.

That falls of coal, rock and slate are more numerous in the morning than in the evening, and so is explosions of fire-damp, but powder, blasts and shot explosions appear to occur oftener in the latter part of the day ; and so it appears the accidents done by wagons, while those that occur by the breaking of ropes, chains, machinery and rollers occur more numerons in the morning, noon and evening than at any other time of the day. So that by these observations we are enabled to locate the periods of time that these casualties generally oceur.

The question as to prevent mine accidents to a certain extent presents itself for consideration, and is a question that, on the score of human justice, demands, at the hands of every intelligent person in the management of miners, laborers and collieries, a candid and just reply. Our answer in this case would be, first a proper supply of prop timbers, and to see that it be timely applied to support the roof and coal is the duty of the boss, and any accident arising from this want on his part through culpable neglect would absolutely find him guilty of a grave crime under the act of Assembly, and before his fellow-man unworthy of any trust in or about the collieries.

To all manner of explosions, excepting powder, the present law would find the boss miner and fire boss to a certain extent criminally committed for their occurrence, although they may not be directly cupable for all such accidents, yet the grarity of their responsibilities are such as would consider them amenable to the law as derelict in the proper discharge of their onerous duty in two ways: First, the act of Assembly, section -, requires that there shall be no standing gases, and that there shall be ample ventilation in each working place; secondly, the want of forcing obedience to these wise provisions of the law and rules of the mine would evidently bar their excuse, and hold them culpable, while the miners by some fatality or other, although cognizant of the terrible danger and its consequent results, are often the participants in their own destruction, and why? By want of reasonable care and proper attention for their own welfare. But there is accidents over which no earthly precaution has the least knowledge or control, and in mining they are numerous.

All accidents resulting from contact with machinery is generally attributed to the injured party; that from habit they become negligent or venturesome to such a degree as to embolden them so far as to forget the danger that results from risks.

The force cmployed in and about the coal mines in this region are composed of over one-third of which are boys under 18 years of age, and among. this class will be found an element not easily governed, as far as their per-
sonal safety is concerned, their habits from youth in the school of the mine strikes one not accustomed to it with astonishment, to behold these youths execute the great amount of labor delegated to them to perform, and with what little evidence of fear they evince in its excention, and how well it is done is surprising.

The more mature persons who are employed in and about the mines, ant from whom much better conduct might be expected, are often found to contain a portion of a disobedient element, as far as their personal safety may be concerned, both fearless and independent, dannted by no amount of danger, which they hazard with admirable courage. We don't charge this class with a guilty intention of evading the law or the regulation of the mine, but with undue impatience in their hurry to get through with their work, jumping at risksome advantages that too often prove fatal in the end.

District Inspectors.

The offices of inspectors of coal mines and collieries for this district are happily supplied with men of excellent ability, who have been identified with mines and mining from their youth. They have the practical and edneational training that becomingly qualifies them for the position and its arduous duties devolving upon them to discharge. And it is gratifying to know that fatal accidents are diminishing under their direction, as will be seen by referring to our statements of fatal accidents embodied in this report.

Their best efforts are often made the subject of criticism with vacant minds and less favored persons, who are sure to be identified with the abuse of the mining law themselves; but this class are fortunately few, while the better judgment and discretion of the thinking masses prevails. In connection with the labors of the inspectors, a proper compliance with their mining law by the miners themselves is the great source from which the power is derived that will surely diminish fatalities in our mines; and the next source to be looked to is a stringent code of mine regulations given to men that is sure to enforce them as done by police. The wail of the widows or cry of the hundreds of orphans, nor would the funeral cortege, that so frequently moves to pity the sympathizing community, be a daily spectacle to be heard or seen.

Abstract

A condensed statement of the number of fatal accidents that occurred in the several mining districts in the anthracite regions during the years 1874 and 1875, including the number of hands employed, the number of collieries operated, the number of tons of coal mined, the number of deaths per tons mined, the number of fatal accidents to the number of hands employed, and likewise the number of non-fatal accidents in the same:

18:1.

Nane uf Counties.							
Schurlkil!.	101	5, 157, 833	15, 030	is	6,6, 126	193	223
Northumberland	35	1,404, 0.0	4,289	16	57,754	268	92
Columbiar	-	383, 711	1,051	2	191, 870	525	9
Datuhin.	5	479,915	1,414	8	59,989	171	10
Luzerne, East	97	6, 509, 057	16,5.71	69	95, 607	$\because 40$	88
Luzerne, West	96	4,913, 054	13,576	57	86, 210	238	19.5
Carbon	41	3, 500,043	S, 000	33	115, 158	242	4.5
Total	353	22, $9+7.663$	59, 931	263		S31

1875.

Sohuylkill	125	5,000, 000	12,223	58	S6, 207	328	215
Northmmberiand	30	1,391,327	4,557	23	60,495	305	is
Columbia	12	364, 674	1,546	8	43, 027	231	7
Dauphin.	5	572, 710	1,5!3	3	180, 109	365	6
Luzerne, East		7,917, 861	16,000	62	128, 109	497	102
Luzerue, West			13,500				
Carion	i1	2, 555,583	8,505	21	121,709	405	7

The ayyregate coal tomnage of the State of Pemsylvania from the commencement of the trade in 1820 to the close of the year 1875, inclusive, as gleaned from the records of the Miners Journal:

GOLNTIES SUPPLY OF COAL SINCE ITS COMMENCEMENT.

Sehtylkill Canal	54	31, 717,006	\$126, 868, 0 - 4
Philaidelphia and Reading Failroad	36	83, 393, 633	$333,514,53.2$
Lehigh Canal	50	$-29,268,458$	117, 073,832
Lehigh Valley Railroad	21	32, 804, 091	159,216, 364
Lehigh and Susquehanna Railroad	8	17, 206,859	$68,527,583$
Delaware and Hudson C'anal	47	32, 565, 193	130, 260, 72
Tehight Railroad	23	17,609, 736	70, 438, 044
Pemsylvania Canal	34	12:, 175, 004	48,700, 016
Pemnsylyania Railroal Company	23	19, 100,999	76, 403, 986
Wireat Western Railroai.	2	28,351,254	113, 405, 016
Sehigh and Bloomsburg Rail road	18	9, 800,229	39, 200,916
Forthern Central Lailroad........	37	12, 814,234	51, 376, 0,36
1 ykens Valley and Short Momutain	27	5, 793, 367	23, 173, 463
Trevorton mines	20	1,284,471	5, 137, 8S \pm
Fourteon sourees of transportation		311, 114, 334	1,364, 458, 136

To consider the immense amount of waste coal that is handled and destroyed in preparing our anthracite coal for market it must prove a great loss in the item of domestic fuel, for not less than one-third of the whole product of the mines is a total loss, or say $\$ 454,819,378$ worth of fuel has. been wasted, while the bituminous coals of Great Britain can be all utilized. Our very best anthracite coal is wasted by the system of its preparation.

Joln A. Fobling's Wire Rope Scale.

	Ropes of		$13: 3$ W1RES.			Ropes of 49 wines.				
						3 3 3 3 3 3				
1	63	21	8120	74.00	15!	11	45	54	36.00	107
2	6	2	105	©5.00	1412	12	41	47	30.00	10
3	51/2	13	91	54.00	13	13	3\%	41	25.00	91.
4	5	1.5	is	43.60	12	14	3%	3.5	20.00	81
5	43%	$11 / 2$	65	35.00	103/1	15	3	29	16.00	31
©	4	11.4	\%3	27.20	$91 / 2$	16	2%	39	12.30	6
7	$31 / 2$	11 's	41	20.20	8	17	23.8	18	8.80	$51 / 2$
s	$3!$	1	$3 \pm$	16.00	7	19	¢18	15	7.60	5
9	3	7	25	$11.41)$	15	19	$1{ }^{1}$	13	5.80	$43 \cdot$
10	21.2	\%	25	8.64	5	21	15\%	11	4.09	4
101 !	2	?	$\stackrel{1}{ }$	5.13	412	21	13\%	9	2.83	31
$10^{1 / 2}$	$1{ }^{\text {s/ }}$	16	23	1.27	1	22	114	S	2.33	234
103/4	$11 / 2$	1.	22	3.48	33/4	23	11/5	61	1.35	$21 / 2$
				3.15 8,		24	1			216
						25		6	1.0:	2
						26	3	51	. 81	$13 / 4$
						27	3.	5	. 56	$11 / 2$
						$271 / 2$	$1 / 4$	1		
						25		3	large sa	h cord.
..						29		3	small	sh e'd.

For safe working load allow 1.5 to 1.7 of ultimate strength, according to speed and ribration. Drums, sheares and pulleys should be double the diameter in feet that the rope is in inches, but never under the minmum of the rope diameter. Ropes will wear double as long on large drums ; and also with the speed, it is better to increase the load than the speed. A hempen centre rope wears much better than a wire contre on short bends, and should not be coiled or uncoiled like hemp ropes; all twists shonld be avoided. Raw linseed oil is the best preserver, mixed with lamp-black; best preserver for ropes under water, three-fonrths tar and one-fourth slacked lime. to coat it over.

$W_{\text {elght of }} \mathrm{T}$ Ralls.

Showing the number of tons per mile by the number of pounds per yard of rail, standard weight, at Haywood's rolling mills, Pottsville, Pa. :

At 16	$25 \frac{325}{28+0}$ tons per mile.	
At 18	28460	
ヘt 20	31960	،
At 22	31^{1280}	"
At 25	39640	"
At 28	44	"
At 30	47^{220}	"
At 33	511920	،
At 45	65960	"
At 48	75^{960}	،
At 68	$106 \frac{1}{2} \frac{9}{2} \frac{2}{4} 0$	"

The above table will enable a person to calculate the number of tons of T rail necessary to lay a mile or any part of a mile. It is exceedingly convenient for mine bosses to calculate a needed supply and make therefrom a correct estimate.

Yemtlation Current.

In deep mines artifieial ventilation is required for the safe working of the same, while it is necessary and proper that all persons employed in a mine, and more especially in mines that generate noxious gases largely, to hare some obvious rule for their guidance and safety as regards fire-damp when mixed with air and how to guard against explosions, besides to know when it is dangerous to use a safety-lamp in certain currents of air. Here we give the rule :

	Mitles per Hour.			
1		5,230	88	
$11 / 2$		7,920	132	2 1-5
2		10,560	176	
$21 / 2$		13, 200	220	$32 / 1$
3		15, 810	261	41
31/2		18, 480	308	
1		21, 120	359	5 5-6
$41 / 2$		23, 760	396	6 6-10
5		26, 100	110	$71 /$
$51 / 2$		29, 040	481	
6		31,680	528	8 4-5
$61 / 2$		31, 320	572	$91 / 2$
7		36, 960	616	$104-15$

* Ai \& feet per second the Dary lamp will explode; the Clanney will at 25 feet.

Remarks on Lamp Tests in England in 1869.

Where pure carburetted hydrogen gas is evolved an explosion is not inminent, unless the mixture contains from six to twelve times its volume of air. In this state it is imminently dangerons to approach even with the safety-lamp, unless the air-current is imperceptible. Any conenssion that might arise from a sudden fall of rock or coal, striking the lamp with a forec
of six or eight feet per second, would pass it through the ganze of the lam'p and explode it for a certainty, so that any experimenter with a safety-lamp should be well informed in the use of the anemometer for first to ascertain the velocity of the air-current, and should also understand the use of the barometer in each trial and in all parts of the mine.

Barometer Tests.
For barometric tests and the weight and expansion of heated air tre give the fullowing in grains per cubic foot and expansion in volume:

$\begin{gathered} \text { Defreess of } \\ \text { Heat. } \end{gathered}$		$\begin{aligned} & \text { go } \\ & \text { y } 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	Degrees of Heat.		$\begin{aligned} & 89 \\ & 0.0 \\ & 6 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
32	550	At 100	132	453	Increases to	121
42	539	Increases to 102	142	446	"	123
52	529	" 10t	152	439	"	125
62	518	" 106	162	432	"	127
72	506	" 109	172	426	"	129
82	495	" 111	182	420	"	131
92	487	" 113	192	41.3	"	133
102	479	" 115	202	407	"	135
112	470	" 117	*212	401	"	137
122.	461	" 119				

Calculations and deductions can be easily made and readily understood by referring to this table for temperatures, degrees of heat and bulk of volume.

Every person connected with mining, and having the management and superintendence of mines and employees, by right ought to thoroughly understand the use of the necessary instruments and the character and condition of the air in circulation, knowing full well that every life under his charge is at any moment subject to danger. He should be a person of good judgment, neither take from the one and give to the other but what is justly due to them; nor should he exercise any political or religious influence in any manner amongst his men, but devote his whole time and attention to the duties of his office. He should be thoroughly conversant with the mining law, and give its benefit to his miners. He should be a person who knew how to manage the colliery and treat with common respect those in his employ, not to be remiss in any part of his duty, or timid in its discharge, neither giving to any one what justly belonged to another; and where danger to life was clearly imminent then he should not hesitate to sacrifice worldly interest and protect life, for he must remember that his office under trying circumstances is of greater value than any gift carth could bestow.

Table of air pressure in pounds avoirdupois per square foot of surface areo in shefis af difierent depths and different degrees of temperature.-Hopton.

DEGiREES OF TEMPERATURE.	$\begin{aligned} & \text { Dept.h, } 120 \\ & \text { foet. } \end{aligned}$	Depth, 180 feet. lbs. wt.	Depth, 240 feet. Pounds.	Depth, 300 feet. Pounds.	Depth, 360 foet. Pounds.	Depth, 420 feet. Pounds.	Dejtis, 480 feet. Pounds.	Deptlı, 540 feet. Pounds.	Deptli, 600 fect. Pounds.	Depth, 660 feet. Pounds.	Depth, 720 feet. Pounds.
32.	9,710	14, 565	19, 421	24,276	29,131	;3, 986	43,697	48,5n2	53, 407	58, 262	68, 118
40.	9, 550	14,332	19,109	23, 887	2S, 664	83, 442	4: , 096	47.774	52, 551	57, 551	62, 106
50.	9, 367	14,054	18, 734	23,717	28, 101	32, 784	42,152	46,835	¢1,519	56,202	60,886
610.	0,187	13,780	18,373	22,960	27,560	32, 152	41,330	4.5,933	50, 526	55, 119	59, 712
70.	9,013	13,510	18, 026	22,532	27,030	31, 545	40,558	45, 064	49,574	54,077	58, 584
St.	8, 846	13,268	17,691	22, 114	26,537	30, 960	89, 806	44,228	18,656	53, 074	57, 497
90.	S, 684	13,027	17,369	21,711	26, 054	30, 096	39, 080	43, 423	47,763	52, 107	56, 449
1010.	8,529	12,794	17,058	21,323	25, 887	29, 859	3', 381	42,646	46,911	51, 173	55,440
110.	8,379	12,569	16,758	20,948	25,138	29, 327	37, 707	41,896	46,086	50, 276	54,463
120.	8,236	12,352	16, 496	20,586	24,704	28, 821	$37,0.5$	41, 176	45, 296	49,407	53, 525
130.	8,095	12, 142	16, 189	20, 237	24,284	28,392	36,426	40,474	44,521	48,569	52, 616
110.	7, 959	11,939	15,919	19,999	23, 870	27,859	35, 818	39,793	43,778	47,758	51,738
150.	7,829	11, 743	15, 658	19,572	23, 487	27,401	355, 330	39,145	43, 059	46,978	50,888
160.	7,702	11,554	15,405	19, 256	23, 107	26, 95	31,661	38,512	42,363	46,215	50,066
170	7,580	11,370	15, 160	18,950	22,740	2ti, 530	31, 110	37,900	41,369	45,480	49,270
180.	7,461	11, 192	14,923	18,653	22,381	26, 115	33, 576	37,307	41,037	44,768	48,499
190.	7,346	11,020	14, 693	18,360	22, 039	25, 712	3:3, 059	31, 732	10, 405	44,078	47,759
200.	7, 385	10,852	14,470	18, 087	21,705	35, 32\%	32, 557	36, 173	39, $702=$	43, 410	47,027
2115.	7,127	10,690	14,239	17, 817	21,:380	24, 944	[2, 070	35, 63: 4	39, 197	42,761	46, 324
213.	7, 116	10,658	14,211	17,761	21,317	24, 869	31, 973	35.5 ± 7	39, 080	42,633	46, 186

Rute.-Multiply the section area of the shaft by the mumber of pounds, and strike ofl the three decimal figures, the remainder will be the woight in pounds, atmospheric pressure, in a shaft of a given depth, and temperature as above described; and will be found sufficiently accurate for practical purposes.

Atmospheric Experiments.

Careful experiments show that 459 cubic feet of air, at 0° or zero of Falsrenlieit, the thermometer indicates 39.76 pounds. When the pressure is 30 inches of mercury, of a density due to 32°, a prcssure equal to $14 \frac{3}{4}$ pounds per square inch, which is the ordinary pressure of the atmosphere, but it only weighs one-thirtieth of this when the pressure is only one inch of mercury. And since 459 cubic feet of air at 0° expand exactly one cubic foot for each degree of heat added, we get the following rule to find the weight of air at any temperature and under any pressure:

Thus,
1.3253×1

$$
\mathrm{W}=\frac{-}{459+1}
$$

Where $1=$ the inches height indicated by the barometer, and $t=$ the temperature by the thermometer, at 38°, nuder a pressure of 30 inches of mercury, 100 cubic feet of air, as per table, weighs just eight pounds. If 225,176 cubic feet of air be produced per minnte, the temperature in the downcast to be, say $43 \frac{1}{2}^{\circ}$, and the temperature in the upcast shaft to be 211° by the gisen rule. If the barometer be taken half way down the shaft, and it to show a pressure of $30 \frac{1}{2}$ inches of mercury, the weight of a cubic foot of air, taking the areage in the downcast shaft, would be . 08044 pounds $\times 900=52,539$ pounds upon each square foot by its mere weight, the upcast air being lighter and only produced a pressure of $5 t, 297$ pounds per square foot, the difference of pressure in both columns of air is $=18,099$ pounds. In order to find the horse power producing rentilation, we require to multiply this difference of pressure (18,099 pounds per square foot) by the number of cubic feet of air prodnced per minute, and divide the result by 33,000 pounds, or horse-power, which in this case will give a rentilating power, thus:

Lbs.
$18,099 \times 225,176$
$-122 \frac{1}{2}$ horse power. 33,000
Much valuable information may be gained from this method of calculation, and from the relation the inside and outside temperatures bear to each other, as when the temperatures are of the same degree of heat natural ventilation will cease, and artificial means must be applied to create a current; and the rentilating currents should be so arranged that each working panel should receive its proper proportion of fresh and pure air without stint, and so well directed up to the working face as to be effective in remoring all noxious gases and vitiated air from the working men, and to be there conducted into exit courses to the surface, forced out by steam jet or furnace power, or drawn out by the section or exhaust fan. Upon good ventilation depends the health and safety of the workmen, and no valid reason can be truthfully adduced to excuse defective ventilation. In mines that generate large bodies of gases ton strong a curreut is not so safe. The miner, in exploding a charge where firedamp exists, should be certain that the locality was free from it, and should use touch-paper only to ignite it, as firedamp will not, under any circumstance, take fire from a spark. Its character in this respect differs from powder, which resists the flame and unites with the spark, but explosive gas will ignite by a flash of powder ; and therefore the act of blasting and discharging shots in dangerous air should be attended with great circumspection, and by the best practical men. The custom amongst miners is that each man discharges his own shots, but I am of opinion it would be much safer on all hands to employ a practical man or two in large extensire collieries for this purpose.

Safety Lanip Tests.

Inventors of Safety Lamps.				Inventors of Safety Lavips.				
First.			Exploded. Went ont. Went out.	Fowrth.				
Dary lamp	8	4		Datry..	19		Exploded. Went out. Went out.	
Stephenson.	8	10		Stephenson	$19 \frac{1}{2}$	6		
Clanny	8	5		Clanny	$19 \frac{1}{2}$			
Second.				Fijth.				
Davr......		2	Exploded. Still burning. Exploded.	Dary	25	,	Exploded. Went ont. Still burning.	
Stephenson	$11 \frac{1}{2}$	60		Stephenson	25	\pm		
Clamy	$11 \frac{1}{2}$	6		Clanny	25	39		
Thirel.			Exploded. Went out. Went out.	Sioth.				
Davy ...		3		Davy			Exploded. Exploded. Still burning.	
Stephenson.	14	5		Stephenson	$34 \frac{1}{2}$	4		
Clamsy.	14	3		Clanny	$31 \frac{1}{2}$	15		

It will be uuderstood by the foregoing trials that the lamp invented by Sir Humphrey Dary appears to be the most sensitive in its construction, and as such has become the favorite lamp with the best practical miners. The others are an excellent article in the hands of non-practical men and serves an excellent purpose.

Tonnage of the Philadelphia and Reading Coal and Iron Company's Collieries in 1875.

Textilation of Mines.

The gravity of the subject of correctly ventilating collieries that generate fire damp gas, and noxious air and deleterious rapors recommends itself to the thinking public for a thorough practical solution. There needs be a more rigorous stand taken for destroying its influence than has been the case heretofore, as the drift and tumel collieries arc yielding to slope and shaft derelopment, and consequently fire-damp gas becomes more and more increasel, and far more difficult for removal, chiefly owing to the great depth and the system of working the mine in lifts and counter-lifts that it is next to impossible to keep these large excavations clear of stand gas, impure air and powder smoke after the first round of shots are fired off in the morning. To depend upon the action of a 20 -horse power exhaust fan to execute the work of ventilating a large mine is simply ont of the question to do so safely. The owners of collieries to avail themselves of the benefit of a steam fan generally do so for the purpose of supplying fresh air to their miners, but it is impossible for the single fan to supply fresh air and expel the noxious gases that pervade every conceivable aperture in a mine.

Although the velocity of the dir currents may appear satisfactory in quantity their condition may be so loaded with fire-dainp and noxious gases that the safety and bealth of the men may be endangered, and even the safety-lamp may not be much of a security when used in such rapid corrents of ritiated air. The discharge of shots will displace the fire-damp that may be held back by the passing current, and thus become mingled with it in its cxit ontward, where it may come in contact with the lamps and explode. Every mine boss is aware of this circumstance, and does what he can to prevent explosions, while he camot control the large volumes of deleterious air in circulation.

The safe remedy then would be in this event is to erect two separate fans, one of which to be located at a point as near the working places as could be, and all the fresh air introduced for ventilating the working places to be controled by the action of this fan; while the other suction fan should be situated at a locality that would reverse the air currents in the old abandoned or idle works and expel it therefrom ; both these air curreuts to be made so distinct from each other in their courses that the inlet air could not possibly come in contact with the outlet air, and in this manner the most dangerous mine could be made comparatively safe for men to work in. The cost of securing a colliery in this mamer is but trifling in comparison to the great good that would be realized by the operation of the outlet fan. In collieries that are well ventilated good and intelligent miners are always in fill supply, while in badly rentilated collieries the case is the reverse.

We had 42 fire-damp explosions in the district collieries during the year, while eleven of these explosions occurred at one colliery, and where the velocity and volume of air that had been kept in circulation would apparently be sufficient to effect a correct ventilation, but the fault rested in the fact that all the accumulated gases and the inlet air circulated in the same current on its intake and exit to the outcast fan. The strong currents of air circulating in the air passages in a mine will check back the gases that perrade the still open crevices and idle goafs, in the same manner that strong currents of water weuld hold back small streams or stagnant pools, so in Jike manuer is the gases pent up until the space becomes overcharged, and then it will mingle with the passing current and be carricd along with it. The miner may not be aware of this enemy being in proximity to his lamp, where he selocted a location for its greater security. But some cause may arise to necessitate its remural, it may be the miner may light his pipe
with it or give it a careless swing, when it comes in contact with the surcharged gas current, and cause the lamp to explode. Eren the locked lamp is not safe unless it be carefully handled, becanse should it fall by accident the momentum created by its weight on its passage throngh the air would force the air throngh the ganze of the lamp, and would occasion an explosion. In firing shots where fire-damp is known to be mingled with the air is another prolific source of accidents, the locality where shots or blasts is set off ought to be thoronghly freed from gas first before the shots are set off, for when the powder explodes the fire or flame is thrown up to the roof, where it is sure to come in contact with the fire-damp gas that always floats upon the surface of the common air and is sure to explode by the powder flame.

To secure miners against this class of accidents, it is only necessary to establish proper rules for the government of the mines and see that they are properly enforced. The mine boss and fire boss to make a thorough inspection of the mine in the morning, and as often in the course of the day as to insure the safety of his men. These mine rules should be framed and posted in sereral public places in the mine, as is necessary, and any neglect on the part of the men should at once be punished by expulsion, or any person using a safety-lamp which needed repairs or cleansing shonid be expelled, or persons discharging shots in dangerons places, and not notifying the persons in charge of the mine, should likewise be expelled. Bit so long as negligence and carelessness are permitted to be practiced in these collicries that generate gases largely, so long will such coal mine or colliery be the secne of disasters. But often men are so circumstanced that whatever dangers and irregularity may exist in those collieries they are, perforce, compelled to work in them in order to earn a subsistence fur their familics, they at the same time being fully aware of the imminence of the dangers that surround them, and of which they are the umilling witnesses.

Caslalties in Coal Mines.

If a proper compliance with the wise provisions of the mining law had been practiced by the employers, and a careful regard was had by the employees themselves for each other's safety, and cultivate more caution than they generally do regarding the regulations of mining, by exercising better judgment and patience, no doubt but very many accidents would be prerented, especially in those deep mines that generate noxions gases largely, as will be seen by the following figures:, During the year just closed there had been 146 falls of coal, 50 explosions of fire-damp, 33 talls of rock and slate roof, 38 explosions of powder and 48 accidents by mine wagons. Many of these accidents are known to be the result of carelessness in not enforeing the proper mine regulations and a non-regard to the spirit of the mining law ; and many persons mismanage their work, and may temporary succeed, but the end will surely result in a calamity.

Gases-Their Condition and Character.

Carbonic (oxde.-This gas is the result of burning carhurtted lydrogen with an imperfect supply of air, and miners give it the appellation of chokeclamp. The blue flame that flickers over the common coal fire is caused by the combustion of carbonic oxide. The miner may by some way escape an explosion, but he camot escape heing suffocated by the after-damp that follows an explosion and its deleterions consequences.

Black-Damp.-Carbonic acid gas is colorless, and yichls an acid taste and a slight pungent oder, and is nearly double the weight of common air ;
(iases, Explanation of the symbols, their relative weight and lolumes by C.W.Willians Liverpool 1847 .

Constituents of Curburetted hydrogen gas \& Atmospheric air.

Axygen 8

Carbon 6 Nitrogen 74

Carburettedhydrogen gas 8

Carbonic Acid 22

Yapor of stearn 9

Atmospheric air 36

This diagram illustrates the combustion of the gaseousproperties of coal and the modes by which it may be effected after as welt as before combustion. C.W.Williams. Liverpool 1841.

Wut when subjected to a pressure of $38 \frac{1}{2}$ atmospheres it is condensed into a colorless fluid. It extinguishes flame and is fatal to life, and when diluter largely with common air it becomes a highly narcotic poison. Fatal results arise from entering old mines, wells or vats. To determine its locality it is best to lower down a lighted lamp, which will become extinguished by its presence. In 1800 Mr. Woodhouse determined the true character of this gas.

Carbonous Oxide is still another deletirious gas, is colorless and cmits a suffocating oder. It requires forty times its volume of water for its solu tion; it is jeadily combustible; its characteristics are a blue flame, it unites with clorine, and forms phosgene gas, it is totally irrespirable, it being an active deadly poison, one per cent. mingled with common air will prove fatal. It is capable of passing through heated cast metal, stores, furnaces, \&c., and is assumed to be a propagator of discases in many instances. It reguires good rentilation to arrest its noxious influence.

Hydo-suiphuric Acid Gas.-When sulphur and hydrogen are set free together they form a colorless gas, giving off the oder of rotten egos. It is produced by the putrification of organic substances containing sulphur, and is exceeding deleterious when respired. It exists in mines, mingled with other deleterious gases, rotten timber submerged in water gives off large quautities of this gas and renders the water nauseous; 1-1500th of this gas destroys small birds, l-800th destroys dogs, and l-120th destroys a horse.-Brande

Sulphuious Acid.-When burned in air it unites with oxygen, forming a colorless gas of a peculiar disagreeable taste, and a most suffocating smell. It extinguishes a light, and is respirable, but with great difficulty, and has the quality of that with which it comes into contact. This gas is also generated in coal mines.

IIydrogen.-Hydrogen gas occurs free in voleanic gases, and according to Bunsen forms forty-five per cent. of it. It is a colorless, tasteless and odorless gas, it is the lightest known form of matter, being 14 times lighter than air, and 11,000 times lighter than water. It diffuses greater than any other gas, its refractive power on light is very remarkable, being $6 \frac{1}{2}$ times that of air. It is combustible at 500°, and readily combines with the oxygen of the air: Its flame is of a pale white color. It does not, of itself, support combustion. A lighted lamp in it is soon extingruished, and it is fatal to life. This gas is the white-damp of the coal mines.-Graham.

Oxygen Gas.-This is the most important of all elements in nature, and enters into all the chomical changes and in most of them it acts the prominent part. Its condition is a gas resembling air, which is only a mixture of many gases. Its characteristics is a transparent, colorless, tasteless, inodorous gas; the term oxygen signifies air former. It consists of one fifth of the weight of the atmosphere, cight-ninths of the ocean and all aqueous bodies, and nearly one-half the crust of the globe, and unites with all the elements forming a compound termed oxides. Its combining qualities is termed oxidation and its separating qualities is termed deoxidation. It is a principle supporter of combustion, and all substances that burn iu air burns in pure oxygen gas. The very least spark upon a wick will cause it to explode, so will iron ware burn in it, and phosphorus will prodnce a light so brilliant in it that the cye cannot endure it. Atmospheric oxygen is diluted with four times its bulk of hydrogen, which, if taken alone, extinguishes fire altogether, but when combustion takes place the hydrogen is converted into a water rapor and carbonic acid is set free, but when the burning body contains a disproportionate amount of carbon, as turpentine, more of it is set free than the oxygen can consume aud the flame smoke,
but when the hydrogen is in excess, as in alcohol, there is much heat, little light and no smoke. When united these gases correct their defects and form the basis of "burning mixtures." Oxygen is life ; when oxygen is consumed by respiration or temperature carbon remains and death is the consequent result.

Netrogen Cias.-This is a most deleterions gas. After respiration, and washed with lime water, it will not support respiration or combustion. It constitutes four-fifths of the atmosphere; it combines with oxygen and numerous acids, and forms a component part of many vegetable and animal substances ; it is odorless, colorless and tasteless gas, slightly lighter than air, and never being liquified by cold or pressure. It is not itself combustible, it is irrespirable, though it exerts no poisonons effect upon the tissues. Its characteristics is suffocation, though so far different when free that the compounds formed of nitrogen are amongst the most energetic known. The corrosive nitric acid, the nitro-glycerine, the poisonnus prussic acid, and the alkaloids, all contain nitrogen. In mining nomenclature it gets the name of stone-damp.

Sulphur-Is known to combine in union with most specimens of coal gas and from stagnant pools. It is mined in many places from a blue clay formation; it has an extensive affinity to combine with metals; it melts at 230° to a yellow liquid and at 450° changes to a molasses color substance, which, if queuched in cold water, becomes elastic like India rubber, but from this altothropic condition it gradually returns to its original state.Joumans.

Single atom ofair \&gas. bring the Componntls of the constituents as in the precenting Column

State of clecomposition of air \& gas. Preparatory totheirchemicul union of their constituents
with their equivatents of oxygen.

Mixture \& chemical minione Preparatory to Combustion on being heaterl.
 times the lolume of in atom of gas, the 4 atoms of air as
 abover are consequently-70 timeas the volnme of one atom of the gas.
 combustion of one atom lent of At
mospheric
Air.

Weight of Coal, in tons of 2,240 pounds, per acre, from one foot in thickness to forty feet thick-specific gravity, 1.25 .

TEET.	Tons.	1 inch.	2 inches.	3 inches.	4 inches.	5 inches.	6 inches.	7 inches.	8 inches.	9 inclies.	10 inches.	11 inches.
1	1,519.25	1,645.85	1,772.45	1,899.46	2,025.66	2,152.27	2,279.87	2, 403.48	2,532.08	2,655.69	2,785.29	$2,911.89$
2	3, 038.50	3, 165.10	3,291.70	3,418.31	3,544.91	8, 671.52	3,798.12	$3,924.78$	4,051.33	4,177.9t	4,304.54	4, 4:31.14
3	4,557.75	4,684.35	4,810.93	4,937.56	5, 064.16	5, 190.77	$5,317.37$	5,443.98	5,570.58	5,697.19	$5,823.79$	5,950.39
1	6, 077.00	6,203.60	6,330.20	6,456.81	6, 583.41	6,710.12	6, 836.62	6, 963. 23	7,089.83	7,216.44	7,313.04	7,409.64
5	7,596.25	7,722.85	$7,849.45$	7,976.06	8, 102.66	8, 239.27	8, 355. 87	S,48!.48	8, 609.08	8,735 .69	8,862. 29	$8,988.89$
6	9,115.51	9,242.11	9,368.71	9,495.32	9,621.92	! $9,748.53$	9,875.13	10,001.74	10, 129.34	10, 354.95	10,381.55	10,508.15
7	10,634.76	10,761.26	10,887.96	11,014.57	11, 141.17	11,267.78	11,394.38	11,520.99	11,647.59	11,774.20	11,900.80	I2, 027.40
S	12, 154.01	12, 280.61	$12,407.21$	12,533.82	12,660.43	12, 787.03	12,913.63	13, 040.24	13, 166.84	$13,293.45$	13, 420.05	$13,546.65$
9	13, 673.27	13,799.87	$13,926.47$	14, 053.08	14, 179.68	14,306, 29	14, 4132.89	14,559.50	14,686. 10	14,812.71	14,939.81]i, 065.91
10	15, 192.52	15,319.12	15,445.72	15,572.33	15,698.93	15, 835.54	15,952.14	16,078.75	16,205.35	16,331.96	16,458.56	16,58516
11	16,711.77	16, 838.37	16,964.97	17,091.58	17,218.18	17,344.79	17,471.39	17,598.00	17,724.60	17, 851.21	17,977. $\mathrm{S1}$	18, 104.41
12	18,231.02	18,357.62	18,484.22	18, 610.83	18,737.43	18, 864.01	18,990.144	19, 117. 25	19,243.55	19,370.46	19, 497.06	$19,623.66$
20	30, 385.04	30,638.24	30,891.44	31, 144.66	31,397.86	31,651.08	31,901.28	32, 157.50	$32,410.70$	32, 665.12	32, 319.12	3:3, 170.32
-	37,981.29	38, 361.09	35, 740.89	39, 120.72	39, 499.52	39, 880.35	40, 230.15	40,639.98	41,019.78	41,399.61	41,781.41	$42,160.21$
30	45, 577.56	45,958.56	46, 337.16	46,716.99	47,094.79	47, 476.62	49, 8576.42	48, 236.25	48,616.05	48, 995.88	49,375.68	$49,754.48$
3)	53, 173.81	$53,681.41$	$54,186.61$	54,693.05	$55,197.45$	$56,705.09$	56,212,29	56,718.73	57, 225.13	57,731.57	58, 237.97	$55,743.37$
40	60, 770.08	61,276.48	61,782.88	62,289.32	63, 795.72	63,302.16	63,808.56	64,315.05	64, $8: 20.40$	65, 327.84	$65,834.21$	66, 340.64

Basis of Wages in the Mines for 1875.

The average wages for miners and mine labor upon the average price of coal per ton at Port Carbon during the year, taken as a general standard for Schuylkill county, the average number of days worked by the miners is estimated at 28 weeks during the year, the basis being fixed at $\$ 250$ per ton, giving the miner per week, $\$$ - ; the laborer in the mine, \$- ; and the outside laborer, $\$$ - per week. The arerage price of coal for the year round is based at - per ton.
To a miner per week, $\$$ - ; he earns for the year romd To a laborer per week, $\$$-; ; he earns for the year round Outside labor per week, \$- ; he earns for the year round.....
G Goss earnings for the miner the whole year, estimated..........
Arerage expenses for the same, estimated
Net balance to his account for the year, estimated
Gross earnings for a laborer for the year, estimated............. . . .
Arerage expenses for the same, estimated.
Net balance to his account for the jear, estimated
Gross earnings of outside laborer for the year, estimated
\qquad Irerage expenses for the same, estimated.

Net balance to his account for the year, estimated
Net balance to a miner for a full year's work would be........... \$
Net balance to a mine laborer for a full year's work would be
Net balance to outside laborer for a full year's work wonld be.
The loss, by the condition of the coal trade, to the laboring classes is rery great.

The colliery is now in active operation, the yield is large in quantity and excellent in quality, and the territory very extensive. The D or Skidmore and Lykens Valley reins are not yet penetrated, they maderly the E or Mammoth rein.

The State of the Coal Trade.

The coal shipments from Dauphin, Columbia and Northumberland collieries continued steady all through the season without any hindrance from strikes and consequently commanded a large custom at home and abroad at a reasonable profit, while the collieries of Schuylkill county were practically idle until the 23d of June. Neither repairs or dead work had been permitted during this time, the miners holding ont a hope that as the season advanced the trade of a necessity wonld demand a resumption, but in this they were disappointed, and not until the force of necessity overruled the case did resumption take place. The Philadelphia and Reading Coal and Iron Company taking the matter of a general resumption in their own hands, and at their own terms did it come to an end. The miners had been eridently discouraged, accepted the operators terms with a becoming dignity, but were well nigh exhausted.

The mines were at once manned for work, and in doing so the conditions of the mines in many respects were not as safe as should be. The anxiety of the men to resume work and make amends for lost time was very apparent, and consequently they were not so circumspect about their safety as should be. While many of the miners were absent at work elsewhere their places were supplied by unskilled or now men. A careful review of the lists of casualties will warrant this view of the case, as the accidents are nearly fonfold greater in the latter months of the year, even in the comties where the work had been continued, as will be seen by the following statement:

Mine Inspectors.

The term of office of Frank Schmeltzer, Inspector of Miness of Pottsville district, and of Johu Eltringham, Inspector of Mines of Ashland district, terminaled on the twenty-first day of September, ultimo, after fire years of arduous service, discharging their duty with commendable zeal and diligence, promoting the interest and cffecting the safety of the miners in their respective districts, having in view the establishing of a more practical system of mining in high dipping coal seams, a better method of rentilation of deep and extensive mines, to eflect a safer mode of ingress and egress for persons employed in mines, and to counsel a better feeling among the employers and the employed, which would harmonize the local interests and social relations of both parties, which would resnit to the benefit of society.

The care and vigilance exercised by them in discharging their duty soou became apparent to all. And their comsels had an important bearing, and generally was attended with success; and many regretted their retirement from public duty. When the necessity of their successors to the racant positions had become public a large representation of candidates came forward, who, after a most rigid but impartial examination, in a session lasting several days, the board of examiners declared Messrs. Sampson Parton, of Mount Carmel, Northumberland county, and Samuel Gay, of Gilberton, in Schuylkill county, to be the best qualinied persons for discharging the duties of the vacant offices and successors to the late inspectors, and thereupon certified their action in the matter to his Excellency John F. Hartranft, Governor of the Commonwealth, recommending their appointment, who granted their commission and forthwith assigned them to new districts that had been re-organized by the said examining board, to wit:

Mr. Parton was assigned to the first or Pottsville district, now comprising all the collieries in Schuylkill county that lie south of the Broad mountain and those in New Boston basin, except Brookside colliery, situated in the western limits of the county, near Dauphin connty line, aggregating some seventy collieries in all, which affords employment to some eight thousand hands.

Mr. Gay was assigned to the second or Shenandoah district, which comprises all the collieries north of the Broad mountain, in Schuylkill county, that are located east of the eastern limits of the town line of Girardsville, and the Honey Brook basin collieries, which aggregates some seventy collieries in all, affording employment to probably twelve thousand hands. The coal tonnage of this district will equal that of the other two districts.

Mr. William Hemingray, Inspector of Shamokin district mines, had been assigned to a district which at present comprises all the collieries in Northumberland, Columbia and Dauphin counties, including all the collieries north of Broad mountain, in Schuylkill county, that are located west of the eastern limits of the town of Girardsville, and includiug the Brookside colliery, which will aggregate some seventy collieries of all classes, that will afford employment to some uine thousand men.

Although the territory so districted would appear to be mievenly divided the number of collieries allotted to each are nearly cren, but the distance to travel over is quite the reverse, consequently involving a larger expense and a severity of duty which will be, to a certain extent, counterbalanced by the greater number of persons employed in the second district and its increased tonnage of coal.

The new officers, with good furtune, are competent men, thoroughly aware of the responsibility that rests on the faithful discharge of their
duty, laving a proper practical knowledge of their work, are ripe in years and understanding, that fevf could be better qualified than they are. The examining board exercised sound judgment in their selection, by giving the miners the bencfit of talent and competency rather than pander to partiality and discrimination, that often follow in the wake of doners of official position.

The candidates for the position of inspectors of mines were men of excellent ability and stood very high in their examination, which was indeed serere and just. Many of them acquitted themselres with an honorable: record before the examining board.

Rules and regulations for the government of the warkmen employed at the collieries of the Philadelphia and Reading Coal and Iron Company in 1875.
I. At any time between the hours of six and seven o'elock in the morning empty wagons will be furnished for the purpose of letting to the bottom of all shafts and slopes the persons employed in them.

Il. No empty wagons will be furnished either for the purpose of hoisting or letting down men between the hours of 7 A . M. and 12 M ., and between the hours of 1 and 5:30 P. M., unless by special instructions of the inside toreman. The engineers and top and bottom men will be held responsible for the carrying out this rule.
III. All persons employed by the day, either inside or outside, are expocted to work ten hours for a day's pay, or fifty-eight hours per week for a week's pay. Any persons working less than this will receive wages proportionate for the time worked. The same rule to apply in all cases where orertime is worked, unless by special agreement with the mming superintendent.
IV. In all workings where there is firedamp evolved, and naked lights used, no person or persons other than the inside foreman and fire boss must pass the first check-door without the consent of the fire boss. Where nothing but locked safety lamps are used no person other than the inside foreman or fire boss will enter any of the workings until permitted to do so by the fire boss.
V. All safety lamps must be handed into the lamp-house each evening for inspection and repairs. Persons using safety lamps will be charged with the cost of repairing when ordinary care has not been exercised in their protection.
VI. Persons not employed at the colliery are positively forbidden from speaking to, or in any way interfering with, the employees during workinghours.
VII. All the rules and regulations of the ventilation laws to be fully enforced by the bosses and workmen.
VIII. No workman is to be discharged except for incompetency, bad workmanship, misconduct, drunkenness, or other good cause given by him. By order of the superintendent of the company's coal mines and collicries.

The foregoing rules and regulations are conspicnously posted at the company's collicries, warning their employees of the duty required of them to observe and obey, and the compliance to which the company's agents strictly enforce, which strongly tends to diminish accidents in and about their collieries.

I give this information for effect, hoping it may come to the notice of other employers, who may profit by this example and still aid in checking the injurjes that so often arises from non-compliance with the wise admonitions pointed out in the rentilation law.

Plate, No. 5.
Showing a profile druning of the P. R.C $\$$ - . Cos Alaska Shaft West of Mount Curmel in North'd County Penna. By Generalyenry Pleasants, Chief Eng? \&Superintendent.
SECTION.** PHILADELPHIA \& READING COAL\&IRON CO's.

Demand for Mining Developments

The characteristic necessity for developing deep mines, like all other industries, necessitated the substitution of steam machinery for manual labor, and during the last few years has bronght into market a large number of drilling machines, amongst which, however, is the Diamond drill. The damage done to a mine by using steam power for this purpose was rery great upon the timber and structure of the locality, therefore a demand for air-compressors had sprung up, and wholly answers the purpose so admirably that all other systems have given way to its march. It is found that air can be conducted any distance, and through any temperature, without condensation, and with much less leakage than steam; and instead of it having to be brought out of the mine in pipes, like steam, it is used as a rentilator, and practically cools the locality.

Some tronble is experienced in winter from freezing vapor, and cven the machine when working. This vapor has also made it impossible, so far, as to use compressed air expansively to any large extent, as steam is worked with such excellent results for economy, because the temperature of the air decreases so much in expanding that the water vapor contained in it condenses and freezes up the machinery.

It is, therefore, of the greatest importance that the air should le perfectly dry, but this is difficult to obtain, as the great heat generated in the compressor during the act of compression necessitates a constant artificial cooling of the compressing cylinder, which has been done by injecting a stream of water into the cylinder at each stroke, or keeping a large quantity of water working to and fro in it. In order to obviate those difficulties, Captain John Ericsson constructed a compressor, with open upright top brass pump cylinders, immersed in a bath of water, which washes the inside walls of the cylinder at every stroke, with water lying on the pump buckets, without ever allowing the water to come in contact with the compressed and heated air.

The power required to compress air is considerable, making it a rather expensive motor, and should be made as economical as possible; and this is accomplished by attaching to the large engines found at the collieries for pumping and hoisting than by a small separate cylinder, working without expansion. Wherever possible water is utilized. To avoid loss from the continuous running of the compressor when the drills, \&c., may be stopped, a relief valve is made, which is set to any determined pressure, and opens a relief post from the pumps into the atmosphere as soon as that pressure is exceeded in reservoir and pipe, and this allows the pumps to run without accumulating pressure or consuming power.

Compressed air in a dry cylinder does not obriate the tronble with condensed water completcly, as the rapor suspended in the atmospheric air, when taken in, is much more than can be held suspended in the diminished rolume after compression, and after the air is cooled down again to common temperature.

To remore this vapor in the atmosphere a condenser is provided for cooling the compressed air completely, and depositing and ruming of the condensed water before the air enters the pipes. The great shafts of the Philedelphia and Reading coal and irou company at Pottsville, in Schuylkill county, the sinking of which was successfully tcomplished with the use of compressed air and the Diamond drill. The result oltained from this source is highly satisfactory. The company succeeded in reaching the E or Mammoth vein in these shafts at a depth of 1,980 feet, besides all the overlying reins. The Primrose rein was found at a depth of 1,600 feet in

10 feet of excellent coal, and from this level the company are driving tun nels northward to reach the E or Mammoth vein on its south dip; and, besides, they then will, in conuection with mining the Mammoth coal, mine the coal of the overlying reins also, which will, when in full operation, aggregate a production of - tons.

The improrements and machinery used will far exceed anything of the kind ever crected in this country before. The shafts are a success in their style and finish, and the community take a great pride and interest in this great undertaking. This enterprise has been committed to the superintendency of Gencral Henry Pleasauts, who is chief engineer and general superintendent for the company. Ile has, in the execution and development of this great undertaking, given additional proof of his ability as a clear, practical officer.

It is estimated by competent authurity that in the course of four years hence these twin shafts will be sufficiently extended and developed, that it will give employment to some five or six hundred men, and produce some 2,500 tons of coal daily.

$$
\text { Ventilation Laif of } 1870 .
$$

Section 1. Be it enacted by the Senate and House of Representatives of the Commonvealth of Pennsylvania in General Assembly met, and it is hereby enacted by the authority of the same, That the owner or agent of every anthracite coal mine or colliery shall make, or cause to be made, an accurate map or plan of the workings of such coal mine or colliery on a scale of one hundred feet to the inch, and when there is more than one seam cf coal worked in said coal mine or colliery the map or plan shall exhibit the workings in each seam of coal, and shall state the general inclination of the strata with any material deflection therein in said workings, and the boundary lines of the lands of said coal mines or colliery, a true copy of which map or plan the said owner or agent shall deposit with the inspector of coal mines, and collieries for the district in which the coal mine or colliery is situated, within four months from the passage of this act, and one copy shall be kept at the office at each colliery; and the said owner or agent shall furnish to the inspector aforesaid on the first day of January and July in every year hereafter a statement or map or plan of the progress of the workings of such coal mine or colliery during the year past up to date, to enable the inspector to mark the same upon the map or plan of the coal mine or colliery furnished him and deposited with said inspector as hereinbefore provided for; and when any coal mine or colliery is worked out preparatory to being abandoned, when any level or left thereof is being finished with a view and for the purpose of being abandoned, or when any of the pillars therein are to be removed, the owner or agent of such coal mine or colliery shall have the map or plan thereof furnished as hereinbefore provided, or such portions thereof as the case may require, carefnlly verified; and notice shall be given to the inspector of the coal mines and collieries for the district, in writing, of the purpose to abandon or remove the pillars, as the case may be.

Section 2. That whenever the owner or agent of any coal mine or colliery shall neglect or refuse or from any cause fail for the period of two months to furnish to the inspector the map or plan of, or the addition thereto provided for in the first section of this act, or if the inspector finds or has reason to believe that any plan or map of any coal mine or colliery furnished him under the provisions of this act is materially inaccurate or imperfect, he is hereby authorized to cause an accurate map or plan of the actual workings of such coal mine or colliery to be made at the expense
of the owner thereof, the cost of which shall be recoverable by law as other debts are from said owner.

Section 3. That four months from and after the passage of this act it shall not be lawful for the owner or agent of any anthracite coal mine or colliery worked by or through a shaft or slope to employ any person in working within such coal mine or colliery, or to permit any person to be in such coal mine or colliery for the purpose of working therein, unles they are in communication with every scam or stratum of coal worked in such coa? mine or colliery, for the time being at work at least two shafts or slopes or outlets separated by natural strata of not less than one hundred and fifty fect in breadtlı, by which shafts, slopes or outlets distinct means of ingress and egress are always available for the persons empioyed in the coal mine or colliery; but it shall not be necessary for the two shafts, slopes o: outlets to belong to the same coal mine or colliery if the persons there in employed have ready and available means of ingress and egress by not less than two shafts, slopes or onticts, one or more of which may belong to another coal mine or colliery: Provided, That a second opening can be had through coal, but that if any tunael or slaft will be required work upon the same to commence immediately after the passage of this act and continue until its final completion, with not less than three shifts in each trenty-four hons and as many hands to be employed as can be put to work to adrantage, the inspector to be the judge as to the least number of hands engaged per shift. This section shall not apply to opening a new coal mine or colliery, nor to any working for the purpose of making a communication between two or more slafts, slopes or outlets, so long as not more than twenty persons are employed at any one time in said neri mine or working; and the term "owner," used in this act, shall mean the immediate proprietor, lessee, or occupier, of a coal mine or colliery, or of any part thereof, and the term "agent" shall mean any person liaving, on behaif of the owner, the carc or direction of a coai mine, or colliery, or of any part thereof.

Section 4. The omer or agent of any coal mine or colliery to which the ere is only one shaft, slope or outlet may petition the cont of common pleas in and for the county in which such coal mine or colliery is situated, whichs said court is hereby empowered to act in the premises, setting forth that in consequence of iatervening lands betreen the working of his coal mine or colliery and the most practicable point or the only practicable point, as the case may be, at which to make or bring to the surface from the working of his mine he is unable to make an additional shaft, slope or ontlet in accordance with the requirements of this act, whereupon the court may make an order of reference, and appoint three disinterested persous, residents of the county, viewers, one or more of whom shall be a practical mining engineer, all of whom, after being sworn to a faithful diecharge of their duties, shall view and examine the premises and determine as to whether the owner onght or ought not, under the circumstances, to have the prisilege of making an additional outlet through or upon any intervening lands, as the case may require, and report, in writing, to the next term of the court, which report shall be entered and filed of record. If the finding of the viewers, or any two of them, is in faror of the owner of such coal mine or colliery, he may make an additionel shaft, slope or outlet under, throngh or upon intervening lands, as may be determined upon and provided for by the award. If the finding of the viewers is against the owner, or if no award be made by reason of any default or neglect on the part of the owner, he shall be bound to comply with the provisions of this act in the same mamwer as if this section had not been enacted. In case the said owner or agent
desires to and chaims that he ought to make an additional opening under, threugh or upon any adjoining or intervening lands to meet the requirements of this act, for the ingress or egress of the men employed in his or their ceal mine or colliery, he or they shail make a statement of the facts in the peticion, with a survey setting forth the point of commencement and the point of temmation of the proposed ontlet which he or they, their engineers, agents and artists may cuter upon said intervening lands and survey a mork as he or they shall find it proper to adopt for such additional outlet, dining no damage to the property explored; and the viewers shali state in their report what damage will be sustaned by the owner or owners of the interening lands by the opening, constructing and using of the outlet, and if tho report is not appealed firom it shall be liable to be contirmed or rejected by said court as to right and justice shall appertain ; and any further and al proceedings in relation thereto shall be in conformity with like proceedings as in the case of a lateral railroad across or under intervening lands, mader the act in relation to lateral railroads, approved the fifth day uf LIay, 1832, and the supplements thereto, so far as the prorisions of the same are applicable hereto; and the notices to the owner of intervening lands of the intention to apply for the privilege of making an ontlet and meeting of the riewers shall be given, and the costs of the case shall be paid as provided in the said act of the fifth of May, 1832, and the supplement thereto.

Seorion 5. Any of the courts of law or equity of this Commouwealth having jurisdiction where the coal mine or collicry proceeded against is situated, upon application of the inspector of coal mines and collieries of the proper district, acting in behalf of the Commonwealth, shall prohibit, by injunction or otherwise, the working of any mine in which any person is employed in working or is permitted to be for the purpose of working in contrarention of the prorisions of this act, and nay award such costs in the matter of the injunction or other procuedings as the conrt may think just, but this section shall be without prejudice to any other remedy permitted by law for enforcing the provisions of this act

Sectros 6. The owner, lessee, operator or agent of every coal mine or collicry shall erect or provide, at or near the mouth or entrance to such mine, and maintain the same at all times where men are employed in snch mine, a saitable building or buildings, supplied with soft water, and properly lighted and warmed for the use of the men employed in such mine to wash and change their clothes when entering the mine and when retnrning therefrom.

Section i- The owners or agents of every coal mine or colliery shatl provide and establish for every such coal mine or colliery an adequate amount of ventilation, and not less than fifty-five cubic feet per second of pure air, or thirty-three humbed cubic feet per minute for every fifty men at work in such mine, and as much more as circumstances may require, which shall be circulated through to the face of each and every working place throughout the cutire mine to dilute and render harmless and expel therefrom the noxious, poisonous gases to such an extent that the entire mine sliall be in a fit state for men to work therein, and be free from danger to the bealth and lives of the men by reason of said noxious and poisonous gases, and all workings shall be kept clear of standing gas. The rentilation may be prodnced by using blowing engines, air pumps, forcing or suction fans of sufficient capacity and power, or other suitable appliances as to produce and insure constantly an abundant supply of fresh air throughout the entire mine, but in no case shall a furnace be nsel in the mine where the coal breaker and shute buildings are built directly orer and covering the top of
the shaft for the purpose of producing a hot up-cast of air ; and there shall be an in-take airway of not less than trenty square feet area, and the return airway shall not be less than twenty-five sfonare feet.

Sectrox 8. The better to secure the ventilation of every coal mine and colliery, and provide for the health and safety of the men employed therein, othervise and in every respect the owner or agent, as the case may be, in charge of erery coal mine or colliery shall employ a competent and practical inside overseer, to be called mining boss, who shall keep a careful watch over the ventilation apparatus, over the airways, the travelingways, the pumps and sumps, the timbering; to see, as the miners adrance in their excavations, that all loose coal, slate or rock orerhead is carefully secured a gainst falling, over the arrangements for signaling from the bottom to the top and from the top to the bottom of the shaft or slope, over the metal tubes from the top to the bottom of the shaft or slope for the purpose of talking through, and all things connected with and appertaining to the safeiy of the men at work in the mine. He or his assistants shall examine earefully the workings of all mines generating explosive gases every morning before the miners enter the coal mine or colliery, and shall ascertain that the mine is free from danger, and the workmen shall not enter the mine until such examination has been made and reported, and the cause of danger, if any exist, be removed; and he or his assistant shall also, every evening when the workmen leave the mine or colliery, go over the mine and see that the doors of the passagemays are all properly closed, and that all the airways are free and unobstructed to the passage of air through them; and it shall be the duty of the mine boss to measure the ventilation at least once per week at the inlet and outlet, also at or near the face of all gangways, and all measurements to be reported to the inspector once per month.

Section 9. All and every of the safety lamps used in coal mines or collieries shall be the property of the owner thereof, and shall be under the charge of a suitable person, under the direction of the mining boss, who shall keep them clean and in good order; and the mining boss shall provide that all doors used in assisting or eflecting the ventilation of the mine shall be so liung and adjusted as that they will close of their own accord and cannot stand open, and the main doors on the traveling roads shall be double, and an extra door shall be fixed to be closed only in the event of an accident to one of the others; and the sides and top of such doors shall be well built with stone and mortar in mines in which the inspector shall deem it necessary and shall so order, and all main doors siall be provided with an attendant, whose constant duty it sliall be to guard them and prevent them being left open; and every mine having explosive gas in every part of such a mine or mines shall be dirided into two, four or more pancls or districts, each rentilated by a separate spit or current of air, and fifty persons shall be the greatest number that shall work in any one panel or district at the same time, and bore holes shall be kept twenty feet in adrance of the face of each and erery place, and if uecessary on both sides, when the same is driven towards or approaching an abandoned mine or part of a mine suspected to contain inflammable gas or which is inundated with water.

Section 10. The owner or agent of every coal mine or colliery opened and operated by shaft or slope shall provide and maintain a metal tube from top to bottom of such slope or shaft suitably calculated and adapted to the free passage of sound therein, through which conversation may be held by and between persons at the bottom and at the top of the shaft or slope; and. also the ordinary means of signaling from and to the top of the shaft from the bottom; and also provide an improved safety catch and a sufficient cover overhead on every carriage used for lowering or hoisting persons;
and they shall provide and arrange the flanges or horns of sufficient dimensions are attached to the sides of the drum of every machine that is used for lowering or hoisting persons in or ont of any mine ; an adequate break shall be attached to every drum or machine, worked by steam or water power, that is or will be used for lowering or raising into or out of any of said mines, and the main link attached to the swivel of the wire or any other rope shall be made of the best quality of iron, and tested, by weights or otherwise, satisfactory to the inspector, and bridle chains shall be attached to the main link from the cross pieces of the carriage, and no single link chain shall be used for lowering or raising persons into or out of any of said mines; and no boy under twelse years of age slall work or enter any mine, and proof must be given of his age, by certificate or otherwise, before he shall be employed, and the father or any other person who shall conceal or misrepresent the age of any boy shall be guilty of a misdemeanor, and upon conviction thereof shall be punished by a fine not less than ten dollars nor more than one hundred; and no owner or agent shall employ any boy knowing that he has not attained to twelre years of age. The neglect or refusal of any person or parties to perform the duties prorided for and required to be performed by sections six, seven, eight, nine and ten of this act, by the parties therein required to perform them, shall be taken and be deemed a misdemeanor by them or either of them, and upon conviction thereof they or any of them shall be punished by imprisomment and fine or either, at the discretion of the court trying the same.

Section 11. No owner or agent of, or at any coal mine or colliery operated by shaft or slope, shall place in charge of any engine whereby the men are lowered into or oint of the mine any but experienced, competent, sober engineers; and every engineer so placed in charge of an engine shall constantly attend to the engine of which he has charge, and shall not allow any person, except such as may be deputed by the operator or agent, to touch or meddle with it, or any part of its machinery. He shall work his engine slowly and with great care when any person is ascending or descending the shaft or slope, and when any person is about to descend or ascend the shaft or slope the men at the bottom or top, as the case may be, must inform the engineer by the metal tube, the signal, or otherwise, thereof; and no one shall interfere with or in any way intimidate the engineer in the discharge of his duties, nor ride upon a loaded wagon or cage in any shaft or slope, and in no case shall more than ten men ride on any wagon or cage at one time in any of said mines; and upon any person violating the provisions of this section he shall be held and deemed guilty of a misdemeanor, and upon conviction thereof he shall be punished by fine and imprisonment, at the discretion of the conrt trying the same.

Section 12. Whenever loss of life or serious personal injuries to any person shall occur, by reason of any explosion or other accident whatever, in or about any coal mine or colliery, it shall be the duty of any person having charge of such coal mine or colliery to give notice thereof forthwith, by mail or otherwise, to the inspector of coal mines and collieries for the district, and to the coroner of the county if any person is killed thereby, and due notice shall be given by the coroner of any inquest to be held as the result of any such explosion or accident; and it shall be the duty of the said inspector, or his deputy, to immediately repair to the seene of the accident and make such suggestions as may appear necessary to secure the safety of the men; and if the result of the explosion does not require an investigation by the coroner he shall investigate into and ascertain the cause of the explosion or accident, and make a record thereof, which he shall preserve with the records of his office; and to enable him to make
the investigation he shall have the power mpon such occasion to compel the attendance of persons to testify, and to administer oaths or affirmations thereto, the cost of which investigation shall be paid by the county in which the accident occurred in the same manner as costs of inquests held by the coroner or justice of the peace are now paid; and the failure of the person in clarge of the coal mine or colliery to give notice to the inspector and coroner, as provided for in this section, shall subject him to a fine of not less than twenty-five dollars nor more than one handred dollars, to be recovered as other fines are to the connty treasury.

Section 13. All boilers for generating steam in and about coal mines and collieries shall be kept in good order, and the owner or agent thereof shall have them examined and inspected by a competent boileımaker, or other well qualified person, as often as once in six months, and oftener if needed. and the result of such examination, under oath, shall be certified in writingto the inspector for the district; and all machinery in and about the mines, and especially in the coal breakers, where boys work, shall be properly fenced off, and the top of such shaft shall be securely fenced off by verticle or flat gates covering the area of said shaft, and the entrance of every abandoned slope and air or other shafts shall be securely fenced off.

Sectiox 11. Upon the passage of this act the Governor of the Commonwealth of Pemsylvania shall, upon the recommendation of a board of examiners, selected for that purpose, composed of three reputable miners in practice and two reputable mining engineers, to be appointed by the judges of the courts of common pleas of Luzeme county, all of whom shall be eworn to a faithfnl discharge of their dinties, appoint three properly qualified persons to fill the oflice of inspector of coal mines and collieries in Luzerne and Carbon counties, whosc commissions shall be for the term of fire sears or during good behavior, but they shall be at all times subject to removal from office for neglect of duty or malfeasance in the discharge of duty as hereinafter providen for; and the person so appointed shall hare attained the age of thirty ycars, be a citizen of Pennsylraaia, and have a knowledge of the different systems of working coal mines, and have been intimately connected with the coal mines of Pemsylrania for a period of five rears, and have had experience in the working and rentilation of coal mines where fire-damp and noxious gases are erolred. Before entering upon their duties they shall take an oath or aftirmation, before an officer qualified to administer the same, that they will perform the duties of the office with impartiality and fidelity, which oath or affirmation shall be filed in the office of the prothonotary of the county; and they shall provide themselves with the most approved modern instruments and chemical tests for carrying out the intentions of this act. The examiners provided for in this act shall be appointed by the judges of the courts of common pleas for the county at the first term of the court in each year, to hold their places during the year, and vacan. cies shall be filled by the court as they ocenr; and the said examiners shall meet whenever candidates for the office of inspector of mines are to lie apppointed, of which meeting public notice shall be given in at least two papers published in the county at least two weeks before the moeting. The examiners shall agree in their recommendation of candidates to the Governor, and they shall recommend only such as they find rualified for the office; the said examiners shall receive three dollars per day for every day they are actually engased in the discharge of their duties of examiners under this act, to be praid to thom by the county; one inspector shall be appointed for the district in the Wyoming cual ficla, Luzerne county, lying east of and including Jenkins township, and one district shall be composed of that part of Wyoming coal field lying west of Jenkins township and west of the Sius-
quehama river, and one other district shall be composed of that part of Luzerne comuty lying south of the Wyoming coal ficld, together witi Carbon county.

Sectioy i5. The term of ofrice of inspector of coal mines, appointed under an aet es: the better regulation and rentilation of mines and for the protection of the lives of the miners in the county of Schuylkill, approved A pril the twelfth, one thousand eight hundred and sisty-nine, shall expire on the first day of June, Amo Domini one thonsand eight hundred and serenty, and in his room three inspectors of mines, for the counties of Schuylkill, Danphin, Northumberland and Columbia, shall be appointed by examiners, to be appointed by the court of common pleas of Schuylkill county in like manner and form provided by the fourteenth section of this act; and the said examiners and inspectors, when so appointed, shall be subject to like regulations and duties, and entitled to like privileges, franchises and salaries as are mi the said section provided for the examiners and inspectors for the counties of Luzerne and Carbon; and the inspectors for the said counties of Schuylkill, Northumberland, Danphin and Columbia shall be assigued to duty in separate districts in sail counties, which said districts shall be laid ont and fized by the examiners as aforesaid, to be appointed by the court of common pleas of the connty of Schuylkill.

Sectios 16. It shall be the duty of the court of common pleas of the proper county whenerer a petition, signed by not less than fifteen reputable coal operators or coal miners, or both, setting forth that any inspector of coal mines or collieries grossly neglects the duties, or that he is incompetent, or that he is guilty of malfeasance in office, to issue a citation, in the name of the Commonwealth, to the said inspector to appear, at not less than fifteen days' notice, on a day fixed, before said judges, when the said court shall proceed to inquire into and inrestigate the allegations of the petitioners; and if the court find that the said inspector is grossly neglectful of his duties, or that he is by reason of causes that extend before the appointment, or that have arisen since his appointment, incompetent to perform the duties of said office, or that he is guilty of malfeasance in office, the court certify the same to the Governor of the Commonwealth, who shall declare the office of inspector of the district vacant, and proceed, in compliance with the provisions of this aet, to appoint a properly qualified person to fill the office of inspector ; and the costs of the said investigation before the court shall be borne by the remored inspector; but if the allegations of the petitioners are not sustained by the final judgment of the court the costs shall be borne by the said petitioners.

Sectiox 17. The salaries of the said inspectors appointed for Luzeme and Carbon counties shall be three thousand dollars each; the maps and plans of mines and the records thereaf, together with all papers relating thereto, shall be kept by the iuspector properly arranged and preserved in a convenient place in the district for which each inspector shall have been appointerl.

Sectron 18. Each of the inspectors of coal mines and collieries shall give his whole time and attention to the duties of the office ; and it shall be his duty to examine all the coal mines and collieries in his district as often as his duties will permit him to do so, to see that every necessary precaution is taken to insure the safety of the workmen, to see that the provisions of this act are observed and obeyed ; and it shall also be each inspectors duty to attend at erery inquest held by the coroner, or coroners, in his district upon bodies killed in or about the coal mines or collieries.

Sectron 19. That any miner, workman or any other person who shall knowingly injure any safety-lamp, water gange, baremeter, air-course, brattice, or obstruct or throw open air-ways, or carry lighted pipes or matches
into places that are worked by safety-lamps, or handle or distmrb any part of the machinery of the hoisting engine, or open a door and not have the same closed, whereby danger is cansed in the mine, or enter any place of the mine against cantion, or disobey any order given in carrying out the provisions of this act, or shall ride upon a loaded car or carriage in any shaft or slope, or on any plane in or around any of said mines, or do any other act whereby the lives or the health of persons, or the security of the mines or the machinery is endangered, or any miner having clarge of a workins place in any coal mine or colliery who shall neglect or refinse to keep the roof thereof properly propped and timbered, to prevent the falling of coal. slate or rock, shall be deemed guilty of a misdemeanor, and upon conviction shall be punished by imprisomment and fine at the discretion of the court.

Live Stock Amendment.

That any engineer who leaves his work without giving due notice of the same, thereby endangering the lives of the live stock in the mines, shall be fincl not less than fifty dollars, nor more than five hundred dollars, and six months imprisonment.

Section 20. It shall be lawful for any inspector to enter, inspect and examine any coal mine or colliery of his district, and the works and machinery belonging thereto, at all reasonable times, by night or by day, but so as not to impede or obstruct the working of the coal mine or colliery, and to make inquiry into and touching the state and condition of such coal mine or coiliery, works and machinery, and the rentilation of such coal mine or colliery: and the mode of lighting and using lights in the same, and into all matters and things commected with or relating to the salety of the persons employed in or about the same, and especially to make inquiry whether the provisions of this act are complied with in relation to such coal mine or colliery; and the owner or agent of such coal mine or colliery is hereby required to furnish the means necessary for such entry, inspection, examination and iaquiry, of which the said inspector shall make entry in the record of his office, noting the time and material circumstances of the inspection.

Section 21. No person who shall act or practice as a land agent, or as a manager, viewer or agent of any coal mine or colliery, or as a mining enginecr, or be interested in operating any coal mine or colliery, shall act as inspector of coal mines or collieries under this act.

Section 22. It shall be the cluty of each inspector to make an amual report of his proceedings to the Governor of the Commonwealth at the close of every year, in which he shall fully enmerate all the accidents in and. about the coal mines and collierics of his district, marking, in tabuar form, those accidents producing death or serions injury to persons, and the state of the workings of sail mines with regard to the safety of the workmen therein and to the rentilation thereof, and the result of his labors gemerally shall be fully set forth.

Section 23. The salaries of the inspectors of coal mines and collieries, and the expenses of carrying into execution the provisions of this act, shall be paid by the State Treasurer, out of the treasnry of the Commoniwealth, upon the warrant of the president judge of the court of common pleas of Lizerne county for the salaries of the inspectors for Luzerne and Carbon connties, and upon the warrant of the president judge of the court of common pleas of Schuylkill county for the inspectors for the counties of Schuyl-

Kill, Columbia, Northumberland and Dauphin ; and all inspectors under this act shall reside in the districts for which they are appointed.

Section 24. That for any injury to persons or property occasioned by any violation of this act, or any willful failure to comply with it provisions, by any owner, lessee or operator of any coal mine or opening, a right of action shall accrue to the party injured for any direct damage he may have sustained thereby; and in any case of loss of life by reason of such willful neglect or failure aforesaid, a right of action shall accrne to the widow and lineal heirs of the person whose life was lost for like recovery of damages for the injury they shali have sustained.

Section 25. All laws of this Commonwealth that are incousistent with the prorisions of this act are hereby repealed.

BUTLER B. STRANG, Speaker of the House of Representatives.

CIIARLES II. STINSON,
Speaker of the Senate.
Approted-The 3 u day of March, 1870.

T.) His Escellency, Joan F. Mamtanfa, Governor of the Siate of Pennsyluania:

Sin:-In conformity with an act of Assembly, in such case made and provided, I have the honor to submit to you the resnlt of ny labors in the capacity of inspector of Mines for the First, or Pottsville district, during a period of three months, extending from September 22d to December 31st, 1875.

The number of accidents which hare occurred during that period is fiftynine, of which twenty persons lost their lives and thirty-nine were injured; full particulars of which have been given to the clerk of the district, and are embodied in his report.

Upon entering upon the duties of this office I found several of the collieries in a bad condition, in fact accidents were of daily occurrence for the two first weeks of my official career. The chief cause of these was that during the first six months of the year the collieries had been idle, owing. to the deplorable strike which occurred in this district at that time. As the men refused to work at the wages offered by their employers the collieries were permitted to go out of repairs, and upon resumption some of thenr were in a very bad state. I am happy to be able to report that great improvement has taken place, and as I have the promise of most of the gentlemen superintending, that these matters shall receive every attention during the suspension of coal shipping in the winter, I have confident anticipations that at the commencement of the season of 1876 we shall find a better state of affairs prevailing in this district, and that I shall be enabled, in my next address to your Excellency, to report a marked diminution in the frequency of mining accidents.

As a proof of the wisdom and good policy of the enactment of the rentilation law I an happy to inform you that the condition of the coal mines, in regard to the health and safety of the men employed therein, is far better now than it has ever been in the history of coal mining. Old prejudices are fast dying away, and now, instead of encountering opposition from owners and superintendents, I find that in general they are fully conscious of the adrantages to be derived, even by themselres, from the application of the provisions of the act, and express themselves as being willing to adopt any improvement that would innre to the safety of the men.

I am sorry to have to report that a majority of the acciuents that ocenr in coal mines are the result of recklessness of the workmen themselves, being constantly inured to danger in following their obscure occupation they become so regardless of the dangers by which they are surrounded that for the purpose of gaining a trifling convenience or adrantage they will run risks, at the sight of which men engaged at ordinary occupations would stand appalled with fear. And it is only when their torn and mangled bodies have to be recorered and conveyed through the gloomy caverns of the mine that their comrades are awakened to realize the folly and perversity of pursuing such a course of conduct.

Being cognizant of these facts I have concluded to issue an address through the medinm of the public press, of which the following is a copy :

Adpress.

To all coal operators, superintendents, bosses, miners, laborers, and all others employed in and noout the coal mines of the first, or Poltsville, district of Schuylkill county:
Gentlemen :-We have now entered upon the centemial year of the Declaration of the Independence of these United States, and no true lover of liberty can contemplate with indifference the immense adrantages which have been conferred upon mankind by the application of the principies enunciated within that immortal document, and while we look back with cmotions of pleasure and gratitude for the advantages which we ourselves enjoy, from the action of the noble men who have lived and died before us, such retrospection should be a lesson to us. We should be stimulated by the glorious example there set before us to endeavor, in our day and generation, to do what we can to alleviate the sorrows and sufferings and to elevate, as far as possible, the condition of the masses of suffering humanitr.

I am somewhat pleased to find, by comparison, that the number of serious accidents which have occurred through the year now past is a little less than for the previous one, but still the roll is a grietous one, and is rendered still more so by the fact which I am compelled to admit, that more than one-half of them could have been prevented if every person connected with the occurrence had taken proper precaution to prevent them; and now I hope that all parties will try to assist cach other in carrying into effect the wise provisions of the mine ventilation act, as this terrible death-roll should, can and must be diminished.

To the Operators:

I beg to suggest that during this suspension you have ample time to attend to repairs, to get your air courses, traveling ways, ropes and machinery all put in a proper condition to insure the safety and health of the men in your employ. If you neglect to do this now and any accident occurs, consequent upon such neglect, you will render yourselves amenable to the law for all damages which the killed or injured persons may sustain, and as you will have no just excuse to offer no other will be accepted; the law will be enforced against you, the rights of property are great, but human life is and must continue to be held sacred.

To Superintendents and Foremen:

The law makes it an important part of your daty to see that all the provisions of the act of Assembly are carried into effect in each portion of the collieries under your control. Your responsibilities are great; you have to protect your employer's property, and also the lives of the men under
your control; when both can be sared all is well, but when circumstances arise rendering it necessary to sacrifice one in order to save the other then no honorable man will hesitate one moment to relinquish either lis own or any other person's property rather than to lose the lives of any human being. I have been informed that some superintendents are in the habit of riding up the slopes upon loaded cars or down the slopes on the ragon opposite to a loaded one. To such I say you can never expect another person to respect a law which you are habitually violating yourselres; you ought to set the example to the men under your control. If you place such a small estimate upon the value of your own lives you are not likely to be very careful of the lives of others. You are not competent to discharge the duties of the position you now hold. Your employers having regard to their own interests would do well to remove you and fill your places with more careful men ; and if in future you are detected in any such flagrant riolation of the law I shall ask the court to proceed against you with the utmost vigor.

T'o the AFiners and Laborers:

I wish to address a few earnest words to you. The Legislature of the State, composed, to a very great extent, of men who have not any direct interest in your welfare, but, actuated by the most benevolent sentiments of humanity, have expended considerable time and labor in bringing to pass an act of Assembly providing for the protection of your lives and preservation of your health while engaged in following your usual occupation. Having accomplished this for your especial benefit, what can you say in your own behalf when you render all their labor and humane intentions nugatory by your own reckless and negligent conduct? Of all the accidents which have occurred since I entercd upon the duties of this office mine-tenths of them could have been prevented if the men had ouly taken reasonable precaution to prevent them. If the Legislature shonld pass a new act every day for your protection it would avail nothing unless you endeavor to protect yourselves, and now I ask you, as yon value your own lives and the welfare of those helpless ones depending upon yon for support, as you valne the friendship of the comrade who labors by your side, as you are moved to compassion by the wail of the widow and the cry of the helpless orphans which so often resounds in your ears, to assist me, not in violating but in carrying into effect the wise provisions of the act of Assembly. If you will do so I am confident that the number of casualties for the present year will be much diminished, which "is a consummation deroutly to be wished" by all classes of society, and by none more than Yours, truly,

SAMPSON PARTON, Inspector of Mines.

There are at present in operation in this district 66 collieries, most of which are in good condition, whilst some few are capable of much improvement, but as the owners of these hare promised to gire attention to this matter during the winter I forbear to mention them by name in this report, preferring rather to give them an opportunity to comply with the provisions of the law in an amicable mamer than to cause annoyance by any unnecessary severity in compelling them to do so. I have always fund it to be better to appeal to the reasoning faculties of mankind than to their passions, and have no doubt that it will be the case in this instance. If, however, I find any that will continue perversely, to set at nought the obligations and requirements of the law, I assure you that I slall proceed against
then with all the power that the laws of the Commonwealih permit me to use, regardless of fear, favor or afiection.

It would be superflnous for me to attempt to inform your Excellency of the deplorable state of affairs which hare prevailed in the coal regions for some time past. With these facts you are well acquainted. These unfortunate struggles which are continuonsly oceurring betwixt labor and capital, by which the worst passions of mankind are excited, present a theme for the most profound study and reflection of every person who has a heart to feel for, and a wish to improre the condition of the masses of his fellowmen who are compelled, by stern necessity, to carn their living by the labur of their liands. I think that much of this difficulty is caused by the superficial and often useless oducation that boys obtain in our schools. I often meet with boys, and men, too, who can tell the heights of all the principal mountains and the lengths of all the principal rivers, who are at the same time as ignorant of the laws which govern business and trade as though they had never an hour's teaching in their lifetime. I confess I have rery little hope that a better state of affairs will prevail in the coal regions until both employers and employed shall become acquainted with the laws of political economy, and shall make it a rule to apply it strictly in their business transactions with each other. It is a lamentable fact that for a number of years all parties connected with this business have been trying to conduct it in such a manner as to ignore or violate the natural principles upon which those laws are founded. In the year 1868 the market was glutted witl an annual product of $10,000,000$ of tons of anthracite coal. In 1 S69 the suspension or restrictive policy was inaugurated, all parties engaged in its production agreeing to adopt that policy. In that year $13,000,000$ of tons were produced in nine months. In $187523,000,000$ of tons had been produced 13 six montlis, and although the consumption has increased in such unparalleled ratio, still the market is glatied worse than ever. The workmen and employers, who were at first equally anxious to adopt this policy, are now at dagger-points with each other, each party watching for an opportunity to take an adrantage of the other.

Now there can be no doubt that after the war had the coal trade been left to relieve itself of the depression by natural means, the same as every other trade, it would long ago have righted itself. Those operators who could not afford to sell coal at the low prices which prevailed as a natural consequence of the depressed state of the market would have gone out of the business, thus reducing the supply, the low prices would have stimulated the consumption until the demand would have been equal to the supply, and the trade would have been established upon the only true and permanent basis ; but instead of this we find affairs growing worse every day, every suspension only creates cause for another, still increasing the evil instead of remedying it. And now, at this time when capital has succeeded it, asserting its superior power when labor lays prostrate at its feet, then men who have the direction and control of this capital scem as much determined as erer to continue the same selfish and fatal policy, with this difference, that they hare not the excuse of ignorance to plead in extenuation of their folly.

Sir, it requires no prophet, gifted with supernatural powers, to predict what must be the natural result of such a policy. Then combinations contain within their own structure the germs of their destruction, and the time is not. far distant when this very concrete, (namely, self-interest,) which linds them so closely together now, shall also be the cause of their dismemberment, then will commence an cra of open competition, which, althoughi disastrous for awhile, will in the end prore bencficial, prices for awhile wil!
be so low that only such collieries as possess superior physical adrantages will be able to work at a profit, the others will stop, and thus reduce the production, the tide of emigration of labor, that has been flowing so steadily lor a number of jears to the coal fields, will be diverted in another direction, where there is still ample room and need for it, and where, instead of producing, it will add to the consumption of coal, the trade will gradually arise from this depression, and mankind will be taught another lesson from the book of nature. That all combinations for the purpose of fixing an artificial price upon the value of any commodity are wrong in principle, such values being governed by a law of nature, which is as infallible as any inathematical law, and a thousand times more unalterable than those of the Medes and Persians-namely, the law of supply and demand.

I have the honor to be
Your Excellency's obedient servant, SAMPSON PARTON.

Names of persons who were killed in and about the collieries of the First or Pottsville dishict during the year ending Decenber 31, A. D. 1875.

	D. $\mathrm{I}_{\text {TE }}$	Names of persons killed.	Nitmes of the Collieries.			Remaxks.
尔	April 18,	Joseph Oerther.	Black Valley			Killed by the drag of the drum.
	July 8,	John Kienny..	Hickory Shaft.			Killed by the ascending eage.
	20,	John M'Manmon.	Oakdale	1		Killed by falling into a heading.
	Aug. 8,	'Ihomas 'Tobin..	Richardson			Killed by falling into an open breast.
	22,	Mark fones..	Hickory Shaft			Died, injured on the 12th by a blast.
	$23,$	Edward Corcoran	Eagle...			Died of injuries from a fall of slate.
	Sę̧t. 9,	Joseph Borden	Kear.	1	4	Died in the mine of hemorrhage.
	15,	John Baggy ...	Thomaston ..			Died of injuries by a runaway wagon.
	29,	William Leaver.	Delaware Sliat't	1	${ }_{5}^{6}$	Killed by a fall of rocks.
	29,	John Kelly...	Mount Lafteo	1	5	Killed by a finll of coal in a small mine.
	30,	James Aclams Arthur Hunt	Anchor	1	4	Killed, Killed, These three men were killed by an explosion of eas
	30, 30,	Arthur Honnt.. Isate Watkins.	.do	1	4 4	$\left.\begin{array}{l}\text { Killed, }\end{array}\right\}$ through neglect of the iire-boss's duty.
	30,	Patrick Walsh.	Hickory Sliaft	1	7	Died, fatally burned by fire-danmp.
	Oet. 6,	'Ihomas Kavanagh	Forestville			Killed by a fall of coal.
	15,	James Taesley.	Buekville			Killed by a rush of coal in the shute.
	Nov. 2,	Edward Bevin.	New Boston	1	1	Killed by a fall of slate.
	8 ,	John lowell.	Kear.	1	6	Killed by a fall of coal.
	17,	'Thomias M[Govenı	Palmer Vein	1	6	Died, injured by an explosion of powter.
	20,	Christian Kopp.	East Franklin	1	4	Killed by a rush of breast coal.
	23,	Edward Corcoran	Eagle			Died, injured by a fall of slate on l6th.
	27.	Willian T M Morris.	Beechwood	1	4	Killed by a fall of coal.
	30,	Hugh Sharp.	Buckville.	1	1	Killed, These men were resting at foot of slope when the
	30,	Patrick M'Intyre	. . . do	1	4	Killed, $\}$ chain broke, and werekilled by fragnents of the
	30,	Itugh Mathews.	. do	1	2	Killed, wagon.
	Dee: 1,	Thomas Klino.	Greenwoorl	1	1	
	12,	Willian Kear.	Hickory Shait			Died, tatally burned by dire-damp.
	12,	Huch Calloran	. . . do			Died, fatally burmed hy fire-damp.

Thus showing that 28 persons lost their lives in and about the collieries of the district during the year, leaving 17 widows and 62 orphans; against 35 deaths last year, leaving 14 widows and 65 orphans. On the 22 d of September the district had been enlarged, it comprises all the collieries in Schuylkill county that are situated south of Broad Mountain, and the collieries of New Boston basin, except Brookside colliery. The district at present contains double the number of collieries it did last year. The diminution in fatal easualties under its present management is very gratifying.

We here give the character of these fatal aceidents, to compare them with those of former years:

Character of Fatal Accidents.
Lost their lives by falls of coal 8
Lost their lives by falls of rocks and slate. 3
Lost their lives by explosions of fire-damp 7
Lost his life by fall of timber 1
Lost lis life by an explosion of powder 1
Lost his life by being crushed by wagons 1
Lost his life by fall of slope cage 1
Lost their lives by breaking of slope chain 3
Lost his life by stroke of a drum sweep 1
Lost his life by falling into an open breast 1
Lost his life by hemorrhage at work l
Total fatal accidents during the year 28

The following statement exhibits the names of persons who were maimed and injured in Pollsville district during the yedr 1875.

Date.		Names of maimed persons.	Names of eollieries.	Remarks.
April	8,	David Williains	York Farm	Severely burned by fire-damp.
	$\stackrel{3}{8}$	Adam Bertsel	. do	Severely burned by fire-damp.
	\%,	James Lewis.	Richardson	Head fractured by fall of a casting.
	27 10	William Cooper	New Kirk	Hand cut and fingers ent off by timbers.
May	16,	John Wise ...	New Philadelpha.	Severely injured by a blast.
	21,	P. F. Moran	Beechwood	Severely injured by a blast.
	22	John Thomas.	Thomaston	Severely injured in the slope by a wagon.
	25,	Thomas Doeselen	13eechwood	Severely injured by a fall of coill.
July	$\stackrel{2}{2}$	Thomas Hughes	Hickory Shaft	Terribly burned by fire-damp.
	2,	James Davis	...do .	Terribly burned by fire-damp.
	6,	Wm, Stamford	Richardson	Severely injured by a fall of coal.
	6,	James Bergen.	Oakdale	Severely injured by wagons.
	20,	Lewis Weihl	Anchor	Terribly injured in getting off a wagon.
	20,	John Lekle.	Glen Carbon	Terribly burned by fire-damp.
	44	John Dolan, boy	Oakclale	Foot crushed by wagons.
	28,	Michael Monaghan	Hickory Shait	Severely injured by a discharge of shot.
Aug.Sept.	20,	William Darkin	Jackson Drift	Severely injured by al fanl of coal.
	25,	James Crowley	,	Severely injured; run over by wagons.
	25.,	Murty frorman	do	Severely injured by a fall of coal.
	25,	James Blacker	Hickory shaft	Severely injured by a fall of coal.
	2	Michael Torpy.	.do	Severely burned by fire-damp.
Sept.	15,	James Bogry .	'Thomaston	Mortally injured by a prop and waton-died.
	19,	Thomas Magee	${ }^{1}$ do	Arm cat off in the cog-wheels.
	19,	Thomas Walsh	Hickory Shat	Fatally burned by fire-damp-dict.
	19	Martin Glemm	, (o	Severely burned by same; non-fatal.
	23,	John Lehey	Anchor	Slightly burned by fire-damp.
	20,	John Kendrick, boy	do	Slighty burned by fire-damp.
	30.	Michael Butler	do	Slightly burned by fire-damp.
	:30,	Moses Jannes, boy	do	Slightly kurned by fire-damp.
	30,	Henry Miller.	Colket	Nearly smothered by a fall of eoal.
Oct.	S,	Michael Scally	Otto	Thigh broken by a fall of coal.
	5,	Michael Coyne	Midide Creek	Slightly burned by fire-damp.

Oct. 7, William Manger
John Egan
12, Nathan Wagner
12, Lawrence Whemm
Patrick Burk
John Mason
John Morgan
, James Devlin
Charles Qumn......
Mathew Makin
John Pritchard,
James Gamble
James Coxe, boy
John Moran
24, James C. Thoimpson
Nov.
Charles Murry
15, John Magovern
16, Peter Norris
A driver boy
16 , A miner
y
16, An assistant
19, George Athy
19, Robert Evans
19, Jonas Leffler ...
30, Hugh Wathens.
30, Patrick O'Donmeli
34, James Mullin :30, Patrick Dulfy

New Boston ...do
Lower Rauch Creek..........................
Kear
Pine Forest................................
.do
do chardson
........................
Beech wood
...do
Otto
East Franklin
East Franklin
...do
...do
do ...
. . . do
pvne ..
Kalmia...
Rammia..............................
Beechwood
Eagle Hill................................
Palmer Vein
. .do
. do
Monitor, No. i.........................
do

.do. \qquad
Beechiwnod
Buckville
...do
do
.do
Hickory Shait

Toes cut off by wagons.
Leg broken by a fall of coal
Severely injured by a fall of slate.
Leg cut off by a blast in coal.
Leg broken and burned by fire-damp.
Severely burned by fire-damp.
Hip broken by a fall of coal.
Severely bumed by fire-damp. Severely burned by tire-damp. Severely injured by a blast.
Severely burned by fire-damp.
Severely burned by firc-damp.
Severely burned by fire-damp.
Severely burned by fire-damp.
Severely hurned by fire-damp.
Severely injured by a drill.
Leg brokon by a faill of eoal.
Severely crusilied by a fall of coal.
Body crushed by a blast.
Fatally burned by powder-died.
Severely burned by same accident.
Severely burned by same accident
Head fractured by a fall of coal.
Severely erushed by wagons and props.
Severely crushed by wagons and props.
Head and body ernshed by a fall of coal.
Slightly erushed by a fall of coal.
Severely burned by fire-damp.
Fatally inj'd by fragments of broken wagon, cansed by breaking of spreader-chain, while waiting to be hoisted out of mine. Severely inj'd by fragments of broken wagon, caused by breaking of spreader-chain, while waiting to bo hoisted out of mine. Slightly crushed by a coal slide.

Ten others were more or less injured by sundry accidents, showing that 88 persons were injured. Of this inmber 23 are mained for life a nul $\overline{5}$ others died of injuries.

To His Excellency, Johx F. IAartranft, Governor of the Commonwealth of Pennsylvania:

Sir:--Iu conformity with the requirements of an act of General Assembly of the 3d of March, A. D. 1870, I have the honor to herewith submit my official report of the collieries of my district for the nine months ending September the 22d, 1875, on which date my term of office expired, and my successor had been appointed confurmably to law.

Statements of fatal and non-fatal accidents are hereto submitted, and the character of the accidents are given in detail, and the general condition of the district collieries as to their rentilation and safety.

It affords me great pleasure to be able to say at my retirement from the duties of inspector of mines that the collieries are, as a whole, in good order, and that the late law had a beneficial result.

I here beg leare to tender your Excellency my thanks, and to all operators and miners for the kind mamer and many courtesies shown to me, and trust my duties were discharged with justice and to the best of my ability. With great respect, I am

Your Excelleney's obedient servant
JOHN ELTRINGIAM.

Whas Lemig ('olhery:-Operaied by Fisiepr \& Hazzard.

It is situated north of Mahanoy City, on lands of the Lehigh Talley railroad company. It consists of a double track slope, sumk on the soutin dip of the D or Skidmore rein. A tuunel opens the B or Buck Mountain rein north in 15 feet of good coal. At present ventilation is produced by natural means until the new outlet is completed, and the work gives me fnll satisfaction. Three engines, of 120 -horse power, with 7 boilers, are used ; 40 men aud 20 boys are employed; 25 wagons and 11 mules, with 800 yards of track, are used.

Preston, No. 1, Colmery.-Operatel by P. \& R. C. \& I. Co.

It is sitnated north of Girardsville, on the company's lands, and consists of slope sunk on the sonth dip of the 6 -foot rein. A new outlet is now in course of completion, and will be open into the fan outlet. The breasts have double shutes. The plan of mining is satisfactory. Seventeen breasts are worked. A 20 -horse fan is in use; rentilation is only medium; 3 engines, of 90 -harse power, with 7 boilers, are in use; 80 men and 26 boys are employed; 5 mules, 50 wagons and 3,000 yards of tracks are in use. On the whule I find the improvement of the colliery is prosecuted with some rigor.

Girard (shaft) Collerix. - Operated by Messis. Beatty \& Garretson.
It consists of a shaft and two slopes sunk on the north dip and one on the south dip. All the work is connected by tunnels underneath, working. the Mammoth vein by a tunnel in comection with the overlying veins. Two steam fans are used for ventilation, which protuce 17,600 cubic feet of air per minute; some gases are generated here, but there is ample means to check it; 1 engines, of 540 -harse power, with 22 boilers are in use; 22 mules and 43 wagons, and 2,250 yards of track are used. Can ship 400 tons per day.

Ithmon (slope ayd dhet) Coldiery:-Operated by Messros. Bioodey, Gross \& Company

It consists af a slope and three dafts, working the E o: Mammoth vein ; the breasts are 10 yards wide, with 8 yards of pillars left to each. Tery large deposits of coal are upon the tract. There are two breakers used for manufacturing the coal. This colliery is one of the best in the distriet, the vein is 15 feet thick and of the best quality. Ventilation is good and the airways are ample; and I do pronounce the colliery to be in good condition. Four engines, of 230 -horse power, and 16 boilers are in ase ; some 350 hands are employed, 660 tons of coal can be sinipped daily; 26 mules, 60 wagons, 3,500 yards of tack are in use.

Girifsmille (drift) Combery.- Operated by Messrs Moodey \& Gross.
The colliery is situated east of Girardsville, and was formerly owned by Col. J. J. Comnor. It consists of several drift levels opening the Mammoth vein in lifts up the mountinin; some 60 breasts of coal are open. Ventilation is prodaced by natural neans, which answers its purpose; there are 3 engines, of 150 -horse parver, used with 6 good boilers; 125 men and 60 boys are employed; 2t mules and 50 magons, with 2,900 yards of tracks are in use. I think this colliery one of the best managed of any in the district.

St. Nicholas (shope) Colliery.-Operated by F. \&J. Donaldson, on lands of the Philadelphia and Reading Coal and Iron Company.

The slope is sunk on the south dip of the E rein, in 25 feet of coal, and was formerly owned by Gen. Henry L. Cake. The present is a sceond lift working; 68 yards of a tunnel opens the (D) Skidmore vein in 8 feet of coal, a tunnel driven south opens the Prinrose vein. Ventilation is satisfactory ; and I find, in all its appointments, the manager deserves credit for his industry. A new lift is now in progress of sinking, which when completed will raise the colliery to one of the first class.

Beal Run (slope) Colmery - Operated by Wiggan \& Triebles, on lands of the P. and II. Coal and Lron Company.
The E vein is open by a slope, working some 16 breasts in 20 feet of coal. A tumel opens the D rein on its south dip of the (E) vein, and also works a counter lift in this level, 40 breasts are open. And ventilation is very good, produced by the operation of two fans. There are 9 engines, with 20 boilers in use ; 85 men and 40 boys are employed; 30 mules, 125 wagons and 1,5 ? 5 yards of track are used. The shipments can be made to average 400 tons per day. I tind the colliery in all its appointments to be in good condition.

Gilperton (slope) Codiery.-Operaied by Gilberton Cual Company, on lands of Gulbert is Sheafer.
It consists of two slopes, opening the E vein. The shipments can be run up to some 350 tons per day. Ventilation is produced by a 15 -horse power
fan, and supplies a sufficient quantity. Nine breasts are working ; 6 en. gines, of 317 -horse power, with 17 boilers, are in use; 105 men and 71 boys are employed; 22 mules, 55 wagons and 2,550 yards of track are in use; the colliery evidently is well managed; the air-courses and second ontlets are of an ample area; am well pleased with its management.

Trakey Rux (a slophand tunel) Comenery. Operaied by Brenizer \& Co.,
on lands of Gilbert and ollers.
It consists of a rock tunnel, opening the \mathbf{E} vein in 50 fcet of coal. A slope has been lately opened in a new lift, which yields on excellent quality of coal. Twenty-five breasts are open. The rentilation is produced by a 1b-horse power fan, which supplies 18,150 cubic feet of air. I find the colliery, in all its appointments, to be in good condition. Four engines, of 140 horse power, with 15 boilers, in use ; 150 men and 80 boys are employed; 29 mules, 125 wagons and 5,002 yards of tracks are in use; the average daily shipments are 400 tons.

Lawrence (slope) Colliery.-Operated by Jacob Laucrence \& Co., on lands of Gilbert \& Sheafer.

It cunsists of two slopes, opening the E vein on its north dip in 25 feet of coal. A suction fan is used for ventilation, which produces a sufficient supply. I found ail the appointments of the colliery in excellent condition. There are 6 engines, with 15 boilers, used for the purpose; 150 men and 30 hoys are employed; 20 mules, 60 wagons and 3, 000 yards of tracks are in use ; daily shipments $=500$ tons.

Coronino Cominery.-Operated by the Philadelphia Coal Company, on the Girard lands.

It consists of two upper level openings on the E rein, a new slope has been open to cut the top and lower benches of the same vein, turnouts are made on each side of the slope to accommodate the movement of haulage of coal. Yentilation is very satisfactory, and it is produced by a 20 -horse power fan; I found 16,000 cubic feet of air in circulation, a quantum sufficiently adequate for this purpose. There are 6 engines, of 219 -horse power, and scven boilers in use ; 75 men and 51 boys are employed; 24 mules, 86 wagons, and 3,400 yards of track are in use. The present shipments wili average 350 tons per day. Col. Darid P. Brown, of Pottsville, is resident engineer and general manager.

Loclst Rux (slope) Collieri-- Operated by the P. and 12 . Coal and Ircn Company, on lands of the said company.
It consists of a slope sunk on the south dip of the Primuse rein (G) in 15 feet of coal. I found the ventilation to be ample. There is some gas in the mine, but by careful attendance it is not likely to become serious. There is an immense body of coal in the tract. The mine is in good condition. There are 4 engines, of 140 -horse power, with 22 boilers in use; 152 men and 57 boys are employed; one 20 -horse fan, 25 mules, 65 wagons
and 4,500 yards of tracks are in use. The average daily shipments is 350 tons. I found all the appointments of this colliery well conditioned.

Trenton or Delano (shore) Colliery.- Operated by Alkinson.

It consists of a slope sunk on the north dip of the Primrose vein (G.) There has been very little mining done on the bottom level, but counter levels are now opening, which will shortly greatly increase its production. There are 4 engines, of 140 -horse power, with 9 boilers in use ; 52 men and $\because 2$ boys are employed; 12 mules and 30 wagons, and 2,500 yards of track are in use. The daily shipments will arerage 300 tons.

Locust Dale Colliery.- Operaied by the P. and R. Coal and Iron Company,
on lands of the said company.
It consists of a double slope lift on the E rein in 25 feet of coal, and an independent pump slope used for drainage, men and materials; 36 breasts are open, all of double shutes; 48 yards of a coal pillar supports the upper lift gangway, the gangways are 200 yards in advance of the breastiugs. Ventilation is grod, 2,800 cubic feet of air is in circulation per minute. There are 8 engines, of 650 -horse power, with 31 boilers in use; 127 men and 75 boys are employed; 27 mules, 45 wagons and 3,500 yards of track are in use ; the average daily shipments are 400 tons. I found the general condition of the colliery in all its appointments very good.

Cuyler (2 drifts) Comilery.- Operated by Heaton \& Brothers, on the lands of Cuyler \& Co.

It consists of two drifts, opening the D and E veins, which are nearly flat workings off the gangway. Ventilation circulates into the E vein works and passes thence into the D works and returns to the fan outlet. I find this colliery not only secure but one of the best managed in the district. The coal in these seams is at least 35 feet thick, besides the company is working a counter level in the mine on both these veins. 33 breasts are open ; 5 engines, of 125 -horse power, and 6 boilers are in use ; a 30 -horse power fan is used for veutilation; 160 mcn and 50 boys are employed ; 26 mules, 94 wagons and 4,600 yards of track are in use ; daily shipments, 450 tons. I am pleased to say the colliery is now in excellent condition.

Preston, No. 3, Colliery, near Girardstille.-Owned and operated by the $P . \& R . C . \& I$. Co.

It consists of 2 slopes, one for coal and the other for drainage, men and material. The E vein is mined exteusively here, and ventilation is considered fair ; the condition of all its appointments is very good. There are 127 men and 50 boys employed; 5 engines of 596 horse power, with 17 boilers, are used; 4 mules and 45 wagons, with 150 horse power fan ; daily shipments will average - tons.

Copley (slope) Colmerx.-P. \& if. C. \& I. Co., Ouners and Operators. Lentz is Bowman, Operators or Agents on land of the Lehigh Valley Liailroad.
It consists of 5 drifts and a slope sunk in 3 lifts on the (B) Buck Mountain vein. The coal is excellent and in large quantity. Two engines of 70 -horse power, with 6 good boilers, are in use ; 22 mules, 85 wagons and 1,800 yards of tracks are in use; 125 men and boys are employed ; rentilation is medinm, the condition of which is not reported to me satisfactorily.

Elmwood (slope) Colliery, near Mahanoy City.-Owned and operated by the P. \& P. C. \&I. Co.
It consists of a slope sunk on the south dip of the E rein. Ninetee: breasts are oven in 14 feet of good coal; a 20 -horse power fan produces rentilation ; 5 engines of 356 horse power are used, with 10 good boilers; 9 mules, 24 wagons; 414 yards of track are in use; monthly shipments, 5,750 tons ; is men and 11 boys are employed.

Bosron Rex-Operators and land ounera, the P. \& R. C. \& I. Eto.

This colliery consists of a slope opening on the E rein. There are $\frac{4}{4}$ coal seams opening, making 34 feet in thickness. Good safety roads are opened on the D seam. One hnndred and seventeen men and 99 boys are employed; 8 engines of 205 -horse power, with 12 boilers, are used ; 20 mules, 62 wagons; 500 yards of tracks are in use ; daily shipments, 300 tons; 49 breasts are open. The condition of the mine is 1 air.

North Mahavoy (siope) Comarry:-Operated and ounled by the P. di If. O. \& I. Co.

It consists of a slope opening on the E vein. Thirteen breasts are open. There are 2 veins worked by this slope. The rentilation is produced by 2 fans. A tunnel opens the D vein on its south dip. The rentilation is produced by 2 steam fans. One hundred and fifty men and 43 boys are employed; 5 engines of 160 -horse power, with 10 boilers, are used; 10 mules, 38 wagons and 1,000 yards of tracks are used. Daily shipments, $\because 70$ tons.

Union (slope and drift) Colliery.-Operated by Judge Ryan ank Johm Anderson, on lands of the Plitadelphia City tract.

It consists of a new slope opening and a drift. It has been in operation 9 years. The tract contains an immense deposit of excellent coal. The E: and D seams are open in 34 feet of pure anthracite coal. These gentlemen have the experience and practical ability to make this one of the most remunerative collieries in the region. There are 115 men and 55 boys employed; 6 engines of 230 -horse power and a shifting engine to do the haulage ; 9 good boilers are in use ; 21 mules, 85 wagons; 3,000 yards of track are in use. Daily shipments at present is 400 tons. When the slope workings are extended to afford a larger force to be employed the colliery will be able to ship 650 tons per day. The ventilation is produced by 2 furnaces and an air course, and renders satisfaction; is breasts are open,
each 10 yards wide, with 9 yards of a pillar. I find the colliery in good condition; and here take leare of expressing my sincere thanks for the marked favors I have had received from all parties in the discharge of my duties since my cutry into offee. Aithough the condition of the collieries are much better and far safer than they had been still there is a daily necessity arising which requires improving and attention.

With great respect, ete.,
JOHN ELTRLNGIIAM.

Twenty-second September, 1875, upon which date Samuel Gay succeeds Mi. Eltringham, and states that the following collieries were examined by him $u p$ to the close of the year, viz. :

Tu His Excellency, Jome F. Hartranfr,

Governor of the Commonwealth of Pennsylvania:
Sir :- In compliance with the requirements of an act of General Assembly of 1870 , entitled "An Act providing for the lealth and safety of persons employed in coal mines," \&c., I have the honor to submit herewith statements of fatal and non-fatal accidents that took place during the three months ending December 31, A. D. 1875, together with detailed statements of the condition in which I fonnd the coal mines and collieries of this district on my assuming the duties of inspector of mines on the 22d day of September, ultimo, upon which date the term of nffice of John Eltringham expired, and the new district of Shenandoah had been created, which embraces all the coal mines and collieries now situated north of the Broad mountain, in Schuylkill county, and lying east of the eastern limits of the town of Girardsville, running north and south, and the Honcy Brook collieries, which number will amount to 57 active collicries, giving employment to 11,569 men and boys. We also give the productive capacity of each colliery, and the power and force employed, and other matter of interest connected with this report.

All of which I respectfully submit for your consideration.
Your obedient servant,
SAMUEL GAY, Inspector of the Second district.

Names of persons who were killed in and aboul the collieries of the Second or Shenanduah dishrich during the year ending December the 31st. A. 1). 1875.

HATE.
Nalles ol persoms that wero killed.

Nimes of the emblleries.

Gilled hy an explosion of a boilai
Eilleal ly the above accident
bied froin injuries of sume accidell
bied in the mine of heant alisease
Eilleal ly a lall wl exal.
Killeal by a rush of eors.
Killed by a descending eage
Died fronn elieets of work and clisease.
Killed by falling ofl a breaker building.
Killad in the rollers and soreons.
Killed; ernshed in the breaker-wheels.
killed by a rush al cual in : breast.
Died; injured by at fall of contl.
Killed by a lall of top mock.
killea by a lall of slate.
killed hy the slope rope.
Killed hy the slope rope
Killed hy a lall ol coal.
Killed hy a fall of coal.
Killed by a fall of eoal.
Killed; crushert by the wagrons.
Killed by a fall of coal.
killed by a lill of rocks. killerl hy at fall of eoal.
Killod by the sereens.
killed: slipped into the mollers.
Died of injuries; slie lell into atl unen breast.
killed between sureans and frame.

Showing that 2h fatal acedents oceurred in this district during the year, leaving 11 widows and 49 orphans; and 114 persins were injurod,

 fect in thickness, and their angle of dip ranging fioni 50 to 80 clegrees, makes them still more dangerotis. Asmitting fiere are fory mans

Names of persons who were maimed und injurd in Shencondoch district during lice year 1875.

Names of maimed persons.

Names of collicries.
Remarks.

Jill.

Junc
Edward Thomp)son
Jolur Rrill.
Peter Brocius.
A miner.........
Frederick lumesoovicl
Michael Senkafshi
Joseph Cole
John Lawson.
('omrad Seithach
A driver boy
Willian Jones
Patrick Naughton.
John Williams .
Daniel Lardan
John Johns
Patrick Hancrimey
John Thomas
Michael Cassidy
Michael Snllivin
James M'T
James M'taughlin
Wiltiam Cemple.
A miner.......
ILenry Geise.
Edward Magettigan
John Magnire
Willian Lyon
Gcorce Lyon
John Donglerty.
A miner
Patrick $\underset{\sim}{ } \quad$ ค.......
Enoch Waltors
Edward Combs
Edward Talentino
William Lukenbil
4, Thos. Kavanagh

Stanton
St. Nichol.
Bir Minolis
Big Mine Rui
Beaver Rum
Shenandoah City
Thomas
. clo
Beaver Kun
Reno
Plank Ridge .
Reno
「'mumel
Pin 3ine
Big Mine Ium.
Bear Run.
Oak Hollow
Wést Shenandoah
Focht \& Whiitako
Indían Ridge... . do
\qquad
lank Hidge .
fank Nidge..
Woney Brook....
West Shenaudoah
Shenandoah
Suffolk
r linin \qquad
Beaver 1 Rinn \qquad
\qquad
. do.
iilondon.
. . . do
Lost Creek
Beaver Run
beaver fun
Plank Ridge
New Boston
Shenandoa
Thromas
Tromas $\begin{aligned} & \text { Tumnel } \\ & \text { Iide. }\end{aligned}$
'I'mnel Iijdge
Plank Ridge

Soveroly burned by a coal blast.
Leg torin off by a boiler explosion-died. Soverely injured by a scaflold.
Leg brokeni by a fall of coal.
Goveroly bmmed hy fire-damp.
Severely injured in a coal shute.
Severely injured hy falling into a shate.
Leg broken by a fill of coal.
Soverely injued by a fall of coal.
Severely injured by a blast.
Foot cruslied by wagons.
Arm broken; lie fell into a shute.
Severely crushed by wacons.
Slightly burned by fire-flamp.
Severely injured in the minos.
Severely injured by a fall of coal. Severely injured by a fall of enal.
Armand anklo brokon by a fall of eat.
Fincers cut offi by a fill of rocks.
Terribly injured by a blast.
Fatally injurea by a fall of eoal.
Arm dislocated by a fall of rocks.
Arm and fingers broken by wagons.
Leg broken by a fall of coal.
Soverely injured by a fall of conl.
Severely burned hy fire-dimpl. Severcly bumed by fire-damp. severely bmrned by fire-dimp. Severely burnerl by fire-damp. Fatally injured by a fall of coal-died. Side jnjured by a fall of coal. Seas broken by a fall of coal. Legs broken by a fall of coal
Severely injured by a blast.
Leg broken by a fall of coal.
Leg broken by a fall of co
Foot rrnshed by wagons.
Severely injured by in dimmper.
Thich hroken by a fall of coal.

Hand cut off by a fall of coal.
Ifand ermshed by mpratging w:tgons.
Ribs broken by a fall of eoal.
Thomas .
Fingers cut off by wagons.
Plank Firdge.
Head crushed by a falling plank.
Plank Ridge
fice crushod by wagons.
Head and neck injured by a falling roof.
Shoulder and ribs crushod by fall of coal.
Legs broken by a fall of coal.
Eyes injured by a pliece of coal.
Nearly sinothered by a rush of gangwaly coal.
Severely injured by a lall of coal.
Severely injured hy a lall of coal.
Head injured by a fall ol coal.
Severely crushed by a rush ol coal.
Severely crushed between wagons and props.
Hands severely cut by a fall of coal.
Bandis sernshed by a dall of coal.
Body pierced hy spout of an oil can.
Badly injured by a rush of coal.
Severely burned by fire-damp.
Severely burned by fire-damp.
Arm broken; run over by dirt wagon.
Fell off a mule into the sump.
Hand crushed by a fall of coal.
Injured by a roHing log.
Hatally injured by a lall of slate-dich.
Severely crushed by a fall of coa!.
Severely burned by fire-damp.
Hand crushed by wagons.
Leg erushed by a titll of coal.
Nearly erushed to death by a rush of coal.
Nearly crusherl to death by a rush of conil.
Terribly burned by tire-damp.
Severely crushed by a tiall of coal.
Severely crushed by a fall of coal.
Severely erushed by a fall of coal.
These font men were covered up by a rush ol coal and hatl to be relioved by the miners of the latremee colliery.
. . . do
.do .
.... do
airard .
St. Nioholas

Fatally injured by at dall of rocks-time?
Severely himued hy powdir.

Names of collieries.

Knickerbocker	Shoulder crushed by a fill of coal.
Yrimroso	Leg broken by a fall of eoal.
Plank Ridge	Thigh broken by a fall of coal.
Mahanoy City	Leg broken by a fall of eoal.
Focht d Co	Spine injured by a fall of coal.
Tunnel Ridge	Ribs broken by a fall of coal.
Plank Ridge.	Eye destroyed by a piece of coal.
Koh-i-noor.	Arui broken by a hlast.
Focht \& Co	Foot severely injured by a spike.
Beaver Run	Collar-bone broken by a fall of coat.
Tunnel Ridge	Leg broken by wagons.
Koh-i-noor...	Fingers cut off by a chain.
Focht \& C'o	Slightly injured in the sereens,
Ronoke	Leg crislied in the rollers.
Elmwood	Leg broken by wagons.
Fisk	Leg broken by the breaking of slopo elain.
Lost Crec	slightly injured by a fall of coal.
....do	Slightly injured by a fall of coal.
Colorado	Severely burned by powder.
Beaver Run	Wrist fractured by a dumper.
Sufiolk.	Soverely bumed by fire-damp.
Mahanoy City	Legs broken by a fall of coal.
Suffolk	Severely bumed by fire-damp.
do	Severely burned by fire-damp.
do	Severely burned by fire-danp.
. do	Severely burned by fire-damp.

Remarks.

Shoulder erushed by a fall of coal.
cea broken by a fith of coal.
Leg broken by a fall of coal.
Leg broken by a fall of eoal.
Spine injured by a fall of coal.
dye destroyed by a piece of co
Arwi broken by a blast.
severely
Leg broken by wagons.
Fingers cut off by a chain.

Leo bruken by wa
Leg broken by the breaking of slopo elain.
dighty inftrea by a fatl of coall.
Severely burned by powder.
Frist fractured by a dumper.
erely bumed by fire-damp
Severely bumed by fire-danip.
Severely
Severely burned by fire-damp

Johm Harrold	Knickerbocker*
Dan. Murry	do
Frank Thomas	iximrose
Thomas Cain	Plank Ridge
William Thomas	Mahanoy City.
William Southerns.	Focht d Co....
Fbenezer Davis	Tunnel Ridge
Michael Loftes	Plank Ridge.
Michael Durkin	Koh-i-noor.
Anthony Stack	Focht \& Co
Samuel Ramsdale	Beaver Run
Andrew Hanick.	Tumnel Ridge
John Hincirie	Koh-i-noor...
Jumes Shields	Focht \& C'o
Anson Smith.	Ronoke ...
John Cohoon	Elmwood
Joseph Kerby	Fisk
A miner at ...	Lost Cre
His assistant	. . . do
Owen Dixon.	Colorado
John Keegan (boy)	Beaver Run
Michael Learey	Sufiolk
A miner....	Mahanoy City
Nicholas Burgowin.	Suffolk
Jacob Grimm. do
Walter Gibtes.	. do
A miner...	do
Six others whose 1	ot repo

One hundred and fourteen persons were maimed and injured, 4 of whom died sulsequently of their injuries, 52 of whom are maimed for life.

It is gratifying to know how large a diminution there is in the death roll of this district this ycar. Eighteen fatal accidents less than last year, when the death roll was 44 fatal and 95 injured, leaving 20 widows and 7 i orphans; while this year there are 26 fatal and 111 injured, leaving 11 widows and 49 orphans. This happy result exceeded our most sanguine expectations, showing that a radical change has taken place in the conduct of the men who are employed in and about these collieries, as well amongst the mine managers and those having charge of the same. Nothing will conduce so much to still reduce mine casualties as a respectful obedience to the law and to the rules governing the working of collieries. And every lover of humau happiness will rejoice at the present information here given, and will hope for a still greater diminution in fatal accidents.

Second District.

Twenty-six fatal accidents occurred in and about the collieries of Shenandoah district during the year, a gainst 44 cases of fatal accidents last year, being 18 deaths less this year. This district had its territory diminished on the 22 d of September by adding to Shamokin district all the collieries north of the Broad Mountain, in Schuylkill county, and west of the eastem limits of the town of Girardsville, together with all the collieries in Cohmbia county

The Charagter of these Fatalities.

Lost their lives by falls of coal. s
Lust their lives by falls of rock and slate.................................... .
Lost their lives by explosion of boilers.................................. . . ${ }^{3}$
Lost his life by being crushed by wagons................................. . . . 1
Lost his life by being crushed by a cage 1
Lost his life by breaking of ropes and chains 1
Last his life by being crushed in machinery...................... I
Lost their lives by being crushed in the rollers 4
Lost his life by disease of the heart 1
Lost his life by falling off a building. 1
A lady lost her life by falling into an open breast
Lost his life, overcome by work and sickness 1
Total cases of fatal accidents. 26
Leaving 11 widows and 48 orphans; and 106 injured persons, 52 of which are maimed for life.

Bear Pidge Colliery.- Operated by the Bear Ridge Coal Company.

It is situated north of Malianoy planes, on the Girard estate. It consists of a new tunnel opening the E vein, in coal 25 feet thick. The breasts are worked by single shutes and jugular man-ways in cach. Twelve breasts are working ; the ventilation of the colliery is good; 69 men are employed inside and 75 outside ; there are 4 good engines, of 125 -horse power, in use, with 8 new boilers; 14,000 cubic feet of air supplied by a $20-h o r s e$ power fan; 3,606 feet of track are used, with the arerage shipments $=400$ tons per day; 9 mules and 32 wagons are in use. I found the colliery in very good condition.

East Mahanor Colleri.-Operated by Focht \& Whittaker as a shaft colliery,
and mine the Buck Mlountain vein in 16 feet of coal.
The air-courses are of an area of 30 square feet. The breasts are worked with two shutes in each, with 85 yards of run. The pillars are 7 yards thick. Ventilation is often difficult, as the top runs to the 7 -foot vern. Preparations are now going on that will remedy this defect. Counter-lifts are worked by means of inclined planes, and ventilation here is tolerably good. The gangway communicates with Bowman's mine. The force consists of 188 hands ; 4 engines, of 125 -horse power, with 6 boilers, all in good condition ; 17 mules, 68 wagons and 2,450 yards of track are in use ; shipments at 350 tons per day. I found everything connected with the colliery in very good order, and still improving any deficiencies that is necessary to require attention and security and insure success.

Glendon Colliery (near Mahanoy City.) -Operated by J. B. Boylen, on the Delano lands.
The coal may be sent by the Lehigh Valley or the Philadelphia and Reading railroads. The 7 -foot vein is worked by a slope. The breasts have each but one shute and 5 -yard pillars. Ventilation is produced by the operation of a steam fan. The air-ways and traveling-ways are good. A tunnel north opens the Buck Mountain vein in 12 feet of coal. The whole is well ventilated by a 25 -horse power fan, supplying a sufficient quantum of air; 4 engines, of 95 -horse power, with 11 good boilers; 1,545 yards of track are used, with 10 mules and 62 wagons; 126 men and 38 boys are employed; the shipments will average 300 tons per day.

Hartrord Colliery (near Matinoy City.)-Operated by Richard Phillips de Co., upon the lands of the P.\&R. C. \&I. Co.
It consists of a tunnel opening the Skidmore or D vein. Seventeen breasts are working on a north dip in excellent coal. Ventilation is produced by natural means. I find the colliery in good order. Its future prospects are promising. One engine, of 20 -horse power, and 2 boilers in use ; 60 men and 27 boys are employed; 5 mules, 25 wagons and 1,000 yards of tracks are used. At present the colliery is operated by joint-stock company, and for a colliery its location is admirable.

Delano Colliery (or Oak Hollow.)-Alkinson \& Co., Operators.

It consists of a slope opening the G vein 110 yards under water level, in 14 feet of coal, and into the basin, which rises eastward, requiring the vein to be worked by counter-lifts. Fourteeu breasts are open. Owing to a bad top rock it requires great labor to support it safely. A 20 -horse power fan rentilates the mine ; there are 3 engines $=100$-horse power, with 9 boilers, in use ; a 40 -horse power steam pump and 1 pole pump are used for drainage; 67 men and 44 boys are employed ; 7 head of stock and 20 wagons are in use. I found the general condition of the colliery to be in good order.

Wm. Penn (silaft) Colmerr.- Operated by the Wm. Penn Coal Company, on the Girard lands.

This shaft opens the \mathbf{E} vein on its north dip, in 45 feet of coal, and worked in two lifts, working 56 breasts, each ten yards wide, backed by 8 -yard pil-
lars. Ventilation is produced by the operation of a 30 -horse fan, and to all appearance renders satisfaction. The production of coal for the year exceeds 112,000 tons. Twelre engines=367-horse power, with 16 good boilers, are in use; 300 men and 51 boys are employed; 45 mules and 159 wagons are in nse.

Leminn, No. 3.-Operated by the Philadelphio Coal Company, on lands of Girard estate.
The E rein is opened by 2 slopes at this colliery, one of which is ouly a single track on its lower lift, from which level a breast of coal will be worked up and timbered to the foot of the by-slope. That will be ready to be used as an additional lift when the present one has been worked off without creating any additional expense to the company. The practical management of this colliery reflects great credit on Col. D. P. Brown as its general manager and resident engineer. Ventilation is very good, and produced by a 20 -horse power fan, having all legal appliances fully attached. I find the condition of the colliery fully up to the requirements of law. Seven engines $=265$-horse power, with 10 good boilers, in use; 152 men and $\$ 4$ boys are employed ; 10 mules, 55 wagons, are in use. Shipments per annum, -- tons.

Mahanoy City Colliery.-Operated by the P. \& R. C. \& I. Co.

The \mathbf{E} rein is open by a slope 110 yards deep in 18 feet of coal, and the lift is worked by a counter lift in connection with the main one. The Primrose rein is opened by a tunnel in 16 feet of coal. A new lift is to be sunk shortly whick will re-open these veins, but on a larger scale for supply. Compressed air will be used as a moter for these engines. Ventilation is produced by 2 fans, a 10 -horse power and a 20 -horse power, which supphes an alequate amount of air for all purposes. Eight engines of 530 -horse power, with 18 good boilers, in use ; 123 men and 61 boys are employed; 21 mules and 80 wagons are in use. Annual shipments, - tons.

Staiton (slope) Colliery.-Operated by Miller, Hock \& Co., of the lands
of John Gilbert and P. W. Sheafer.
It consists of a double track slope sunk on the south dip of the E rein, which has been extensively worked for the last 6 years. It is contemplated to open the D and B veins by a tunnel driven north. Ventilation is produced by a 10 -horse power fan, which renders satisfaction. I find the colliery, with all its appointments, in a very good condition. Five engines= 242 -horse power, with 13 good boilers, in use ; 150 men and 85 boys are employed; 18 mules, 51 wagons, are in use. Anmual shipments, -- tous.

Girard Mammoth Collery.-Operated by the Donaldson Prothers, on lands of the Girard heirs.

It consists of a tumel level and a slope openings on the E and B veins. The slope coal is hoisted out of the slope and unloaded by a self-acting dumper into the tumel level, where it is again reloaded and hauled to the breaker by a locomotive. These reins run from 16 to 20 feet in thickness.

$$
7 \text { Mine Rer'. }
$$

Ventilation is grood and is produced by a 25 -horse power Grubal fan. Eight engines $=265$ horse power, with 12 good boilers, are in use ; 25 mules and 90 wagons are in use; 150 men and 53 boys are employed. Monthly shipments, 7,000 tons.

Trwel Ridge.- Operated by George IV. Cole \& Co., on lands of the P. \& Fi. C. \& I. Co.

It consists of a slope opening the E vein 118 yards deep in its nortlı dip in 35 feet of coal, and a tunnel driven south opens the D and B reins on their north dip. The top split of the E vein is 16 feet thick, the bottom split is 12 feet. The D vein is 14 and the B rein is 7 feet thick, or 49 feet of good workable coal is open in the colliery. A sufficient chain course of coal is left at breast tops to support the old level, and is considered safe for all purposes. Ventilation is produced by a 10 -horse power fan and 3 furnaces, and appears to afford an ample supply of air for the men. Seven engines $=300$-horse power, with 15 good boilers, are in use ; 197 men and 81 boys are employed; 26 head of stock and 58 wagons are in use. Annual shipment, 120,000 tons.

Bear Ringe Tunvet, (a neft operation.) - Operated by the Bear Ridge Conl
Company, on lands of Girard heirs, but the improvements are erected ripon the Gilbert estate.
It consists of a tumnel opening the E vein northward in 25 feet of coal. It recently went into operation. The breasts are worked with a singleplanked manway, and a manway in each alternate pillar in its centre turning in right and left to each breast. Ventilation is produced by the action of a propeller fan of the Grubal pattern, and of a 20 -horse power, and so adjusted as to propel or exhanst the air at will, or as may suit the season of the year best. As the works are all above water-level it makes but very little difference at which course to run it, unless the air courses are properly secured by check-gates to force the air into its legitimate channels, as required by law. Five engines $=110$-horse power, with 8 good boilers, are in use ; there are 100 men and 88 boys employed; 11 mules and 37 wagons are in use.

> Ward \& Oliver Colliery.-Operated by said firm, on the P. if R. C. \& I. Co.'s lands.

It consists of a tumel opening the seven-foot vein on its south dip in 5 feet of coal. Nine full breasts are working at present, but the condition of the colliery is not ereditable to the firm. Ventilation is effected in winter by natural air currents, while in summer a furnace is used. One 30 horse power engine hoists the coal and runs the breaker, affording employment to 22 men and 13 boys; 2 mules and 10 wagons are in use; there are? boilers in use. The monthly shipments will arerage 1,200 tons.

Koh-r-Noor Shaft (near Shenannoain.) -Operated by Richarel Heckscher ed Co., on the estate of Gilbert if Sheafer.

It consists of a first-class shaft, opening the Mammoth rein 140 yards under the surface, in 45 feet of coal, and nearly in the centre of its basin.

The mine is worked in three different lifts or panels, by self-acting planes, In comection with this plan a new slope is nearly sunk to the basin, on an angle of 10° dip. This will open another large body of coal, which as a reserve can be drawn upon as required, so that the colliery has but few, if any in the region, to excel it in its details or economy. There are 60 breasts of coal open, and the general workings of the colliery are all well ventilated by a 50 -horse power fan. The aircurrents are well secured, so that all working places receive their full supply of fresh and pure air. Mr. Jacob Glover manages the mine in a creditable manner. Water-tanks, alternately loisted, effect the drainage, doing away with the use of pump rods, pump columus and such trapping. Sixteen engines $=660$-horse power, with 14 boileis, are in use ; 230 men and 53 boys are employed; 30 mules and 140 wagons, with 5,280 yards of tracks, are used ; annual shipments will arerage - tons.

Plank Ridge (near Sienandoah (ity.) Operated by the P. id If. ('. d. I. Co., upon their own lands.

It consists of a double cage-way shaft, sunk to the E vein. The coal of this lerel is nearly exhausted, but a slope is sunk on the north dip of the vein 200 yards east, and sufficiently deep to allow it to be worked in three lifts, and tonching an anticlinal axis in its lower east gangway. On its west the rein is open by a slope, 280 yards deep, and to the bottom of the basin, which is connected with the workings of the Indian Ridge colliery, from whose shaft workings the largest portion of this coal is loisted out. Ventilation is not adequate to keep so large a mine in good working order. There is a large amount of powder used daily. The air-currents are moved only by natural means, so it is impossible to get adequate ventilation established. Nine engines $=390$-horse power, with 17 boilers, are in use ; 300 men and 79 boys are employed; $3 t$ mules and 100 wagons are in use ; annual shipments will average-tons.

Beaver Run (east of Mahanoy City.) - Peter Bowman, Operator, on the lands of the Lehigh Valley Railroal C'ompany.

It consists of a tunnel opening two small and irregular veins, never proving to be a profitable investment, though Mr. Bowman has evidently sacrificed time and money in its developments. The prospects in the future are not encouraging. When we consider the expense attending the opening of 400 yards of tunnels, besides all other expenses, public sympathy must incline to his favor. Ventilation, consequently, cannot be expected to be what it should be, but the absence of noxious gases is a consolation in this case. One engine, of 40 -horse power, with 2 boilers, are in use; 41 men and 13 boys are employed; 8 mules, 36 wagons and $1, i 60$ yards of track are in use ; monthly shipments $=1,500$ tous.

King, Trler \& Co.- Operated by King, Tyier \& C'o., on lands of the P. anel R. Coal and Iron Company.

It consists of a tunuel driven south, cutting the B, vein in 12 feet of eoal, with 35 yards of breastings and 4 yards in pillars By uatural currents the mine receives its rentilation, and from its well appointments it affiords a
good supply of air. The power and force here employed consists of one engine, of 10 -horse power, with 2 boilers; 24 men and 13 boys are employed; 8 mules and 30 wagons are in use ; monthly shipments, - tons.

Shexandoai City or the Lost Creek Colleery.- Operated by the Philadelphia Coal Company, on the Girard Heirs Estate.

It consists of 2 slopes opening Nos. 2 and 4. No. 2 is the old slope, of double track plan, while 100 yards cast of No. 2 No. 4 slope is sme; 200 yards decper, while on its west gangway, and directly under the old slope, Mr. D. P. Brown contrives to work up a breast and timber it as a slope to connect the old one withont further cost to the company, as is the case at Lehigh, No. 3, which is his plan. The principle work doing in No. 2 is robbing out pillars and draining the 'mine; while the No. 4 slope is driving gangways, air courses and second outlets, and starting breastings; all of which work carrics no expense.

Six engines $=440$-horse power, 3 local locomotives and 16 boilers are in use ; 228 men and 60 boys are employed; 16 mules, 70 wagons and 2,600 yards of tracks are used ; 2 steam pumps of 500 horse power are in use ; aunual shipments will average - tons.

Ellanjowan (sifaft) Colliery.- Operated by the P. and R. Coal and Iion Company, on their own lands.
Sitnated at Mapledale, midway between Mahanoy and Shenandoah cities. It consists of a shaft sunk 111 yards deep to the middle split of the E rein. The E vein is here found in three prongs, namely: The bottom prong is 12 feet thick, the middle prong is 11 feet, and the upper prong is 10 feet thick, with 194 yards of breast runs, which will bear to be divided into two lifts each, and worked by counter-workings, which when opened for full mining: will give 12 gangways. West of the shaft a tunnel opens the Primrose or G vein, which when opened will again afford 4 more gangways, and which will allow of counter-workings 2 lifts, making 8 gangways of 95 yards of a lift; the colliery will afford 20 gangways, with $2 \frac{1}{2}$ mile run to each. The colliery, when under a full and fair working order, will be able to produce 1,500 tons of coal per day. The coal mined here at present is manufactured at the Knickerbocker breaker. Thirteen breasts are working; a 40 -horse power fan is used for ventilation, which affords an ample supply for present purposes. Two engines, of 40 -horse power each, with 6 boilers are in use; 60 men and 6 boys are cmployed; 13 mules and 60 wagons and 2,600 yards of tracks are in use.

Grant Colhery, near Mananor Tunael.- Operated by Iloodey d. Coo, on lands of the Lehigh Valley Railroad Company.
It consists of 2 lifts opened by tunnels north opening the D and B veins. The B rein is still working, which is rendered somewhat difficult to work owing to an irregular top. Ventilation so far is produced by natural means but is inadequate for a full supply. Three engines, of $6 \dot{5}$-horse power, with 4 boilers are in use; 03 men and 21 boys are employed; 9 mules and 28 wayons are in use.

Thonas Colliery, at Suenandoail City.-Operated by the Thomas Coal Company, on the Girard Estate.

It cousists of 2 slopes opening the separate splits of the E vein, a tumnel east of this slope opens the D and B veins. The coal in the E vein has been well extracted by main and counter-workiug. The coal on the tunnel lifts of the D and B veins are well exhausted, but breastings are so far untouched. A new breaker has been crected for preparing coal from new openings ; and promises to become, in future, one of the first collieries in the district. Two locomotives are used, instead of animal power, to do the hauling in the mine. A 20 -horse power fan produces an adequate supply of fresh air for rentilating the mine, which has rendered satisfactory wesults. Nine engines $=500$-horse power, with 16 good boilers are in use ; 3 locomotives are used for haulage; $15 t$ men and 112 boys are employed in and about the colliery. I an forced to acknowledge the ability and good judgment of Mr. Wasley in his management of this colliery.

Surfolk Colders.- Operated by Sufiolk Coal Company, on lands of the P. and II. C. and I. C'o., near S'. Nicholas.
It consists of a slope and water level drift openings. The slope opens the Primrose vein in 10 feet of coal, and is ventilated by means of air courses driven along the gangways in separate openings, which air can be utilized at will A 20 -horse power fan is used in connection with rentilation, which has the desired result. The drift openings are upon the different branches of the E seam, and are tolerably well exhausted of coal, but 18 breasts are still working. The slope works produce some fire-damp gas, and it becomes a necessity to bave it removed. As yet the excavations are not extensire, but enough has been demonstrated to warn those in charge to keep it in due bounds. Four engines, of 109 -horse power, with 11 boilers are in use ; 102 men and 30 boys are employed; 1 locomotive, 15 mules and 66 wagons are in use. Montily shipments, - tous.

Furnace Conlery.- Operated by Messrs. Athins \& Bros., on Gilbert of Sheafer's lands.

It consists of two tunnel openings on the B vein. A tmmel opens the E rein near the bottom of the basin. The coal of both lifts has been nearly exhausted. The B vein is open from the old tumel in a small basin, which is likewise worked nut pretty well. A furnace supplies rentilation for these works. A locomotive is used for animal power. The effects of its steam and rarified air are hurtful to the men. The present system of rentilation in use must be reversed in order to improve it. Onc engine, of 30 -horse power, with 2 boilers, are in use ; 95 men and 35 boys are employed.

> Prmane Cobliery (near Mathanoy City.) - Operated by Primrose C'oal Company, on lands of the Lehigh Valley Railroad Company.

It consists of a slope opening the G or Primrose rein in its basin, allowing of working both south and north dips of the vein. The E rein is open by a tunnel driven south. The character of its coal is somewhat affected by the fragmentary condition of the roof rock, not often found elsewhere. In comection with the E vein a tunnel from the E vein opens the 4 -foot
vein, and a continuation of this tumel opens the D vein in $4 \frac{1}{2}$ feet of coal, and its still continnation opens the B vein in 5 feet of coal. There are 32 hreasls working in all these openiugs. A 10 -horse power fan supplies rentilation for all these different panels. Fun engines, of 160 horse power, with 10 boilers, are in use; 112 men and 38 boys are employed; 15 mules and 50 wagons are in use.

Fooms di Whirsiker.-Operaled by Foche if. Whitaker, on lands of the Le.
high Valley hailroad Compamy. at Mahanoy City.
1t consists of a 60 feet deep shaft, opening the B rein, in 16 feet of coal. An outlet is now ready to reccive a fan for ventilating the mine A com-ter-lift is worked by inclined planes. Twenty-nine breasts are open. Venthlation is produced by the use of a 10 -horse power fan, but found to be inadequate to furnish a full supply of air for such extensive openings. Three engines, of 130 -honse power, with 4 boilers, are used; 163 men and 50 boys are employed; 15 mules and is wagons are in use.

Ilasey Brook Mines.- Operatore, Lehigh and Wilkesbarre Coal Company, on the lands of said corporation
It consists of four separate and distinct slope openings, each one a colliery in itself, with all and siagular the premises thereto belonging, to wit: The No. 1 slope is sunk 185 yards in two lifts, being the oldest and most extensively worked, having over 15,000 yards of gangway opened. No. 3 slope is 240 yards deep and in the basin, touching the synclinal axis in its present deptli, and both north and south dips. The Wharton vein is open on this lift by a tumnel, and is also extensively worked. No. 4 slope opens the \mathbf{E} vein, 275 yards deep, on the eastern ead of the basin, and working the sonth and north dips westward. Here a tumel, run north, opens the Wharton vein in 8 feet of coal. No. 5 slope is open into the E vein in the western end of the basin. In connection with these extremely extensive works there are available traveling roads and outlets to all. The ventilation of all these mines is effected by furnaces and steam exhausts, which only sumply a moderate yuantum of air. The substitution of fans of the requisite capacity would cost less, and have the desired effect of improving the ventilation. There are $1+$ steam engines, with 2,165-horse power, and 59 steam builers in use; 795 men and 142 boys are employed; 63 mules and 400 wagens, with seven miles of tracks, are in use; annual shipments will average - toms.

Silenajdoall City Colliery.-Operated by J. O. Rhoades for James Neal, trustee, on lands of the P.\& R. C. \& I. Co.

It consists of a slope and drift opening. The E and B veins have been extensively worked for the last 13 years. On the gangway of the slope, some 11,711 yards east, a new slope has been sunk to the basin, and still further east of this another slope has been opened, which connects the Plank Ridge workings. The drift coal is 18 feet thick, and has been extensively worked by a counter-level and inclined planes. Tentilation is produced by a fan of 20 -horse power, while the drift works are ventilated by natural means. Nine engines, of 338 -horse power, with 12 boilers, are in use ; 295 men and 69 boys are employed; 26 mules and 60 wagons are in use.

West Shenandoait. - Operated by the P. and R. Coal and Iron Co., on Gitbert is Sheafer's estate.
It consists of a slope opening the B rein in two lifts. The old lift is eztensicely worked. The shaft opens a large body of flat-lying coal east of the slope workings, and all prepared at the breaker. At present the mines are ventilated by furnaces, but a 20 -horse power fan is nearly ready to be put into operation for a better system of rentilation. There are 3 engines $=100$-horse power, with 8 good boilers, in use; 121 men and 73 boys are employed; 10 mules and 60 wagons are in use.

Knickerbocker Colliery.-Operated by the P. and P. C. and I. Co., on the Company's land, and $1 \frac{1}{2}$ miles west of Shenandoah City.

It consists of a slope and drift opening on the G or Primrose rein, a tulnel opens the north dip of the vein; on the western end of the basin an jncline plane opens into a flat body of coal, another tunnel opens the south dip of the seam, and another tumel opens the bottom split of the E rein in 14 feet of coal. The general condition of the colliery is very promising. Two steam fans produce ventilation, which is quite satisfactory. No smoke or standing gases are met with in the mine. Six engines, of 185 -horse power, with 11 boilers are in use ; 151 men and 83 boys are employed; 20 mules and 80 wagons are in use.

Indinn Ridge Collieny.-Operated by the P. and R. Coal and Iron Company, on their own lands.

It consists of a shaft sunk on the E rein in its first basin, and has been extensively mined this last six years. The upper coal is worked by counter levels, the coal lowered on planes to the foot of the shaft, and thence hoisted out. All the underlying veins in this colliery, as well as all in the Shenandoab collieries, are not yet worked, and consequently very large fields of coal are yet untonched in this locality after the E vein coal may have been exhausted. Ventilation is produced by a 40 -horse power steam fan, which supplies an abundance of air for all purposes. The general condition of the colliery and all its appointments are good; 72 breasts are working on 3 gangways; 221 men and 108 boys are employed; 9 engines, of 658 -horse power, with 18 good boilers are in use; 21 mules and 100 wagous are iu use ; the monthly shipments will arerage 20,000 tons.

Centennal Colliery.- Operated by the P. and Il. Coal and Iion Company, on Gillert \& Sheafer lands.

This colliery consists of a new slope opening. The south dip of the Mammoth vein is 100 yards deep, and when completed will constitute one of the largest producing collieries of the region. One 40 -horse power engine, with 4 boilers and 3 small steam pumps are the only power yet needed; 28 men are cmployed in sinking and working at the colliery.

Ellangowan Drifts.-Operated by the P. and R. Coal and Iron Company, on their lands at Mapledale.

It consists of water-level openings, in whieh the Mammoth, Orehard and Primrose reins are extensively worked above water-level, while the new shaft already described will open the same veins on their lower lifts, which will constitute this colliery one of the best producing collieries in the county. Ventilation is effected by a 40 -horse power fan, supplying an adequate amount of air. Three engines, of 70 -horse power, with 6 boilers are in use ; 200 men and 85 boys are employed; 20 mules and 100 wagons are in use.

Banks \& Co.'s Collitery, of Shexandoah.-Operated by said firm, on the Gilbert if Sheafer estate.

It consists of a drift opening on the G vein, for home and domestic use, employing 10 hands, and selling 500 tons per month.

Datis Colliery, of Sienandoah.-Operated by MIr. D., on lands of Gillert \& Sheafer.

It consists of a single slope, on the Orchard rein, 30 yards deep, employing 6 hands ; a 5 -horse power engine hoists the coal and runs the breaker, with only one boiler.

Jones iv Co., Shenandoah. - Operated by the said firm, on the Gilbert \& Sheafer lands.

It consists of a drift opening on the Primrose rein, and affords employment to 8 men ; one engine, of 6 -horse power, with one boiler is used ; and one mule with 4 wagons.

Lehigit, No. $\frac{1}{4}$, Coldiery, vear Shennndoah.-Operated by the Philadelphia Coal Company, on the Girard estate.

It consists of a slope opening the E vein on its south dip, and is a sister colliery to the Lost Creek colliery, and situated in the centre of the tract, between both collieries. It is intended to sink to the basin, and to erect one of the most famons breaker buildings in the whole region, for its use. The rast body of coal that underlies this tract is simply immense, and under the direction of Col. D. P. Brown it will be a snccess.

COMMUNICATION.

To His Excellency, John F. Hartranft,
 Governor of the Commonweath of Pennsylvania:

Sin :-In couformity with the requirements of an act of General Assembly of the Commonwealth, approved the third day of March, A. D. 1870, entitled "An Act providing for the health and safety of persons employed in coal mines," I have the honor to herewith submit to you my report upon the condition of the collieries in my district, and also the number of fatal and non-fatal accidents that occurred during the year. These statements are in tabrlated form, with remarks on the character of the same.

I also am able to show the number of hands employed in and about these collieries, the number and horse power of the steam engines and boilers in use, and other matter in detail in their relation. I am pleased to be able to inform your Excellency that the collieries are in much better condition and are receiring better attention than was the case heretofore.

I carnestly desire a strict compliance with the requirements of the sunUry provisions of the mining law, both by the superintendents and miners, as with them it rests; and they are the responsible parties for a large number of these casuaities that so frequently brings sorrow and grief to so many firesides in our midst.

I do find a large number of our operators desirions of anaking the necessary and safe improvements in and about their collieries. This they find to he greatly to their adrantage, besides the men will perform more work when there is an evidence of security than when such is not the case. I do find the engineers and their assistants rapidly improving in their professions, giring better atteation to steam boilers and machinery now that they had done before.

I also find a marked improrement in the practice aud knowledge of the bosses generally, and in the system now adopted for mining and ventilation of mines. That with ordinary precaution I will hazard the opinion that at least one-third the casualties of the district could be diminished, which would be a consummation devoutly wished for by all.

On the twenty-second of September the examining board re-districted the territory which allotted to me all the collieries in Dauphin, (5,) all in Northumberland, (30,) all in Columbia, (12,) and 9 in Schnylkill. In discharging my duty I traveled 5,168 miles to and from these collieries and attended $3 \pm$ inquests. Thirty-eight persons lost their lives and 100 were injured, leaving 13 widows and 49 orphans. The operators and minere hare my greatfin thanks for conrtesies and cirilities, althongh my duties shall be sternly discharged. With a confident hope I look forwarl for better improvement.

I am, with great respect,
Yonr obedient servant,
WILLIAM HEMINGRAY, Inspector of Shamokin elistrict.

Names of persons that were killed.

Nitmos of collielies.

Colket...........................	1	5
Bir Mountain		

Died of his injuries received in Novenner, 1874.
Killed by a dall of conl.
Killed by a fall of rocks.
Died of his injuries.

Camerol
Burnside
Monitor
Lykens Valley . 1
Burnside
Tulze Fidler \qquad
Buek Ridge .do..
Lincoln.
Stewartvili
Stewartvi
Burnsido...
Bear Valley
Enterprise.
Enterprise..
Buck lßidyo
Prooksiclo
Alaska Shat
Buck Jirlge
Inke Fidler
Big Lick
Cameron
. do
Thion $\underset{\text { Yo... }}{ }$
Marian
Keystone
Enterpriso
Burnside
Tomestrlale

Killed by a fall of rocks
Killed by the elevator.
Killed by a fall of coal.
Killed by a fall of coal.
Killed; crushed by wacrons.
Killed by a fell of coal.
Killed by a fall of coall.
Killed by a dall of coal.
Killed by gangway roof:
Killed by a lall of coat.
5 Killed by a fall of coall.
Filled by an explosion of powder.
Killed by an explosion of powde
Killed on the planes by wasons.
Killed on the planes by wagons.
Killed by the dumper; run over his neel
Killed by the dumper;
Killed by a fall of eoal.
Killed by the elevator.
Killed by being run over by wagons.
Killed by a fall of rocks.
Killed by a lall of coal.
Killed by loaded wagons by the breaking of the ring of the slope rope
Killed by a fall of coni in the mine
Killed by the discharee of a shont.
Killed; smothered by gas in a slinte.
Killed by a fall of eoal.
Killed on the plane by a wagon.
Killed in the breaker machincry.

Thirty-eight deaths during the year.

Names of persons who were maimed and injured in und about the collieries of the Third or Shamokin district during the year ending December 31, A. 1. 1875.

1).ITE.	Names of persons injured.	Nimmes of eollieries,	Rennirks.
J:111. $\quad \stackrel{\text {, }}{ }$	Menry Fry	Bear Yalley	Soverely injured by a liall of coal.
21.	John Becker	Cameron	Sovercly injured by wagons.
ficl	Jeflerson Bergor . . .	Big Momntain	Loer and arm brokon by a liall of coal.
Ficl). S,	John Berry	Williamstown	Foot ernshod by wagons.
$2:$	David Davis.	. . . do	Leg broken by a tall of eoal.
Mareli 8 ,	Albert Baddori.	do	Soverely crushed by a fall of ecat.
19,	James Narey ...	Cameron	
19 19	Ficorge Etly Wm. Eldie	. do	Sevorely crushed by a fall of rocks. 'These six men were at
19,	Wm. Eddie Wm.	. 10	\} dinner, all of whom received severe injuries, and another of
19.	Reuben Trauturan. .	, do	tho party, named Joseply Ganley, was killed.
19,	David Rhoados....	. do	
April 2,	Elias Fire	Buck Ridge	Froot erushed by a liall of coil.
23,	James Swilt.	Franklin.	Knoe fractured by a finll of rocks.
23.3	James King	Cameron	Foot injured by a drill.
28,	John Silvaster.	Tranklin	Leg broken by a fall of slate.
May 3,	John Scott.	Summit Branch mine	Arm broken by a fall of coal.
13 ,	William Long.	Burnside	Foot crushed by wagons.
26,	Michael Farrell	Hickory Ridge	Severely injured by a jiall of eonl.
27,	A Polander.	Lake Fidler...	Severely injured hy a fall of eand.
27 ,	- Patrick Costello	. do	Soverely burned by a cartridge.
27,	George Kreiss	West Ent	Font orushed by a fall of coal.
27,	John Ellard.	Cameron	Leg broken by a fall of eoal.
27,	A minerdo	Leer broken by a fall of coal.
27,	Samuel Ifoughten.	Buck Riuge	Body erushed by a fall of coal.
Junc 7,	John Jrowne	Bear Valloy	Badly burned by fire-tamp.
7,	Andrew Gearcy ...	$\ldots \text { do } \ldots . .$	Fingers cut of by a tall of slate.
19,	Alexins Ignatovich	Luke Fidler	Soverely injured by a fall of coat.
21,	Jacob Mas'shall	. l o	Iland crushed by a liall of coal.
21,	John C'onley.	Franklin	Severdy crushed by wagons.
21,	Joseph Mirry	Bjer Mountaia	Hand amputated bir a fall ol coal.
23,	John Evans .	Pyue ..	Leg broken by a fall of coall.
22,	Abralıans Stranser.	George Fales	Severely crushed hy ta fall of eonal.
$2 \because$	John Uresman.	Buck Ridgo	Severely ernshed by a dall of coal.
20,	Michael Bonavits.	Lower Ranch Crocks.	Shoulder erushed by a tall of roeks.
July $\quad 3$,	Frank M'(ornnack.	Lako Fidler.	Terribly crushed by a fiell of coal.

. . do .
Burnside
Franklin
Burnside.
Buck Ridge
Big Mountain
Franklin
Enterprise
Big Mombatio
severoly injureal by a fall of eoal.
Severely injured hy a fall ol coal.
Neverely isjured by a filll of exat?
severoly injured by at lall ol slate
soverely cut with dil are.
Ankle erushed by a dumper
Severely injured by a blast.
Severely burned by tire-damys.
Terribly injured; he fell 100 feet deep into a slaft.
soverely injured by a fall of coal.
hoverely inlured by a fall of coal pillatr.
ceverely injured by a liall of slate.
Severoly crusiled by watrons.
Back injured by at fall of clay.
Arm broken by a fall of coal.
Legs erushed by a tall of coal.
oot crushed by wagons.
everely injured by a rusin of water on gangway.
Severely injured by a tall of coal.
Severely imured ioy a lill of coal.
derinjured by a fall of coal.
Hips and eves injured by a fall of coat.
Severely injured; a 26 foot collar fell on inin.
Eye clestroyed by a piece of coal.
log broken by the breaking of a ehain
Leg broken by a fall of coal.
Hand severely cut in falling down a breast.
Hand severely cut by a fall or coat.
Leg amputated; crushod by wagoms.
Severely injured by a fiall of coal
Iands severely injured liy powder explosion.
llead ent hy a litll of eonl.
'Terribly injured hy a lill of rocks.
Font ermshed hy prop timbers.

Sept. 2:; John Leamy......................... Lake Fidler
Cameron
Centenial
Cameron
Big Mountain. .
Hickory Swamp
Keystone
Buck Ridge
Enterprise...
Big Mine Ciun
Burnside
Henry Clay
Cameron
Honry Clay
. do
Buck lidgo
..... do...
Locustdale
. do
......do
.. do
Continental
Preston, No.
. do
.....do do

Intermally injurod by a dall of rocks-diod December 3 Ist. Hand erushed by a fall ol coal
Severely injured by falling down the slope.
Leg broken by wagons.
Leg and shoulder injurod by a fall of conl.
Ler amputated, injured by a fall ol coal
Fatally injured by choke-damp-died.
Foot erushed by wagons.
Fatally injurod by a fall of coal-diel.
Anklo broken by a fall of coal.
Fatally injurod-subsequently dioul.
Leg troken by a fall of coal.
Arm broken by wagons.
Severely injured by a blast.
Severely injured hy a blast.
Severelv injured by a blast.
Head injurod by a fall of coal.
Leg amputated, injurod by the above amedent.
Hip brokon, being ernshed hy wagons.
All four were fatally injured, a spark from one of their hamps ignited powder in a chest while they wero soated upon it taking dimner, none survived the explusion.
Severely cut with a chisel.
Severely injured by a blast.
Severely injured by a blast.
Severcly crushed by a log rolling over him.
Slightly injured.

[^1] and 44 of whom are maimed for life.

Alaska (shaft) Comelery.-Operated by the P. and R. C. and I. C'o.

The colliery is situated at Alaska Junction of the Shamokin and Mount Carmel Railroad, in Northmberland county. It consists of a shaft opening the E vein on its south dip of 10° in 20 feet of coal. Miniug operatione are carried on by main and counter lifts. Ventilation is elfected by the action of a powerful Grubal fan, located on an air shaft sunk to the anticlinal of the vein, a partitioned section of which has been used for men and mining material. In comection with this fan another fan of the Beadle pattern is located at the main shaft for ventilating purposes. The general condition of the colliery and all its appointments are satisfactury. 20,025 tons of coal have been mined, the engines= 385 -horse power, with 10 good boil-
 employed.

Bear Valiey Cullibry.- Operated by John Ei lialluun, on lands of Northumberland Coal Co., 3 miles west of DIount Carmel.

It consists of a drift opening the Lykens Talley rein in 7 feet of good coal, on a 20° south dip. Improvements are now under way for a more extended development of the mine the ensuing season. One engine, of 8 horse power, with one hoiler in use ; 12 men are employed on the premises.

Burnside Colliery.-Operated by May, Morgan \& C'o.

It consists of a double track slope sunk on the 9 .feet rein, and sunk to the basin; the seam is nearly flat; mining in the lower or No. 8 vein is suspended. Ventilation is good, and is produced by a 20 -horse power fan. Drainage is effected by a 14 -inch pump ; 4 engines, of 180 -horse power, with 11 boilers, and all their appointments are in good condition. A new slope is being sunk, intending to work the west basin. The opinion is that the colliery will ship a large amount of coal this season ; 118,000 tons of coal had been shipped in 1875; 4 fatal accidents occurred during the year ; 211 men and 90 boys are employed.

Big Lick Colideri.-Lykens Valley Coal Company id Summit Branch Coal Company, Lessees.

The Lykens Valley vein is worked on its north dip by a slope 405 yards: deep. The only work doing on its eastern gangway is robbing out pillars. 50 yards to the west of the bottom of this slope a new one is in course of sinking to a depth of 225 yards, *ounter level gangways are just open, an air outlet comects the whole workings through an opening in the small rein; 191 men and 60 boys are employed at the colliery, steam power: $=$ 33 -horse, with 22 boilers are in use. Under the superintendence of Col. E. G. Savage I find the colliery and all its appointments in a splendid condition for durability and adaptation.

Bear Valley, No. 2.-Heim if Goodwill, Operators, on lands of the P. d. R. C. A. I. Co.

A tuunel sonth opens the Nos. 8 and 9 twin veins in 8 and 10 feet of coal. The east and west gangways reach the boundary lines. Ventilation
is produced by the action of 2 furnaces, located adjacent to both reins and renders ample satisfaction. Eastward the vein lies flat, while on the west the dip of the vein is 60°. Ninety-one thousand nine hundred and thirtyone tons of coal had been shipped during the season. One engine of $30-$ horse power, with 2 boilers, are in use ; 172 men and 50 boys are employed.

Bear Talley (shaft) Colliery.-Heim \& Goodwill, Operators, on lands of the P. \& I. C. \& I. Co.
The shaft is 110 yards deep. A tunnel driven south opens a lower lift than the drift levels on the north dip of these veins. The colliery is now fully dereloped for shipments. The buildings are substantial and permanent. One engine $=150$-horse power, with 10 boilers, are in use ; for chainage one of Bamnan \& Allison's 16 -inch pumps are used. One fatal accident oceurred.during the year.

Black Diamond Colliery.--Sivank \& Co., Operators, on lands of Henry Saylor.
The colliery is situated at Green Ridge, near h[ount Carmel, Northumberland county. The twin veins are open by drift levels in 6 feet of coal fach. Mining is principally confined to breast and pillar work. A new slope is sumk on the No. 8 vein in 8 feet of good coal. Large shipping developments are in progress for doing a large business this next season. Three engines $=120$-horse power, with 4 boilers, are in use. Five thousand three hundred and thirty-eight tons had been shipped this season, giving employment to 70 hands.

Big Mine Run (teest) Colliery.-Taylor \& Steinhillert, Operators, on lands of Locust Mountain Coal Company.
It consists of 3 drift levels developing the B or Buck mountain rein in 14 feet of coal. The old drifts are at the boundary lines. Connections are made in the middle drift opening into the Hazledell colliery. The tunnel drift opens the E vein, and its extension opens the D vein in 16 feet of coal. I find the colliery ventilated by a 20 -horse power fan. Sixty men and 60 boys are employed; 190 -horse power engines, with 13 boilers, are in use, and with all their appointments are in good condition. Coal shipped during the season, - tons.

Big Mountaln Colilery.-Edward Patterson \& Llewellyn, Operators, on lands of the P.\&R:C.\&I. Co.
Six drifts are working. Nos. 8 and 9 are worked by slant counters. No. 9 vein is worked westward and crossed the basin, working 8 breasts; and connections are made with No. 1 drift. A 20 -horse power fan rentilates both drift workings to satisfaction. Nos. 3 and 4 drifts are ventilated by natural draft. Nos. 1 and 2 drifts, on the east side, are working in 11 feet of coal. Here the rentilation is effected by natural draft, all of which I find in good condition. Three engines of 70 -horse power, with 5 good boilers, are in use; 350 men and 100 boys are employed. One hundred and ninety-eight thousand one hundred and thirty-five tons of coal had been -shipped.

Brookside Collieri:-Owned and operated by the P.\& R. C. \& I. Co.
It consists of a double track slope and a tunnel opening the Lykens Valley vein in 10 feet of coal. The eastern pancl is idle at present. The western panel is driven around the basin, and coming castward 2 counter lifts are worked in the colliery. Fifty breasts are ready to ship coal from, and 13 breasts are ready in the tunnel level. A 20 -horse power fan is used to ventilate the mine, which is found sufficient for the occasion. The pioneers of this extensive operation were Messrs. E. D. and James Savage \& Kaufiman, who mined and developed the mine extensively until it passed into the ownership of the Philadelphia and lieading Coal and Iron Company, who still increased its facilities for producing coal and making it one of the best collieries in the region. Sixty-cight thousand five hundred and forty-seven tons of coal had been shipped. Two hundred and thirty men and 60 boys are employed ; 220-horse power engines, with 22 good boilers, are in use.

Big Rex Gap Colliery.- James Fennel, Operator, on lands of the Summit Branch Coal Company.
This is a land sale colliery, consisting of 2 drifts extracting the top coal of the old Short Mountain rein, employing some 20 hands.

North Eide C'olifry.-Edward Miller, Operator, on lands of Summit Branch
Coal Company.
It consists of a drift on the Lykeus Valley vein, near Gratztown. One 10 -horse power engine, with one boiler, is used, employing eight men, and shipped 3,000 tous of coal.

Big Mine Run (Eist) Colliepir-Operated by the P. \& R. C. \& I. Co.
It consists of a slope 308 yards deep, opening the E vein on its south dip, in 24 feet of coal, and a pump slope, which is used for men and mine materials. Its castern panel is comparatively idle. Work has been continued in its western panel. Ventilation is produced by the action of a powerful steam fan. A large supply of air is in circulation in the mine and practically applied. A large quantity of fire-damp gas is generated in the mine, requiring the use of satety-lamp only for all purposes in the mine. The D rein is worked in two lifts in 14 feet of coal. The drift level is being ventilated by natural draft. 330-horse power engines, with 25 boilers, are in use, employing 163 men and 121 boys; 72,122 tons of coal had been shipped.

Diamond Colmery.-Alfied Baneroft, Operator: on lands of the P. and R. Coal and Iron Company.
It consists of a drift for land sale use. One 15 -horse power engine and one boiler in use, employing $1 \because$ men. The condition of the mine is safe for working.

8 Mine Ref.

Vadghan Collery.- David Vaughan d Co., Operators, on land of the P.
and h. Coal and Tron Compariy.
This is a small land-sale colliery, taking out the coal from the top level of the old Pionecr. The coal is fon feet thick. six men are employed in mining and preparing coal.

Excelsion Combery.-C. W. Iingsley, Operator, on lands of the P. and R. Coal and iron Company
It consists of six drifts on the twin veins, Nos. 8 and 9 . Drifts A and U are on the No. 9 vein and B and D on No. 8 vein, while Nos. 1 and 2 are on 8 and 9 reins on their north and south dip. Four gangways are open on Nos. 1 and 2 drifts, and worked as one vein in 20 feet of coal. Ventilation is produced by natural means, and appears to be satisfactory. 43,463 tons of coal bad been shipped this season, employing 120 men and 60 boys; 1 breaker engine, of 65 -horse power, with 6 boilers, are in use; in condition they are reported to be good.

Exterprise Colliery.-Thomas Baumgarden, Operator, on lands of the P. and R. Coal and hron Company.

It consists of a slope sunk 210 yards on the north dip, or No. 8 rein, into the basin. Both dips are worked. The basin ascends eastward in coal 8 feet thick. It is anticipated the colliery will produce a large shipment in 1876, as all the necessary facilities for that end are being completed. Ventilation is produced by a 20 -horse power fan, and fully adequate to furnish a full supply of air. 230 -horse power and 13 good boilers are in use. The drainage is effected by a 14 -inch pole pump and a 10 -inch Bannan \& Allison pump. Two fatal accidents took place during the year. 52,665 tons of coal had been mined; 160 men and 20 boys are employed; the general condition of the colliery is good.

Exterprise Collery, No. 2.-J. In. Cleaver, Operator, on lands of the P. and R. Coal and Iron Company.
It consists of a small slope opening the Holmes vein on its south dip. Its western panel has been abandoned in a rock fault; it is nearly exhansted of coal ; 54 hands had employment here; 45 -horse power engines, with 4 boilers, are in use; ventilation is produced by a 10 -horse power fan, and a 6 -inch pole pump is used for drainage.

Brady Collery.-Thomas Gorman, Operator, on lands of the P. and R. Coal and Iron Company and the Lehigh Valley R. 1 . Co.

It cousists of 4 drifts on the 8 and 9 and Skidmore veins. No. 8 is open in 5 feet of coal. Both Nos. 8 and 9 veins are worked in the lower drift. It is comnected with the Excelsior works eastwardly, and all ventilated by natural currents, but this system is to be superseded by a fan. 20,377 tons of coal had been mined this scason, employing 70 men and 25 boys; $50-$ horse power engine, with 5 boilers, are in lise, with all their appointinents are fomed to be in grood condition.

Frinkin Comery:-Lovell, Booth is Co., Operators, on lands of the P. and Ir. Coal and Iron Company.

It consists of 2 drift levels. No. 10 rein is open in $\frac{1}{2}$ feet of coal, and idle. The hed Ash rein is open in the counter drift, and mining is solely* contined to robbing out pillars. Tentilation is effected by natural air currents, and is found sufficient for its purpose. Ten thousand tons of coal has been mined. One steam engine of 8 -horse power, and 1 boiler, is used; 30 men and boys are employed. The general condition of the colliery is good.

Gemrge Fales' Colliery.-Heim \& Goodwill, Operalors, on lands of the P. and R. Coal and Iron Company.
It consists of a slope sunk 220 yards on the north dip of No. 10 vein. Mining on the cast panel is confined to robbing back pillars. A tunnel opens No. 11 vein in $7 \frac{1}{2}$ feet of coal. The chief supply is mined in the basin measures and some on the counter gangway. An air shaft has lucen open aud a furnace erected for rentilating the mine, which gives satisfactory results. A 40 -horse power engine, with 6 boilers, are used, and 2 pumps do the drainage. Thirty-two thousand five hundred and seventy-six tons of coal has been mined, employing 95 hands.

Mexry Clay Colifery.-I. Langdon ie Co., Operalors, on lands of the P. and II. Coal and Iron Company.

It consists of a slope opening the No. 8 vein on its western limits. Mining is confined to robbing ont pillars. Six feet of slate separates Nos. 8 and 9 reins. Ventilation is effected by a 20 -horse power fan, located on the counter drift. Its results is not adequate to produce a proper supply of air for ventilating the different panels. Notices have been served upon the superintendent to remedy all defects and to place the colliery in a lawful working condition. Since then efforts are making to comply with the legal requirements of the act of Assembly. Eighty-five thousand nine hundred and forty-five tons of coal had been mined, employing 145 men and 40 boys; 90 horse power engines, with 6 boilers and ${ }^{\circ}$ a pole pump for drainage, in use.

Conl Ridge Collery.- liurton \& Bro.'s, Operators, on lands of the Coal Ridge Improvement Company.
It is situated at Bell's Tumel, near Mount Carmel, and consists of a double track slope, 110 yards deep, opening the sonth dip of the E vein. It is a new operation in fact. A new steam fan has been introduced this year to rentilate the mine. Nothing has been done lately except draining The mine. 150 -horse power engines, with 16 boilers, are in use; 40 me: and 25 boys are employed. The condition of the colliery is satisfactory. Twelre thousand four hundred and eleren toas of coal had been mined.

Locust Gap Collifry.-Kimbell \& Graber, Operators, on lands of the P. and R. Coal and Iron C'ompany.

Two slopes are used on the E vein in 22 feet of coal. A partition slate separates the vein furming the Jos 8 and 9 seams. The lower vein is 7 feet thick. The breaker had been burned in spring and consequently detered mining until a new one had lecu built up, and will be ready in the spring. Tentilation was not as gioul as should be, but efforts are now making to remedy the defects. Le, 80 tons of coal had been shipped. Two hundred men and 40 boys were employed; 270-horse power engines, with 12 voilers, are in use; a first-clises Grubal fan has been put in operation, which will insure a plentiful surp y of air for all purposes.

Loctet Erming Comery.- P^{p}. and R. C . and I. Co., owners and operalors.
The colliery is situated at Locust Gap, in Nortumberland county. A slope 400 yards deep opens the E rein on its south dip. No. 2 breast is used as a self-acting plane for working the npper part of the lower lift; a 20 -horse power fan is used, which supplies a sufficient amount of air for the colliery ; 16 breasts are working, and the gencral condition of the colliery is guod; 21,393 tons of coal had been mined; 90 men and 50 boys are employed; 170-horse power encines, with 11 boilers are used, and a pole pump has been used for draining.

Mureton Colifery.-Thomas Morelon, operator, on lands of the Northumber-
land Coal and Railroad Company.
It is situated west of Mount Camel, and consists of two drift openings, but mining is chiefly confined to robbing out pillar coal from a small local basin. A 15 -horse power engine, with one boiler is nsed; 20,803 tons of coal has been mined; 45 hands are employed. The general condition of the colliery is good.

Lilly Cohliery.- George Thrauman, operator, on lands of the Locust Mountain Coal and Iron Company.
It is situated one-half mile west of Centralia, and consists of a single slope driven across the measures of the Centralia colliery to get the top coal of the rein. Nine men and 5 boys are employed here ; 9,326 tons of coal had been mined and shipped by the Lehigh Valley Railroad. The character of the work done is considered safe.

Wadey Collerry (at Ashland.)- Ooned and operated by the Philadelphia and lieading Coal and Iron Company.

The colliery has been idle for a number of years past. The company has had the water taken out preparatory to mining coal, of which there is a large body. A 60 -horse power engine, with 4 boilcrs, and a steam pump are in use.

Out crop Collerry. - Kuff \& Duskin, operators, on lands of the Locust Mountain Coal and Iron Company, near Centralia.

It is a small drift on the top of the Centralia vein, employing \cong mer.

Cestrala Outcrop Collery.-Thomas Gamelty, operator, on lands of the Locust Mountain Coa! andi Lion Company.
This is a small drift open on the outerop of Centralia slope workings, em:ploying 10 men in its operation.

ミhort Moustan Collerr.- Owned and operated by the Summit Branch Railroad Company.

The collicry is situated near Wiconisco, in Dauphin comnty. It consists of a slope 500 yards deep in 2 lifts under water-level on the Lykens Valley vein in 10 fect of coal. Shutes and headings are worked in conjunction with the driving of the gangway for the purpose of better ventilation. The counter lift is exhansted of enal, Ňo. 3 counter is used for a return air course, 2 self-acting planes deliver the coal on the main gangway. The east gangway is driven under the old Lykens Yalley slope. The upper \because lifts are worked through the Lykens Valley slope eastward. All the coal is prepared at the Short Mountain breaker ; a locomotive engine is used for hauling. The Lykens Valley colliery is operated by the same company, with a slope 435 yards deep; 2 counters are worked in connection with this slope. The drainage power in connection with these three collieries consists of a 500 -horse power Cornish bull-pump and 5 other steam pumps, which drain the Short Mountain, Lykens Valley and Big Lick collieries. Ventilation is produced by a steam fan, and the rarefied air of 6 boilers are utilized in connection with it. It is necessary to keep a special watch on the strengthening of the gangway, owing to a tendeney of the uphearal of the bottom slate, making it a most difficult matter to manage. This colliery is under the superintendence of E. C. Hanna, and James Fennell, inside boss ; 225 men and 75 boys are employed ; - tons of coal had been mined. In all its appointments I find it to be one of the best managed collieries in the region.

Refinace Colmery.-Thomas Baumgarden, operator, oil lavids of the P. and I. Coal and Iron Company.
A slope 370 yards deep in two lifts opens the E twin weins. The two veins are formed into one on the lower west panel, while on the cast side 9 feet of a partition slate separates 8 and ! veins. The old slope level is still working, and also is the water levei lift working, bnt mining is chiefly confined to finishing breasts and robbing out pillars. Tentilation is effected by the operation of a 20 -horse power fan, and gives satisfactory results. I find the general condition of the colliery to be good. 38,920 tons of coal had been mined, employing 85 men and 30 boys ; 245-horse power engines, with 11 boilers, are in usc ; only one pole pump is needed for drainage.

Summir Branch Colliery, (Williamstown, Datphin Co.)-Summil Branch Coal Company, Owners and Operators.

The eolliery is sitnated at Williamstown, and consists of a tunuel 1,244 yards long, cutting through the mountain into the Bear valley and opening the h. V. vein in 813 yards. The big vein coal in this level has heen worked out, but a cross-cut opens the L. T. vein, and mining continues in it. Three stopes are sunk on the big I_{2}. V. vein of the following depths: of 150,225 and 530 yards. The first slope is mearly exhausted of coal. The second slope is maty in a like condition. The third slope has 24 breasts working, with 2 self-acting planes in operation, in 8 feet of exeellent coal. It is intended t. sink an additional lift of 180 yards in this slope. This rery extensive colliery has been well managed in a!! its details, with a fine rock top envering the whole rein. Two ?0-horse power fans are used for rentilation. 290,578 tons of coal has been mined; 560 men and 60 hoys are employed; 2 fatal accidents occured during the year. All these Dauphin county collicries are directly under the general superintendency of Major Joscph Anthony, and Col. E. G. Sarage, local superintendent, and inside boss W. F. Thomas. Steam power $=550$ horse power, with 2t boilers, in use.

Roys O.ak Colurar.- Tilleth i\& Co., Operators, on the lands of the P. and I. Coal and Iron Company.

It consists of a drift opening a 5 -foot Fied Ash rein. Counter gangiways are open in connection with the main gangways, it heing a new colliery of the land sale character, shipping some 815 tous, employing 4 hands, but the character of the work done is considered safe.

Marshall Collerr.-Ruese de Bros, Operator., on lands of Wm. H. BIar-
It consists of a single slope, sunk into a basin of a led Ash rein. Both dips have been worked by separate gangways, and miniug at present chiefly coufined to robbing out pillars 2,911 tons of coal hare been shipped; 1 engine, of 8 -horse power, with 2 boilers, are in nse. ande a small steam pump is used fur dramage.

Monima Comen:-George W. Johns \& Bro, Operators, on lands of the
P. and 12 . Coal and Iron Company.
It eonsists of two slopes, to wit: The first slope is sunk i04 yards deep on the E vein to a flat, which is 66 yards in breadth. From this point a slope of 175 yards in length is sunk on a $1 t^{\circ}$ dip. The east gangway is 1,800 yards long, and passes around an anticlinal. Two gangways are open on the west panel. The north dip is extensively worked. The lower lift gangways are tolerably well worked out. A counter-lift is now ready on the east, intending to work out the coal by this counter. 32 breasts are open in its eastern panel. A 20 -horse power fan is in use, with satisfactory results. The general condition of the colliery and all its appointments cannot be excelled. 49, 855 tons of coal had been mined; 180 men and 60 boys are employed. The breaker received a new addition, which will increase the facilitics of preparing coal 50 per cent. Pumping engines have
been introduced at the A. S. Wolf colliery for draining this colliery. The inclination of the dip westward affords the water drip to pass off west without interfering with the Monitor workings.

Treverton Colliery.-P. and R. Coal and Iron C'o., Owners and Operators.
It consists of three drifts on the twin reins and a slope opening the Lykens Valley vein in 10 feet of coal. The old flat workings in the twin reins have been idle most of the year. A 20 -horse power fan rentilates the mine. The east gangway on No. 3 slope is also idle. Its west panel is working. It is necessary to pay strict attention to correct the air-currents in the slope workings, as the blocking of shutes and manways often cheeks the proper course of the air, otherwise the colliery is found in good ordinary condition. 76,419 tuns of coal had been mined during the year; 293 men and 110 boys were employed; steam power $=365$ horse, with 25 boilers, in use ; 1 steam pump is used for drainage.

Looust Rux Collerx.-P. and I. Coal anel Iron Company, Operators, on lands of the Locust Mountain Coal and Iron Company.
A slope opens the E vein on its south dip Mining is chiefly confined to its western panel. The east panel is comparatively idle. Ventilation is produced by the operation of a 20 -horse power fan, which renders satisfactory results. A tunnel opened the B vein in 14 feet of coal, which works are ventilated by natural currents. The general condition of the colliery is good, and well handled. 43,053 tons of coal had been mined; 210 men and 62 boysowere employed; steam power $=270$-horse, with 24 boilers, and 3 steam pumps are used for drainage.

Tranel (slope) Colnery.-Operated by the P. and R. Coal and Lron Company, on their own lands.
It consists of 2 slopes sunk on the 6 -foot vein; a tunnel south opens the E vein; 49 breasts are open, each 12 yards wide with 10 yards of a pillar to each, all of which are double shuted. The whole mine is well ventilated by a powerful steam fan. Another tumel further south opens the 12 foot vein. 35,000 cubic fect of air is supplied in the colliery. The company have recently remodeled the colliery, and increased its power and capacity so that the coal of the Pioneer colliery may be worked out in connection with its own. I find its condition very satisfactory. There are 10 engines, of 1,445 -horse power, with 36 boilers ; 169 men and 47 boys are employed; 30 mules, 60 wagons and 1,200 yards of tracks are used ; present slipments 300 tons per day.

Keystone (shole) Colliery-Operated by the land-owners, the P. and R. Coal and Iron Ćompany.

It consists of 2 slopes, one used for coal hoisting and the other for draisage, men and materials. Tentilation is produced by a 50 -horse power fan, Which supplies a sufficient quantity of air; considerable improvements
have been made in the colliery; there is an immense amount of coal on the tract, which cannot be exhansted for a number of years to come. There are 9 engines, of 918 -horse power, with 36 boilers in use ; 19 mules, 33 wagons and 2,500 yards of tracks are in use; 100 men and 34 boys are employed. The present daily shipments will average 250 tons, but the colliery can soon be in a condition to ship 500 tons daily.

Preston, No. 1, Colliery.-Owned and operated by the P. and R. Coal and Iron Company.

It consists of a slope opening the II or Orehard Red Ash vein in 7 feet of coal ; and a drift opens the D vein, which produces a large amount of coal, and well ventilated by a 20 -horse power fan; the vein here is 13 feet thick. A velf-acting plane opens a counter lift, and a second counter lift is still run up 110 yards, the coal of which passes down a counter shute where it is re-loaded. This pancl is ventilated by natural air eurrents, which is found sufficient for the present. 8,219 tons of coal had been mined; 120 men and 25 boys are employed. I find the colliery in good ordinary condition; 105 -horse power engines with 7 boilers are in use, 2 steam pumps are used for drainage.

Prestox, No. 2, Colmery.-Owned and operated by the P. and R. Coal and Iron Company.
The E rein is opened by a slope 202 yards deep in 25 feet of coal, 48 breasts are working on its west panel and 5 on its east panel. A tunnel north opens the D vein in 15 feet of coal, with. 19 breasts open on its west panel and 2 breasts on its east panel. The G vein is open southward by another tunnel in 11 feet of coal. An outlet is in course of construction in this vein, which will increase ventilation to satisfaction. The E rein panels are ventilated by a 20 -horse power fan; 39,528 tons of coal had been mined; 200 men and 30 boys are employed; steam power $=175$-horse, with 13 boilers; 2 steam pumps are used for drainage, and 2 fans are used for ventilating the mines, all of which with their sundry appointments are in good condition.

Prestos, Nos. 3 and 4, Colleries.-Owned and operated by the P. and R. Coal and Iron Company.

No. 4 consists of a tunnel opening the E vein sonth, and mining chiefly confined to robbing out pillar coal. No. 3 consists of a slope for coal and a pumping slope. Both slopes are sunk in the E vein. Its west gangway has changed to east, roundiug an anticlinal in 20 feet of coal, and the coal in its eastern panel is 23 feet thick. A tunnel is driving south to open the IIunter basin on its north dip of the E vein. All the coal mined in both collieries is prepared at No. 4 breaker, the haulage done by a locomotive. Ventilation is produced by a 40 -horse power fan, and affords an ample supply of air. 16,356 tons of coal had been mined; 100 men and 50 boys are employed; a 30 -horse power engine is used to run No. 4 breaker, while a 500 -horse power Bull pump and 315 -horse power engines, with 17 boilers, are used at No. 3 slopes. I found the colliery with all its appointments iu excellent condition.

Hazledeld, Colifery (Columbia Countr.)-Robert Gorvell, Operator, on lands of the Locust MIountain Coal and Iron Company.
It consists of two slopes and a tmmel operation. Tery little mining had been done during the year, the lower works being flooded out. The tunnel opens the B vein in 12 feet of coal. Fourteen breasts are open in its west panel. A large amount of blasting is done in this tunnel, requiring a powerful current of air to remove the smoke. This work is being ventilated by natural currents, and although quite strong yet not sufficient to make ventilation a success. A rery large number of hands were at work in this tunnel, which accounts for the large body of powder smoke in circulation ; otherwise the condition of the mine is excellent, and the character of the work done is safe; " 21,000 tons of coal had been mined; 163 hands are employed; 360 horse power engines, with 12 boilers, are in use, and one large steam pump is used for drainage.

Cextrala Coliens:- Operated by Dr. Provost, on lands of the Locust Mouiatain Coal and Iron Company, at Centralia, Columbia county.
It consists of a slope and a tumnel opening. The slope workings are filled with water during the year. The D vein is opemed in the tumel in 15 feet of coal. A dry slope is siuking on this tunnel lift for hoisting the coal to the slope breaker. Eighteen hands are employed here; 310-herse power steam engines, with 14 boilers, and 2 pole pumps are in use.

Luke Fider Colimery (Northemberland Couxty.)-Mineral Railraad and Mining Company, Owners and Operators.
A slope through 20 yards of rock strata to meet a tumnel which opens the Nos. $8,9,10,11$ and 12 coal veins, which latter lift is used for drainage outlet. An inside slope is sunk on No. 10 rein, and in its course opens the twin reins, 8 and 9. Eight feet of coal are worked on No. 8 and seven feet of coal are worked in No. 9 vein. Two self-acting planes open up a series of counter-workings, with 46 breasts open. The colliery is well ventilated by a 20 -horse power fan, and the colliery is generally in a good condition; 5 engines, of 175 horse power, with 8 boilers, are in use ; 108,300 tons of coal had been mined; 213 men and 50 boys are employed.

Locustdale Colmery, in Columbia Cousty.- Owned and Operated by the P. and I. Coal and Iron Company.
It consists of 2 slopes, one for coal purposes and the other used for drainage, men and materials, opening the E rein in 25 feet of coal ; 6 breasts are open on its cast panel, with a retaining pillar of 50 yards left to support the upper level workings, 4 breasts are open on its west panel. Owing to the generation of a large amount of fire-damp gas shots are only diseharged by permission and in the presence of a boss miner. The use of naked lights is prohibited, and a full observance of the requirements of law is strictly adhered to. Otherwise I fonad the colliery in excellent condition. Five fatal accidents occurred during the year, 4 of which hat been cansed by an explosion of powder while the men were seated on the powder chest taking dinner when the explosion took place. Ventilation is cffected by a 25 -horse power fan ; 6 engines $=70$ i-horse power, with 25 boilers are in use ; 159 men and 71 boys are employed ; one 500 -horse power hull pump and a steam pump are used for drainage ; 40,910 tons of coal had been mined.

Merimar Coldery-Owned and Operated by the P. and R. C. and I. Co.
It consists of 2 siope openings, to wit: A coal slope and a pumping slope. The coal is hoisted in tanks 140 fect above the slope to the breaker level. A self-acting plane is used to work the counter levels, 33 breasts are open in the colliery, and all admirably worked. The works are rentilated by a $2(0-$ horse power fan, and its results are quite satisfactory, and is classed as one of the best in the district. Steam power $=375$-horse, with 20 boilers are in use ; 190 men and 55 boys are employed; 86,630 tons of coal had been mined.

Helfenstine Colleri. - Owned and Operated by the P. and R. Coal and Iron Company.

It consists of a tumel and slope opening, the tumel is now idle. The slope is sumk inside, openiug the Lykens Talley vein in 12 feet of coal, with 8 breasts open, nothing is done at present on its east panel, nothing of importance had been done during the year. The power is $=160$-horse, with 5 boilers. The colliery is well rentilated by a 20 -horse power fan. 15,974 tons of coal had been mined since resumption took place, employing 165 hands.

Ben Frankin Coliteri.-Operated by Mhomas Baumgarden, on lands of
the P. and R. Coal and Iron Company.
It consists of 2 drift openings. The Lykens Valley vein is open in S feet of coal, its east panel is idle, 12 breasts are open on its west panel and 12 breasts are open on the upper panel in $4 \frac{1}{2}$ feet of coal; a slope is now in course of sinking which will when completed constitute this one of our best collieries. The good top rock makes mining a safe operation. One engine, of 25 -horse power, with 3 boilers are in use; 100 men and 30 boys are employed ; 46,905 tons of coal had been mined.

Buck Ringe Coliery.-Isaac Mlay, Operator: on lands of Renshaw e Johnson.
It consists of 2 slopes and 5 drift openings. Twenty-five men are employed in robbing out pillars in these drifts. A slope is sunk through these levels, and a cross-cut tunnel opens No. 9 rein at the foot of the slope. Both gangways are comparatively idle. Twenty-five breasts are open in this slope. No. 9 vein is open by a new slope, which will extend 100 yards under the level of the old slope. The colliery is rentilated by a $20-$ horse power fan. A good traveling way is available in the west panei. The power is $=200$, with 14 boilers. 110,000 tons of coal had been mined. One hundred aud fifty men and 40 boys are employed.

Cameron Combery.-Mineral li. h. and Mining Cu., Owners and Operators.
It consists of 2 slopes and 4 drift openings on Nos. 8, 9 and 10 veins. A local basin is open by a slope, where 12 men are employed in robbing pillars and 5 breasts are working. This panel has been rentilated by a 20 horse power fan. The No. $\ddot{\sim}$ slope has 12 breasts open in its western panel, and 10 breasts are open in its castem panel. In this level No. 8 rein is opened by a cross-cut, with 3 breasts open, and 7 breasts on its eastern
pancl. Six breasts are open on No. 7 vein. The Tape vein is also open oy a crosi-cut. There are 16 gangways open in the colliery and 49 breasts are working, employing 450 men and 100 hoys. Four engines $=190$ horse power; 17 boilers in use. Ventilation is very good, and produced by the operation of \because fans. Two powerful steam pumps are in use. The condition of the colliery and all its appointments are satisfactory.

Stewarpulle Cobhery.-Wm. Alontitius, Uperaior, on lanels of the Locust Mountair Coal and Iron Company.

It cansists of 2 slopes working the E and D reins in 20 and 13 feet thick. The upper slope opens the basin, and the coal nearly exhansted. The I) vein is opened by a tumel, and the coal nearly all extracted. Twenty-six men are employed in robbing back-pillar coal. The B vein is intended to be open ly a new tamel. The new slope las been smak inside at the bottom of the first lift on the E vein in 25 feet of coal. The rein is mearly tlat. Ag gangway is driven sonth through the basin. One steam engine= 50 -horse power, with 6 boilers, are in use; 44,604 tons of coal had been mined: 120 men and 80 boys are employed.

Red Asir Twast.-Achmuty \& Beckel, Owners and Operators.

It consists of a tumnel opening the Lykens Valley vein. Gangways have been open east and west. A new breaker has been built, and preparations made for shipping a considerable amount of coal in 1876. One engine and 2 boilers are used. The general condition of the colliery is good.

Hiekory Swayp Coluery.-Mineral Railroad and Mining Company, Owners and Operators.

It consists of a slope opening the 8 vein. The west panel is nearly exhansted of coal. Nos. 8 and 9 veins are opened in the east panel in 7 and 6 feet of good coal. I find the colliery in excellent condition, and rentilatiou is produced by a 20 -horse power fan; 140 -horse power engines, with 7 good boilers, are in use ; 170 men and 55 boys are employed; 70,519 tons of coal had been mined, and the general condition of the colliery is satisfactory.

Hickom Ridee Coluery.--Mineral Railroal and Mining Company, Owners and Operators.

It consists of a tunnel and a slope opening. No. 9 vein is worked by the slope in 6 feet of coal. with 5 breasts working, and on the west side the coal is 8 feet thick. No. 8 rein is not worked at present. Exhanst steam is ntilized for ventilating the mine, discharged into the upeast air-course. A 20 -horse power fan is to be introduced for this purpose; 178 yards of a tunnel opens the south dip of the vein, where 16 breasts are working, and ventilated by the operation of a furnace; 18,940 tons of coal had been mived, employing 92 men and 30 boys; the power is=to 190 -lorse, with 9 boilers, in use. I found the colliery with all its appointments in goon condition, and the men in charge evincing great industry in getting the colliery in grod order.

Rexn Collery.-Hoagland \& Co, Operators, on lands of the Coal Ridge Improvement Company.

This is a land-sale colliery. It consists of a dry slope sunk on the crop of the Lykens Valley rein in coal from two to five feet thick. The slope is workel by horse power, employing six hands, and shipping some 1,000 tons of coai.

Bussen \& Wagosseller Colifery.

The colliery consists of a drift level, working the top coal of Hazledell vein; employing 5 men, and mined 340 tons of coal during the season.

Lancaster Comimery.-Smith \& Keiser, Operators, on lands of the Mineral Railroad and Mining Company.

It consists of 3 drifts on the Twin veins, Nos. 8 and 9 . No. 2 drift opens No. 8 rein in 6 feet of coal, 6 breasts are open in this panel ; No. 3 drift is open on No. 8 vein in $6 \frac{1}{2}$ feet of coal, with 8 breasts open; No. 9 rein has i breasts open in 5 feet of coal. The colliery is rentifated by natural air currents. With ordinary care mining in this colliery is a safe operation. 24,998 tons of coal has been mined; 54 men and 16 boys are employed; one 20 -horse power breaker engine, with one boiler is used. I am pleased to say the condition of the colliery is good

Number and description of the collieries of the Shamokin district, under the late division of the territory as given above, showing that 60 collieries have been examined in detail, comprising in all:
Shaft collieries. .
Slope collieries, many of which have 2 slopes................. . . 5 .
Drift collieries, many of which have 4..........................
Tunnels, many of which have 3. .
Engines in use, and of all classes. 151
Lorse power of the same... 10,956
Steam boilers in practical use . 592
Pole pumps............. 14
Coruish bull pumps.. ${ }^{7}$
Steam fans for ventilation . 36
Furnaces used for ventilation .
Boys employed at the collieries 2,296
Miners, laborers, etc., employed................ 7,068
Total number hauds, or general force . 3,364
Official risits made 186
Miles traveled 5,168
Fatal accidents occurrcel during the year. 37
Non-fatal accidents occurred during the year 106
Widows were left in conserfuence 13
Orphans were left in conserpuence . 30
Tons of coal shipperl .. $2,848, ヶ 26$
Tons consumed in the district 510 . 000
Aggregate tons mined in district. $3,338,726$
Tons to each fatal accident
89,177

REPORT

ON TIIE INSPECTION OF COAL MINES IN TIE SOUTIERN POR. TION OF TIIE COUNTY OF LUZERNE, TOGETIIER WITII CARBON COUNTY, FRON THE 19tir OF JULY゙, 1875, TO THE 31st OF DECEMBER, 1875, INCLUSIVE.

To Ilis Excellency, Johs F. Ilartranft, Governor of the Commonweallh of Pemsylvania:

Sir:-In compliance with the requirements of an act, entitled "An Act providing for the health and safety of persons employed in coal mines, approved the $3 d$ day of March, 1870," I had the honor of receiving my commission for the aforementioned district from you June the 30 , and I assumed my official daties on the 19th of July, 1875. I now beg leare most respectfully to submit the following report of my proceedings up to the 31 st ol December, 1875:

Through the courtesy of the superintendents at the collieries I am able to furnish accidents to persons and other information essential for the completion of a report of the whole year's business. I have arranged accidents resulting in death and serions personal injury in a tabnlated form. From them it will appear that 21 persons lost their lives and it were injured. Some of the latter were badly hurt, while the injuries of others were not considered of a very serious nature.

There has been an outpnt of coal of about $2,555,888$ tons, of which there were shipped to market $2,323,535 \frac{15}{2}$ tons. This affords a means of ascer: taining the ratio of the number of tons of coal mined for each life lost. There were 121,709 tons of coal mined for each life sacrificed, or 110,644 tons shipped to market for each life sacrificed, or 1 lịe lost for each 105 persons employed in and about the mines. A superficial examination of the causes of the accidents given in the accompanying tables exhibits the rery mumerous sources of danger which exist, some permanent, but which from their number, variety and other causes an inspector may not always be able to detect, some occasionally depending on conditions not in existence at the time of inspection, whilst others occur from the spontaneous act or neglect of a workman. Although I must say it is a common error to attribute accidents to the fault of the men when the system of working a colliery is bad or the provisions against accidents have been palpably neglected.

When there are no rules the men pay little regard to the common safety, partly from ignorance, partly from the feeling that collectively they are under the direction of a superior whose duty it is to attend to it. The peculiar and sudden changes of circumstances, which are perpetually occurring in mines, demand the enforcement of an unsual degree of discipline, as essential to the safety of the employed. It is sometimes contended that the loss of human life in mines has increased, and is increasing, which, if true, is to be attributable to the recent rapid derelopment of the coal trade, a mnch larger population being employed and an increase of coal mined under disadvantageous circumstances than heretofore. The mines become more dangerons as they descend into the bowels of the earth, much more difficult to rentilate, more men being employed, \&c.

The list of fatal casualties of $18: 5$, compared with that of 1573 , (no report of 18 it being made, is comparatively small. There is no part of mining where our labors as inspectors seem to have had so beneficial an eflect as in rentilation, the tme knowledge of which seems steadily progressing ; and I know that an ill-ventilated mine cannot be a profitable one.

Since my first visit to some of the collieries mechanical ventilation of mines has made some progress in my district by the erection of rentilating fans. There have been two fans, each of 16 feet in diameter, erected at Cross Creek colliery, Drifton, by Coxe Bros. © Co., and four at Summit Hill collieries, by the Lehigh and Wilkesbarre Coal Company; also tro at East Sugar Loaf collieries, Stockton, by Linderman, Skeer \& Co., capable of producing the highest amount of ventilation required in mines, with a regularity of action, capable of control, economy in working and power of orercoming resistance or obstacles in mines which the other powers hitheito employed or proposed are incapable of attaining.

I have adrocaten, in sereral instances with success, the adoption of fan ventilation, for when its merits are fully known it is certain to make great progress in the district. The rentilation of a mine is a main point to look to, but it is noi by any means the only one to be attended to, as scen by the list of accidents accompanying this report.
it is rery satisfactory to me to be able to state that great improvements are being inade by many of the operators, and if others would do likewise, in erecting rentilating fans instead of the boiler fires, steam cxhaust, $\mathbb{d e}$., (although the latter does very weil where the mines are not extensircly worked,) an important amelioration would lue effected, and the requirements of the existing mines would be met.

I enclose with this report a map of a section through slope No. 1, "Bearer Brook mines."

There are 776 cylindrical steam boilers, equal to $3.968+$ miles in leugth of an arerage diameter of 33 inches, carrying an arerage pressure of 69 lbs . per square inch, in the district. There has been no accidents from explesion of boilers during the year, which speaks well for the care that is taken in having them cleaned and examined every six montha according to law. There are 210 steam engines in use, estimated horse power 11,280 , all of which are in good order.

Perhaps it is useless for me to reiterate what has been suggested by some of the older inspectors in relation to the distribution of the Inspectors' Reports, nevertheless I feel in duty bound to say a word in reference to it. I have written twice to Harrisburg for some copies and receired answers stating that the members had demarded their full number and that the supply had been exhausted. I think there ought to be about 200 copies given to each district, where they could be adrantageously distributed. I ubserve, by the Legislative Record, that measures have been proposed to remedy this evil. This is considered very important by the public here:

The time has been rather short for me to give a fuller report than I have thone.

I take the liberty of returning my sincere thanks to all with whom I had any official business transaction for their complacence.

I have the honer to be
Your most humble and obedient serrant,

> T. D. JONES. Inspector of Coal Iimes.
Ilizleton, February 10, 1876.

Damages 70 Property.

An engine housc burned down at Yorktown, slope No. 1. The loss is not considered very great, as the mine was about being abandoned, althougla the machinery was considerably damaged.

A fire took place in No. 1 Stockton slope from the boiler fiue, which extends up to No. 5 slope gangway. The fire was first discovered April 7, 1875, in the the near the boiler. On May 7, 1875, it had extended up io No. 5 gangway, thence throngh the retum airway to a point 1,200 feet east, at which place it was checked and fought back 1,200 feet to where the flue came up fiom No. 1 to slope No. 5, west gangway. The present stopping is erected 240 fuet east of the flue. No. I workings connects by an insideslope and by a pumpway with No. 5. Nos. 1 and 2 slopes are now partly drowned owing to the fire. The difference of elevation between the top of No. 2, the highest point working, and the top of No. 4, the lowest point working, is 38 feet. Perpendicular height from where the tire is in No. 5 to the top of No. 4 slope is 355 feet. The present method of extinguishing the fire, by means of putting in stoppings, is a rery tedious operation, and cannot be successfully accomplished mess those stoppings can be made airtight, which is a thing of rare occurence in connection with old workings. I have visited these workings twice to sce that the necessary precantion was taken for the sufety of the men, as there had been fonr suffiocated by working at the fire previons to the date of my commission. The nearest point that I could get to the fire was 210 feet, where the stopping is erected in the gangway, as before stated. It is evident that if the present mode of extinguishing docs not meet their expectation they can do so by drowning No. 5. The extinguishing of the fire is under the supervision of Ir. Lewis Jones and ——, from Wilkesbarre, both men of expericnce.

The fire in tumel No. 6, at Summit Hill, is still buming. The company have spared neither labor nor expense in trying to extinguish this tire. After trying the application of corbonic acid gas, de., without success, and the filling up of the old fall ins on the momntain, it was deemed expelient to discontinue the process and to resort to cutting off the fire by driving a slope on each side of the fire, working the coal from the top rock to the bottom as far down as practicable, then fill this space with clay learing the fire to burn out the part cut off. This did not prove satisfactory, as the pillars on each side of the cut gave way causing the top rock to fall in. After working at this sinking for about 2 years scarcely could it be observed what amount of work had been accomplished. So the company thought it best to stop the sinking and resort to building a dam on a level with the Nesquehoning tunnel to prevent the fire from coming in contact with the tunnel and to extinguish the same.

Recaplulation of coal improvements in the South district of Luzerne and Carbon counties during the year ending December 31, 1875.
Upper Lehigh, Luzerne county, on the estate of Tench Coxe, operated by the Cpper Lehigh Coal Company.- Have sunk two new slopes since 1873 on the north dip of the Buck Mountain vein, and have built a new breaker, with all the modern improvements, to prepare the coal mined at Nos, 3 and 4 slopes.

Drifton, Luzerne county, on the estate of Tench Coxe.-ITave sunk a new slope on the south dip of the Buck Morntain rein, and a new breaker has been built, with all the necessary improvements, to prepare the coal mined
at said slope. Two ventilating fans are now being erected to ventilate these collieries, and if other parties would do the same the ventilation in the South district would be more commendable.

Highland, Luzerne county, on the estate of the Highland Coal Company, operated by G. B. Markle d Co.-Wave sunk a new slope on the north dip of the Buck hIountain rein, and are now building a new breaker to prepare the coal from said slope No. 2 .

Eckley, Luzerne county, on the estate of Tench Coxe, operaled by J. Leiseming \& Co-Are sinking a new slope on the south dip of the Buck Mountain vein, and a new breaker is in contemplation of being built.

Buck MFourlain, Luzerne and Carbon counties, operated by Buck Mountain Coal Company.-Have sunk two new slopes on the north dip of the Buck Mountain vein, called Nos. 5 and 6. A new breaker is proposed being built at slope No. 5 to prepare the coal mined at Nos. 4 and 5 slopes.

Hollywood, Luzerne county, on the estate of Big Black Creek Improvement Company, operated by Calvin Pardee i\& Co-llave sunk two new slopes on the south dip of the Mammoth vein, and a new breaker has been built, with all the improvements essential for the preparation of the coal.

IFilnesville, Luzerne county, on the estate of the Stout Coal Company.Have finished sinking No. 7 slope, which was reported in 1873, and the breaker has been completed and is in operation.

Stockion, Luzerne county, on the estate of Smith, Roberts \& Packer, operated by Linderman, Skeer \& Co.-Mare sunk a new slope on the north lip of the Mammoth rein.

Beaver Meadow, Carbon county, situated on the estate of Tench Coxe, operated by Ely \& Co.-Hare sunk two new slopes, one on the north dip of the Mammoth vein, and the other on the north dip of the Wharton rein. I new breaker is now being built to prepare the coal from the new slopes.

Coleraine, Carbon county, situated on the estate of William T. Carter \& Co.-Mave sunk a new slope on the north dip of the Wharton vein, and are building a new breaker to take the place of the old one which has become too dilapidated to do the required work.
veaver Brook, Luzerne county, situated on the estate French Coal Company, and operated by the Beacer Brook Coal Company.-Have sunk a new slope on the south dip of the Wharton vein.

Yorktown, Carbon county, situated on the estate of the New Fork and Lehigh Coal Company, operated by A. L. Dumper \& Co.-Have sunk a new slope on the south dip of the Wharton rein, and are building a new breaker to prepare the coal mined at said slope.

Summit Hill, Carbon county, situated on the estate of the L. C. and N. Company, operated by the L. and Wilkesbarre Coal Company.-Have sunk a new slope in tumel No. 9, on the north dip of the Mammoth rein, and another on the same vein from the surface, called No. 7. A double 16 feet diameter fan has been built to ventilate this slope, and two fans to ventilate No. 9 . A new breaker is being built at tunnel No. 9, with all the facilities of modern improvements. Calculated capacity 1,500 tons per day.

Of which there are 2 slopes now sinking, 16 having been sunk; 6 new breakers now being built and 3 having been built, since 1873, in the South
district of Luzerne and Carbon counties ; also during 1873 there had been6 fans put up at the collieries, as follows:Two fans, 16 feet diameter, at Cross Creek, Drifton.Two fans, 16 feet diameter, at No. 7, Summit Hill.
One fin, 16 feet diameter, at No. 9, Summit IVill.
One fan, 12 feet diameter, at No. 9.
One fan, \quad feet diameter, at No. 7, Stockton.
One fan, 16 feet diameter, at No. 5, Stockton.
Recapitclation of Machinery.
Number of steam engines in use 210
Estimated horse power. 11,280
Number of steam boilers in use. 76
Arerage length of boilers 27 ft .
Average diameter of boilers 33 in.
Average pressure per square inch 69 lbs.
Estimated lineal feet of boilers in district, (equal to $3.968+$ miles), 20,952

Upper Lehigh Collieries.

Situated 11 miles north of IIazleton, in Lnzerne county, on the estate of the Nescopec coal company and partly on land belonging to the estate of Tench Coxe, and operated by the Upper Lehigh coal company.

Slope, No. 1.-Sunk on the south dip of the Buck Mountain or B vein, at an angle of about 24°, a distance of 365 feet, vertical 181 feet. The top or mouth of the slope is 1,807 feet above mid-tide, and at the bottom of the same 1,626 feet. The vein is about 12 feet thick, and the coal of superior quality. The east gangway has been driven 1,400 feet and the west gangway 5,460 feet, with 19 breasts working. Those breasts are opened 36 feet wide, leaving a pillar of 18 feet for the support of the superincumbant strata.

Slope, No. 2.-Sunk on the same dip of the same vein, at an angle of about 32°, a distance of 455 feet. Elevation above mean tide at top of slope, 1,787 feet ; at the bottom, 1,547 feet; perpendicular depth of slope, 240 feet. The east gangway has been driven 2,400 feet, with 13 breasts working, and the west gangway 4,600 feet, with 41 breasts working. There is a counter gangway about midway in the slope, and the hoisting from the bottom and the counter is done by having the hoisting drum of different diameter, and works to perfection. They have $49,09 \pm$ feet of T iron track in and about Nos. 1 and $\stackrel{2}{2}$ slope, and 187 mine cars, with a breaker capacity of 800 tons of coal per day. The one breaker prepares the coal from both slopes. They employ at the two slopes 2 bosses, 93 miners, 56 laborers, 31 company men, \&c., 11 drivers, 3 door boys in the mines, 10 mechanics, 4 head and plate men, 8 breaker hands, 3 drivers, $6 t$ slate pickers, in all 75 men and boys and 51 mules. They shipped during the year ending December $31,1875,114,812.18$ tons of coal, and used $1,882 \mathrm{kegs}$ of mining powder, and worked 142 days.

Ventilation.-This is produced by a 12 -feet diameter rentilating fan. Whenever the fan gets out of repairs the mines are rentilated by exhaust steam from the pump. The air is conducted to the face of the gangway by means of bratticing along the side of the gangways, as the vein will not admit of an airway being driven in solid coal owing to the irregularity of the pitch of the vein, \&c. They have doors wherever required, and they close of their own accord. They have a traveling way for men to travel

9 Mine Rep.
to and from their work. The air has been measured and reported according to law. Air circulating thrcugh the mines: Slope, No. 1, intake, 8,910 cubic feet; face of gangway, 7,700 cubic fect, and 20,355 cubic feet at outlet per minute ; men employed, 50. Slope, No. 2, inlet, 28,890 cubic feet; cubic feet in face of gangway, 16,050 ; cnbic feet at outlet, 33,819 per minnte ; men employed, 106 , per report for December.

Machinery consists of 4 hoisting engines, 188-horse power ; 1 breaker engine, 60 -horse power ; 4 pumping engines, 163 -horse power; and 4 steam pumps and 40 steam boilers reported safe and in good condition, examined and cleaned December 5, 1875. Total horse power, 426 ; uumber of engines, 10. They have a metal speaking tube, and an adequate brake and flanges of sufficient strength and dimensions for safety attached to their hoisting drum. The ropes, chains, \&c., are in good condition. They have a safety valve on every nest of boilers, and a steam gauge to indicate the pressure of steam, and 1 fan engine of 15 -horse power.

Remarks.-They have furnished maps of their workings, made to a scale of 100 feet to an inch. They have a wash house for men to wash themselves. There are no boys under 12 years working inside. They do not allow persons to ride upon loaded cars in the mines. The engineers seem to be experienced, competent and sober men. The mining boss is a practical and competent man.

Slopes Nos. 3 and 4 are located about $\frac{3}{4}$ of a mile west of their other works and on the estate of Hon. Tench Coxe. Slope No. 3 is sunk on the north dip of the Buck Mountain or B vein, at an angle of about $9 \frac{1}{4}^{\circ}$, a distance of 534 feet, perpendicular depth 86 feet. The top of this slope is $1,818.67$ feet abore mean tide, and the bottom 1,732.67 feet. The east gangway has been driven 740 feet, and the west gangway 534 feet, at which point they struck the synclinal raising westward to the surface. There are 12 breasts opened in both gangways; there are 6,719 feet of T iron track in and about the mines, and 38 mine cars. Hands employed : 19 miners, 25 laborers, 1 company man, 2 dirivers, - door boys; total inside, 47. Hands employed outside : 1 boss, 2 mechanics, 12 head and plate men and breaker hands, 1 driver, 36 slate pickers; total, 52 . Coal shipped during the year ending December 31, 1875, 18,288.11 tons; powder used, 264 kegs; days worked, 49.

Slope No. 4.-This is a new slope just sinking. The coal from both slopes is prepared at the same breaker. The coal from No. 3 is hauled by a locomotive engine to where the breaker is built, (about $\frac{1}{2}$ mile west, at slope No. 4. They have built a magnificent new breaker, with all the modern improvements. These works are not in full operation yet, and are not likely to be till spring.

Machinery.-They use 2 hoisting engines, 104 -horse power ; 1 breaker enginc, 50 -horse power; 2 pumping engines, 52 -horse power ; total number of engines, 5 ; aggregate horse power, 208 ; 1 locomotive engine, 25horse power. The hoisting is all done by friction cones. The engine is kept continually going, after the car is dumped. The engineer loosens his brake, the car descends the slope with the rapidity of lightning, and before the car reaches the bottom the engineer checks the speed by the brake attached to the hoisting drum, and whenever they are ready to hoist, the engineer pulls in the cone lever and in less than a minute the car is on the top of the breaker; and everything works smooth as clock-work. They have a splendid machine shop and a steam saw mill at their east workings.

The management of the colliery speaks for itself, and is worthy of commendation. Daniel Bartsch, geueral superintendent; William Powell, mine boss; Thomas M. Righter, outside foreman.

Woodside Collifry.

Situated about eight miles northeast of Thazleton, on the estate of the Jeddo Coal Company, and operated by Core Bros. \& Co.

Stope, No. 1.-Sunk on the south dip of the Buck Mountain or B rein, a distance of 255.07 feet; average pitch, 37°; perpendicular depth, 137.29 feet; elevation above tide at top of slope, 1,854 feet; at bottom of the same, 1,7167101 feet ; length of west gangway, $2,029.53$ feet ; number of breasts working, 11 ; extension in eastern direction, 2,049 feet; reached the outcrop; number of breasts working, 7 ; top of slope, No. 1 , is 76,044 feet below top of slope, No. 2 ; top of slope, No. 2, 161,995 feet below top of slope at Woodside. It was supposed that this slope was worked out some years ago, since which time it has changed hands and underwent great improvements, and the production of coal is likely to continue for some years. Their mine capacity is about 350 tons of coal per day, with a breaker capacity of 400 tons. The mines are well timbered, and are considered safe.

Ventilation is prodnced by boiler fires, located at the bottom of the outlet in the west gangway, and is ventilated on the east side by exhaust steam from the pump, air circulating 14,634 crbic feet per minute; men employed, 35 ; air good.

Machinery.-They nse 1 hoisting engme of 40-horse power, 1 breaker engine of 20 -horse power, 2 pumping engines of 60 -horse power; in all 4 engines ; aggregate horse-power, 120 ; and 7 steam boilers, which have been cleaned, examined and reported safe and in good condition.

Remarks.-They employ 1 boss, 33 miners, 22 laborers, 10 Co. men, $\frac{4}{4}$ drivers in the mines, 1 boss, 3 mechanics, 17 breaker men, 10 slate pickers; in all 101 men and boys in and about the mines. They shipped $24,-$ 336.08 tons of coal during year ending December 31, 1875, and nsed 630 kegs of powder and worked $116 \frac{1}{4}$ days. Arthnr M'Clellan, superintendent ; Benjamin Gibbon, mine boss.

Cross Creek Collery.

Located at Drifton, on the estate of Tench Coxe, and operated by Coxe Bros. \& Co.

Slope, No. 1.-Sunk on the north dip of the Buck Mountain or B rein. Leugth of first lift of slope, 361.65 feet ; average pitch, $16^{\circ} 13^{\prime} 30^{\prime \prime}$; perpendicular depth, 101.05 feet; length of east gangway, which has been abandoned, 2,552.11 feet; extremest extension in western direction, 3, 114.6 feet; extremest extension in sonthern direction, 1,122 feet; number of breasts working, 56. Second lift, length of slope from first lift, 392.74 feet; average pitch, $20^{\circ} 40^{\prime}$; perpendicular depth below first lift, 138.58 feet; length of west gangway, (in basin,) 1,466 feet; extension on east side, (north gangway, 917.43 feet, and south gangway, 621.56 feet,) 917.43 feet; number of breasts working, 4. A gangway has been driven across the pitch from a point alout 1,200 feet west of the bottom of the slope, (first lift,) forming as it were a triangle by which the cars are run by gravity nearly to the face of the breasts. Then they are hauled by mules to the miner. After they are loaded they are hauled to the top of the grade, thence by gravity to the bottom of the slope, thereby facilitating the hoisting of the coal and decreasing the cost of haulage, as the west gangway rises rery rapidly to the point above specified. This vein has an excellent roof and the coal is of very good quality. The bottom lift generates carburetted hydrogen gas, (or tiredamp,) but not to a great extent. The mines are in very good condition and are considered safe.

Drift, No. 2.--Driven on the same rein. Measured from center of slope: Extension in eastern direction, 2,191.5 feet ; extension in western direction, 1,673 feet. Not working at present.

Slope, No. 2.-Sunk on the sonth dip of the same vein, and is 451 feet Jong; arerage pitch, 28°; perpendicular depth, 212 feet. The east gangway has been driven 613 feet, and the extension in western direction 339 feet. This is a new slope and has lime discontinued until the new breaker is ready, and also the completion wh the new transportation railroad now under construction by the Central inillroad of New Jersey, Lehigh and Susquehanna division. The breaker is large and commodious, well adapted for the preparation of the coal mined in the Buck Mountain vein. Great inp:orements are now being made in and about the mines, and the condition of the same is commendable.

Fentilation is produced by a 16 feet diameter fan, and another fan 16 feet in diameter is being built to rentilate the other dip. Air circulating 28,900 cubie feet per minute. Men employed, 139. When I first visited this mine the air was inadequate for the support of the men. But when I made it known to the operator he immeliately ordered the ercction of those fans before mentioned, and now the ventilation is very satisfactory.

Machinery.-They use 5 hoisting engines of 160 -horse power, 1 breaker engine of 30 horse power, 2 pumping engines of 350 -horse power, 2 fan engines of 80 -horse power, in all 10 engines; aggregate horse power, 620 ; and 12 cylindrical steam boilers, which have been eleaned, examined, repoited safe ond in good condition.

Remarks.-They employ 1 boss, 84 miners, 52 laborers, 10 drivers, 2 door boys in the mines, 3 busses, 0 mechanics, 52 breaker men, 41 drivers and slate pickers, in all $25 \pm$ men and boys employed in and about the mines. They shipped i2, 705.13 tons of coal during the year ending December 31, 1875 , and used $1,360 \mathrm{kegs}$ of powder, and worked $124 \frac{1}{4}$ days. Breaker capacity, 750 tons of coal per day ; pumping capacity, 8,280 tons of water per $2 t$ homs, equal to $2,229,793$ gallons of water in the same time, reckoning 35 cubic feet to the ton. Arthur M'Clellan, superintendent; E. L. Powell, mine agent.

IIghland Collieries.

Located 9 miles north-cast of Hazleton, on the cstate of the Ilighland Coal Company, and operated by G. B. Markle \& Co.

Scope No 1.-Sunk on the south dip of the Buck Mountain or B rein, a distance of 753 feet, at an angle of about 30°. The east and west gangways proper are now being robbed of pilars. About 285 feet west of the bottom of the main slope is where another inside slope has been sunk 240 feet long, at an angle of about 15°. The most of the work is done on the east side, the rein is about 15 feet thick, the roof is good and the coal is of a very good quality. The breasts are opened 30 feet wide, 18 feet of pillar rescrved for the support of the roof.

Ventialion is produced by the exhaust steam from the pump. The slope being the intake and the pumpway the ontlet ; air tolerable, 17,050 enbie feet it face of gangway, per air report for Norember.

Slope Ko. 2 is a new slope lately sunk on the north dip of the Buck Mountain or B vein, gangways are now being tumed off east and west of the slope. The coal is good, and an excellent roof as far as can be judged from the part of the work which has been opened. They are now building a new breaker to prepare the coal mined from this new slope. They ennloy at both places: One boss, 60 miners, 5 laborers, 2 company men, 13 drivers, 2 duor boys, in the mines; 1 boss, 6 mechanies, 23 breaker men, 1
driver, 29 slate pickers, in all 143 men and boys in and about the mines. They shipped $56,211.09$ tons of coal during the year ending December 31, 1875 , and used 1,060 kegs of powder, and worked $132 \frac{3}{4}$ days. They have a breaker capacity of 500 tons of coal per day ; and 21 mules.

Machinery.-They use 2 hoisting engines of 80 -horse power, 1 heaker engine of 30 -horse power, and 3 steam pumps and 18 boilers, (including 6 at No. 2,) cleaned and examined, and reported safe and in good condition. They have a brake on their hoisting drum, stean gauges on the treilers. They have $n 0$ speaking tube, owing to the distance being too long to conduct the free passage of sound.

John Turner, general mine superintendent; Peter Brown, mime hass ; William Mills, outside foreman.

Beck Mountati Mines.

This colliery is situated about 11 miles north-east of Hazleton, on the estate of the Buck Mountain coal company, and operated by said company. The mines are located in Luzerne county, and the tower and ureakre in Carbon county.

Shope, No. 2.-Sunk on the north dip of the Buck Mountain or B rein, at an angle of about 354°, and is 270 feet long; vertical, 160 . The top bench or seam is about 9 feet thick, and the bottom seam about 6 feet. A slate from 2 feet and upwards separates those seams. The slope has been sunk in the 9 feet seam. A tunnel has been driven on the west side, cutting the same rein on the south dip. An undergrome slope has been smik on the east side of the tunnel, and contains several counter-gangways. There is also a counter-gangray about 100 feet on the pitch abore the gangway proper, from which the coal is damped into a shute and re-loaded on the main gangway into the regular mine cars. The system of working those seams heretofore has been to mine the upper seam first, then the luser or G.foot. There is also an underground slope on the west side of the tumel. with numerous gangways. Neither of those slopes are sunk to the hasin, but a dip heading in the west gangway has.

Slope, No. 4.--Sunk on the south dip of the same rein, at an angle of about 34°, and is $72 G$ feet long. This slope is located about 2 miles noth of the breaker, and reached by:balance planes. The coal from this slope is first let down from the top of the slope by a balance plane 525 feet lung to the bottom of the first ralley ; then it is hoisted 1,825 feet by a stationary engine to the top of the mountain ; thence the cars rim by gravity to the second balance plane, 5,376 feet; then they are let down this plane, which is 2,500 feet long, to the lerel of slope, No. 2, from which place the cars are let down by another balance plane, 1,400 feet long, to the breaker.

Slope, No. 5, or "Owl Hore."-ls sunk on the north dip of the same rein, at an augle of about 25°, and is 270 feet long. This is a new slope, sunk to the basin, and located about a mile east of No. 4. A small tunnel has been driven from the foot of the hill to the east gangway, connecting on a level with the same for the purpose of drainage.

Slope, No. 6 - Sunk on the north dip of the same rein, at an augle of about 40°, and is 300 feet long. These two slopes (Nos. 5 and 6) are new and not much work has been done. The cual from this slope (N G) will be let down by another balance plane to a level of No. 2. This rein, including both the seams, is about 15 feet thick, and of superior quality of coal. They hare about $G \frac{1}{2}$ miles of T iron railroad in and about the mines, and 222 mine cars, with a breaker capacity of 825 tons of coal per day. They employ 4 bosses, 122 miners, 41 laborers, 25 Co. men, 12 drivers, 3 door boys, in all the mines ; 4 bosses, 24 mechanics, 25 head and plate men,

38 breaker men and 31 slate pickers; in all 338 men and boys and 68 mules. They shipped during the year ending December, 1875, 55,616 tons of coal, and used for mine purposes 7,938 tons, and sold to individuals 2,000 tons. Total tomage mined, 65,551 tons. They med 1,200 kegs of powder and worked 113 days.

Ventitation is produced partially from the exhaust steam from the pumps and atmospheric action. In No. 4 they have a sort of a furnace erected in the old upper workings, which does not afford adequate ventilation. I have requested the parties in charge to improve the ventilation. The superintendent has promised to put up a ventilating fan at slope, No. 4, which I think will meet the requirements of the mine.

Machiner\%-They use 10 hoisting engines of 368 -horse power, 1 breaker engine of 30 -horse power, 1 pumping engine of 60 -horse power and 8 steam pumps ; total number of engines, 12 ; aggregate horse-power. 458 ; they have 45 steam boilers, cleaned, examined and reported in good condition; they here steam ganges on their boikers; they have no brakes on the hoisting drums nor speaking tubes in the slopes; they have traveling-ways for men to travel to and from their work. William spencer, superintendent; John N'Ginley, assistant superintendent; Evan Daniels, general mine superintendent; J. M'Cole, mine boss; James M'King, outside foreman.

Culxcil Ridae Collieries, Eckley.

These collieries are located 9 miles north-east of Trazleton, on the estate of Hon. Tench Coxe, and operated by J. Leisenring \& Co.

Slore No. 2.-Sunk on the north dip of the Buck Mountain or B vein, a distance of 486 feet, at an angle of about 35°, vertical 330 feet. The top of the slope is $1,698.67$ feet above tide, and the bottom is $1,368.67$ feet. The rein is about 13 feet thick, and the coal of very good quality. The west gangway has been driven 1,647 feet, and the east gangway 3,345 feet, with 28 breasts opened. There is an inside slope in No. 2, sunk to the basin, a distance of 477 feet, rertical $8 \pm$ feet. The west gangway has been driven 1,701 fect, with 16 breasts working. This mine has been very extensively worked.

Sure: No. 4.-Sunk on the north dip of the same vein, a distance of 327 fect, at an angle of about 41°, perpendicular depth of slope 210 feet. The top of the slope is $1,081.85$ feet, and the bottom is $1,471.67$ feet above tide. The east sangway has been worked around the circumference of the basin. And an inside slope sunk 261 feet, elevation abore tide, at the top of inside slope $1, \pm i l$ feet, at bottom $1,425^{\circ}$ feet. The east gangway has been driven 729 feet, and the west 1,623 feet, with 10 breasts working. The old slope, No. 3, is now kept for pmoping, the coal has been worked out.

Slope No. 5. This is a now slope sunk on the south dip ol the Buck Wountain or B rein, elevation above tide 1,659 feet. The gangways are now being turned off east and west of the slope This mine has all the appearanee of becoming an excellent colliery. The vein at this point dips about 45°, and the coal is wif superior quality. A new breaker will be built to prepare the coal from this slope. Alley have in use at all the mines $1+5$ mine cars, S, 118 feet of T iroutrack, (in Nos. 1 and 2 slopes,) and a breaker capacity of 950 tons of coal per day. They cmploy 3 bosses, 78 miners, 48 laborers, 11 company men, 29 drivers, 6 door boys in all the mines. 2 bosses, 12 mechanics, 9 head aml piate men, 7 breaker men, 6 drivers, 94 slate pickers, in all 354 men aid boys Thoy shippell $76,4533^{6} 0$ tons of coal during the year ending Iecember 31, 1875, and used $1,495 \mathrm{kegs}$ of powder, and worked 125 days.

Ventilation is produced by natural draft, assisted by the heat from the steam boilers and steam exhaust from hoisting engines placed inside of No. 2 to hoist from the inside slope; the amount of air is insufficient. This vein requires a great deal of blasting, cansing much powder smoke to linger in the face of the breasts, which makes it very unpleasant and unhealthy to the miners. I have requested the parties in charge to stop one part of the mine, owing to an inadequate amount of air. Slope No. 4 is not much better-it is rentilated by the steam exhaust from the pump-but will be made better, as the present firm intends making great improvements on the property both in and around the mines.

Machinery.-They use 7 hoisting engines of 345 -horse power, 2 breaker engines of 90 -horse power, 1 pumping engine of 45 -horse power, total number of engines 10 , aggregate horse power 480 . They have 35 steam boilers which have been cleaned, examined and reported in good condition, and 10 steam pumps.

Remarks.-This colliery is now operated by John Leisenting \& Co., formerly by Sharp, Weiss \& Co.

John S. Wentz, superintendent; Thomas Edwards, general inside foreman ; John Rickert, master mechanic

Oakdale Collieriej

Situated at Jeddo, about 7 miles north-east of Mazleton, on the estate of the Union Improvement Company, and operated by G. B. Markle \& Co., and consists of 2 slopes and 2 breakers.

Slope, No. 1.-Sunk on the south dip of the Nammoth or E vein a distance of 627 feet, at an angle of about - ${ }^{\circ}$. The west gangway is driven 750 feet, to where a balance plane is made to let the coal down from the counter gangway to a level of the gangway proper. The east gangway has been driven around the basin into the north dig, going west. There are also two basin gangways on the east side. The synclinal dips westward.' There are two locomotive engines in this slope, hauling the coal a distance of nearly 2 miles from the turnout (where they are met by teams) to the foot of the slope. An air hole has lately been driven near the face of the north dip, west gangway, to the surface, which has improved the ventilation considerably. This vein is about 30 feet thick and the coal of good quality. The breasts are epened 30 feet wide, reserving a pillar of 18 feet for the support of the roof, which is good. The upper range of this slope has been worked from the oll Jeddo slope. The mode of working is considered safe, and the condition of the mines is favorable. They employ 1 boss, 75 miners, 9 laborers, 3 company men, 14 drivers, 2 door boys, in the mines; 1 boss, 3 mechauics, 19 breaker men, 2 drivers, 37 slate pickers, in all 166 men and boys and 24 mules. They shipped $62,114.02$ tons of coal during the year ending December 31, 1875, and used 991 keg s of powder, and worked 12614 days. Breaker capacity, 500 tons of coal per day.

Ventitation is produced by the exhaust steam from the pump, which has been considerably improved since my first visit by the new air hole, as previonsly stated; 12,700 cubic feet at face of gangway per minute, per air report for month of November; men, 98, .

Machinery.-They use 2 hoisting engines of 90 -horse power, 1 breaker engine of 30 -horse power, in all 3 engines of 120 -horse power; 1 steam pump and 12 steam boilers, which have been cleaned and examined and reported safe and in good condition.

Slope, No. 2, (Oakdale or Jeddo, No. 5.)-Sunk on the same dip of the same vein, and is $8 \pm 6 \frac{1}{2}$ feet long; elevation above tide at top of slope, 1,577 feet. The west gangway has been. worked out and conrects with slope

No. 1. The cast gangways are driven on the switch back system in order to overcome the pitch. There are numerous breasts in these works, all of which are in good working order. They shipped during the year ending December, $1875,60,102.16$ tons of coal, and used 825 kegs of powder, and worked $128 \frac{1}{2}$ days. They employ 1 boss, 76 miners, 3 laborers, 4 company men, 11 drivere, 4 door boys, in the mines; 1 boss, 3 mechanics, 20 breaker men, 1 driver, 34 slate pickers, in all 158 men and boys and 30 mules, and a breaker capacity of 500 tons of coal per day.

Ventilation is produced by the exhaust steam of the pump, the slope being the intake and the pumpway the outlet; ventilation, good; 14,175 cubic feet at face of gangway per minnte, per air report for November ; men employed, 100.

Machinery.-They use 2 hoisting engines of S0-horse power, 1 breaker engine of 30 -horse power ; total number of engines, 3; aggregate horse power, 110 ; and 4 steam pumps and 12 steam boilers, and 4 tubular bsilers, which have been cleaned, examined and reported safe and in good condition; also 2 steam boilers at Jeddo eaw mill reported in good condition. John Turner, general mine superintendent; William H. Thomas, mine boss, No. 2; Peter Brown, mine boss, No. 1; William Nills, outside foreman, No. 1; G. G. Schollenberger, outside foreman, No. 2.

Ebervale Collieries.

These collieries are situated abont four miles north-east of Hazleton, on the estate of the Union improvement company, and operated by the Ebervale coal company.

Slope, No. 1.-Sunk on the south dip of the Mammoth or E vein a distance of 820 feet, at an angle of about 30°; vertical, 273 feet. This slope has been sunk to the basin. The east gangway has been driven 2,100 feet. There are two gangways on the east, one on each dip. Those gangways come together at about - feet from the bottom of the slope. This 'gaug. way has been driven to the boundary line. The west gangway connects with No. 2 slope east gangway. A new traveling-way has lately leen made for the men to travel to and from their work.

Slope, No. 2.-Sunk on the south dip of the same rein a distance of 853 feet, at an angle of about 30°; vertical, 284 feet. This slope has been sunk to the basin. The basin dips from east to west. The difference of eleration between the bottom of No. 1 and No. 2 slopes is 20 feet. The coal from the west side of No. 3 counter is dumped into a shute and re-loaded on No. 1 slope gangway, and part of the coal on the east side of No. 3 is dumped into a shute and re-loaded on the west gangway of slope, No. 2. The coal from Nos. 1 and 2 slopes is prepared by the same breaker

Slope, No. 3.-Sunk on the north dip of the Mammoth or E vein a distance of 915 feet; vertical, - feet; length of first lift, 365 feet; length of second lift, 305 feet; length of third lift, 245 feet to basin. The east gangway has been driven 3,900 feet to the boundary line, with 13 breasts working. Third lift, west gangway, has been driven 1,200 feet and the east gangway 2,400 feet, with 23 breasts working; width of breast, 30 feet; width of pillar, 18 feet; thickness of vein, 30 feet. There is au excellent roof in all the slopes, and the mines are well timbered to prevent the falling of. coal, rock, slate, \&c. There are two large commodious breakers on the property. They liave breaker capacity of 1,500 tons per day. They employ in all the mines 123 miners, 65 laborers, 9 drivers, - door boys, 41 company men, in the mines; 5 bosses, 11 mechanics, 16 head and plate men, 76 company men, about the breaker ; - driver boys, 71 slate pickers;
all men and boys employed, 417 ; mules, 53 ; they shipped during the year 166,900 tons of coal, and used - kegs of powder and worked - days.

Ventilation is produced by the exhaust from the pump. These mines are well ventilated. No. 3 is ventilated by a furnace, air cireulating 35,000 cubic feet per minnte at face of all the gangways; men employed, 330 .

Machencry.-They use two mine locomotives inside ; they use 5 hoisting. engines of 200 -horse power, 2 breaker engines of 50 -horse power, 5 pumping engines of 320 -horse power ; in all 12 engines of 450 -horse power; they have a brake on the drum at No. 1 but not on the other slopes; they have no speaking tube; they have examined their boilers and reported the same in safe and good condition; they have steam gauges on their boilers and also safety-values. The breaker machinery is fenced off for the safety of the employed.

Remarls.-They have furnished maps of their workings and reported all serious accidents to persons; they have no boys under twelse years of age working inside. I have caused legal proceeding to be taken against three persons for riolation of section eleven of the mining law, for riding more than 10 men at one time at these collieries. I deemed it proper to let them go by paying the cost, as they pleaded ignorance of the law, and that it had been a customary thing, promising never to do so again. Wm. S. Harris, superintendent; A. Nesbit, mine agent.

Harleigh Colliery.

Situated two miles north of Hazleton, on the estate of the Big Black Creek Improvement Company, and operated by the Harleigh Coal Company. It consists of 2 slopes and 2 breakers, and one slope kept for pumping.

Slope No. 1.-Sunk on the sonth dip of the Mammoth or E rein, a distance of 461 feet; elevation at top of slope above mid-tide 1,518 feet, at bottom 1,363 feet, thickness of rein 27 feet. In the south-cast gangway there is an inside slope of about 240 feet in length, driven across the pitch, and the coal is hoisted to a level or bottom of the slope proper' shutes have been put in for the purpose of working the coal left in the npper gangway. Those shutes extend from the bottom of the subterranean slope to the upper gangway. A great deal of coal from the old workings can be thus mined, and the company remumerated for their investments.

Tentilation is produced by the exhaust steam from the pump, and from the heat of the steam pipes which affords the power of rarefaction. Slope No. 2, which is now kept for pumping, is the intake and the slope being the outlet. The air has been measured and reported according to law, 1,000 cubic feet at face of gangway, at outlet 25,000 cubic feet per minute ; men employed, 68.

Machinery.-They use 2 hoisting engines of $7 t$-horse power, 1 breaker engine of $2 t$-horse power, 2 pumping engines of 120 -horse power; total number of engines 5 , of 218 -horse power. They have 26 steam boilers, reported safe and in good condition. There is a brake attached to the hoisting drum, and a car with bride-chains expressly made for the men to ride up and down the slope

Remarks.-They have furnished maps of their mincs, they lare a practical mining boss, boys are not allowed to work inside under 12 years of age, and they do not allow any person to ride on loaded cars. The parties in charge understand their duty in case of serious accidents to persons. They employ, in slope No. 1,26 miners, 40 laborers, 6 company men, 12 driver boys, 2 door boys, 1 boss, total inside, 87 ; 3 outside bosses, 5 mechanics, 10 head and plate men, 15 company men about the breaker, 5
drivers, 42 slate pickers, all men employed outside, 80 ; mules, 13 ; coal mined during the year, $91,919.15$ tons ; days worked, 91 ; powder used, 690 kegs; capacity of breaker, 450 tons per day.

Slope No. 2 has been worked out, and is now used for pumping.
Slope No. 3.-Sunk on the same vein and on the same dip, a distance of 708 feet, vertical 297 feet, average thickness 27 feet. The top of the slope is 1,521 feet abore mid-tide, at the bottom of the same 1,224 feet. A gangway is now being driven eastward under the slope in order to mine some coal which could not be worked heretofore. They employ inside 1 boss, 45 miners ; 5.1 laborers, 11 company men, 15 drivers, 3 door boys, total inside, 129 ; ontside 2 bosses, 5 mechanics, 5 head and plate men, 11 company men, 3 drivers, 51 slate pickers, total outside, 77 ; mules, 33 ; powder used, 770 kegs; number of days worked, $122 \frac{1}{2}$.

Ventilation.-This is effected by the exhanst from the pump, 11,000 cubic feet of air per minute at face of gangway, and 25,000 cubic feet per minnte at outlet; men employed, 108 ; air good.

Machinery -They use 3 hoisting engines of 128-horse power, 1 breaker engine of 24 -horse power, and 2 steam pumps, (Allison's, total number of engines 1 , aggregate horse power 152 .

James II. M'Kee, general superintendent; John Lloyd, mine boss; William Silver, outside foremau.

Lattiner Collieries.

These collieries are situated about 3 miles nortl of Hazleton, on the estate of the Black Creek Impruvement Company, and operated by Pardee Bros. \& Co.

Slope, No. 1.-Sunk on the north dip of the Mammoth or E vein a distance of 489 feet; vertical, 297 feet; thickness of vein about 30 feet. This slope has been sunk to the basin. The east gangway has been driven about 2,400 feet and the west 1,200 feet, which has been discontinued; breasts working, 23 ; width of, 30 feet; width of pillar, 18 feet. A grod traveling way has been made for men to travel to and from their work. They employ 1 boss, 53 miners, 9 laborers, 6 company men, 6 drivers, 1 door boy, in this slope; outside, 1 boss, 2 mechanics, 2 head and plate men; 12 breaker men, 2 drivers and 50 slate pickers, in all 145 men and boys. They shipped $67,400 \frac{4}{20}$ tons of coal from this slope, and nsed 928 kegs of powder, and worked 134 days. The breaker is calculated to prepare 800 tons of coal per day.

Tentilation is produced by the exhaust steam from the pump; 7,500 cubic feet per minute at face of gangway ; at outlet, 8,000 cubic fect per minute ; all men employed inside, 76 . They have measured and reported according to law.

Machinery.-They have i hoisting engine of 100 -horse power, 1 breaker engine of 25 -horse power, 2 pumping engines of ——. They have 14 boilers; have been cleaned, examined and reported safe and in good condition. They have steam gauges on their boilers and safety valve.
S.OPE, No. 2-Sunk on the south dip of the same vein as No. 1 a distance of 360 feet ; perpendicular depth, 297 feet. The cast gangway has been driven across the basin, connecting with slope, No. 1, on the'north dip. The west gangway has been driven 4,500 feet. A locomotive engine hauls the coal from the turnout t o the bottom of the slope. The coal from the counter is dumped into a shute and reloaded on the main gangway. The counter gangway has been driven about 450 feet; width of breast, about 30 feet; widh of pillar, 18 fect; thickness of vein, about 30 feet. They employ 1 boss, 46 miners, 13 laborers, 13 company men, 6 drivers, 2 dove
boys, in the slope; and 1 boss, 3 mechanics, 2 head and plate men, 7 breaker men, 2 drivers, $5 t$ slate pickers, in all 150 men and boys. They shipped $60,909 \frac{10}{20}$ tons of coal from this slope during the year ending December, 1875 , and worked 130 days, and used 928 kegs of powder. They have 2 large and commodious breakers.

Ventilation is produced by the exhaust steam from the pumps ; 8,600 cubic feet at face of gangrvay; men employed, 81.

Hachinery in this slope and breaker consists of 1 hoisting engine of 120 horse power, 1 breaker engine of 25 -horse power, 1 pumping engine of 150 horse power; total, 3 engines of 295 -horse power, and 1 locomotive engine inside, and 12 boilers, which have been cleaned and examiued January 1, 1875, and are reported safo and in good condition. They have steam gauges on the boilers and a brake on the hoisting drum.
Remarks.-They are making a map or tracing of the mines. There are no boys under 12 years of age working in the mines. They comply, generally, with the requirements of the law. M. M. Cooper, superintendent; William Martin, mine boss ; M. M. Cooper, outside foreman.

Milajesville Collieries.

Situated three miles north of Hazleton, on Porter's estate, and operated by the Stout coal company.

Slore, No. 6.-Sunk on the north dip of the Mammoth or E vein a distance of 294 feet to the basin; vertical, - feet. The east side has not been worked owing to the boundary line being so close to the slope. The west gangway has been driven on the basin to the surface. The mining of the coal is now confined to the stripping or patching of the same from the surface. The coal is taken through a gangway to a point about midway in the slope; thence it is hoisted to the breaker. As the synclinal rises so rapidly westward it would be very difficult to mine this coal otherwise than the way as before stated, because the wash or the surface would cave in, causing great loss of coal.

Slore, No. 7.-Sunk on the south dip of the Mammoth or E vein a distance of 4.41 feet, at an angle of about - 0 , and is sunk to the basin. The upper lift has been worked by the ohl Milnesville slope. There are two gangways on the west side, one on each dip. The east gangway has been driven considerable distance, and contains - breasts, which are opened by a shute 7 feet long and about 9 feet wide to where a battery is erected to prevent the coal from rushing too rapidly into the shute, Sce., from which place the breast is widened to about 30 feet, leaving ample pillar on each side for the support of the roof. Cross-cuts are driven through these pillars whenever required for the rentilation of the breastings. They employ 2 bosaes, 35 miners, 35 laborers, 10 company men, 11 drivers, 2 door-boys, in the mines ; and 2 bosses, 7 mechanics, 58 breaker-hands and choppers, $3 \pm$ slate pickers; in all 196 men and boys. They shipped 66,000 tons of coal durng the year ending December 31,1875 , and used $1,160 \mathrm{kegs}$ of powder, and worked 265 days at the two breakers, which have a capacity of about S00 tons of coal per day.

Machinery.-They use 3 hoisting engines of 180 -horse power, 2 breaker engines of 60 horse power ; in all 5 engines of 240 -horse power, and 4 steam pumps and 21 boilere, cleaned, examined and reported sate and in good condition December 25, 1875.

Ventilation is produced by the exhanst steam from the pumps, the slope being the intake and the pump-way the outlet. The rentilation is good in these mines, as there are good air-ways driven along the main gangway,
which affords an exit for the foul air. William S. Harris, superintendeat ; Charles Kerubaugh, assistant superintendent; Panl Winters, mining boss; Joln A. Mason and James Wanent, ontside foremen.

Iollywood Colliery.

Situated about 3 miles north west of Mazleton, on the estate of the Big Black Creek Improvement Company, and operated by Calrin, Pardee \& Co.

Slopa No. 1.- Sunk on the south dip of the Mammoth or E vein, hearly to the basin, at an angle of about - 0 , and is 242 feet deep. The cast side of the slope has not been. worked, owing to the old works of Milnesrille being full of water, and there is no map to show the thickness of pillar left. The west side is worked by two gangways, one on each dip. These gangways came together as they adranced west, owing to the basin narrowing, so that both dips are now worked by the one gangway. The basin dips eastward. There are 17 breasts working in the slope. The rentilation is tolcrable.

Slope No. 2.-Sunk on the south dip of the same vein, but in a separate basin, and is 289 feet deep, nearly to the basin, perpendicular depth - feet. As ret this slope has not proved very satisfactory to the operator, as the gangway scems to spoon out in the face of the gangway. The cast side has not been worked. This is a new slope, and the timbering can not be excelled in the district. The coal will be prepared at breaker No. l. If the rein proves good the company intend putting up first-class machinery. They lave a breaker capacity of 600 tons of coal per day. They mined $53,741.18$ tons of coal during the year ending December 31, 1875, and used 1,117 kegs of powder, worked 128 days. They employ 1 boss, 34 miners, 24 laborers, 4 company men, 3 drivers, 1 door boy in the mines; 1 boss, 4 mechanics, 6 breaker men, 1 driver, 37 slate pickers, in all 135 men and boys, and 11 mules.

Tentilation is produced by grate fires placed in the ontiet, and the slope serving as an intake, 5,400 cubic feet at face of gangway; men cmployed, forty-mine.

Iachinery -They use 2 hoisting engines of 130 -horse power, 1 breaker engine of 15 -horse power, 2 pumping engines of 90 -horse power, total 5 engines, aggregate horse power 235 , and 16 steam boilers, which have been reported cleaned and examined December, 1875, and are in good condition, and one locomotive boiler for sinking purposes, reported in good condlion according to law.

Remarks.-This is a new place and has not been reported heretofore. There is a great quantity of coal which will be mined by stripping or uncorering the coal from this tract of land which is of superior quality.
D. S. Wintersteen, superintendent; William Beachel, mine boss; Willian Garlach, outside fureman.

Stockton or East Sugar Loaf Collieries.

Sitnated on the estate of Smith, Roberts \& Packer, and partiy on the estate of Tench Coxe, and operated by Linderman, Skeer \& Co.

Slope No. 2.-Sunk on the south dip of the Mammoth or E vein, a distance of 1,450 feet, at an angle of about 31°, perpendicular depth of slope 803 fect. The 10 p of the slope is $1,58+$ feet above mean-tide, and at the bottom of the same 781 feet. The east gangway has been driven 1,853 fect, and the west gangway 875 feet the workings of this slope connects with No. 1, and No. 1 comects ly am inside slope with No. 5. No. 2 is
now drowned, owing to the fire in No. 1 slope, which took place from the boiler flue A pril $7,1855$.

Slope No. 3.-Sunk on the estate of Hon. Tench Coxe a distance of 1,096 feet on the Mammoth or E vein, at an angle of abont 17°. The top of the slope is 1,578 feet abore tide, and at the bottom of the same 1,262 feet, perpendicular depth 316 feet. This slope is now kept for pumping, the coal being worked out.

SLope No. 4.-Sunk on the north dip of the same vein, a distance of 461 feet, at an angle of abont $33 \frac{1}{4}^{\circ}$, perpendicular depth of slepe 261 feet, height above tide at top of slope 1,545 feet, at bottom $1,28 \pm$ feet. The east gangway has been driven 1,250 feet, with 15 breasts worked. The bottom litt has been worked out, and a connter gangway has been clriven to work the crop coal. The coal from this slope is prepared at No. 5 slope breaker. Tentilation 6, 872 cubic feet ; men employed, 29.

- Slopa No. 5.-Sunk to the basin on the north dip of Mammoth or E vein, a distance of 642 feet, at an angle of about $344^{\frac{1}{4}}$, perpendicular depth of slope 359 feet, elevation above tide at top of slope 1,549 feet, at bottom 1,190 feet. The east gangway has been hiven 1,800 feet, with 6 breasts working. The west gangway has been driven a considerable distance, with numerous breasts. There are 2 balance planes in this slope for letting the coal from the comnter gangways to the level of No. 5 slope west gangway: By these counter gangways they are able to work the coal left by the preper gangray, owing to the range becoming too long for the miner to carry his lumber up the jitch so great a distance, and sometimes due to other causes, such as the top rock falling before the breast is halfway up, \&c.

Ventilation. -This is produced by a 16 feet diameter fan, assisted by the exhanst steam from the pumping engine, ventilation 9,760 cubic fect at face of gangway, at ontlet 18,920 cubic feet; men employed, St.

Elope No. 7.-Sunk on the sonth dip of the Mammoth or E veid, a distance of 560 feet, at an angle of about $33 \frac{1}{1}^{\circ}$, height abore mean-tide at top) of slope 1,551 feet, and at the bottom 1,249 feet, perpendicular depth oi slope 302 fect. The west gangway has been driven 1,400 feet, with 18 breasts opened. The east gangway has beeu driven 1,200 feet, with 12 opened. These breasts are opened at right angles with the gangway. A shute 21 feet in length is driven up the pitch 9 feet wide to where a battery is erected to prevent the coail from rushing too rapidly into the shnte, do., from which place the breast is widened to 27 feet. These breasts are worked by one man-way, which affords rery poor ventilation for the miner, as the cross-cuts which are driven through the pillar become blocked with coal, preventing the circulation of the air, and as a general thing in the system of opening breasts by one man-way perhaps half dozen men are made to suffer on account of one man not having his breast far enough up to drive his cross-cut. I have tried to persuade different parties to carry 2 manways for their benefit and safety, (especially where the rein pitches rery rapidly.) But this being not quite as remunerative to the miner and costing a litte more to the operator, and an inovation upon their custom, I find it is up hill work.

Slope, No. S, is a new slope sinking on the north dip of the Mammoth or E rein. A new breaker will be built to prepare the coal from this slope. There are 65,918 feet of T iron track in and about all the mines, with 88 mine cars, and a breaker capacity of 1,900 tons of coal per day. Amount of coal slipped from all the breakers during the year ending December 31, $1875,110,000$ tons; quantity of powder used, 2,250 kegs. There are 3 bosses, 160 miners, 90 laborers, 65 company men, 20 drivers, 1 door boy, in all 339 men and boys employed inside; and 6 bosses, 37 mechanics, 20
head and plate men, 67 men about the breaker, 8 drivers, 80 slate pickers, in all 218 outside, and 52 mules.

Tentilation.-This is produced by a 7 -feet diameter fan at slope, No. i. There are good air-ways driven parallel with the gangway. The breasts are not very satisfactory ventilated, owing to the one man-way system of mining.

Machinery.-They use 7 hoisting engines of 340 -horse power, 3 breaker engines of 60 -horse power, 3 pumping engines of 180 -horse power, 2 fan engines of 25 -horse power; total number of engines, 15 ; aggregate horse power, 605.

Wm. Airey, general superintendent; Wm. Barber, foreman.

South Sugar Loaf Colliery.

Located in Hazle township, Pa., bounded on the east by Stockton and on the west by Hazleton, on the estate of the Diamond coal company, and operated by A. Pardee \& Co.

Siope, No. 3.--Sunk on the north dip of the Mammoth or E vein, at an angle of 24° to 50°; length of slope, 667 feet; perpendicular depth, 382 feet; eleration above tide at top of slope, 1,571 feet; at the bottom of the same, 1,189 feet. This slope connects in the west gangway by an air-hole with the plane or counter-gangway, and also comects by another air-hole, 285 feet deep, with Sugar Loaf or No. 2 slope. This slope (No. 2) vields carburetted hydrogen gas, or fire-damp, but not to a great extent. These mines are well timbered wherever required, and great care is exercised for the safety of the men, and the mode of working is considered safe.

Ventilation is produced by the steam exhaust from the pump ; tolerably ventilated, 10,000 cubic feet per minute circulating through the mines, per air report for November. Operatives, 96.

Machinery.-They use 1 hoisting and pumping engine of 90 -horse power, 1 breaker engine of 25 -horse power ; in all 2 engines of 115 -horse power, and 8 steam boilers, cleaned, examined and reported safe and in good condition.

Remarks.-They employ 1 boss, 63 miners, 20 laborers, 7 company men, 4 drivers, 4 door boys, in the mines; 1 boss, 5 mechanics, 33 breaker men, 1 driver, 45 slate pickers ; in all 184 men and boys in and about the mines and 15 mules. They shipped (including Sugar Loaf) 68,430.05 tons of coal, and used 840 kegs of powder; worked $129 \frac{7}{10}$ days during year ending December 31,1875 ; breaker capacity, 500 tons of coal per day.
C. Pardee, superintendent; Thomas Dickinson, general mine superintendent; William Fatkin, mine boss; John W. Cooper, outside foreman.

Sugar Loaf Coliliery.

Located in Inazle township, on the estate of the Diamond Coal Company, and operated by A. Pardee \& Co., and consists of 2 slopes aud 1 breaker.

Slope, No. 1.-Sunk on the south dip of the Mammoth or E rein at angle of about $32^{\circ} 36^{\prime}$, and is 1,615 feet long; perpendicular clepth, 870 feet; clevation above tide at top of slope, 1,619 feet; at bottom of the same, 749 feet. This slope is being re-timbered preparatory to being re-worked. Sunk to basin.

Slope, No. 2.-Sunk on the same dip of the same rein. Length of slope, 1,188 feet; perpendicular depth, 659 feet; elevation above tide at top of slope, 1,587 feet; at the bottom of the same, 928 feet. This slope has been sunk 5 lifts. A tumel on the east side has been droven, cutting the big rein on the north dip. Comnects with South Sugar Loaf, or No. 3
slope. The work done in No. 2 priacipally consists of robbing piltars in the old workings, but in the tumel not much work has been openerl. The works are considered safe.

Ventilation, tolerable.
Hachinery-They use 2 hoisting engines of 120 -horse power, 1 breaker engine of 40 -horse power, 1 prmping engine of 60 -horse power, in all 4 engines; aggregate horse power 220 , and 23 steam boilers, which have been cleaned, examined and reported to be safe and in good condition December 12, 1875.

Remarks.-They employ 1 boss, 26 miners, 14 laborers, 4 company men, 4 drivers, in the mines; 1 boss, 5 mechanics, 25 breaker men, 1 driver, 24 slate pickers, in all 105 men and boys in and about the mines, and 10 mules. They used 185 kegs of powder, and worked $95{ }_{10}^{\mathrm{s}}$ days during the year. For shipments see South Sugar Loaf, or No. 3, slope report.
C. Pardee, superintendent; Thomas Dickinson, general mine superintendent; Robert Stevens, mine boss; Marmon Minick, outside foreman.

Laurel IItll Coliiery.

Located at Mazleton, on the estate of the L. T. R. R. Co., and operated by A. Pardee \& Co.

Slope, No. 2, (or Hazleton, No. 4.)-Sunk on the north dip of the Mammoth or E vein, at an angle of $33^{\circ} 2^{\prime}$, and has been sunk three lifts, the first lift 86 feet deep, the sccond 217 feet and the third 289 feet; total length, 542 feet ; perpendicular depth, 296 feet, and is now used for lowering and hoisting the men and also for pumping the water from No. 5.

Slope, No. 3, (or Itazleton, No. 5.)-Sunk on the same vein to the level of No. 2, and contains three tracks to the second lift. The west gangway in the second lift has been driven to the boundary line. Another gangway has been driven across the pitch, crossing the old water level gangway, in order to mine the coal left by said gangway. On the cast side of the slope they are making preparations to start a gangway across the pitch to work the coal left by the old breasts. The west gangway in the bottom lift has been driven to the boundary line, and is about 8,040 feet long, and contains 15 breasts working and 115 breasts worked out. These breasts are opened by a shute 18 feet long to the battery; thence it is widened out to 30 feet, leaving a pillar between each breast of 24 feet for the support of the superincumbent strata. A locomotive engine hauls the coal from the turnout to the bottom of the slope, a distance of about 4,800 feet. The part the locomotive engine runs on is ventilated by a separate current of air. The east gangway has been driven 2,850 feet to where a balance plane is made, and is 163 feet long, angle 19°. The plane or counter-gangway connects by an air-hole with the west gangway of slope, No. 3, or South Sugar Loaf, Difference of elevation between these two gangways, - feet. The west gangway proper connects by an air-hole with slope, No. 1, or Hazleton mines, and also connects by the old west gangway in the upper lift-with slope, No. 4, or East Crystal Ridge. The vein is about 30 feet thick, and the coal of superior quality.

Ventilation is produced by exhaust steam from the pumps and atmospheric action. At present the inlet is located in the upper west workings, and the air circulates through down to No. 3 west gangway; thence to the beading and returns via the airway and down to No. 1 or Hazleton mines by an airhole connection, as previously stated. The rentilation in No. 3 Laurel Hill slope is very satisfactory.

Machinery.-They use 3 hoisting engines of 170 -horse power, 1 breaker engine of 25 -horse power, 1 pumping engine of 60 horse power ; in all 5
engines; aggregate horse-power, 255, and 5 stearn pumps, with 24 steam boilers, cleaned, examined and reported safe and in good condition.

Remarks.-They employ 2 bosses, 70 miners, 44 laborers, 21 company men, 6 drivers, 4 door boys, in the mines; 1 boss, 10 mechanics, 51 breaker men, 3 drivers, 80 slate pickers; in all 192 men and boys in and about the mines, and 45 mules. They worked $131 \frac{1}{4}$ days, and used 1,110 kegs of powder; shipments of coal, see report of Mazleton, No. 1, mines. They hare a breaker capacity of 800 tons of coal per day; there has not been any accident to person of any note in any of the Hazleton collieries during the year. Great care is taken on the part of the officers of the company for the safety of the men.
C. Pardee, superintendent; Thomas Dickinson, general mine superintendent; George Karchner and James Durkin, mine bosses ; Jacob Pippert, outside foreman.

Hazleton Colliery, No. 3.

Located at the abore named place, on the estate of I. V. R. F. Co., and operated by A. Pardee \& Co.

Stope No. 3.-Suuk on the south dip of the Mammoth or E vein, and is 1,047 feet deep, perpendicular depth 555 feet, elevation above tide at top of slope 1,640 feet, at the bottom of the same 1,085 feet, and is sunk to the basin. They are now just opening their new lift. Scarcely any work has been done except driving gangways and air-courses. Great improvements are being made in the machinery.

Ventilation is good. They employ 1 boss, 9 miners, 20 laborers, 5 company men, 1 driver, in the mines; 1 boss, 4 mechanics, 19 breaker men, 2 drivers, 8 slate pickers, in all 70 men and a boy in and about the mines. They used 90 kegs of powder, and worked $136 \frac{7}{T}$ days during year ending December, 1875 . Breaker capacity 300 tons of coal per day.

Machinery.-They use 1 hoisting engine of 70 -horse power, 1 breaker engine of 15 -horse power, 2 pumping engines, one of 90 -horse power and the other of 60 -horse power, in all 4 engines, aggregate horse power 235 , and 21 steam boilers-cleaned, examined and reported in good condition.
C. Pardee, superintendent; Thomas Dickinson, general mine superintendent; Isaac Smith, mine boss; Charles IIeckman, outside foreman.

Hazleton Colliery.

Located at the above named place, on the estate of the L. V. Railroad Company, and operated by A. Pardee \& Co.

Slope, No. 1, has been sunk eight lifts on the Mammoth or E vein a distance of 2,236 feet to the basin; vertical, 808 fuet; elevation above tide at top of slope, 1,673 feet; at bottom, 865 feet. The lower lift is not working. It is probable the coal from the bottom lift will be mined from the west gangway of slope, No. 3, as the old west workings of the same slope was left to be worked by No. 1 slope, east gangway, which consists of about 9 breasts working. The west gangway has been worked out. A tunnel, $t 50$ feet long, has been driven on the west side, cutting the same rein on the north dip. The gangway has been worked about 300 feet on each side of the tunnel, and continues in good coal. This part of the mine connects by an air ho!e with the west gangway of slope, No. 3, Laurel. Thickness of coal, about 27 fect; width of breasts, 30 feet; width of pillar, 24 feet; length of shute, 18 feet.

Tentilation is produced by atmospheric action. The inlet is located at the head of the tumel after traversing the workings. The current of air
is conducted through the tunnel to the outlet; 3,750 cubic feet per minute at face of gangway, per air report for November ; men employed, 33.

Remarks.-The old workings are nearly worked out. I requested the boss to stop one gangway owing to an inadequate amount of air. As this gangway was about being finished the parties very readily complied. They employ 1 boss, 35 miners, 21 laborers, 4 company men, 7 drivers, t door boys, in the mines; 1 boss, 5 mechanics, 33 breaker men, 21 slate pickers, 4 drivers, in all 136 men and boys in and about the mines. They shipped (including Lanrel IIill, No. 3, and No. 3, Hazleton) 121,420.19 tons of coal to market, and worked (at No. 1) 113 1_{10}^{7} days, and used 455 kegs of powder. Breaker capacity, 450 tons of coal per day.

Hachinery.-They ase 1 hoisting engine of 60 -horse power, 1 breaker engine of 20 -horse power, 1 pumping engine of 60 -horse power, in all 3 engines ; aggregate horse power, 140 ; and 11 boilers, reported cleaned and examined and in good condition, and steam ganges on the boilers, to indicate the pressure of the steam.
C. Pardee, superintendent; Thomas Dickinson, general mine superintendent; Peter Watson, mine boss ; Christ Wetteran, outside foreman.

Cranberry Collibry.

Located about 1 mile west of Hazleton, on the estate of A.S. \& E. Roberts, and operated by A. Pardee \& Co.
ta Slope No. 1.-Sunk on the south dip of the Mammoth or E vein, at an angle of abont $15^{\circ} 45^{\prime}$, and is 732 feet long, the top of the slope is 1,622 feet above mean tide, and at the bottom 1,423 feet, perpendicular depth -199 fect. The west gangway on the south dip las been worked to the boundary line. The west gangway on the north dip consists of 18 breasts working. The ventilation is somewhat defective in this gangway. The east gangway on the north dip has been worked out, but is now used for taking the coal from the rock slope. This is a slope sunk through rock from the surface to the gangway, thence to the basin, and consists, on the west side, of two gangways, one on each side of the dip. This part of the slope is nearly worked out. The east gangway has been driven a considerable distance, and 8 breasts working and room for 28 more. The coal reserved will be taken via "Crystal Ridge," or slope No. 4.
*Ventilation is produced by natural causes. There are good air-ways driven parallel with the main gangway, but there being no appliances to create the draft necessary for this mine, especially in the west gangway on the north dip. The air is not very commendable. I have requested that the rentilation be improved.

Machineru.-They use 1 hoisting engine of 60 -horse power, 1 breaker engine of 20 -horse power, 1 pumping engine of 60 -horse power, 1 saw mill engine of 20 -horse power, in all 4 engines of 160 -horse power, and 15 boil-ers-cleaned, examined and reported safe and in good condition.

Remarks.-They employ 1 boss, 64 miners, 28 laborers, 9 company men, 7 drivers, 2 door boys, in the mines; 1 boss, 7 mechanics, 30 breaker men, 1 driver, 45 slate pickers, in all 195 men and boys in and about the mines; and 29 mules. They shipped $80,973.14$ tons of coal (including East Crystal Ridge) during the year ending December 31, 1875, and used $1,080 \mathrm{kegs}$ of powder, and worked $122 \frac{3}{4}$ days. Breaker capacity 550 tons of coal per day.
C. Pardee, superintendent; Thomas Dickinson, mine superintendent; Cronrod Miller, mive boss; Thomas W. Howells, ontside foreman.

10 Mine Ref.

Crystal Ridge Collieri.

Located near ITazleton, on the estate of A. S. and E. Roberts, and operated by A. Pardee \& Co.

Siope, No. 3.-Sunk on the north dip of the Mammoth or E rein, and is 344 feet long. This slope is partly sunk through rock to the vein passing* the east gangway from Cranberry slope, and is sunk to the basin. Elevation above tide at top of slope, 1,571 feet; at the bottom of the same, 1,338 feet; perpendicular depth of slope from surface, 233 feet, to basin. The hoisting from this slope is done by the machinery used heretofore to hoist the coal from slope, No. 2, Crystal Ridge, or Cranberry, No. 3. For further information concerning this slope see Cranberry report.

Slope, No. 4, East Urystal Ridge, or Cranberry, No. 5.-Sunk on the north dip of the same vein at an angle of about - ${ }^{\circ}$. Length of slope, 237 feet; perpendicular depth, 101 feet; elevation above tide at top, 1,600 fect ; at the bottom of the same, 1,499 feet. Slope, No. 2 , as previously reported, has been abandoned and the coal worked out. Slope, No. 4, or East Crystal Ridge, cuts off the water level gangway driven from Laurel Hill slope, and is sunk a lift below it. The west gangway in the lower lift will be driven to connect with the east side gaagway of the rock slope, No. 3, as before stated in Cranberry slope report. Slope, No. 4, contains a counter gangway or a continuation of Laurel Hill gangway, with 8 breasts working, all in good order, and the mode of working is considered safe.

Ventilation is produced by atmospheric action. The slope and the old gangway being the intake and the pump-way the outlet. There are good air-ways being driven along the main gangway. Ventilation good.

Machinery.-They nse 2 hoisting engines of 120 -horse power, 1 breaker. engine of 25 -horse power, in all 2 engines of 115 -horse power; and 16 steam boilers, cleaned, examined, reported safe and in good condition.

Remarks.-They employ 1 boss, 24 miners, 25 laborers, 2 company men, 3 drivers, in the mines ; 1 boss, 4 mechanics, 18 breaker men, 17 slate pickers, in all 95 men and boys in and about the mines. They worked $96 \frac{3}{15}$ days, and used 530 kegs of powder. They have a breaker capacity of 500 tons of coal per day. There is a large commodious new breaker built to prepare the coal from this slope. Everything is in first-class working order. For shipments see report of Cranberry colliery.
C. Pardee, superintendent ; Thomas Dickinson, general mine superintendent ; Christ. Snyder, mine boss; George Gerloch, ontside foreman.

Mount Pleasant Colliery.

Situated 2 miles west of Hazleton, Luzerne county, on the estate of \mathbb{C}. Koons and others, and operated by William Taggart. This colliery hereafter will be operated by A. Pardee \& Sons, as the lease of the former operator having expired.

Slope No. 2.-Sunk on the north dip of the Wharton or D vein, thickness about 9 feet, length of slope 508 feet, perpendicular depth 229 feet, the top of the slope is 1,706 feet above tide, and at the bottom 1,477 feet. There is a counter gangway about halfway in the slope, on the east there is a counter gangway being driven to work the coal left by the lower lift.

Tentilation.-This is produced by the steam from the pump and atmospheric action. The ventilation is not very commendable, but there is some hopes of having it improved hereafter by the new operators.

Jachinery.-They use 1 hoisting engine of 50 -horse power, 1 breaker engine of 15 -horse power; tutal, 3 engines of 140 -horse power.

Remarks.-They have furnished a map of mines. No person is allowed to ride upou loaded cars. They have no brake on the hoisting drum, nor speaking tubes in the slope. They have no boys under 12 years of age working inside. They have no wash-house for the men to wash in. They have not reported accidents. Men employed inside : 1 buss, 40 miners, 22 laborers, 7 drivers, 2 duor boys; outsile, 1 boss, 9 mechanies, 4 head and plate men, 6 company men, 4 drivers, 24 slate pickers; total number men and boys inside, 72 ; outside, 48 ; mules, 23 . Coal shipped, 62,000 tons; sold to individualis, 600 tons ; powder used, 1,495 kegs; number of days worked, 255.

William Taggart, superintendent; Mugh Sheriden, mine boss; John. Brown, outside foreman.

Humboldt Colliery.

Situated four miles west of Hazleton, on the estate of the L. V. R. R. Co , and operated by Linderman, Skeer \& Co.

Slope, No. 1.-Sunk on the Wharton or D vein, dipping north about $24 \frac{1}{4}^{\circ}$; length of slope, 390 feet; elevation above tide at top of slope, 1,742 feet; at bottom, 1,582 feet; perpendicular depth of slope, 160 feet. The coal in this slope has been worked out, and is now used for pumping.

Slope, No. 3.-Sunk on the north dip of the same vein a distance of 680 fect, at an angle of abont $23 \frac{1}{2}^{\circ}$; elevation above tide at top of slope, 1,740 feet; at bottom of the same, 1,472 feet; perpendicular depth of slope, 268 feet. The east gangway has been driven $1,63 \pm$ feet, with 14 breasts working, and the west 2,180 feet, with 12 breasts working. Thickness of vein about 9 feet; width of breast, 27 feet; width of pillar, 15 feet. The mode of working is considered safe. There are 14, 108 feet of T iron track in and about the mine, with 29 mine cars, and a breaker capacity of 400 tons per day. They have mined in 132 days 49,200 tons of coal, and used 1,029 kegs of powder ; about 482 tons of coal mined for each man employed inside, and about one-half pound of powder used for each ton of coal mined.

Tentilation.-The ventilation has been considerably improved since my first visit by driving an air-hole, which connects with the old working of. No. 2, which has been abandoned owing to the coal being worked out. The rentilation is produced by the steam from the pumping engine, being exhausted into the ontlet; amount of air at face of gangway, 8,200 cubıc feet; at outlet, 11,600 cubic feet; men employed inside, 102 ; men employed outside, 44 ; boys picking slate, 44 .

Mrachinery.-There are 2 hoisting engines of 180 -horse power, 1 breaker engine of 30 -horse power, 1 prmping engine of 60 -horse power; total, 4 engines of 270 -horse power.
W. Marshall Reese, general mine superintendent; William James, mineboss.

Gowen Colliery.

This colliery is situated 12 miles west of Hazleton, in Luzerne county, on the estate of Roberts Coal Company, and operated by the Roberts Run Coal Company.

Deseription.-Slope No. 1, sunk on the north dip of -- rein, a distance of 240 feet, at an angle of about 55°. The west gangway has been driven 2,595 feet, with 7 breasts working. There are 5,730 feet of T iron track in and about the mines, and 26 mine cars. The drift lias been driven west 1,800 feet, including two tumels, one of 165 and the other 72 feet. Those reins have rot been definitely named, but suppose them to be the

Whaton or Buck Mountain. They ship about 150 tons of coal per day, with a breaker capacity of 450 tons per day.

Tentilation.-This is produced by a furnace located on top of the outlet, which gives very unsatisfactory results, owing to the furnace being placed so far off from where the power of rarefaction is required. The air is conducted down the slope, thence along the main gangway to the first breast opened next to the face of the ganway, thence back throngh the crosscuts to the up-cast. This mine genwrates gas. This mode of rentilation does rery well where the vein will nut admit of an air-way being driven. But the great trouble encountered is i, keeping the shutes air-tight to force the air to the face of the gangway, whe ch is a matter of impossibility, as the shate must be opened while the laborer loads his car. If an air-way can possibly be driven parallel with the main gangway it is preferable to do so. The air has been measured and reported according to law, $6, i 20$ culic feet at inlet, 7,300 cubic feet at ontlet. Men employed, 34 .

Machinery.-They use I hoisting engine of 60 -horse power, 1 breaker engine of $30-h o r s e ~ p o t v e r, ~ w i t h ~ 5 ~ b o i l e r s-r e p o r t e d ~ s a f e ~ a n d ~ i n ~ g o o d ~ c o n d i-~$ tion. They have no metal speaking tube, and have no brake on the hoisting drum. They do not allow men to ride on the slope. They have competent and sober enginecrs, they seem to have a competent and practical mining boss, they have steam ganges on their builers, and they have reported all serious accidents to persons. They employ inside: 1 boss, 30 miners, 10 laborers, - company men, 3 drivers, 1 door boy, total number of men and boys inside 46 ; ontside: 1 boss, 2 mechanics, 3 head and plate men, 10 company men about the breaker, 1 driver, 15 slate pickers, total outside 32 ; mules, 7 . Coal mined, 25,659.12 ; powder used, 550 kegs; the vein is about 10 feet thick, coal good; days worked, 236 ; shipped from breaker, $24,298.07$ tons.

Lewis Rothermal, gencral superintendent ; Alex. Witchey, mine agent.

Beaver Meadow Collieries.

These mines are situated about three miles east of IIazleton, on the estate of Hon. Tench Coxe, and operated by Ely, \& Co.

Stope, No. 1.-Sunk on the north dip of the Mammoth or E vein a distance of 150 feet to the basin; vertical, 75 feet, at an angle of 30°. The rein is about 27 feet thick The coal mined at present is from the stripping or "patching." This slope will soun be abandoned, and a new one is now being sunk to take the place of Nos. 1 and 2 slopes.

Slope, No. 3.-Sunk on the Wharton or D vein a distance of 200 feet, at an angle of about 45°; vertical, 140 feet. The east gangway has been driven 1,000 feet and the west 300 feet. This slope has been sunk to the basin, and will soon be worked out on the east. The gangway is now being robbed back. The vein is about 9 feet thick.

Slope, No. 4.-This is a new slope, sunk on the Wharton or D vein a distance of 350 feet, at an angle of about 45°, dipping north. This slope has been sunk a lift lower than slope, No. 2, owing to the basin dipping from east to west, and connects with the west gangway on the north dip of slope, No. ". The east gangway has been driven 300 feet and the west 275 feet. There are 7,500 feet of T iron and 1,500 feet of strap-iron track in and about the mines, and 80 mine cars, with a breaker capacity of 800 tons per day, including the new breaker. They employ 2 bosses, 16 miners, 35 laborers, 5 company men, 5 drivers, 1 door hoy, in the mines; outside they have 1 boss, 7 mechanics, 4 head and plate men, 4 company men; abont the breakcr, - drivers, 13 slate pickers; in all 93 men and boys; mules, 9 . They
shipped during the year 30,000 tons of coal, and used 600 kegs of prowder and worked 118 days.

Tentilation.-This is produced by the exhaust from the pamp in Nos. 3 and 4 , and was not very commendable the first timo I visited these mines, but there is some hope of having the new workings better ventilated, as precautionary measures are taken to reserve good air-ways.

Jiachinery consists of 3 hoisting engines of 100 -horse power, 2 breaker engines of 50 -horse power, 3 steam pumps of 120 -horse power; in all 8 ellgines of 270 -horse power; they have no speaking tubes in their slopes; they are putting a brake on their hoisting drum; they have had their boilers cleaned, examined and reported; they have steam gauges on their boilers.

Remarks.-They have furnished maps of their workings; they have had two men killed in these works during the year, one by a fall of roof and the other by the breaking of the machinery, letting the car to the bottom, which killed him while crossing. They had been notified to put a brake on the hoisting drum previous to the accident, and if they had complied perhaps the accident would not have occurred; at any rate they would have complied with the law. An inquest was held by Natin Martin, justice of the peace of Beaver Meadow. The jury rendered a verdict of an accident cansed by defective machinery. The other accident by neglect of the miner standing timber in his breast. He had been notified of the danger by the inspector, and requested him to stop working on the pillar until there were some timbers stood in the breast. He said it was all right, and in about two weeks I was notified of a man laving been killed. I repaired to the scene of the accident, and, unfortunately for him, it was the same person whom I had cautioned of the danger.

A new breaker is building, which will be completed by spring, to prepare the coal from the new workings. It is gratifying to me to be able to state that there is some hope of this colliery becoming equal to any of the others in the district under the management of the present superintendent.

James Waddle, superintendent; Wiliiam Carlille, mine boss; P'eter Keirm, outside foreman.

Colerame Colmery.

Situated 4 miles south-east of Mazleton, on the estate of Willian T. Carter \& Co., and operated by said company. Consists of 3 slopes and 1 drift.

Slope, No. 1, has been partly driven in rock to where the rein takes its regular course, dipping south. The vein worked is the Mammoth or E , about 27 feet thick. Length of slope, 1,100 feet; perpendicular depth, 230 feet. This slope will soon be worked ont. Consists chiefly in robbing pillars.

Drift, No. 1, has been driven westward for a considerable distance on the Wharton or D vein. Thickness about 9 feet. This drift has not very far to go to the boundary connecting with Jeanesville workings. It has been very extensively worked. There is an excellent roof, and the coal is of very good quality. As the pillars had been considerably robbed I deemed it proper to order props to be stood aloug the main gangway for the safety of the men.

Ventilation.-This is effected by matural catises, and is not very satisfactory. I have ordered the same to be improved. The ventilation in the No. 1 slope is good. Number of men employed at drift and slope, No. 1: inside, 83 ; outside, 15 ; boys picking slate, 20.

Machinery.-There are 1 hoisting engine of 60 -horse power,. 1 breaker engine of 30 -horse power, 2 pumping engines of 85 -horse power; total, 4 engines of 175 -horse power. Coal mined during year, 42,100 tons, as fol-
lows : Shipped to market, 40,000 tons; sold to employees, 500 tons; used for mine purposes, 1,600 tons. Powder used, 1,002 kegs. Number of days worked, $136 \frac{1}{2}$.

SLore, No. 2.-Suk on the south dip of the Mammoth or F rein a distance of 585 feet, at an angle of about 38°. Thickuess of vein about 27 fect. This slope has been sunk to the basin; the synclinal dips from west to rast. The east gangway has been driven 300 feet, and camot be worked any further at present owing to the old workings of Beaver Meadow being drowned, and the:e being 130 map of these old works to show what piliar has been left The west gangway has been driven 1,300 feet, with 25 breasts opened. There are 2 gangways on the west, 1 on each dip.

Ventilation. - The ventilation is produced ly exhaust from the pump. ing engine. The air is good; 4,000 cubic feet at face of gangway; at outlet, 3,000 cubic feet; men employed, 51 .

Sinle, No. 4.-This is a new slope newly smok on the Wharton or D vein. Length, 435 feet; vertical, 278 feet; angle, 40°. A new breaker is now being built to prepare the coal from the slope and drift. The ventilation in all the slopes is produced from the exhaust from the pump. There are 22,125 feet of T iron track and 11,100 feet of strap or wooden track in and ahout the mines, and 106 mine cars, 37 mules; breaker capacity, 650 tons per day. They mined in No. 2 , during 143 days, 55,460 tons of coal, and used 755 kegs of powder. Men and boys employed : inside, 80 ; outside, 24 ; boys picking slate, 24 . Number of days worked in all the slopes during the year, $279 \frac{1}{2}$. These mines have been very fortunate; not an accident of any consequence occurred during the year, which speaks well for its management.

Machinery consists of 3 hoisting engines of 150 -horse power, 1 breaker engine of 30 -horse power, 3 pumping engines of 160 -horse power; total horse power, 240 ; total engines, 7 , and are ail in good condition.

John Wear, superintendent; Frank Wear, mine boss; Michael North, outside foreman.

Jeanestilla and Spring Mocathin Collemes.

These collieries are sitnated 2 miles sonth of Hazleton, on the estate of the Spring Hountain Coal Company, and operated by J. U. Haydon \& Co.

Slope No. 1.-Sunk on the sonth dip of the Mammoth or E vein, a distance of 601 feet, at an angle of about 22°, eleration above mean tide at top of slope - fect, at bottom ——feet, perpendicular depth of slope 230 feet. The west gangway has been driven 3,600 feet, and the east gangway 3,200 feet, with several breasts. A tumel 150 feet long has been driven, cutting the Wharton or D vein at an angle of abont 20° on the north dip. The Mammoth vein is about 30 feet, and the W harton abont 9 feet thick, and the coal is of rery good quality.

Shope No. 4 . -Sunk ou the south dip of the Mammoth or E rein, at an angle of about 31°, and is 566 feet long, perpendicular depth 283 feet, elevation above tide at top of slope - feet, at boitom - . feet. The east gangway has been driven 1,407 feet, and ended in a fant, with 9 breasts working. They are driving an air-hole in this gangway which will increase the ventilation considerable. The east gangway, on the sonth dip, has been driven 1,310 feet, with 18 breasts working ; and the east gangway on the north dip 1,100 feet. with 2 breasts opening. This gangway has about 200 feet to go to comnect with the oll No 4 slope workings. A tumel has heen started on the east side of the slope to cut the Wharton or D rein en fies noth dip, and another tunnel is contemplated of being driven on the

4. $1 . .$.

west side to cut the Wharton on the south dip. The ventilation is very commendable in this slope.

Slore No. 5.-Sunk on the south dip of the Mammoth or E vein, a distance of 662 fect, verticai 229 feet, and at the top of the slope is - feet, above mean-tide at the bottom - feet. The bottom lift has been wrorked out. The work done in the big vein consists of robbing pillars, \&c. A tunnel about 150 feet long has been driven at the bottom of the slope, cutting the Wharton or D rein on the north dip, at an angle of about 20°, in 9 feet of very good coal. The east gangway in the Wharton vein has been driven around the point of the basin into the south dip. The west gangway has been driven for a considerable distance, and is now being worked around the circumference of the basin. The breast workings connect with the drift slope gangway. The working of this vein is considered safe, but there is a slate of about 4 to 6 inches, called the clod, next to the top rock, which, unless it is taken down as the miner advances, is very apt to fall without giving any warning, but if the miner takes it down as he works ahead there is not the least apprehension of danger. The air is rather scarce in this vein, and has always been so by what I have been informed.

Drift or tunnel No. 5 is 300 feet long, cutting the Wharton on the north dip, at an angle of about 18^{10}. The water-level working has been worked out, and an inside slope sunk ou the east side of the tunnel, a distance of 303 feet, for the purpose of shortening the range from the west Wharton gangway in slope No. 5. The west gangway has been driven 1,042 feet, with 10 breasts working; and the east gangway 1,328 feet, with 11 breasts worling. This slope connects by an air-hole with No. 5 slope, and No. 5 connects by an air-hole with slope No. 1, on the south dip of the Wharton or D rein.

They have three breakers on the property, with a capacity of 1,900 tons of coal per day, 189 mine cars, and 20,410 feet of T iron track in and about the mines, and 67 mules. They employ 4 bosses, 120 miners, 135 laborers, 27 company men, 36 drivers, 2 door boys in the mines; 4 bosses, 15 mechanics, 59 breaker men, 6 drivers, 112 slate pickers, in all 520 men and boys. They shipped 174,816 tons of coal during 1875, and used 2,719 kegs of powder, and worked 133 days.

Ventilation is produced by the steam exhanst from the pumps. Slope No. 4 is very satisfactory ventilated. There is no fault to find with the air in any of the slopes in the big vein workings, but in the Wharton it is very defective in some parts. The inlet being the drift, thence it circulates through down to No. 5, through the tumel to the outlet. I have requested the superintendent to cause a greater quantity of air to circulate through the Wharton vein to carry off the powder smoke which remains in clouds in the face of the breast, causing it to be very injurious to the health of the men.

3Iachinery.-They use 5 hoisting engines of 275 -horse power, 4 breaker engines of 90 -horse power, 4 pumping engines of 460 -horse power, total number of engines 13 , aggregate horse power 825 , two plunger and three steam pumps, all in good condition.

Stewart Macfarlam, superintendent.

Beater Brook Collieries.

Located at Frenchtown, about 3 miles south of Hazleton, on the estate of the French coal company, and operated by the Beaver Brook coal company, and consists of 4 slopes and 2 breakers.

Slope, No. 1.-Sunk on the south dip of the Mammoth or E vein a distance of 270 feet, at an angle of about $41 \frac{30}{4}$; perpendicular depth, 180 feet.

The top of the slope is - feet above mean tide, and at the bottom of the same - feet, and is sunk to the basin. The west gangway has been driven 1,900 feet, with 43 breasts worked out, and the east gangway 390 feet, with 8 breasts worked out. The bottom lift is about being abandoned. A counter gangway is now being driven over the slope to work the crop coal.

Slope, No. 2.-Sunk on the south dip of the Wharton or D vein a distance of 780 feet, to the boundary line of the New York and Lehigh Coal Company's property, at an angle of about $9 \frac{33}{4}{ }^{\circ}$; vertical, 130 feet; elevation abore mean tide at top of slope, - feet; at the bottom of the same, - feet. The west bottom lift gangways consists of rubbing pillars on the east side. The east counter gangway has been driven 1,000 feet, with 17 breasts opened, and the west counter gangway 3,400 feet, with 68 breasts opened, and the most of them worked out. The vein is about 9 feet thick, and the coal of very good quality. Also an excellent roof. This slope is worked by a single track, owing to the counter gangways.

Tentilation is produced by a furnace on the west gangway, and by natural causes on the east. On my first visit to these mines the air was inadequate for the support of the men. Since a very good furnace has been built, cansing sufficient rentilation ; 14,770 cubic feet per minute at face of gangway, per report for November.

Slope, No. 3.-Sunk on the sonth dip of the Wharton or D vein a distance of 154 feet, at an angle of about 30°; perpendicular depth, 75 feet; elevation above mid-tide at top of slope, _ feet; and at the bottom of the same, - feet. The east gangway has been driven 450 feet, with 10 breasts opened. The west gangway has been worked 150 feet, with 3 breasts worked out. The present workings are all on the east side, and the gangway has not far to go to the boundary line. The ventilation tolerable; 5,700 cubic feet in face of gangway, per air report for November; men employed, 7.

Slope, No. $4 .-$ Sunk on the south dip of the Wharton or D vein a distance of 660 feet to basin, at an angle of about $3 \frac{1}{2}^{\circ}$; perpendicular depth, 370 feet; elevation above tide at top of slope, - feet; at the bottom of the same, - feet. This is a single track slope, adapted for the counter gangway system. About midway in the slope there is a counter gangway driren west for a considerale distance through rock, as the vein pinched out, but is now in good coal about 9 feet thick. The east gangway in the bottom lift consists of 9 breasts, and has been worked to the boundary line, and is 460 feet long. There are 2 gangways on the west side of the slope, 1 on each dip. The gangway on the sonth dip is 420 feet long, and contains 8 breasts working. The roof is good and the coal of superior quality. The mode of working is considered safe.

Ventilation is produced by the exhaust steam from the pump, the manway being the inlet and the slope the outlet. This slope is partitioned off by boards, affording an outlet for the steam. Owing to the leakage of the brattice it makes it very disagreeable on the slope. The air circulates down the man-way; then to the face of the south dip, west gangway; thence through the cross-hole to the north dip, west gangway; thence to the east gangway, and returning to the outlet. The air on the west side is very good, but on the east side is not very commendable. I was obliged to stop some of the workings on the east, owing to the defective rentilation. Provision are being made to improve the same on the east side. Heasurements taken in face of west gangway, 12,600 cubic feet per minute; men employed, 62.

Machinery.-They use 4 hoisting engines of 220 -horse power, 2 breaker engines of 60 -horse power. 4 pumping engines of 160 -horse power, in all 10 engines of 440 -horse power, and 18 boilers, examined and reported in good and safe condition ; and also 4 which have been ordered out to be repaired.

Remarks.-They employ 2 bosses, 81 miners, 53 laborers, 18 company men, 14 drivers, 5 door boys, in the mines; 2 bosses, 15 mechanics, 31 breaker men, 9 drivers, 45 slate pickers, in all 275 men and boys in and? about the mines. They shipped 54,900 tons of coal during the year ending December 31, 1875, and used for mine purposes 9,075 tons. They used 1,693 kegs of powder, and worked $239 \frac{1}{4}$ days, inclading both breakers. Capaciiy of the two breakers, 800 tons of coal per day. They had 19,410 feet of T iron track in and about the mines, with 8.1 mine cars and 31 mules.
E. L. Bullock, superintendent ; David Reese, mine boss; Thomas Davis, outside foreman.

Yorktoms Collieries.

Situated three miles south of Hazleton, on the estate of the New York and Lehigh coal company, and operated by A. L. Mumper \& Co.

Slopas, Nos. 1, 2 and 4, as previously reported, are all abandoned, and are now drowned and the coal worked out.

Slope, No. 5.-Sunk on the south dip of the Mammoth or E vein a distance of 390 feet to the basin, at an angle of abont 45°; perpendicular depth, 276 feet. The basin dips from east to west. A new slope has been partly driven west of the present slope in order to sink another lift below the No. 5 gangway. The east gangway has been driven to the boundary line, with 20 places worked; consists chiefly in robbing pillars. The west gangway is driven quite a distance, and is about surmounting the anticlinal into the north dip of the same vein. A tumel has been driven on the west side of the slope, cutting the Wharton or D vein on the south dip, and gangways turned off east and west of the tunnel. The east gangway has been driven 1,140 feet, with 35 breasts opened. The west gangway has been driven 1,320 feet, with 34 breasts opened. The vein is about 9 feet thick; coal very good quality. There are 105 mine cars, with a breaker capacity of 400 tons per day. A new breaker is now being built to take the place of the old one now abandoned. Men employed inside: boss, 1 ; miners, 61 ; laborers, 36 ; company men, 37 ; drivers, 16 ; outside: boss, 1 ; mechanics, 14 ; head and plate men, 16 ; all company men about the breaker, 16 ; drivers, 2 ; slate pickers, 60 ; total number of men and boys employed, 260 ; mules, 12 ; coal mined, 70,956 tons; powder used, 1,080 kegs; number of days worked, $139 \frac{1}{4}$.

Ventilation is produced by means of exhaust steam from the Thatche: pump, the manway being the inlet and the pumpway the outlet. The air in the Big vein is favorable, but in the Wharton it has been very unsatisfactory. I have given orders to have the same improved forthwith. The following is the report of air measurements for month of December: Intake, 11,000 cubic feet per minute; outlet, 12,000 cubic feet per minute; at face of gangway, 7,055 cubic feet; men emplosed, 130.

Machinery.-They use 1 hoisting engine of 60 -hosse power, 1 breaker engive of 30 -horse power, 1 pumping engine of 100 -horse power; total number of engines, 3 , of $19 C$-horse power, and 26 steam boilers, reported in safe condition, and are examined every six months according to law.

Remarks.-They have a second outlet; they have furnished the inspector with a map of their workings; they have reported all serious accidents to persons, and the air is measured every week and reported monthly ; they
have no brake on the hoisting drum ; no speaking tube ; the mining boss is a practical and competent man; they have no boys under 12 years of age working inside; $n o$ persons are allowed to ride on the slope.

Slope, No. 6.-Sunk on the Wharton or D vein a distance of 750 feet, at an angle of about 20°; perpendicular depth of slope, 255 feet. The rein is about 9 feet thick. The east gangway has been driven 531 feet, at which point the rein pinches ont and will probably be discontinued. The west gangway has been driven 240 feet, with 12 breasts opened in both gangways. This is a new slope and likely to prove a good mine. The coal from this slope will be prepared at the new breaker now building. Men employed inside: boss, 1 ; miners, 30 ; all company men employed, 40 ; drivers, 3 ; outside: boss, 1 ; mechanics; 10 ; head and plate men, 4 ; all company men about the breaker, 22 ; drivers, 5 ; slate pickers, 20 ; total men and boys employed, 136.

Tentilation.-This is produced by the steam from the exhaust. The slope is the intake and the pumpway the ontlet. They have not yet got their traveling road out, but will as soon as they can get room or a suitable place to drive one. The air is tolerable.

DIachinery consists of 1 hoisting engine of 50 -horse power, 1 breaker engine of 30 -horse power, 1 pumping engine of 125 -horse power; total number of engines, 3 , of 205 -horse power; they have 1 Thatcher pump; coal mined, 13,681 tons, and shipped $11,181 \frac{1}{2} 30$ tons during year ending December 31, 1875 ; they used 540 kegs of powder and worked 78 days.

Thomas John, general superintendent; Eran Reese, mine boss ; Evan W. Thomas, outside foreman.

South Spring Mountain Collieries, Tresckow, Carbon Uounty.
Situated $3 \frac{1}{2}$ miles south of Hazleton, on the estate of the Lehigh and Wilkesbarre Coal Company, and operated by the said company.

This colliery consists of 3 slopes and 1 breaker, and are - feet above tide.

Slope No. 2.-Sunk on the south dip of the Wharton or D rein, and is 411 feet long, at an angle of about 40°, vertical 272 feet. The east gangway is driven 2,600 feet, and the west gangway 3,500 feet, with 15 breasts opened. The roof is good and the coal of superior quality.

Slope No. 5.-Sunk on the south dip of the Mammoth or E vein, at an angle of about $43 \frac{1}{2}^{\circ}$, and is 277 feet long, vertical 155 feet, a tunnel has been driven cutting the Wharton on the north dip and connected by a manway with No. 2 slope. A dam has been built in this tumnel, preparatory to abandoning the slope to prevent the water from going down into No. 2. I have received notice from E. B. Leisenring, superintendent, of their intention of abandoning this slope, as the coal has been worked out.

Shope No. 6. -Sunk on the north dip of the Whartou or D vein, at an angle of abont $20 \frac{3}{4} \circ$, and is 600 feet long, vertical $22 t$ feet, thickness about $8 \frac{1}{2}$ feet; the coal is well adapted for steam purposes. The top of the slope is - feet above mid tide, at bottom - feet. The works are all on the east side of the slope. The west gangway has been driven 450 feet, and worked out. There are several gangways on the east side, gangway No. 2 has been driven 1,800 feet, gangway No. 4 2,400 feet, gangway No. 6 900 feet, and the basin gangway 1,200 feet, with numerous chambers. They employ 1 boss, 90 miners, 61 laborers, 31 company men, 17 drivers, 3 door boys, in all the mines; 1 boss, 19 mechanics, 8 plate men, 51 breaker men, 5 drivers, and 55 slate pickers, in all 342 men and boys, and 42 mules. They shipped 63,310 tons of coal during the year ending December 31, 1875, and used 1, 285 kegs of powder, and worked 126 days.

Tentilation.-Slope No. 2 is ventilated by exhanst steam from the pump, the traveling-way being the intake and the pump-way the outlet. Slope No. 6 is ventilated hy a furnace built in the outlet, the air in this work has been rery weak, but an air-hole is now being driven throngh about 50 feet of rock to the surface. When this hole is through it will modonbtedly be a blessing to the miner. and a credit to the superintendent. The air has been measured and reported for month of December, as follows: 10,500 cubic feet per miaute in the face of the four gangways. Men employed, 14. ; mules, 13.

Jachinery.-They nse 3 hoisting engines of 180 -horse power, 2 breaker engines of 60 -horse power, 1 pumping engine of 90 -horse power, total number of engines, 6 ; aggregate horse power, 330 . They have 20 boilers in use-cleaned, examined and reported safe and in good condition. They have steam gauges on their boilens to indicate the pressure of steam in the boiler, and safety-ralre on each set of boilers. They have no brake on their hoisting drum, nor speaking tubes. They do not permit persons to ride on cars in the slope. There is a good man-way for men to travel to and from their work. These works hare improved wonderfully since the present firm have taken possession, and are still improving. They have a breaker capacity of 600 tons of coal per day.
E. B. Leisenring, superintendent; Owen R. Evans, mine boss; Geprge Spencer, outside foreman.

Roon Rux Mines, Nesquehoning, Carbon County.

Situated inve miles west of Mauch Chunk, on the estate of the L. C. and N. Co., and operated by the Lehigh aud Wilkesbarre coal company.

Shaft. No. 1.-Depth, 310 feet; elevation above tide at top of shaft, 1,075 feet; at bottom, 765 feet. The west gangway has been driven 2,811 feet, and has been discontinued. The work done at present is principally drawing out the loose coal. This part of the mine produces great quantity of carburetted hydrogen gas or fire-damp. There are about eight men working by the light of the safety-lamps in this gangway. They are strictly forbiduen to use naked lights in this part of the workings. The east gangway has beeu driven 3,200 feet, and will connect with the old workings of Hackleburney. A tumel has been driven a distance of 339 feet, intended to cut the rertical rein, but proved to be about 40 feet too low to cut the basin, sy a balance plane, of 100 feet in length, was driven through the rock, at an angle of about 25°. cutting the rein in about 18 feet of good coal. The east gangway has been driven 2,700 feet, and continues to be worked in grood coal.

Ventilation. The rentilating of the 50 -feet is produced by a 12 feet diameter fan, the shaft boing the intake; thence throngh the gangway to the face of the working and back to the fan through the return air-way. Measurements of air at the face of the 50 -feet gangway, taken October 14 by the inspector, 0,480 cubic feet; men employed, 8 ; outside barometer, 28.40 ; inside barumeter at face of gangway, 23.05 ; difference. . 35 ; thermometer, -. The ventilation in the rertical is tolerable, produced by a furnace erected in the old or No. 1 tmmel. I have regnested the superintendent to cause a greater quantity of air to circulate through this part of the mine.

Tensel, No. 2.-Eleration above tide at mouth of tumel, 1,049 fect; lencth of tumel to Red Asiz vein, 1,420 feet, cutting the Mammoth or E and the Red Ash veins on the north dip. The west grangway has been driven 1,466 feet. At the heading the rein is entirely pinched out. They have followed the smooth of the top rock for about 300 feet. At this point on the surface the vein proves good, which is rery encouraging for the pros-
pecting. The east gangway has been driven 722 feet, connecting with the old breasts worked up fiom the old working of tumnel, No. 1, which has been abandoned for many years. There are a few breasts being opened on the turn-ont and abont 4 drawing out on the east side of the tunnel. The mode of working is considered safe.

Tentilation.-The circulation of air is produced by natural canses and meets the requirements, as there are but few men working in this tunnel.

Slope, No. 3.-Sunk on the south dip of the Red Ash vein. Elevation above tide at top of slope, 1,151 feet; at bottom, 878 feet; vertical, 273 feet. The west Red Ash gangway has been driven 3,500 teet and ended in a fanlt. A tumel 500 feet in length has been driven, cutting the Mammoth or E vein on the south dip, at an angle of about 43°. The west gangway has been driven a considerable distance, and comnects by an air-liole with the east gangway of tomnel, No. 6, Summit Hill. The difference of elevation between the two gangways is about 154 feet rertical, or " 40 feet on the pitch. A large pillar has been reserved for the purpose of sinking a slope bolow the present level. Thickness of vein aboat 50 feet.

Tentrlation is produced by a 15 feet diameter fan. The intake is located in the gangway, and the air circulates down the air-hole from No. 6 gangway; thence to the heading and back to the fan ; 0,300 cubic feet per minute at face of gangway ; at outlet, 6,500 cubic feet per minute; men employed, 21.

Slore, No. 4.-Sunk on the south dip of the Mammoth or E vein. This slope is sunk from the top of the anticlinal, and on the reverse dip of that which the shaft is sunk on. The vein is about 30 feet thick, and both gangways are now in a fault. The breasts are opened as follows: Shate, 21 feet long; width of breast, 30 feet; width of pillar, ' 21 feet.

Fentilation.-This is produced by atmospheric action; 600 cubie feet per minute at face of gangway ; 800 cubic feet at outlet; men employed, 12; mules, 2.

Machinery.-They use in all the mines 4 hoisting engines of 235 -horse power, 1 breaker engine of 45 -horse power, 5 pumping engines of 727 -horse porver, 2 fan engines of 23 -horse power ; total number of engines, 12 ; total horse power, 1,030 . The boilers have been cleaned and examined and reported in safe condition. They have an adequate brake attached to their hoisting drum ; they have had speaking tubes but are no good; I have ordered one to be put in at the shaft to re-place the old one; they have a steam gauge to indicate the pressure of the steam, and safety valve on each set of boilers.

Remarks.-They have furnished a map of their mines; they have a second opening; they have no wash-honse for men to wash themselves in ; the mining bosses seem to be practical and competent men; there are no boys under 12 years working in the mines; they do not allow men to ride upon loaded cars, on the slopes or slaft; they do not allow more than 10 men to ride at any one time on the slope or shaft; they have reported all serious accidents to the inspector; they mined during the year, $70,731.07$ tons of coal, and used 648 kegs of powder, and worked $145 \frac{1}{4}$ days, with a breaker capacity of 500 tons per day and a mine capacity of 1,000 tons per day; shipments to market, $63,499.07$ tons of coal ; number of mules, 40 ; men and boys employed, $20 t$.
W. D. Zehner, general superintendent; James Smithan, mine agent; Riclard Eustice, foreman

Sumimt Mill Colderies.

These collieries are in Carbon county, bounded on the east by Manch Chmonk, and on the west by Tamaqua, and on the estate of the Leligh Coat and Navigation Company, and operated by the Lehigh and Wilkesbarre Coal Company.

Stope No. 4.-Sunk on the north dip of the Mammoth or Evein, at ant angle of 69°, and is 669 fect long to the bottom of the new lift. The top of the slope is 1,302 feet above mid tide, and at the bottom 665 feet. The east gangway has been driven 800 feet, and the west gangway 650 fect. This mine yields a great quantity of carburetted liydrogen gas or fire-damp. The morle of working is considered safe. There are large air-ways driven parailel with the main gangway, about 30 fect area, and timbered equally to any ordinary gangway. By opening breasts they drive a shute up the pitch 30 feet long, where a battery is erected to prevent the coal from rushing too rapidly into the shutc, and also a means for the laborer to clean his coal, that is, to separate the slate, dc., from the coal. Thence the miner widens his breast to about 30 feet and commences to work up the pitch, as he adrances on the face of his breast he builds a man-way on the sides of the pillars by placing props, of feet $\operatorname{long}, 8$ in. diameter, about 4 feet apart, against the pillar, those props are then planked, which affords the means of safety and ventilation to the miner. Pillars 30 feet wide are reserved on each side of the breast for the support of the superincumbent strata. The east gangway has been cut off by a slope sunk in the "crack" rein about 5,500 feet east of slope No. 4, and the coal of the old lift hereafter will be taken ria No. 7 . They employ 1 boss, 57 miners, 40 laborers, 23 conpany men, 20 drivers, 2 door boys, in the mines; 1 boss, 8 mechanics, 13 hearl and plate men, 36 breaker men, 6 drivers and 70 slate pickers outside, in all 275 men and boys. They have shipped 53,749 tons of coal during the year, and used 480 kegs of powder.

I entilation is produced by a 15 feet diameter fan, and will be superceded by 2 fans, each of 16 feet in diameter. The ventilation is tolerable at present, but not adequate to meet the requirements of the mines when they become mare extensively worked.

Bachinery.-They have a steam brake attached to the hoisting drum, and flanges thereon. They did have a speaking tube, but it did not work satisfactory. They have a locomotive engine hauling the dirt from the slope to the culm banks. They use 2 hoisting engines of 132 -horse power, 1 breaker engine of 28 -horse power, 2 pumping engines, one of 540 -horse power anl the other of 200 -horse power, total number of engines 6 , aggregate horse power 928. They have 17 steam boilers, which have been cleaned, examined and reported in good condition.

Remarks.-They lave furnished maps of all their mines, and reported all serious accidents to persons and the measurements of air according to law. The mines operated by the Lehigh and Wilkesbarre Coal Company are well managed and worthy of commendation.

Geo. IIolvey, general inside foreman; David Lawson, inside forenan; Samnel Nevins, outside foreman.

Tumnel, No. 5, and Slope, No. 7.

Situated on the south side of Panther Crcek valley, ou the estate of the Tehigh coal and navigation company, and operated by the Lehigh and Wilkesbarre coal company.

Tunnel, No. 5, is 420 feet long, cutting the Red Ash vein on the north dip; thence 320 fect, cutting the Mammoth on the same dip at an angle of
abont 69°. This part of the mine is now abandoned, except the west rell ash gangway, whieh continues to be worked. The cast red ash gangway is driven 5,500 feet, to where a tumnel 310 feet long cuts the big rein the second time. The cast gangway of the tmonel has been driven 6,591 feet and struck the basin.

Slope No. 7.- Height abore tide at top of slope, $1,46 \pm$ feet; at bottom, 913 feet; rertical, 551 feet. This slope is located about 5,500 feet east of slope, No. 4 , and sunk on the "Crack" vein, which is about 3 feet thick, the balance being driven throngh rock 290 fect to a level with tunuel, No. 5, gangway; thence 265 feet to the bottom or level of slope, No. 4 , gangway. At the level of No. 5 tumel and the level of No. 4 slope a tumnel is driven from the "Crack" rein (on which the slope is sunk) to the big rein. The coal is hoisted to the level of No. b tumel ; thence is taken by the locomotive engine through tunnel, No. 5, to the breaker, a distance of $1 \frac{1}{4}$ miles. The east gangway in slope, No. i, (or a continuation of the old east gangway of slope, No. 4) has been driven 1,700 feet east of the slope, with 21 breasts opened. The vein proved very irregular, as they went east, but proves very enconraging at present in the face. The vein thimed out to about 6 feet in some places, and at the face or heading 18 fect ; and the coal good. The timbering which has been done in this slope is extraordinary. They employ 1 boss, 84 miners, 28 laborers, 69 company men, 17 drivers, 6 door boys, in the mines; I boss, 11 mechanics, 15 plate men, 28 breaker hands, 7 drivers and 44 slate pickers, in all 309 men and boys. They shipped during the year 50,121 tons of coal, and used $i 20$ kegs of powder.

Ventilation.-This is produced by 2 fans, each 16 feet in diameter, and connected on the same shaft. The air is couducted systematically to the face of the works. The ventilation has been measured and reported 35,000 cubie feet per minute ; men employed, 181.

Machinery.-There is 1 locomotive engine hanling the coal from inside to the breaker. They use 3 hoisting engines of 60 -horse power, 1 breaker engine of 65 -horse power, 1 pumping engine of 51 -horse power, 2 fan engines of 20 -horse power; total number of engines, 7 ; aggregate horse power, 196.

Remarks. -The machinery of No 7 slope is on the surface. They are putting a brake and flanges on the drum. They have had their boilers cleaned and examined and reported according to law. John Daris, Esq., is master mechanic, and has charge of all the machinery about the mines. He is a gentleman of ability and lives up to the requirements of the law.

Geo. Holvey, general inside foreman; William Evans, mine boss; William Ratcliff, outside foreman.

$$
\text { Tunnel, No. 6, and Slope, No. } 3 .
$$

This tumuel is located on the north side of Panther creek, on the estate of the Lehigh coal and navigation company, and operated by the Lehigh and Wilkesbarre coal company, and is 1,072 feet above mean tide at tunnel's mouth.

This tunnel is 600 feet long, cutting the Red Ash vein ; thence 350 feet, cutting the Mammoth or E rein on the south dip, at an angle of 43°. At the liead of this tumel is where the fire originated Angust 12, 1871, and where the slope is sunk which is now abandoned. The company finding. the coal becoming scarce in the water level workings deemed it expedient to make some further derelopments by re-opening the old slope. But finding the vein on fire the project had to be abandoned. The red ash gangway is 3,300 feet long to Shield's tunnel, which is 350 feet, cutting the

Mammoth or E rein the second time on the south dip at angle of 43°. The east gangway has been driven 6,480 feet to the boundary line. This gangway comects by an air hole with the east gangway of Nesquehoning.

Slope, No. 3, which is 240 feet (on a pitch of about 43°) below No. 6 gangway. A locomotive inauls the coal from inside, a distance of about $\frac{13}{4}$ miles to the breaker. They employ 1 boss, 27 miners, 24 laborers, 29 company men, 7 drivers, 3 door boys, in the mines; 1 boss, 7 mechanics, 57 platform breaker men, 6 drivers and 43 slate pickers, in all 205 men and boys and 33 mules. They shipped during the year 55,989 tons of coal and used 540 kegs of mining powder.

Tentilation is produced by a 16 -feet diameter fan, located at the tumel mouth. The inlet is situated about midway in the gangway, where a split is effected, causing one current to ventilate the inner workings; thence down the air hole to slope, No. 3, workings of Nesquehoning. The other split rentilates the tumel and red ash gangway where the mine locumotive travels ; 9,500 cubic feet per minute at face of gangway ; 20,160 cubic feet per minute at outlet; men employed, 68. They have measured the air and reported according to law.

Machinery.-They use 1 mine locomotive of 40 -horse power, 1 hoisting engine of 29 -horse power, 1 breaker engine of 16 -horse power, 1 fan engine of 12 -horse power, in all 3 engines, aggregate horse power 57 . They have had their boilers cleaned, examined and reported according to law. The breaker machinery is fenced off for the safety of the employees.

Mrountain Tumne?.

This tumel is located 312 feet above tmonel No. 6, and is 230 feet long to work the crop coal left by the old workings of No. 6. The coal is let down by a balance plane 1,040 feet long to the lerel of No. 6 tunnel. The gangways are driven with much difficulty in crossing through the old breasts worked up from No. 6. But notwithstanding the disadvantages a great deal of coal has thes been mined, and gave employment to about - men, and the company have been remunerated for their investment.

Ventilation.-This is produced by natural causes. The distance from the gangway to the surface is very short, and air-holes are driven to the surface whenever required, affording ample ventilation. This tunnel is contracted to Josiah Williams and John Davis.

Tunnel No. 9 and Siope No. 8.

Located on the south side of Panther Creek valley, on the estate of the Lehigh Coal and Navigation Company, and operated by the Lehigh and Wilkesbarre Coal Company, and is 980 feet above tide at the tunnel mouth. This tunnel is 2,260 feet long, cutting the Red Ash and the Mammoth or E vein on the north dip, at an angle of about 43°, and about 60 feet thick. The west gangway is driven 3,800 feet, connecting on a level with the east gangway from tunnel No. 2 ; also connects by branch gangways with the old workings of slope No. 2. These gangways are worked over the anticlinal into the south dip, and working the coal left by the old workings of slope No. 2. The east gangway has been worked out. A balance plane has been driven in this gangway across the pitch 219 feet long, affording means of a counter gangway 3,100 feet long, which enables them to work the coal left by the old breast, worked up from the lower gangway. A new slope has been sumk at the head of the tumel $\because 67$ feet long, at an angle of $32^{\circ} 40^{\prime \prime}$. The piteh decreases as they descend. The east gangway is driven 700 feet, and the west gangway 800 feet. The ail-ways are driven
parallel with the main gangways, and are 27 square feet area. Cross-holes are driven every 60 feet, from the gangway through the pillar into the airway, for ventilation. A locomotive engine hauls the coal from inside to the breaker. They employ 1 boss, 49 miners, 42 laborers, 34 company men, 21 drivers, 5 door boys, in the mines; 1 boss, 11 mechanics, 40 platform and breaker men, 10 drivers and 64 slate pickers, in all 281 men and boys. They shipped $61,327 \frac{17}{2}$ tons of coal during the year euding December 31, 1875, and used 1,080 kegs of mining powder. They use 45 mnles.

Tentitation.-The tunnel where the mine locomotive travels is ventilated by a 12 -feet diameter fan, located on the knoll above the tunnel. The workings are ventilated by a separate current of air by a fan 16 feet in diameter, situated inside east of the slope. As yet this fan has not given rery satisfactory results, as the air retards owing to the column of air being too long after the fan has exhausted the same, and also owing to the exhaust steam from the hoisting engine, which will be remedied by another outlet which is nearly finished. They have measured the air and report according to law.

Mrachinery.-They hare 1 mine locomotive, 2 hoisting engines of $130-$ horse power, 2 breaker engines of 67 -horse power, 1 pumping engine of 29 horse power, 2 fan engines of 5 thorse power, in all 7 engines; aggregate horse power, 280. They have 10 boilers for inside use and 5 boilers for breaker purpose, which have been cleaned, examined and reported in good condition. They have stearn gauges on their boilers and safety valves.

Remarks.-They are building a large and commodious breaker to take the place of the old one. This breaker is calculated to prepare 1,500 tons of coal per day. It is built with all the modern improvements, and the facilities connected therewith will not be excelled in the anthracite region. The mode of working considered safe.
W. D. Zehner, superintendent ; F. E. Brackett, assistant superintendent; George Holvey, general inside foreman; Chas. Powell, inside foreman; C. '1. M'Hugh, outside foreman ; Nathan Drumhiller, master mechanic ; John Davis, M. mining machinery ; John Rutter, civil engineer.

[^2]H3 exphesim or fire-dianp.
ES fats of coal.
By breaker machluery
 Found sensoless in gaurwily \qquad
\qquad
Tutal 1 21

[^3] ant ra*on counties during the yeriv anding IVecember : 1 , 78%.

[^4]UCOIVESE AND DERCENTACI: DUE TU CAUSES.

n

[^5] surfece of the stope and at the bollom of curh lift, lemath of slope. horizontal distence, mmber of lifts sunt:, dee, in the south district.

T. 1 BL, F, N゙o. 1-CUN゙TINHED.

 \wp

LOCittos uf Coliterlem．						$\begin{aligned} & \text { N umber of kegs of pow- } \\ & \text { der used } \end{aligned}$	$\begin{aligned} & \text { Estimate capacity of brea } \\ & \text { ker in tuss per day...... } \end{aligned}$								关 而 \vdots \vdots \vdots \vdots \vdots \vdots \vdots
11mur T．edish	4	\bigcirc		${ }_{\text {fores }}^{\text {fone }}$	191	2，14i	1．400	11.4	113，	$1 i$	$1:$	21	104	38.4	1
Werulsid．	1	1		24，326．06	11Fial	（630	1.400	34	：	4	4	17	10	101	12
1 ¢fiftur，Criss Cu－61	1	1	．	72.705 .13	124\％	1．360	\cdots	8		12	に	发	It	251	31
		\because	．	122.216 .18	254	1，816	1，00	$15: 3$	19	31	®	89	71	201	81
！！ighanul．．．	，	1		56，21：．09	132	1．0660	200	61	i	15	7	3 3	311	14.3	$\because 1$
Emek Mointain	$\stackrel{2}{2}$	1		\％5．616．00	118	1．2（x）	\％	126	$6:$	15	24	$6: 3$	32	3	－
16ekley－Council lidise	2	$\stackrel{3}{2}$		76.453 .66	231	1． 49.3	S． 6	81	39	85	11	16	110	3.5	
P6ヶvale ．．．．．．．．．．．．．．．	3	2		16is， 9 co． 60	215.	3.0001	1， $5(x)$	123	1016	9	16	12	71	417	\％
Itatelgh	$\stackrel{2}{2}$	$\stackrel{3}{2}$		$85,435.15$	11312	1， 466	1．（10）	73	111	32	15	11	101	373	\％
Latlimer．	$\stackrel{2}{1}$	＂		128， 3199.14	0615	t． 56	3911	110	41	15	7	\％	118	29.5	43
Milues－ville	\cdots	2	．．．．．．．．．	6if，000．00	2	1，160	8010	37	4.5	13	8	6	29	196	$\because 1$
1lallywoot	1	1		53，741．18	128	1． 117	（ta）	3.3	\cdots	1	5	6	38	116	11
21 whtomi．．．	4	3		111）， 060.061	\％i）	9.250	1． 6.50	1163	15	21	43	S－	88		－
		\％	．．．．．．．．．	121， 120.19	3sis	1，6is ${ }^{\text {a }}$	1，550	118	115	3	管	1113	118	118	7
Augar batat coblierjes	\％	$\stackrel{\square}{7}$	．	（68， 8.0 .015	2251／2	1． 2.5	8．50	\％ 1	45	12	12	58	51	$\because 8$	－
－ranhery and crysta	：	＂	．．．．．．．	814.973 .14	$2191 / 2$	1，610	1，	（11）	6.4	12	15	48	63	39，	3
M1．I＇leasimh．．．	，	1		\％12，000．08）	${ }^{2 i n}$ is	1， 495	：3ill	11	2%	！	111	11	28	129	－3
1 Tmmbehtt	，	1	－1．ir．	42.000 .00	13：	1．${ }^{\text {a }}$	4， 4	S	41	$!$	11	32	J6	1！41	119
Sinwen．	1	1	dilt I	24，2415．07	2315	5.511	$3(6)$	：	10	4	3	13	16	78	7
1：cmer Meadow	4	1		30，（100）． 60	118	（ix）	300	18	tn	6	7	8	13	42	4
foleraine．．．．．．．	－	\because	drili ${ }^{\text {a }}$	93，000．00	27：4	1．757	（6is）	5.	5 5	\because	13	24	19	219	：7
Jamesville．	4	3		174， 816.00	349	3， 719	1． m 0	124	163	38	19	59	118	5en	\％is
licaver Brook	4	－		54.930 .00		1，693	800	83	71	19	17	31	51	27.5	31
）urktown	$\frac{12}{3}$	$\stackrel{3}{1}$		72.683 .15	$217{ }^{1}+$	1．（62）	800	朗	113	19	27	38	87	3417	13
－unnut Hiil．．	3			$\xrightarrow{133,340.12}$		1.78 .7 2,5210	（1）10	291	－928	211	411	54.	6i9	－ 312	4i：3
Nesspehoning	2	1 1		（ $\begin{aligned} & \text { 20，} \\ & 63,493.07\end{aligned}$	145！	2，520 648	2， $5(0)$	201	289 67	81 21	18	187 62	23 7	1,072 34.4	10% 411
	（6）	48	－ 7	2，323．535．15	5，975	40.76	24，125	2．34	2，021	514	15	1．295	1．579	8.516	1，081

Suen slopes sinking and six sopes abmoned．seven new breakers now hulding and three breakers ahandoned．

REPORT

OF INSPECTOR OF COAL MINES FOR TIIE MIDDLE DISTRICT OF LUZERNE AND CARBON COUNTIES, FOR THE YEAR 1875.

> Office of Inspector of Coal Minees,
> Wilikesbarre, Pa., March 18, 18.6.$\}$

His Excellency, Juhn F. Martranft, Governor of the Commomwealth of Pennsylvania:
Sir :- I have the honor to submit herewith my sixth annual report as inspector of coal mines for this district, ending December, 1875.

My first term of office having expired July 19, 1875, and haring receired the appointment for another term, the present report covers the last six meaths of the first term of five years and the first six montlis of the new or present term.

The report contains, among others, the following items, cach bearing, directly or indirectly, on the subject "health and safety of persons employed in coal mines," to wit: A brief note relating to the Empire and Baltimore fires, both of which I gave lengthy accounts of in 1874 reports; tables showing the number of fans in use in the district in 1870; also the number since erected; other tables relating to and comparing the ratios of accidents in various forms and different countrics; table, No. 5, showing the quantity of coal produced at cach colliery, location, \&c.; table, No. 6 , shows the number of persons killed during the year ; and table, No. 7 , shows the number of persons injured during the year, names, \&c.; articles on improrements, on steam boiler inspection, ventilation, \&c.; also plan of iron heal house employed in district.

Yours truly,
T. M. WILLIA MS,
Inspector of Mines.

IMPROYEMENTS.

Shaft sinking has not been earried to such an extent during the year just ended as it was during the previous year, although several pits were sumk during the year, notwithstanding the panic and its effects.

Shafts Completed During 1875.

J. H. Stooyer's Furty Fort S'haft. -This shaft was commenced and completed since my report for 1874, breaking ground for the sinking in July and completing the same early in the fall, which enabled them to send away four or five hundred tons of coal per day by the end of December, 1875.

The total depth of hoisting sliaft being about 100 feet, the second opening was sechred by siuking about 50 feet from an overlying seam. The work of sinking shafts, building a breaker, erecting the proper machinery in the said breaker, together with the hoisting tackle for the shaft, and the building of a fan 15 feet diameter, besides opening the mine sufficient to enable them to mine amount of coal abore stated, in so limited a time, is certainly speaking volumes for the energy and enterprise of Mr. J. II. Swoyer and his efficient staff of officers.

11 Mine Ref.

${ }_{S} E$ CTION THROUGG ALOPE NO.I. beaver broik colliery.

- ludemied pa.
sinsfrioll we int

Lpproxituatro Porllion of burkilongain

Messrs. Chas. Leonard, assistant superintendent; Wm. N'Culloch, mining foreman; W. B. Hick, mining engineer, and Philip M'Uabe, mining boss.

Susquehanna Coal Co.'s No. 1 Shaft.-This shaft has been completed to the Hillman seam, where they are at present opening out preparatory to driving for the second opening, which is to be secured by a connection with the workings in the No. 2 slope on the same seam. Work was suspeuded early in December, to remain so until their permanent machinery be in working trim, which consists of a pair of first-motion hoisting engines, cylinders - inches diameter, stroke - feet, drum - feet diameter.

No. 2 Shaft, S. C. Co.-This shaft has been completed so far as sinking is concerned, and is ready for the erection of their permanent machinery and hoisting tackle, which is also to be of a most substantial character, on the first motion style. A second opening for this shaft will be made by connecting to No. 1 slope workings.

No. 3 Shaft, D. and H. C'. Cos., near Plymouth.-This shaft, although its sinking has been completed, yet it is not in operation, not having made connection with the second opening shaft. They still have considerable rock to drive through to reach the foot of the second opening shaft.

Oak-wood Shaft, L. V. C. Co.-This shaft has been completed, except connecting their new fan and making proper arrangements to ventilate the proposed workings of Oak-wood and a part of those already opened out in the Prospect shaft. The connections between the aforementioned slafts and the shaft timbering have been completed, ant the massive machinery, calculated to hoist the coals from this shaft, are in place, also a fan 30 feet diameter.

Silaft Sinking Temporarily Discontinued,

The following named new shafts, owned by the Lehigh and Wilkesbarre Coal Company, sinking in 1874, have been discontinued during 1875, to wit: ILollenback, South Wilkesbarre and the Gaylord (or No. 14) shafts.

Franklin Coal Company's New Slope.-This slope has been drivell out to the surface, through rock, from the head of an inside slope, to do away with the old upper slope, and by said change get their coals to the surface by the one hoisting, and at the same time land it on a level that will enable them to run the same to the head of their breaker instead of, as heretrfore, by two inside slopes and an additional hoist at the breaker.

The company are also putting very substantial machinery in place at the abovenamed slope, being a pair of first motion engines, with cast iron drum of uniform diameter. Diameter of engine cylinders, 30 inches; stroke, 72 inches; diameter of drum, 12 feet; face of drum 15 feet, and will carry over one-half a mile of wire rope of the diameter rope calculated to be used upon the same. There being but one track in the said new slope, and the same is calculated to operate several lifts, hence the rope will necessarily be upon their drum altogether by the time the load reaches the landing. There has also been erected a fine brick boiler room, and nine new boilers put up, 34 inch diameter and 30 feet long, with room for 3 or 6 more in the building.

> Neif Shafts and Drifts.

Messrs. Brolierick, Walters \& Co. are opening out a very extensive concern, about two miles north east of Kingston borough, by sinking two new shafts, driving and opening four new drifts, and erecting a very extensive breaker. The breaker is calculated to prepare the coals from the two shafts and a part of the coal from those drifts, or probably all at present, until

they complete the sinking of their present shafts and erecting of amother breaker, which they have in contemplation, near the location of their drifts. This second breaker spoken of is intended, so stated, to prepare the coals from the Red Ash seam alone, upon which two of these drifts are opened out. Work is progressing finely in these drifts by driving gangways and opening chambers ready so as to enable them to mine quite extensively as soon as their first breaker will be completed, which will be ready early in the spring of 1876 .

The two shafts above referred to have not yet penctrated the coal, having had considerable trouble in passing throngh the surface wash or alluvium of about 60 feet. The rock was found at the aforementioned depth, which gives them the necessary foundation for their shaft timber and a good roof for covering for their coal seam. Those shafts are located about 200 feet apart and sank simultaneously, so that not much delay will be occasioned in the time necessary to make a lawful second opening, the distance between them being so small.

The area of the mining territory of this company is stated to be about 800 acres, and very favorably located for outside arrangements.

Maltby Nef Circelar Sihaft.

This shaft, although commenced in 1872, has not been completed up to the present time. I stated in my previous reports that it was a circular shaft. The shaft lining, being a brick wall 21 inches through, which was let down by building continuously upon the top, its weight pressing it down as the sand and other material was taken ont. The wall finally became so bound by timber pressing upon its sides that its strength was not sufficient to resist the unequal pressure upon its outside, and its cast-iron plates having broken work was discontinued for some time. During this summer Mr. A. O. Fowler, the superintendent, has changed the plan, and has had a cast-iron tube cast in whole rings in sections of about 4 feet in length, and has succeeded in putting the same iuside of the brick wall and reached a depth of about 100 feet, or about 20 feet below the brick wall. A short distance below the brick wall they struck a bed of clay, perfectly dry ; but this did not last long before they were surprised and driven right out by a force or pressure from below, driving the sand, clay and water up through the bottom until they had to adopt still another new apparatus called a digger, a kind of an automatic shovel, which acts exceedingly well so far as tried, as by this means they are enabled to draw up the sand and clay without taking out the water and the great weight of the cast-iron tubing, pressing it down many feet below the excavated part, thereby forming a leader or shoe. It is thought that matters looks more favorable now than at any other time from its commencement to reach the solic rock, which is at a distance of about 40 feet below their present tubing.

Second Openings.

The following mines have had their secoud openings completed this year, to wit:
J. H. Swoyer's Forty Fort Colliery.-This mine has had a small shaft, 50 feet deep, sank from an overlying seam, which is intended to be used as a second opening for this mine, and also to be used for rentilating purposes, and eventually be enlarged and afterwards used for a hoisting shaft for the coals from their present seam, while that the present main or hoisting shaft will be continued down to an underlying seam, \&c.

It is true that accidents from bursting of steam boilers, breaking of wire ropes, and of machinery used for hoisting, like any other mechanism, will take place let the care and inspection be ever so much and ever so good. Still that does not prove that should these matters receive less care than they do at present that our accidents would not be increased, and the same may be said of additional care. It cannot prevent all accidents, but may prevent many that otherwise would take place.

The next point in connection with this matter is the importance of constant rentilation. It is well known that most of our ventilators, at least in this district, are depending upon a constant supply of steam to enable them to be driven at their regular speed. A small margin is found where govemors are used upon the fan engine. It is also as well known that the majority of those ventilatore are erected close to the head of the mine, slope or shaft, and that the steam for driving the same is generated by the same fires and boilers as those used for the hoisting and breaking of coal, \&c. In this way, as I said before, the expense of steam generating, and of every thing comected therewith, is considered reduced, such as getting the coal cheaper, attendance of boilers and of engineers, \&c.

Now I say, as I have often inforned our mining foremen and others, that each ventilator should be supplied with a separate steam boiler or boilers, so that if an explosion should take place at the main, or hoisting shaft boiler house, the ventilator could be kept at work to keep the men safe until such time as they could be withdrawn from the mine. And further, that the fan boiler should not be too close to the fan, and that a comection should be made and kept at all times in grood order between the boilers of the hoisting shaft and the ventilator, if practicable, so as to make use of the same at such times as when the same requires repairs or cleaning, or any emergency.

The matter of a thorough and competent inspection of the steam boilers, together with the hoisting tackle, is surely worthy of attention.

Ventilation.

The matter of ventiation mines is receiving much more attention in this district than it did years ago. Some of this activity is caused, no doubt, by the stern necessity of better ventilation from the increased dis. charge of explosive gas, \&c, yet a large portion must be attributable to the law on mining and its comections. I would state, however, that there are many hundreds of our practical miners who do not anderstand auything, comparatively speaking, about the laws of nature governing ventilation, and am sorry to state that a few of our bosses should be placed in the same category.

When the writer made his first ferv official visits he recommended, among other changes necessary, the erection of fans of medium sizes at various places as a suitable means to cause the desired amounts of ventilation. In some instances those suggestions were received kindly and acted upon promptly, and in each case giving entire satisfaction. A few others insisted upon building furnaces, no doubt honestly thinking that such means would be the cheapest and would answer all purposes I do not need to say much about the result in details. Suffice it to be sairl that in nearly each case measures similar to what I had first recommended had to be resorted to, and that, too, after having spent large sums of money endeavoring to fight the plainest and simplest laws of nature.

Many of the persons in charge of coal mines think that siuce so many of the works on mines and mining, published in England, Scotland or Wales, give accounts of powerful ventilation where furnaces only were in use, and some of them deciding strongly in favor of the furnace as a means of se-
curing proper ventilation, then surely it must follow that similar results should be had here, and all without reference to the conditions.

The furnace as a ventilator is not well adapted to our shallow workings, and especially so on account of the great variations of temperatures on the surface at different seasons of the year, and even at various periods of time during the same season.

There are but few furnaces in use at present in the district. One in Mill drift, one in Boston colliery, only remain of those in use prior to my official comnection with the same. A donble-arehed furnace has since been built in a part of the Baltimore mines, and the aforementioned are about all that we have, and the loss would not be very seriously felt did we not even have them.

A table accompanying this report will show that centrifugal fans are used mainly in this district, on the exhaust principle. Those fans are of various patterus, and yet varying only in their details. The conditions under which our fans are placed are about as varied as are their construction. Some are crected immediately over an air-way at the head of the slope or shaft; others place them at a proper distance from the head of upeast so as to provide against concussion in case of an explosion of gas in the mine, dec. A few are located inside the mine.

In the table of fans there are several columns in which but very little data can be had at present, and yet to be able to give any decided opinion regarding the superiority of one particular fan over that of another requires that those items be had, and probably some others, to even make an approximate comparison. Notwithstanding our lack of knowledge upon those points, many persons do claim that a certain kind of fan which they have, or which they would like to furnish, will do more actual duty than any others, and eren go so far as to say that one of their fans of a certain size will exhaust a certain amount of air from any mine, if erected over an airway having a certain sectional area. Others just as foolishly will say we have a fan. of the same dimensions as the fan erected at another colliery, but ours is a much better fan. It may be that the fans may differ a trifle in their construction, or it may be that both the fans are built by the same manufacturers and off the same patterns. This only goes to prove how little our men think about the conditions under which those fans are placed, and that those unequal conditions are probably the cause of nearly, if not all, the differences. There are but a very few fans in place in this distriet at present that were in use prior to the enactment of the mining law of 1870. The tables in this report show first the small number of fans in the district and their insignificant sizes, most part of them in 1870; and again the large number since erected, and at the same time the great differences of their dimensions, respectively.

I would further state that many persons in charge of mines, and sometimes owners, are placing too much importance upon the ventilating machine, thinking that it must be of some particular pattern ere they can seenre good ventilation. I admit the superiority of one ventilating apparatus orer that of another to produce a certain result. Nevertheless, I wish to state right here that much more depends upon the condition of the mine, from the month of the downeast to the face of the workings, and again from these through all the intricate and many contracted passages through which the same is required to pass on its return to reach the top of the upcast on the surface.

If our mine managers would pay more attention to the matter of ascertaining what amount of power they are spending upon ventilation, and what percentage of useful effect of the power spent that they get, and further in-
quire the relation of the power spent on friction to that used in creating the actual velocity, they would at once be able to find the root of the difficulty under which they labor-that of insufficient ventilation-and this would enable them to strike at the same in a manner to improve the same.

In a treatise on "Gases met with in Coal Nines, and Principle of Tentilation," by J. J. Akinson, deceased, an eminent inspector of mines in England. A table is given on page 32, showing the comparative amonuts of pressures expended in different mines upon creating velocities of air, and orercoming the frictional resistances that the air meets with in the mines, respectively.

The following cases are cited, the pressure due to the velocities, being those due to the final velocities, at the top of the up-cast shaft:

Ietton colliery, first case	10.43	179.88	190.31	Iel. Firic.
Hetton colliery, second case	12.37	212.63	225.00	1 ! 17
Haswell colliery.	13.87	140.66	154.50	1 : 10
'Tyue Main colliery	25.70	177.50	203.20	$1: 7$
Similar results found in this district by the writer, by experimenting in 1872, as follows:-				
D. \&H. C. Co.'s No. 1 colliery, Plymouth	3.93	26.32	30.20	1 : 6.69
R., L. \& W. R. R. Co.'s Arondale colliery \qquad	1.76	54.55	56.32	1 : 31
п. d H. C. Co.'s Pine Ridge colliery,	4.22	105.44	112.66	$1: 25.7$

From this it will be seen that of a total power of nineteen at the Hetton collicry no less than feighteen were employed on friction, and only one upon the velocity of the air. At Haswell colliery ten parts of cleven were spent upon friction, and one upon the actual velocity. At the Trne Main colliery seven parts out of eight were spent upon friction, and only one upon the actual relocities found at the top of the up-cast shaft.

In the results found in this district in the cases cited there were $6 \frac{69}{100}$ spent upon friction, and only one on the velocity at the No. 1 shaft, D. and II. C. Co.'s mine, near Plynouth. This was favorable at the time, the air being divided into four splits or currents, two in each of two seams worked. At the Avondale colliery there were two splits of air only, and long airways. The power spent there showed that thirty-one parts were spent upon friction, and only one upon creating the actual velocities.

Again, out of a total power of $26_{1}^{7} 0$ expended no less than 25_{10}^{7}. were spent upon the frictional resistance of the air, and only one upon the creation of actual velocities found at the head of the up cast shaft, in the Pine Ridge colliery. They had two splits or currents at this time. Those figures prove that the great draw-back in causing ventilation is the frection of the air in passing through the mines.

It is impossible to learn anything definite of the actual work done on mine rentilation unless a vater gauge, barometer or some instrument be msed to show the resistance offered to the motion of the air.

The writer has employed the aneroid barometer suite satisfactorily in conjunction with the water gange, immediately at the fan. When the barome-
ter is employed inside the mines we are liable to get confused, becanse it is affected first by the friction changing the tension of the air, and second by the difference of eleration; hence it is not reliable for either purpose inside the mines, muless it be kept stationary, when it can be used to great adrautage.

The causes of the great friction met with in passing large quantities of air through mines is to be found in the contracted downeasts and upeasts, and the long and crooked small-sized main air-ways, and their tributaries, through the interior of the mines, with the hundreds of elbows of every angle it has to meet; and the main air-ways being of small sectional area the relocily must be great to pass even a medium quantity, hence high relocities and crooked ways must retard the currents extremely and canse great friction, as the friction increases not as the simple relocity but as its -quare.

Much more care is being taken in regard to the condition of the air-ways, relating to size and form. In 1870 there were but few air-ways in this district large enough to use a mine car in it, the custom being to drive small air-ways parallel with the main gangway only about large enough for the party driving the same to work in, often having a sectional area of 3 feet by 2 feet, and if it would be 3 feet by 4 or 5 feet it was considered quite large. The coal and dirt cut in said small air-ways (or as called in some Iocalities, dog holes or monkey gangways) had to be handled all by using a wheel-barrow or other small buggy, or pitched back with a shorel, the whole length of distance between the cross cnts of 45 feet or 60 feet and the thickness of the pillar besides.

Sany places, however, those small air-ways were not driven, and only a wooden brattice built along side the gangway, and generally too small to allow any person to pass throngh the same, which could not be kept closer than 60 or 70 feet from the face of the gangway for fear of blasting $i t$ from gangway or parties opening chambers.

Others again were using brattices across shntes, with sliding doors, and still others using doors on the entrance of each chamber to try and force the current to the face of the mine.

At present there are but two or three parties in this district using anything else than a large and roomy gangway in which the regular mine car is taken through, which must have a certain sectional area to pass through, let the price be small or the ground to cut hard it matters not.

The main air-ways are being made in most of our mines at present from 60 to 100 feet sectional area.

The air bridges or crossings are also being made about the same sectional area.

The cross cuts between main gangways and their air-ways, and those between the chambers, are required to be from 35 to 40 or 50 feet sectional area. Much trouble was experienced by the writer in breaking up the old system of small air-ways and cross-cnts.

Under the old system of using doors on the mouth of each chamber, as it was in some mines, any one of those being left open would necessarily cut off most part of the whole current from all those farther in the interior of the mine. Again even when there was what was then considered a large air-way the idea of using anything more than the slate and bone found in the seam, and packed in with fine dirt or culm, to make up the stoppings in the cross-cuts, was seldom thought of; and if a mine was kept in very good condition it would have the main stoppings made nip of inch boards, some places of single and others double. Now the most of our stoppings between the inain gangways and their parallel air-ways are made up of slate
or bone and lime mortar. In some instances brick are used, and a few have used cement, and it gave good satisfaction.

Much opposition was manifested to the introduction or recommendation by the writer of stone walls and mortar to be used in the construction of all the main stopping and on the sides and tops of main doors. Some parties tried to satisfy the requirements by building their stoppings of scantling 3 inches by 4 inches for props or uprights, and then place inch boards on either side, filling the intermediate spaces with screenel ashes, sand or clay; but this packing would eventaally settle down and the structure would let the air sereen through. Next thing the wooden work would decay and require renewing, so that by the time that the mine would be two or three years old, and need to stand a heavicr pressure, the whole thing was rotten. Other parties tried clay to pack up their stoppings, and as mortar, building stone or bone on either side, and the midale with clay. I tried to show that it would not answer, but its use was not abandoned until I finally succeeded in getting them to calculate the actual cost per perch when it received its death warrant, its cost being about four times that of masonry on the surface.

The parties who have used the stone and mortar stoppings now agree with me, and will say unhesitatingly that they are much the cheapest kind of stoppings to use. Time does not affect their capability to withstand the extra drag or pressure brought upon them as the mine becomes extended, whereas the wooden ones would be affected by the rot, and consequently their efficiency must be inversely to the time of their scrvice required from the time of their construction. Add to the above deficiency the fact that the drag increases in proportion to the extension other things being equal.

The next department in which we have advanced in materially is in the arrangement of doors, to assist in keeping the main currents steady around to the faces of the working places.

Under the old regime very few check-doors were used in this as well as other districts, unless it be in mines where fire-damp was generated, when they could not be dispensed with, and even there the matter of doubling: doors was never attempted. At present there are check-doors sufficient in each current or split in every mine to force the main body of the said split or current around to the faces of eqach and every working place in its territory, whether there be explosive gas generated in the mine or not. The enormous quantity of gunpowder used in blasting the rock and coal in a mine, especially so in our anthracite mines, adds much to the requirements of ventilation. Many of our mines use three-quarters to one pound of gunpowder for each ton of coal mined; hence if a mine produces 1,000 tons of coal daily, and taking three-guarters of a pound of powder as being used per ton, $=750$ pounds of porvder. This is ouly one of many other items affecting our ventilation, but I mention this because this item is heavier in our mines than in the bituminous mines.

To come back to the matter of doors, I would state that our main doors are being erected in a very substantial manner. They are hung on pieces of square timber, eight or ten inches square, which are niched into the roof, and the whole built around with good stoue and lime mortar, faced or pointed over. Those main doors are put up in pairs, called in the mining law double-doors; they are placed apart, with sufficient distance between them to allow a team and a trip of mine cars to pass through the first and afterward be closed while the trip is yet in motion before there be any occasion to open the second door. In this way the one is a check-up the other; in other words, one of the two doors is to be at all times closed to protect the current from braking. The distance between those doors is regulated by
the grade of the road between them, and the length of the tean and trip likely to be required on said section.

I am happy to state that a plan accompanying this report, and gotten up by myself, has given general satisfaction in the arrangements of the doors, both near the foot of shaft or slope and in the interior of the mine, wherever it is applicable. There are several mines opened out upon the system suggested in the said plan. It has been a great error in the past to open a mine without regard to any system.

Many of our old mines, and some not yet very old, are expensive monuments to the raudom system of mining that prevailed in our anthracite coal f.elds in the past.

Mine Signale.

The importance of having appliances that can be used to conrey a known signal or signals from the rentilator, generally located on the surface, to at certain station in the interior of the mines is becoming more apparent cach day in our deep and fiery mines. Better still could the telegraphic system be introduced, when any message could be transmitted from the surface to the men in the mines and vice versa. Two different kinds of machines have been introduced, in connection with signals, into this district of late.

An electric signal is being used in the Stanton slope, where the ventilating fans are crected that rentilate the Audenreid shaft colliery. The battery is situated in the fan engine room, and a regular code of signals is used whereby the parties at the foot of the slope can correspond with those at the fans in relation to matters indicated by the aforementioned code of signals. The object of those signals is to give an alarm to the workmen below in case that anything happens, whereby the ventilation may be affected, and thus provide against accidents from explosions of gas. The distance between the fans on the surface and the extreme end of the wire in the mines is 2,200 feet.

There is still another signal in the shaft and a speaking tube. The new sigual in the shaft is one of Mr. Howard's patent pueumatic signals. The signal is attached to the ends of the spoaking tube, and makes a very excellent arrangement, for it can be made to operate signals at the first and second landings and engine room simultaneously. At the Empire, No. 5, slope another of the electric signals is in use very successfully. Distance from fin to station, 1,500 feet.

Discipline.

The matter of discipline is not what it should be in our mines. The lack of discipline is caused by the absence of any code of gencral or special rules required by the mining law, together with the indifference of both officers and workmen.

Our mining is getting much deeper each year, which necessarily increases onr dangers, and better discipline must be had if our accidents list is to receive any attention.

In my opinion there should be some changes in our mining law ere long to meet our wants, which have changed materially since the enacting of the present law. The law of 1870 has worked admirably without a doubt, yet there is room for improvement that vould come in well at the present stage of mining enterprise, to cope successfully with difficulties that arise as we advance in this science.

The matter of special and general laws are certainly worthy of our consideration, and to make them effectire more legislation must be had. Again
the law jtself is deficient in many matters of details, that are at present Haced in a general class, instead of this they should be a little more definite. Other matters are not treated upon ai all that should be inserted to improve its operations. Among other things there should be some means provided whereby that the law should be printed upon large posters of paper or cloth, to be posted in some conspicuons place or places at each colliery. Also, that it be printed in small book-form, to be carried in the pocket Those cards or posters and books to be supplied and distributed by the operators through their officers. That each employee must be in possession of a copy of the law. In this way the officers and wollimen would not have the excuse to offer that they were ignorant of the requirements of the mining law in its details, \&e.

I do think, howerer, that the law should not be tinkered with by inserting one, two or more of those items, or by passing supplementary acts thereto, rather let us wait awhile longer uutil a general revision be had, When ail the laws on mining in this and other comnties may be consulted, and select therefrom what will be applicable to our system of mining, de.

Mining Caslalties.

Haring upon this subject been rather lengthy in my report fur: 18:4, I mercly wish to add a few remarks upon the same in this report, to wit:

It will be seen by the list of fatal accidents that a considerable increase has taken place in this district during the jear 18i5. The quantity of coals produced boing a trifle less than in 1874 also helps io make the ratio of coal mined per life lost appear quite unfavorable, and especially so when we look at the comparative table prepared in my report showing the ratios of similar items in Great Britain and Nora Scotia.

The fatal accidents in shafts hare been extraordinarily heary this rear, being 14 in number, or equal to $22 \frac{2}{10}$ per cent, of the whole, against 3 in number or equal to a little oree 5 per cent. of the whole in 1874 . Those from fire-damp explosions were one-third less than in 1874.

In regard to the comparing of one accident, quantity of minerals produced per life lost, \&c., I still maintain that the cases are not parallel.

In addition to what I pointed out in my last report about the difference of anthracite and bituminous I would state that it is claimed that the system of "long wall working" reduces the ratio of accidents, which they use extensively. And again of the total minerals produced under the mine regulation act of 1872 , which was $140,713,832$ tons, no less than 10 per cent was of fire-clay, iron stone and shale, leaving only $1-26,590,108$ tons.

I would also state that a few of their districts exhibit about the same results as ours, for instance take the following districts: North and East Lancashire, employing 32,828 persons, the number of tons of mineral raised per life lost was 108,350 ; West Lancashive and North Wales, employing 43,658 persons, produced 86,755 tons of minerals per life lost; North Staffordshire district, 62,921 tons per life lost; South Wales distriet, $87, \uparrow 89$ tons per life lost. But those were the most unfarorable, and the arerage of the whole minerals gave 133,251 tons per life lost.

Persons Empioyed In and Abolt the Mines in 1875.

Inside. Ontside i 'Totals.

Nen employed. Boys eniployed	$\begin{aligned} & 8,506 \\ & 1,583 \end{aligned}$	$\begin{aligned} & 2,389 \\ & =, 530 \end{aligned}$	$\begin{array}{r} 10,895 \\ 4,113 \end{array}$
Totals.	10,1189	4,919	15,00.

Recapitulation:

then each person contribute fifty cents，to be paid to the proper persons re－ lated to the deceased，that the company would pay as much as the aggre－ gate sum from the men．The men have agreed，asd the following is some of the results ：

Jno．Flaherty，killed August， 1873 ；men contributed $\$ 233$ 50，company contributed $\$ 23350=\$ 467$ ．Frank Longstaff，killed Angust，1874；men contributed $\$ 128$ ，company contributed $\$ 128=\$ 256$ ．Patrick Hart，killed March， 1874 ；men contributed $\$ 310$ ，company contributed $\$ 310=\$ 621$ ． Thos．Davis，killed September， 1875 ；men contributed $\$ 194$ ，company con－ tributed $\$ 194=\$ 388$ ．Patrick Doc，killed December， 1875 ；men contributed $\$ 236$ ，company contributed $\$ 236=\$ 472$ ．John Fox，（boy，）killed Decem－ ber， 1875 ，men contributed $\$ 117$ ，company contributed $\$ 117=\$ 234$ ．

The following table is intended to show the number and nature of the fatal accidents which have occurred 11 this district during the past fire years：
TABLE No．1．－Middle district of Luzerne and Carbon counties report．－ Number of persons killed and injured during the years 1871－2－3－1－5．

	1871.		1872.		1873.		1874.		1875.		Total．	
－	$\stackrel{-2}{8}$	$\begin{aligned} & \text { E. } \\ & \underset{\Xi}{0} \\ & \text { © } \end{aligned}$	岛	$\begin{aligned} & \text { E. } \\ & \text { E. } \\ & \text { g } \end{aligned}$	$\begin{aligned} & \text { E! } \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { E } \\ & 0 \\ & \text { E } \end{aligned}$	－ \vdots \vdots \vdots	$\begin{aligned} & \text { E } \\ & \text { ニ̈ } \\ & \text { 릉 } \end{aligned}$	$\begin{aligned} & \text { 들 } \\ & \text { 릉 } \end{aligned}$	E．	皆	E
Explosions of fire－clamp	1	31	8	24	6	14	9	32	6	32	30	13.3
Fells of coct and bone，rock，dec． Falls of coal and bone \qquad	11	15	12	23	9	14	14	19	13	13	59	St
Falls of rock ．．．．．．．．．．．．．．．．．．．．．．．	2	11	3	10	2	7	3	6	5	6	15	40
Falls of sundries									1	1	1	1
	14	57	23	57	17	35	26	57	25	52	105	258
In shefts． Falling into shafts from top	2	1	3	3	3	1	3	3	12	1	23	9
Things falling from top．												
Falling from part way down											2	
Things falling from part way down										1		1
Sundries in shafts．．												
Total in shafts．	2	1	3	3	3	1	3	3	14	2	25	10
Miscellancous underground．			．									
Explosions of powder．．． Crushed by mules．	1	8		3		1	1	9 1	2	3	4	21
Crushed by mine cars．	6	9	7	24	13	27	9	14	5	25	40	93
Crushed by mine locomotive								1				1
By blasts in coal and rock．					4	12	4	9	8	14	16	35
sundries underground．．．	24	12	4	27		10	7	6	1		36	55
Total miscel＇s underground．．	31	29	11	54	17	50	21	40	16	42	06	215
Total underground．	47	87	37	114	37	86	50	100	55	96	226	483
On surface．												
Hy machinery．							1	\ldots	2	2	3	2
Sulfocated in shutes in breaker							1		2		3	
C＇rushed by ears on surface．．					6	2	1	2	2		9	\pm
Crushed by mine locomotives on surface									2		2	
，fundries on surface	6	3	3	7	3	3	4	3		2	16	15
Total on surface	6	3	3	7	9	5	7	5	8	4	33	24
Giross total	53	90	40	121	46	91	57	105	63	100	259	507

The following table shows the quantity of coal sent to market, mumber of persons employed and the number of lives lost in this district in the years 1871-2-3-4-5, respectively; also the ratio of said production to cach person employed; also to each life lost and the ratio of persons employed to each life lost:

TABLE No. 2.-Coal production, number of persons employed, de.

	187.	1872.	1873.	1874.	1875.	Total.
Coal produced, in tors, per year Ratio of coal produced, in tons, to each employee	3,000,009	3,250, 010	4.232,000	4,513, 817	4, 261, 263	19,254,110
	9,870	9,507	11,325	13.5.56	15,008	
	304	331.4	372.6	* 332.5	28.1
	1871.	1872.	1573.	1574.	1575.	Averaze.
Number of lives lost each year Ratio of coal produced per life lost. liatio of persons employed per life lost...		$\begin{array}{r} 40 \\ 81,560 \\ 233.26 \end{array}$	$\begin{aligned} & \frac{45}{92.000} \\ & 246.84 \end{aligned}$	$\begin{array}{r} 57 \\ 80,0011 \\ -38.17 \end{array}$	$\begin{array}{r} 63 \\ 67,692 \\ 235.22 \end{array}$	$\begin{array}{r} 52 \\ 75.410 \\ 227.65 \end{array}$

TABLE OF COMPARISON゙.

	ENGLAND.		NOVA Scotia. 187.	Pensstuvania.		$\begin{aligned} & \text { ANTHAEE } \\ & \text { MINES. } \\ & 18 \% . \end{aligned}$
	1873.	1574.		18:2.	1873.	
Coal produced, in tons, per year	$128,544.400$	110.713,832	872.720	$18,932,205$	19,585, 518	21,516,215
Number of persons emploreth..............	514, 149	535, 829	4.252	$63,000$	56,405	61, 103
liatio of coal produced, in tons, to each employee.	250	261	208.8	300.5	317	350.41
Number of lives lost each year	1,569	1,056		223	261	265
Ratio of coal produced per life lost.......	133,677	133. 251	13.5, 06:3	85.280	86,551	81.15
Hatio of persons employed per life lost...	479	510	611	253.8	24.5	2.1 .7

'IABLE NO.
This lable shows the number of openinys, persons employed, and tons of cocl produced for each collicry in the district for 1875.

NAME OF COLHEREV
Names of Ow'NERS OR Ligssees

1. Mocanarna colliery
2. Paxton colliery
3. No. 1 breaker
4. No. 2 break
5. No. 1 shaft.
6. No. 1 shaft
7. Warrior Run colliery
8. Franklin colliery
9. Hillman colliery
10. Maltby colliery...
11. Eutchison colliery Boston colliery
12. East Boston collier
13. No. 1 shatt colliery
14. No. 2 shaft colliery
15. (hanncey colliery
16. Boston colliery
17. Jersey colliery ..
S. Avondare colliery
18. Wyoming colliery
19. Forty Fort colliery
20. Hollenback colliery
,is. Henry colliery
21. Midvalo colliery.
22. Mineral Spring collicry
23. Prospect shatit colliery
$\therefore 7$. Exeter shaft enlliery
24. Ellenwold colliers

Mocanaqua Coal Company .
Salem Coal Company
Salem Coal Company
Susruehanna Coal Company
Susduehanna Coal Con

A. J. Davis \& Co. . . 10.

Franklin Coal Company

H. B. Hillman \& Son
S. C. Malby... . . . Co
Chas. Hutchison de
Wm. G. Payme do.

Waterman, Beaver d Co.
. do .
D., I. and TV. Railroad Company,

J..... II. Swoyer.

Elliot, Pool \& (\%o

$\begin{aligned} & Y \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	EMPL E E. en 0	ES. $\frac{巳}{\frac{0}{E}}$	
5 2	92	63	Idle. $00,000$
17	442	237	138,677
23	415	86	135, 077
$\frac{6}{5}$	\} 100	24	Not shipping
8) 43	10	\} 37,000
8) 79	59	\} 5,000
17	138	111	57, 353
2	73	21	:35,000
:			Idle.
12	150	73	72,000
!)	161	58	60, 531
10	156	10:	93, 878
19	\{ 104	5	33,727
19	\{ 241	120	107,026
2	64	41	48, 000
12	173	70	134, 598
1	1:1	77	66, 55)
12	193	116	15.5, 57.5
11	170	(i2)	46, 639
12	$5(1)$	121	1.12, 16%
6	219	53	15, 154
3	41	25	26, 000
9	159	69	53,000
0	106	72	30, 000
13	1:2	80	60, 000
10	48	35	22,000
10	135	105	128, 1000
9	36	28	Not shipping

Plan ITa I

System "f doubtr doors, in sections, to protect orkeep the ar current steady-
to the fares of all plares by
I:MWiltams, frspectorof Hines

Plan Vo :

Iniproved mode ofopenang rew shaft or slope with jropir arrangements of touble doors, azt ctonssings \&c. by

TABLE NO. З3
20 loyed, and tons of
33. Latrol Run colliery

ine
39. No. 2 Plymouth colliery
40. No. 3 Plymouth colliery 41. No. $\frac{4}{5}$ Plynnouth colliery 42. No. 5 Plymouth colliery.
43. Ko. 1 B. Wanamie colliery
4. No. 2 B. Wanamie colliery
4. . Espy colliery
46. No. 1 Jersey colliery
47. No, 2 Jersey colliery
48. Sugar Notch sliaft
49. Sugar Noteh slop
50. Hartford colliory
51. Empire, No. 4, colliery
5. Empire shaft colliery
53. I Iollenback, No. 2, colliery
54. Hóllenback, No. 3, colliery
55. Diamond colliery
df. Lance colliery
57. Dodson colliery
58. Gaylord slope colliery
59. Nottingham colliery
60. Washington colliery
61. Audenreid colliery
62. Nmpire, No. 2
63. Empire, No. 7 , slope
64. Hollenback shaft
65. Sonth Wilkesbarre shaft
66. Caylord shaft
67. Knight's shaft

Totals.

Lehigh Valley Coal Company

I

[. and w. Coal

.... do............ . do
. do............... . do
ompany

- $231{ }^{24}$.......... 221

231	224
243	104

$88,0,5$
166,568
104,000
104,000
105,145
112, 101
$149, \mathrm{S8} 9$
Not shipping

4pping
47,095

Not shipp
Not shipping
119,224
78, 466
42, 090 Not shipping

38, 884
54,545
54, 545
60,000
132, 975
55,911
66,327
137,653
62, 989
78, 665
70,611
7
73,163 Not shipping Not shipping Not shipping
Not shipping 3, 945, 614

TABIE No. 4.-This table shows the number of fans in use in the district in 1870.

TABIE No. 5.-This table shows the number of fans erected since 1870 , also the quantilies of air ciroulating in the collieries, respectively, dic.

TABLE No. 5-Continued.

-tuef jo .roqumn	Name of Colliery:	AMOUNT OF NATURAL VENTILATION IN CUBIC FEET PER MINUTE	FEET Down cast.	IN OF Up cast.		DEGREES FAHRENHET'T OF TEMPERATURE. Inside. Outside								
26.	Wanamie, No. 3 slope.						15	7	6	2	68	41,000		Closed.
27.	Henry....	(Guibal fan).	400	400			18	9		1	60	60, 000		. do
25.	Prospect.	(Guibal fan)	600	600		5255	20	10		1	70	¢3, 000	1.3	. do
29.	Empire Shaft		310	310	30		15	7		$\stackrel{2}{2}$	100	51, 000	1.6	. do
30.	Lance Slhaft.						15	7		2		42, 000		.do..
31.	Mill Creek						20			?	89	75, 000		Open.
33.	Jersey . ${ }^{\text {Diamorid }}$	(Revolving iron disk)					15	$\frac{6}{7}$		2	78	53, 2500		Closerl
34.	Sugar Notch						15	7	6	2	90	44, 000		. do
35.	Washington.						24	12		$\stackrel{2}{2}$	54	44, 000		. .do ..
36.	Harrey siope	(Revolving iron disk)					17			$\stackrel{2}{2}$	78	55, 000	75	Open.
$37 .$. 38.	Airand (. Co.'s, No. ${ }^{\text {I }}$						12	6		$\stackrel{2}{2}$				Closed.
39\%	Franklin Tunnel...						15	7	6	2		25, 000		. do ...
$40 .$.	Enterprise.)	15	7			100	39, 000		. .do
41.	Mineral Spring.	(Guibal fan)					18	9		1	60	65, 000		do
42.	East Joston...	(Revolving iron disk)					15	7	6	2	83	74, 000		Open.
43..	Nanticoke, No. 1 trmnel .	(Revolving iron disk).					24	12		2	70	108, 000	1.4	. do..
44.	Sugar Notch, No. 10 slope						15	7	6	2	S0	25,500		Closed.
45.	Espy						15	7		$\stackrel{2}{2}$		2., 000		do
46..	Wyoming						15	7		$\stackrel{3}{2}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	\} 61,000		. do .
47.	Exeter	(Guibal fan)					4	10		1		60,000		. do
48.	Hartford						1.5	-		$\stackrel{2}{2}$	50	3 3, 000		. do
$49 . x$	Plymonth, No. s, D. and H.						I7			-		New.		.do

*New fan, not put in ; lon't know il completed or not.

TABLE No. 6.-List of fatal acsidents in the Middle District of Luzerne ard Carbon C'ounties for 1875.

Date.	$\begin{aligned} & 7 \\ & 2.0 \\ & 2.0 \\ & 9.0 \\ & 9 \\ & 5 \end{aligned}$	Name of collicry.	Name of person killed.	5 0 \vdots \vdots	云		Cause of acciclent.
Jan. 5,	1	Prospect colliery [No. 1 slope.	James M'Carty . . .	35	1		Al Carty died of wonnds received by explosion of gas, which was caused through carelessly entering a place against the orders of the mine boss.
14,	2	Watorman \& Beaver,	Thomas Corcoran	$3!$			Killod almost instautly by fall of slate in chamber.
25,	3	Mill Creok colliery...	Ed. Smith.	85	1		Killed instantly by a fall of coal while working out some other pieces left after a blast.
30,	4	Jersey col., Plymouth	Wm. Knight	13			Instantly killed; caused by collar of double timber falling upon him, car having struck out one leg while he was on hind end of car with driver.
Feb. 9,	5	Wroming col., Plainsville.	Mark Carter.	16			Killed instantly; head crushed between door, which he was attending, and its jam or firme, cansed by a heavy concussion from an explosion of a small quantity of gas in one of the main gangways inside cross-eut.
11,	6	No. 1 shaft, East Nanticoke.	George Simons	28			Killed instantly; fell into shaft; slipped off a plank and dromped about 200 feet.
2t,	7 8	Henry coll'y, Plainsvillo.	Patrick Kelly	64 48	1	7 8	Injured so serionsly that lie died of his injuries in short time afterwards. Cause: being ealight in gearing of elevators in breaker. (Children all grown up.)
March 9,	8	Exeter col., W. Pitts'n No. 3 slo., Balt. mines,	Frank Keller	48 92	1	S	Caught in machinery while oiling, and was instantly killed.
24,	12	No. 3 sio., Balt. mines, Espy coliliery	m Colv	17			Instantiy killed by a fall of slate from roof.
27,	13	[Co., Plymouth. No. 4 shaft, D. \&H. C.	John Oliver		1		the clirt in one above him. Fell down shaft distance of 40 or 60 feet and was instantly killed
A pril 19,	14	No. 3 colliery, Baltimore mines.	Martin Hugli	21	1		Hughes had his hand so badly injured between cars near breaker that it was amputated, after which time he died of the effects of loci-jaw on the 26th.
30,	15	Pine Ridge collicry..	Thomas Price	30	1	2	Instantly killed by a prematuro blast in rock. He and his partner were taking out of the holo an iron needle at time the clbarge exploded.
May 11,	16	Espy colliery....	John Ringrair	38	1		Instantly killed by fall of top coal in chamber.
21,	17	Pine Ridge colliery ..	James Ryan..........	15			Killed almost instantly; fell between cars while unhitching his mule.
21,	18	Boston colliery	John Tyrell	33	1	2	Killed instantly by a premature blast in coal. He had ignited bis patent squib but did not get time to even turn from the hole ere the blast exploded, resulting in his immediate death.

- Hollenback col., No. 3, Jiunes liell, Jr [C. Co., Plymouth.

21,
25,
26 21 No. 2 shaft col, D. \& H

No. 2 shaft col., D. \&H. D. S. Scutcion No. 9 col., Sugar Noteh Willaan Ruse No. I shaft, D. © H. C. Ed. Quinm.
Co., Plymoutl.

No. 2 shaft, Nanticoko,

Thomas Vivian

Joseph Richard
Thomas E. Williams,
Peter Revnolds
Tenry King
John Fender
James Nasl
James Nash
Joseph Fink \qquad 30
95
No. 3 slope, W:anamic
Joseph Finl
Dianoud coll's, near Wilkesbarre.

Greenough anct Corp were both jnstantly killed, cansed apparently from the engincer losing control of his engines. There was but one carriage connceted to these ongines, and that, with the two persons above named upon it, and another who was very seriously injmed, had been suspended in the shatt at a point about 760 feet from the surface and about 100 feet from the bottom for about one hour, being held in said position to do some work by the frjetion brake on the hoisting drum. A fter that the men liad griven a signal to be hoisted; the engineer loosened his brake and attempted to lioist, but he stated that after having made tho second trial the load began to deseend, atter which he again applied the brake, but the distance weing so short, 100 feet or four revolations of the drum, he failed to get sutlicient control of the drum before the carriage had reached the bottom, there being nearly 900 feet of rope in the shaft. 'This, tagether with the weight of earriage, and no comnterpoise, caused a momentum suficiont to pull 11% coils of rope off the drum and break t^{1} e conncetions, whereby the whole rope, nearly 1,000 feet, foll mpon the men and the carriage. The two men above named were standinur upon a platform erected over the canopy or proper cover of the carriage; hence they had nothing to protect them from the falling rope. The thra person, being on the lower plationm of the carriage bad the protection of the cover, had ho boises broken but much bruised from the shock. Mr. (ireenongh was one of the contrictorshavinothe iols, beingin connpany with his consin, Mir. Kendrick. Instantly killed by fall of rock. A piece of rock broke down two pars of timber immediately opposite his place of working. It is snpposed he was eanyht while trying to escape.
12 Crushed between mine ear and side, causing instant death.
Killed instantly by enals liom his own blast, using the patentsyub. Instantly killed; fell down shaft. Lle was descendinenthe shaft in the dark, and it appeared as it he wallied off into the sliaft before reaching the bottom,
The undortumate victims of this sad record eame to their death hy falling down shaft a distance of about $5 \frac{1}{2} 0$ feet, and, as fonmd by verdiet of a jury, enused throagh their own imperfect workmanship in not properly securing their timber, upon which fheir own lives and those of cthers it was supposed was to diepent. Thuhiappened one of the most heart-renting aceidents of the vear for wanpened one of the most heme attention to safety
Killed instantly by a fall of coal in gangway.
z Injured so badly (erushed between milroad eats muter the breaker) that he expired in a few honrs.

TABLE No. 6.-Continuen,

Oct. 4,139 Midrale coll'r Plains- Joseph Halifer....... 40 I 5 Killed iustantly by a blast. It appeared that he lud set fire to lis match and ran into a cross-cut, but learning that a blast had been ignited in the next chamber he ran back again into his own chamber, when his own blast exploded with the above result.
Killed almost instantly, being struck by coals from a blast ignited in the next chamber by John Kane. Barke stated that he had not been notified by kane that he was going to fire in the crosscut. Kane, on the other hand, contended he had given warning. Another matter attributed perhaps somewhat to this sad case, that of an insufficient pillar.
41 No. 1 slupe, Nanticoke, Victor Joland 27

\qquad
I Killed instantly by a foll of top coal in chamber
Kilied instantly by a fall of top coal in chamber.
Henry and Donalioe were both killed instantly by a fall of rider coal. This sad calamity might havo been different had they placed a few pieces of timber for support.
Killed instantly by a trip of loaded cars on the slope. He was descending to his work, and by some means walked straight to meet the cars. IVe was an old hand, having assisted in the sinking of the slope; had worked eighteen years in and about the mine. Ward and his partner, Thos. Hughes, were so severely injured by explosion of gas that tho former died of wounds the following day. The cause of this accident should be attributed to their own earelessness in mot attending to their own place in a better manner. Huglies has recovered but is mucin disfigured.
No. 3 slo., Balt. mines, Patrick Boyle
killed instantly by a trip of loaded mine cars outside a head of slope while triving; he slipped and fell under.
Nov. 5, 46 Elliot \& Co,'s colliery, Juhn linghas. Plainsville
[Plymouth
47 A rondale colly, neat
12,49
Dec. 10,50 Henry col., Plainsv'e

William Welall Midvale col., Plainsv'e

Tolal 70
Davjd Morgan
Enterprisecol., Plains- Anston Kerrigan ville.

[ticoko.

16,
51
52
En. 2 tmmel, E. Ninn- Christian Roek Empire shaft,
Williesbarre.

[^6]22, 53 No. 3 slepo, Ashley Fatrick Tool...........
njured so badly by fall of bone from roiot that he died of his wounds the noxt day at the city hospital. The mine boss liad requested him to timber just a short time prior to the accident. Filled instantly by a fall of slate from roof
Killed instantly by a fall of rider coal, usually kept np for roof.
Injured so badly by being eaught in machinery in breaker that he died the next clay.
Filled instantly by a mine car rumningover him; he had attempted to mnhitch a mule, but failed and fell molor with the above sad result.
killed instantly by a fall of top coal.
Fell down shatit and was instantly killed. It appeared that he jumped upon the carriage altor the signal had beon given by the head-man, and before he had filly got on and balanced himself he was caught by the timber in shaft and pulled through the same, being only about 18 feat from landing. same, being only about 18 fegt from landing
killed instantly by a fall of slate from roof.

TABLE No. 7 .-List of accidents not proving fatal during 1875 in the Judulle Dishrici of Luzerne and Carbon Counties.

Name of colliery and location.

Exeter colliery, West Pittston...
Empire shaft, near Wilkesbarre

Pool's colliery, Plainsville
Pools colliery, Plain
Mill Greek colliery
…
........
No. 11 shaft, Lance enlliery......
Jersey enlliery, near Plymonth. Jersey enlliery, near Plymonth ..
Gaylord eolliery, Plymonth

Exeter colliery, West Pittston...

Midvale colliery, Plainsville ...
[barre. Empire, No. .3, slopo, near Wilkes Waterman \& Beaver eol., Kingston Franklin col., near Wilkesbarre.. Diamonil col., near Wilkesbarre. John Kipple........ Empire, No. 5 , slope, near Wilken- Thomas Dudliek. . batre.

Midvale eolliery, Plainsville .
Hartford coiliery Wanamie colliery Pool's colliery, Plainsville.
Exeter eolliery, West Pittston....
Boston colliery, near Kingston ...

Name of person
injured.

Owen Maley

James Reynolds. .
Wohn Davis
Williant Webster. .
John Davis.

John Stetler \qquad
August Swanson. . .

Cause of accident.

Slightly burned by explosion of fire-damp by negleeting orders of oflicers.
John Thomas. Soverely bumed by explosion of gas, cansed, it was supposed, by William Joice speed of fan having been redueed before word could be sent to

Frank Thom........ Leg badly injured by mine ears rinning on hime.
bhonlder blade broken, being struck by prop, which had been knockerl out by empty cars.
Pat pangherty... Dangherty was burned on face and hands. eansed by disobeying boss' orders. Haley was also bumed on face and hands, not in the same place, eansed by entering another place than his own. Tnjured by fall of slate quite severely, breaking Swanson's thigh and Injured by fall of slate quite severely, breaking Swanson's thigh anc Injocating Stetler's ankle, besides other injuries. Injured so badly by fall of eoal that one leg liad to be amputated. Severely injured by explosion of a blast.
Foot so badily smashed by fall of coal that amputation beeame neces-
sary.
Injured quite severely by mine ears ruming back upon them while repairing track at foot of slope; drawbolt pulied out, eausing the same.
Bumed severely on face and hands by explosion of gas. They had just eut throush from air-way to gancrway and while in the lice the gas was ignited from the gangway side upon them.
Burned on face and hands quite severely by explosion of gas while working for George Gardner.
Arm broken by pitting it into belt pulley in breaker.
Injured severely by jumping upon unine ears while in motion. Injured on head and shoulders; foll nnder mine ears.
\} 3urnef quite severely by explosion of gas in a gangway. Jeg bacily bruised by ear passing over him at head of shaft.

Aug. $\mathrm{J}_{\mathrm{i}} 19,45$ Enterprise colliery, Plainsville... Benjamin Lewis.... Leg broken; canght between car and prop. No. 2 shaft, D. and H. C. Co., Ply. Jno. rVasley

Injured, same time aud place that Heller Cronse was, by blast-de30, 47 , 48 31, 49

Jersey colliery, near Plymonth..
Theo. Young. Hartford colliery, Ashley........ Empire shatt, near Wilkesbarre. No. 3 slope, Baltimore mine.... .

Injured on arm and leg by explosion of a blast; he was returning, as he supposed, to re-tomeh when it explodod.
Hand badly mashed between top rail of car and roof.
Jno. Blewitt........ Leg broken by fall of top eoal.
Tudor Williams
Chas. Wedlock
Michael Cromen...
Patrick Brislin....
Richard Faul.......
Patrick Naloy.......
Log broken by plank falling upon him.
Leg broken by being eaught Detween car and side.
Ankle-bone fractured by tall of coal.
Injured on head, and otherwise, from premature explosion of blast. Burned quite severely by explosion of gas, same time and place as Peter Quinn, who died of his injuries; caused by igniting a small quantity that lodged in a hole in roof over the timber in gangway.
Thos. ()'Brion Burned on face, hand and back by an explosion of gas, caused by his Daniel Evans....... $\begin{gathered}\text { own fault in disobeying orders. } \\ \text { Leg broken and shoulder binne }\end{gathered}$
Nottingham colliery, Plymouth
Audenried col., near Wilkesbarre

Midvale colliery, Plainsville.....
Dodson colliery, Plymouth
Thos. Hughes........
Wm. Mnlroy
Enoch Jones.
John Tool.
William Tigue
Chas Edwards
Chas. Edward
Ed. E. Davis.
James Fauduteh...
Richard Collient....
Leg broken and shoulder bruised by fall of bowe roof.
Bnrned from the premature explosion of a blast while tamping the same.
Leg broken and otherwise injured by fall of bone rool.
Arm broken by falling from bridge in columm bank.
Burned on face and hands quite severely by explosion of gas.
Hands quite severely burned by explosion of gas.
Foot severely cut by drill falling upon it.
Leg broken by fill of top slate.
Seriously injured by fall of rock; left log fractured, and right severeIy bruised about ankle-joint.
Thomas Hughes.... Severely burned by explosion of gas at sime timo and place as tha of Jas. Ward; case described on same date in list of fatal eases.
Reuben Stiner Injured quite severely by striking against empty ear when jumping off another trip of cars in motion.
67 Broderick's drifts
Williain Noye...... Leg brokon by fall of slate.
John I. William... Log broken by fall of rock.
Thomas H. Harris . . Injured very seriously by mine cars; case dangerons.
Joseph Sobey....... Arm fracturod by rock drill falling upon him ont of hoisting bucket Arm fractured by rock drill falling upon
George Phoenix..... Mands slightly burned from explosion of gas, caused by entering another person's worlincr place against orders.
Nov.
Midvale colliery, Plainsville.....

Hartford colliery, Ashley.........
James Branlgan.
George Wallace.... Hand badly injured by fall of coal; four fingers since imputated.
9, 73 Mineral Spring, nr. Paison's sta'n
11, 74 Audenried col., near Wilkesbarre, James Jovie........
Shoulder-blade fractared, and otherwise injured by belng caught by mine cars.

TABLE No. 7-Continued.

REPORT

OF TIIE INSPECTOR OF COAL MINES OF TIIE WYOMING COAL FIELD, LYING EAST OF AND INCLUDING JENKINS TOWNSIIIP, FOR TIIE YEAR 1 Si5.

His Excellency, Joun F. Hartranft,
Governor of the Commonwallh of Pennsylvania:
Sir:-In compliance with the requirements of an act of the General Assembly, approved the third day of March, A. D. 1870, providing for the health and safety of persons employed in coal mines, \&c., I have the honor to herewith submit my report for the year ending the 3lst day of December, 1875.

The total number of casualties in the year 1874 was 158,69 deaths and S9 accidents; and in 1875 was 164, 62 deaths and 102 accidents, which were not fatal, showing a decrease of 7 deaths and an increase of 13 accidents in 1875.

The total number of tons of coal mined in the year 1874 was $6,357,879$. There was one death to every 92,143 tons of coal mined, one widow to every 167,313 tons of coal mined, one orphan to every 56,767 tons of coal mined, and one accident to every 40,229 tons of coal mined. The total number of tons of coal mined in 1875 was $7,956,452$. There was one death to every 128,330 tons of coal mined ; there was one widow to every 221,012 tons of coal mined, one orphan to every 67,428 tons of coal mined, and one accident to every 78,004 tons of coal mined.

By reference to the tabulated tables annexed you will find all other matters of interest detailed in full.

Respectfully submitted.
PATRICK BLEWITT, Inspector of Coal Mines.

TABLE No．1．－List of leaths reported to the Inspector of the Eastern Distriet of the Wyoming Coal Fichls，Luzerme county，state of Penn－ sylvania，and the cause as shown by his investigation for the year ending 31st day of Dccember，A．D．1875．

Date．	Names．	品		を	O
Jıa，11．．	Michaet Earle．．．．．．．．．．．．	15			
тam．11．．	1 muinick Boland．．．．．．．．．．	28	M，	W．	
$\cdots 3$	Edward Irart ．．．．．．．．．．．．．	48	M1．	W．	
$\stackrel{.7}{29}$.	Thomas Filson Hichael Ifealy	35 45	M1．	W．	
310	－1olun ${ }^{-}$Kenna	25	M．	F．	
Fels， $5 .$.	Valentine Plillips．．．．．．．．．	40	11.	W．	
10．．	Richard Gill．．．．．．．．．．．．．．	29	S．		
$23 .$.	John 11 ull	25	M．	iv．	
27.	Palrick OHara	17			
Mar．4．．	Thomas Maher．．．．．．．．．．．．	16			
9．．	Henry Wrash	16			
$9 .$.	Juhn 0wens ．．．．．．．．．．．．．．．	16			
10．．	Peter Gallagher．．．．．．．．．．．．	53	II．	W．	
11．．	Martin Feeny ．．．．．．．．．．	45	M．	W．	
16.	John Moran ．．．．．．．．．．．．．．．．．．	19	M．		
$25 .$.	John N leholas．	38	M．	W．	
$31 .$.	Jolin Seoonover ．．．．．．．．．	50	M．	W，	
A pr．19．．	Jolm Narry	40	M．	W．	
23．．	Anthony Klmy	25	M．	W．	
\＃．．	Martin Mr Tiglie．	43	M ．	W．	
Mityti．． $15 .$. 1	Miphael Cooliran －	21	iv．	W．	
$22 .$.	Thomas kvins	24	S．		
Itune 5．．	Jacob Morgan．	18	S．		
7.	John 1）．Murply	35	M．	W	
－．．	Antiony Walsh．．．．．．．．．．．	48	M．	W．	
7．．	Ifm．Jumes．	14	s ．		
12.	Jumn Inghes	45	I．	W	
25.	1 Mennis Costello	26	5.		
おいう ご．	f＇alrick Diskin	35	II．	IV．	
15.	Joln Kelly	20	S．		
17．．	Eiward Barrett	25	M．	W．	

Deaths 62
Widows 36
Orphans 118
Killed by cars 12
Blasts 10
Falls of roof 18
Falls of coal 11
Powder explosion 1
Falling off trestle 1
Caught in screens 2
Falling down shaft 1
Explosion of fire-damp 3
Pony rolls 1
Getting hit by a rail 1
Getting hit by a carriage 1
There was one death to every 221,012
There was one orphan to every 67,428 嗼"

TABLE NO. 2.-List of accidents reported to the Thspector of the Eastern Dislrict of the Hyoming Coul Fields, Luzerne county, State of I'ennsylvaniu, and the cause as shown by his investigation for the year endiny 31st day of December, A. D. 1875.

TABLE No. 2-Conminued.

scipt． t．

10	1
18	

Contitincontall shaft． \qquad

Itugh Pare
Win，Faircl \qquad A． $11 .$. No． 5 shatl．
Xo， 9 yhaft
Fithe Creqk
 \qquad
Thos．Twaddt
W゙ル．Joftus
\qquad

\＆\＆11，Aran lroken by a how from a hamber．

 Serionsly injured by falling towa the shaft． seromsly infured by a fall of coal．
Foothrused by a fall of roof．
F．ty hoken and arm dislocated hy falling hefore a car． leg boken ly a biece of tup coif whist bry ing it down．
Wrist broken on a premature blast
Seronsly injured by a premature blast
Foot smashed by a car ruming over it on the culm domp，
23.
30.

There was one accident to evely $73.00+$ tons of co
There were of persolls whos lat Gite arms hrokeli．
There were 2 persons whio hat both arms broinon．
There were 2 porsons who had both legs hroken．
There were a porsons wha hard both legs roken．
There was 1 person who had one hip dislocated．
There was 1 person who had one ankle distocategl．
There were 2 persons who hat their collar bones hoten．
There were 2 persons who had ome leg amputated．
There wats 1 person who hat his legs ind ama hroken
There yas 1 bedson who had his breast homo hroke
There wese ！persoms who were scrionsly injured hy cans．
There were of persons who were serionsy mared by balls of coef．
Thare weac is persons who were seriousiy infured hy falis of coal．
There were ！a persons who were serionsly ininred by powder explosions．
There was I person who was seriously injured by failing down a shath．

There was 1 person who was seriousty injured hiy an explosion of tite－damp．

Bue

there was 1 norson who was serionsly injured by hein g hit i）an axe，

TABLE No. 3.-A tabulated report of the condition of the cort mines in the Fastern kins", township, for the year ending

rlistrict of the Wyoming coal-fields, Luzerne county, lying east of and including $\operatorname{Icn-}$ s1st clay of December, A. D. $1 \mathcal{S}^{2}$ ש.

TABLE No. 3-

Continued.

TABLE No. 3-

CONTINUED.

[^7]TABLE No. 3.-Continued.

TABLE No. 3.-CONTINUED.

TABLE No. 3.-Continued.

										Name of general mine superintendent.	Name of mining boss.
71 72 73	Yes, \cdots \ldots	Yes,			No..	2 1 4	60 33 50	Yes, . .	$\begin{aligned} & 2,730 \\ & 4,101 \end{aligned}$	WIm. H. Richmond........ (A. H. Vandling, g. m. s. Andrew Nieol, dist. sup. A. B. Nicol, assistant...	Benjamin Rees. \qquad P. K. Lardler. \qquad
$\begin{aligned} & 73 \\ & i 4 \end{aligned}$	\because	Yes,	Ies,	Yes.	\because	$\stackrel{4}{3}$	50 50	\cdots	2. 465		A ${ }^{\text {ndrew }}$ Patten.......
95	\because	Yes,	Yes,	Yes,	\because	4	50	.	4,359		
76	\checkmark				No..	$\stackrel{2}{1}$	70	\because	\} 1,950	$\left\{\begin{array}{l}\text { creorge } \\ d o\end{array}\right.$	Timothy Parfrey
77	"		'		"	2	$\left\{\begin{array}{l}19 \\ 81\end{array}\right\}$	*	\} 5,359	\{do	do
	\%				\because	1		\because		\}to.	
78	\#	Yes,	Yes,	Yes.	亿	,	\because	\}4,461	$\left\{\begin{array}{l}\text { Edward } \\ \text { …do.. }\end{array}\right.$	James Eaton do.
	6				،			"			
79	\cdots				"	4	50	-	4,331	$\left\{\begin{array}{c}\text { A. Vanding, A. B. Ni- } \\ \text { col, assistant }\end{array}\right\}$	Hugh Jones
80	\because	Yes,	Yes,	I'es,	\because	4	50	,	\}7,535	\{ J. J. Jermyn,	Robert Capter
81 82	\because	Yes,	\cdots	Yes,	\because	2	95	: \cdot '	3,430	w...to E. Colbourn	A. 11, Greeri
83					*	3	50	\cdots	2, 767	\{ A. H. Vandling and A. \}	James Nicol..........
					\because		25	\because		\%.....do..........d do..........	¥o..do
$\begin{aligned} & 85 \\ & 87 \end{aligned}$	Yes,	Yes,	Yes,	Yes,	"	1	50 92	\because	$\} 4,300$	\& do	John Campbell........
87	Yes,	Yes,	Tes,	Yes,	\#	3	50	\because	1,437	do	John Hughes.........
88					\% 4	3 1	50 26	\because		...do d	John Waterfield
90					\because			\cdots	ılo do	
91	Yes,				\#	1	58	\because	10,832 do do	
92					\because	1	119	\because		. . . do do do. do	Johin Wo Waterfiel ${ }^{\text {a }}$......
94					\because	1	97	"	10............do	Wm. \1 Myıe........
95	Yes,	Yes,			\cdots	1	37	\because	533	E. E. Tho	E. E. Thomas........
96	.	'.	Yes,	Yes,	"	2	$\left\{\begin{array}{l}44 \\ 29 \\ 29\end{array}\right\}$	\cdots		Wm. Law	John B. Law.........
97	\cdots	\checkmark	-	..	Yes,	2	$\left\{\begin{array}{l}46 \\ 25\end{array}\right\}$	\cdots		do	Robert M1 Millan.....
98	\cdots				No..	1	6	\because		M. Gilmartin	M, Gllmartin
199	\because				\#	1	120	\because	350 180	Anthony Horati.............	Anthony Horan......
100	\because			\because	1	16	,	180	Thomas Brenuall.........	
112										The coal prepareal in this	breaker is taken from
103										Powderly, No. 1, slope, 2 shatt.	White Ridge, and No.
105											
								,			
106											
107										J. W. Wiliams.	
j08										Campletl ic somı......	

TABLE No. 3.-Continuen.

TABLE No. 3.-Continued.

TABLE No. 3.-Continued.

[^8]14 Mine Rep.

TABLE No． 4.

	Nime of Colliery．												
		（en			Yes，		$\begin{aligned} & \text { Tes, } \\ & \text { No. } \\ & \text { res, } \\ & \because: \\ & \because \end{aligned}$				res．	$\overline{\text { Yes }}$	
11					$\stackrel{\text { Yes，}}{\sim}$		Tee,	Yes	$\stackrel{\text { Yes，}}{ }$	$\begin{aligned} & \text { Yes, Yes, } \\ & \text { Yes. Yes. } \end{aligned}$			／
	No． 8 ciait	${ }^{16,}$	15．720	15．890									
15	No．i 6 sope		隹． 500	${ }_{\substack{15.13) \\ 15.150}}^{1.160}$	ä	\because	＂	＊		\％es，			\％es．
17	izavilue sha		coin	${ }_{\substack{\text { a }}}^{\substack{15.100}}$									
	Beinter	$\xrightarrow{T H 1,5 \times 4}$			Res，	Yes，	\％i．．	\％．．．	1－s．		Yex，	les，	
1.	Reck Hi	4．3020	9， 9 ¢0，				Yes，	res，		Ye．Yes			1es，
	Piienio	t，	4． 200	，intion	Tes．	Yes．	No．．	\％．．．	1－3．	yes Yes，	Tes，	Yes，	
$\frac{20}{32}$	Counlil	${ }_{\text {4，}}^{\text {4，000 }}$	3，			．	－	res．			：．		
24	Oitario	11， 11.80	5，			Yes，					Yes	Les．	
	Onlario	$1{ }_{1}^{12}$	6，300	12.60		ving	out ${ }^{\text {b }}$ ，	Hars		is vei ii．			
	Miiiisiue．．．	，	10，	19，000		11	jes，	İes，	Yes，	Yes，Yes，	1．e．s．	Yes，	
	Heidelt，erg tun：		mel	${ }_{\text {a }}^{\text {as side }}$ a idue									
	Mrowns．．．．．．．	11 rivi 3.110 3	He out	${ }_{\substack{\text { millars } \\ 34,700}}$	$\xrightarrow{\text { n }}$ ces	coll	iepls，	Yes，	Yes，		Yes，	Yes，	
	Stark．	$\frac{24}{2+160}$	cole						\％				
	－1．4．10	10140	13．40）		．．	．．		،	．	Tes Yes			
	Cartoci Hil	${ }^{\text {chen }}$	7			Ses，	\％o．	No．	iz．．		䛧，		
		Tise	3.100	${ }^{7} 5$									
	Prin	64．000	55，014	6\％， 60	＂	．	\％，	jes．	：				
	Taylor	${ }_{-2,1000}^{60,000}$	${ }^{\text {coserem }}$	2，600						Y巴s，			
	Corey												
		15，ivio	10，000	方，iö					：				
\％	（raturwa Ainiir	（16）（za）	1，1400	17，000	．	\because	\because	．	：		＂．		
	Neallow brook	边	$\xrightarrow{\text { 1s．cue }}$		\because	\because	\％	．	＇				
	－tairurio	12，${ }^{2} 9000$	8，010	12， 10.100		．．	．		．				
42	scranton Coal	35，000	30，600	32,000	：	＂	．	＂	＂	Y̌．巛，			＞\％
13	Boike．	17．ino	is， 00	$\xrightarrow{\text { 18\％öo }}$			．	．	\％	．．			
4	Bieherve shia	rate in IN			:.	．		．．	．				
16	Oxfora siacht	（181e in	${ }_{\text {15，}}^{1575}$ 100	1，550			．	．	．	Xes，Yees	．		No．
	Counto		15， 150	24，000									
$\begin{aligned} & 41 \\ & 40 \\ & 40 \end{aligned}$	Sloan shat	6ider	55，	Givi									
	Archibalt siope．	37.500	2	${ }^{33}$	Tes，	บ．	1es，	1es	is				
	Contlo ．．．．．．．．．．	51，	0	bi，${ }^{\text {ary }}$	．	．．							
	nyde P		2，										
53	сарий	2if		${ }_{25}^{5}$	．					गes， y			
			＋12										
	dv．		20，	coico						\％u，			\％

TABLE No. 4-Continuen.

TABLE No. 4-Continued.

TABLE No. 4-Continuled.

TABLE No. 4-Continued.

TABLE No. 4-Continued.

TABLE No．4－Continued．

		What is the name of the vein of coal worked？	$\begin{aligned} & \text { What is the average thickness of } \\ & \text { etth vein?.............................. } \end{aligned}$											$\begin{aligned} & \text { Number if horses and mutes at } \\ & \text { eacli collicry:................. } \end{aligned}$
44.	$\overline{\text { Ang }}\left\{\begin{array}{l} 1856 \\ 1874 \end{array}\right\}$	G and I．	12－9	Yes．	Yes，	No．	No．．	No．．			900	11.		
45.	$\because 1856$ ．	E		\because	＇		い	－						
	＂11we，18561．	$\stackrel{F}{F}$	$\frac{7}{7}$	＂	\because		．．	\because						
f6，	Juxe， 1861.		$8^{1 / 2}$	＂	\because	＋1．	．	．	295	13	$\begin{aligned} & 1,525 \\ & 850 \end{aligned}$	1	2,688	14
47 ，	＂1568．．	G	12	\％	\because	\because		．			1，300	11	5.376	24
45,	Oct．，1870．．		9	\because	＂	\cdots	\because	\cdots			1，250	11.	4， 70.4	27
49,	Rept．，1869．．		8	\because	\cdots	\cdots	\because	\ldots	5	10	1，100	$1^{1} 4$	\} 3,101	
30.	May， 1860	f	10	．	．	シั．．．	．	，						
ぃ，	$\cdots{ }^{\circ} 1860$		$8{ }^{1}$	，	．		．	，		23	$\{1,150$	14	3，194	37
51，	1857.	E．．．．．．．．．．．．．．．．．．．．．	512	＂	．	＊	\cdots	\cdots			$\left\{\begin{array}{r}1,150 \\ 850\end{array}\right.$	11／1	5，913	50
52.	Jan．， 1869.	G	8	\because	．	\because	\because	＂．	180	8	\}2,060		3，695	30
53.	Oct．，1869．．	E．．．．．．．．．．．．．．．．．．．．	6	\because	\because	\cdots	\cdots	\because	150	30	1，030	11		
	$\begin{array}{ll} 1869 . \\ \text { July, } 1873 . \end{array}$	F	$1_{5}^{1 / 2}$	\because	\cdots	\because	\cdots	\％					5，376	42
	Jume，1574．		6	\because	\because	\＆	\because	\cdots						
54.	1856．．		7	\because	\because		\cdots	\cdots						
	1856．．	F．．．．．．．．．．．．．．．．．．．	7	\because	\because						， 4		3，360	30
55.	$1056 .$. 1855		12	\because	．		．	\because			，000		06	
56,	May，1862．．	E．．．．．．．．．．．．．．．．．．．．．	$6^{1 / 2}$	\cdots	\because	No．．	\because	No．			600			
	． $1862 .$.		7	．							785 820	1.4	4，301	－1
	い 182̈6．．		12	．．	\cdots	\bullet	．．	，	300	$\underline{2}$	$\left\{\begin{array}{l}830 \\ 730\end{array}\right.$	$11 /$	4，301	43
57.	July，1864．．		14	\cdots	\cdots		．	．			$\left\{\begin{array}{r}700 \\ 1,200\end{array}\right.$		5，576	33
58.	1855．．	E．．．．．．．．．．．．．．．．．．．．．	10	，	\cdots		，	．			${ }^{1} 700$		4．082	27
59,	Nov．，18\％1．．	G	10	\cdots	．	No．．	，	－	450	11	$\{600$	1	5	， 5
60,	May，1868．．	1	10	\cdots	\cdots	－	\cdots	\cdots			1，600	11．4	3，105	31
61.	1871．．	E．${ }_{\text {E }}$（．．．．．．．．．．．．．．．．．．．．．．．．	5	\because	\because	\cdots	\because	＂	400	16	2， 375		6	
	1855.			＊	．		，	＂			－			
6．	1565．．	E	7	\cdots	\because	No．．	\cdots	\because						
	May， 1865.	G	9	\because	\cdots	\because	\cdots	＇6		1／2	$\} \begin{array}{r}350 \\ 0\end{array}$	11	$\}^{8,664}$	
63, 64.	May，1872．．		${ }_{4}{ }^{1 / 2}$	\because	\cdots	，	\because	＇6			2,400 2,200		4，032	16
	Oct．，1864．．		$41 / 2$	－	．		，	，			2，200		6，152	16 10
65,	July，1861．．	I ．．．．．．．．．．．．．．．	8	＂	\because	No．．	\cdots	No．			770	$11 /$	6,151	
66,	June，18in．．		8	＊	\cdots		\cdots				1，375		1，344	13
67.	Aug．，1868．．		8	\checkmark	\cdots		．	＂	$\left\{\begin{array}{l} 1,0 \\ 200 \\ 200 \end{array}\right.$	$\begin{array}{r} 8 \\ 16 \\ 19 \end{array}$	$\begin{array}{r} 5: 25 \\ 2.300 \end{array}$		$\}_{3,4 \pi}$	30
68.	June，1868．．	Upper and Midd	5\％	\cdots	＊	No．．	．．	－			$\left\{\begin{array}{l} 2,100 \end{array}\right.$		\}2,003	13
69.	$\cdots \quad \begin{aligned} & 1874 . \\ & 1869 .\end{aligned}$		$5{ }^{1}$	\because	\because	ㅈ．．．	\because	：．			2,200 2,600		2，003	13
	1869．．	Seco	$4^{1} / 5$	\cdots	＊	．	＂				16			
											\｛ 1，000		2，6	4
	1869．．		$41 / 2$	－	\cdots	\cdots	－		800	15	$\left\{\begin{array}{l}850 \\ 425\end{array}\right.$	17		
\％0，	June，1870．．	Upper	$5 \cdot 12-\frac{1}{2}$	\cdots	\cdots	＂	\cdots		450	12	$\left\{\begin{array}{l}900 \\ 600\end{array}\right.$	11／4		
	May，1874．．	Midale	$41 / 2$	\because	\cdots	．	\because	，			250	11／4	1,	
	June，1870．．	Upmer	$4{ }^{1}$	＂	\because		＂							
	\cdots 1870．．	I	$4{ }^{1 / 2}$	\cdots	．		，							
1.	May，18tio．．	Top	6	\％	\because		，		275	189		1	1，120	35
－2，	＂ 1859 \＃	No．1．．．．．．．．．．．．．．．．．	7	，	\cdots		，		300	14	500			7
73,	Dec．$\left\{\begin{array}{l}1862 \\ 1875\end{array}\right\}$	No． 2 and Grassy I．	$51 / 2$	．	．	No．．	．				$\left\{\begin{array}{l}1,150 \\ 1,150\end{array}\right.$		8，650	23
74.	$\cdots 1864$.	No． 2	$5^{2} \underline{2}$	．	．		．				（1，650		2，240	31
75.	Apr．，1560．．	Grassy Islat	11	\cdots	\cdots	No．．	＇＊				$\left\{\begin{array}{l}950 \\ 325\end{array}\right.$		\} 6,451	33
76,	June，1874．．	No．	81.2	\cdots	\cdots		＂	No．	230	is ${ }^{\prime}$	1,500 500		1，85i	21
	い 1874．．	Grassy	8	\because	\because		\because						1，85	
77.	Nov． 1873.	No． $4 . .$.	8	\because	\because		\because				600		3，770	26
78.	June，1874．．．	Archbald	10	＂	＂	Yes，	＇6	No						
	May，1856．	．．．fio．．．．．．．．．．．．．．．．．	10	\cdots	＂		，	．．．．．．		11	600		1，736	51
	A 1850.		10						350		（1，575			
79，	A pr．，1819．．		91／2	＊	＊	．．．．．．	＊	No．．	300		\｛ 700		\}3, 4 i 2	2

TABLE No. 4-Continued.

[^9]

Publer coltiens
 Columbit cobliery
1'lanix enlliers
Planix colliers.
ㄲ․

11illide collery

…...10.
$39 .$.
surug Brook colliery.
40.

Carmon 1in coliery
Carbon Hill braker
Carbon Ilill slome

12.
corey limaker.
"ireenword slop
West Slde slopic.
43.
4.

Nationai nininacit..............
Meatow \$1
※1aitsid Hro............ Rolling silll.
ione Brook.
〒....tй
49.
io...ll
it.
iit. 1'leamatht colliery

.....10..... .
Park collery

-..

Mair hawn colliery

R. Roaring Brook
.......11
5.

Jermyn s म............. st
Greeni
EMk 11il colliery
Filer....
ivinton
55.

Whinton
 (e. July
 November
dejtember ...d. 10. iヶece.nher .. 10. ...dlo.. July
ifcremb
. 10.
8..
 40
20
311
30
30
\cdots
30
40

TABLE NO．5．－CONTINUED．

$\begin{aligned} & \% \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{2} \\ & \vdots \\ & \vdots \end{aligned}$	NAME OF COMDANY．		DIMENS $\text { Length in } \mathrm{ft} \text {. }$	SIONE．				Irgesent Condi－ TION．						$\begin{aligned} & \text { 首 } \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$				
06.	Eatun colliety．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	3	$4)$	31	89	les．	1）ecember 12．．	Goorl amd sate．．．．．．．	3	75								
59.		3	± 1	34 31	80	\because	\＃．aldo．．．．．．13．．		1	25					1	25		
59．．	No． 1 shal $\cdots+\ldots .10$	3 3	36 36 36	31 31 31	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	\cdots	October 11．．	do ．．．．．．．．．．．	1	60		9	：	30				
	．．．．．．．lı	2	：36	31	70	－	．．．．do．．．．．．．．11．．	do							1	25		
60.	Jermyn＇s slop	4	30	3.4	70	＂	．．．．dio．．．．．．． 11.		2	N 5					1	25		
61.	Erie colliery	3	36	31	70	\cdots	Jnty 26．．	．．．．．do			1	33						
	．．．．．．do	3	36	31	70	\because	．．．．ilo．．．．．． $26 .$.	du	2	70								
62.	E．．．．E，lienhrick	3 1	312	31 310	70 60	：									1	313		
63．．	Horan＇s colliery	2	34	30	50	＂	December 19．．	do							1	25		
64.	Clarkson \＆Bremtan	Wo	rked ve	I＇y litit	e in 3875	＂												
65.2	l＇yne colliery．．．．．．．．	3	30	31	76	＂	Augnist 13.	．	3	100								
	．．．．．．du．．	3	31）	31	75	\because	－．．do ．．．．．． $15 .$.	do			1	－10					1	80
	d	3	3,	34 81 81	75	\because	September 16．．	do			1	29			1	（6）		
$66 .$.	Taylor coti	$\stackrel{3}{3}$	319	31	75	＂	July ．．．．．．．．．	do	\pm	120	1	1 1－						
	．．．．．． do	3	30	34	75	＇．	．．．．do．．．．．．3．						1	1			1	80
	．do	3	30	31	75	\because	Angnst 18．．				1	130	2	36				
67.	－7．．．1antol	3	30	31	9	\cdots	\％．to．．．．．．18．．	．．．．．．．．do	1	110					1	60		
	．．．．．．do．	4	3	31	75	\cdots	．．．．do ．．．．．．．13．．	do	1	$1(10)$			1	10	1	100		
68.	Dodge	3	36	34	75	\because	Nerember 13．．	（1）	2	90	1	95						
	－${ }^{\text {a }}$ ．${ }^{\text {do }}$	3	36	34	－	\because	．．．．d10 ．．．．．．．13．，						1	6				
69.	Jodge breaker	3	36	31	75	：	．．．d木．．．．．．．13．．								1	（6）		
70．．	Tellevne siaft	5 4	316 314	31	\％	\cdots			2	210	1	66	$\stackrel{1}{2}$	${ }_{6}{ }^{4.1}$	1	120	1	60
71．．	Uxford sliaft	3	411	31	75	\because	Septemiter 29.	（1）	2	96								
	．．．．．．	3 3	40 40	31	75	．				．．．．．．	3	21	2	（i）	1	60		
72．．	Central strait	3	3：1	3.1	\％	＂	Augusi ${ }^{\text {a }}$ ，	， 10	\geq	120								
	．．．．．do	3	313	31	75	\because	July 31．．				1.	20					1	40
	Oentral hreak	3	310 30	31	75	九					2	300						
73.	sloan colliery．	3	3i）	31	75	．	Uetober $11 .$.	du	2	120					1			
	．．．．．．dido．	3	30	31	75	\because	．．．．llo．．．．．．． 1.	do							1	80		
	．．．．．．．d．${ }^{\text {a }}$	3	3	31	75	＂	4.				1	20					1	60
74.	Archibal	${ }_{3}^{3}$	30	\％	75	－	september 11.	do		（k）	，	3						
	．．．．．．do	3	30	3.1	75	\because	．．．do．．．．．．．18．．	do				20			1	60		
	Archibald slop	3	30	34	75	\because	November 13．．	do			2	12					1	40
75．．	Coutine	3	10	34	7.	\because	．．．d6 ．．．．．． 13.				1	150						
	．．．．．do．	3	4012	34	75	\cdots	．．．d10．．．．．．．14．			1.0	1	95					1	
	，	3	${ }^{+10^{1} 2}$	－ 34	75	\because		du			2	80			1	40		
6.	Hampton colliery	31	36.2	31	－ 7	－	November 15	．．．．．．．．．．（t）．．．．．．．．．．	2	170								

71
78
7S..

: :

T.ABLE N゙o. 6-Continuen.

'I'ABLE No. 7.-A List of Local Coal Sale Mines.

$\begin{aligned} & \text { K } \\ & 0 \\ & 0 \\ & \vdots \\ & E \\ & 0 \\ & 0 \end{aligned}$	Where Iocated.	By whom Ophrated.		$\begin{aligned} & \text { Name of } \\ & \text { the Vein of Coat } \\ & \text { worked. } \end{aligned}$			$\begin{aligned} & \mathbb{\pi} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 8 \end{aligned}$	曷 $\frac{0}{6}$		$\underset{\substack{\underset{\sim}{E} \\ \underset{\sim}{E}}}{ }$	z_{1} 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0
1.	Pittston township	Maryland Nat. Anth. Coal Co	10	Pittston	695		1	1		1	2	1
2.	Runsom township				460			1		1	1	1
3.	City of Scranton .	Hoy dico	$1 \frac{1}{2}$	Rolling Mtill.	900			1		1	2	1
4. do	Joseph Church	$5 \frac{1}{2}$	Chureh	600			2		1	1	
5.	. do	Michael Rock .	7	Clark.	900		1			1	1	,
6.	do	Griffin \& Leach.	7	Clark.	3, 608			1		1	6	5
7.	do	Hancock \& Dean	5	Lower.	3, 300			1		1	6	3
8.	do	Carter \& Moore.	5	Dunmore	2, 400			,		1	3	3
9.	Borough of Dunmore	James Young .	4	... do . .	900			1		1	2	2
10.		Anthony Maloney			300			1		1	2	2
11.	Blakely township	Martin Cuppin ...	$5 \frac{1}{\frac{1}{2}}$	No. 2	3,000			2		1	5	4
12. do	Tutber Lyons.	$5 \frac{1}{4}$	No. 2	1,260			1		1	4	1
13.	do	Henry Bowen	$5 \frac{1}{3}$	No. 2	615			1		1	2	1
14..	Gibsonburg horough	Thomas M’Gloughlin	7 \% 5	Top and Bottoni..	1,000			1		1	4	2
15..	City of Carbondale.	Peter Dockerty.....	7 ¢	. . . do.............	1,900	1				1	3	1
16. do	M ${ }^{\text {Garah it M M M }}$ (1)	. 5	Botton	1,200			1		1	4	2
17.	Fell to wnship	Coughlin \& Co.......	5	. . . do	1,223			1		1	4	3
18.	.	Gorden \& M'Donough	5 do	300			1		1	2	1
19.	City of Carbondale	Jones \& Co	5 do	1,100			1		1	2	4
	Fell township.	C. H. Whitman	5		425			1		1	3	2
				Total	25,086	1	2	20		20	59	41

-

.

[^0]: Sovercly burnod by fire-damp
 Severaly injured by a fall of coal.
 Sevorely erisherl liy warons.
 reg cut off by an explosion of a steant-boiler.
 Leg and arm broken by a fall of eroal.
 Foot ernshed by wagons.
 Leg broken by a fall of rocks.
 Soverely erushed by a fall of exal.
 Severely erushed by a fatl of rocks white in the atct of taking dimer with five others, all of which were severely injured by the said accident.

 Severely injured by falling off a scaffokl
 Severely burned hy an explosion of gas.
 Severely burned by the said explosion.
 Head fractured by a casting.
 Foot crushed by a fall of coal.
 Knee fractured by a fall of slate.
 Foot injured, a drill was driven throumh it
 Hand crushed and tingers ent off.
 Knee fractured by a fall of slato.
 Arm broken by a fill of coal.
 Arm broken by a fin of coal.
 Foot crushed, run over by a wiagon.
 Cruslied by a fall of coal.
 Badly burned by a cartridge.
 Foot crushed by a fiall of ecral.
 Leg broken by a fall of coal.
 Leg broken by a fall of coal.
 Badly burned by fire-damb.
 Badly burned by tire-clampl.

[^1]: Thms 114 persons were maimed and injured in the Shamokin district during the year, six of whom shbsequently died of their injuries,

[^2]: HEGQPFTEEATION

[^3]: Wirlows, 12 : तyphatas, on

[^4]: L.ery lyroken ly fath of coal and slate ..

 Jaty broken hy mism fitrs.
 I.t.t (lishocateil by mardiney?

 fer :mputated: danmed by mine calo.

 Sru Imoken his Lallin: dewn hreakersteps

 - Irm broken hy pope ha"aking

[^5]: 111.p:ecerlenterl rapictits:

[^6]: 29,5

[^7]: There are eight mines ventilated by steam jets.
 There are thirty-one mines ventilated by nitural means, cr by atmospheric pressure.
 T'leve are twenty-five mimes ventilated by fans.
 There are sixty-nime mines ventilated by famaces.
 There are sixty-two shafts.
 There are thirty-eight slopes
 Theye are sixty-three tumnels or drifts.
 There are seventy-hine breakers.
 'here are ten shutes and screens.

[^8]: There are $1,029,033$ feet of headings, which equals 194.89 miles.
 There are 878,801 feet of air-ways, which equals 166.44 miles.
 There are 631, 218 feet of T-iron track in the mines, whicin ecinals 119.54 miles.
 There are 230,903 feet of T-iron track outside, which eruals 43.73 miles
 There are 661,318 feet of strap-iron track in the mines, whieh equals 125.25 miles,
 There are 63,850 feet of strap-iron track outside, which eifuats 13.04 miles.

[^9]: Total length of wire rope, 146,664 feet $=27.55 \mathrm{miles}$.
 There are 600 feet of ${ }^{5}$-inch rope.
 There are 3,810 feet of z_{i}-inch rope.
 There are 700 feet of 洛-inch roje.
 There are 20,605 feet of 1 -inch rope.
 There are 51,814 feet of $11-$-inch rope-
 There are 61,955 feet of 111 -inch rope.
 There are 1,400 feet of 13 -inch rope.
 There are 3,750 feet of $11 / 2$-inch rope.
 There are 600 feet of chain.
 There are 2,113 horses and mimles working at the collieries.
 Total depth of 62 shafts, 13,223 feet.
 Total length of 38 slopes, 20,973 feet
 Total length of 24 tunnels, 8,135 feet
 Total length of 21 slopes in the mines, 11.96 f feet.
 Tutal lengtly of 48 planes in the mines, 17,981 feet.
 Total number of nine cars, $10,015$.
 Total length of 51 planes outside, 18,248 feet.

