Jniversity of Scranton

The Library

For Reference

REPORTS

inspectors of mines

OF TIIE
Anthracite Coal Regions

OF

PENNSYLVANIA,

FOR THE

$$
\text { YEAR } 1876
$$

HARRISBURG:

$$
8
$$

CONTENTS.

Page.
Report of William Hemingray, Inspector for the Third or Shamokin district 5
Reportof Samuel Gay, Inspector for the Second Schuylkill district 27
Report of Sampson Parton, Inspector for the First or Pottsville district. 49
Report of T. D. Jones, Inspector for the South district of Luzerne and Carbon counties 55
Report of Thomas M. Williams, Inspector for the Middle district of Luzerne and Carbon counties. 97
Report of William S. Jones, Inspector for the Eastern district of the Wyoming coal field 158

```
\because
<
    #
    #
    t
"
\(\vdots\)
\[
\therefore \quad \because=-
\]
```

 \(\vdots\)

REPORTS.

REPORT
OF THE INSPECTOR OF MINES FOR THE THIRD OR SHAMOKIN DISTRICT, FOR THE YEAR 1576.

To Ilis Excellency, John F. Hartranft, Governor of the Commonwealth of Pennsyluania:
Sir:-I herewith submit my Fourth Annual Report as Inspector of Coal Mines for the Third or Shamokin district, for the year ending December 31, 1876, as required by act of Assembly of 1870, giving my report on the general condition of collieries in this district; also the number of fatal and non-fatal accidents during the year, given in tabular form, with remarks on the character of the same.

I also report the number of steam engines, boilers, steam and pole pumps, fans, \&c., and number of men employed, with number of tons of coal mined and sent to market, and estimated amount of coal consumed at collieries and by employees.

It has been customary to report each colliery in detail in former years. This custom has been dispensed with this year as being monotonous and not imparting any new information other than that given in tabular forms, except such collieries where improvements have been made during the year or new ones opened.

A list of collieries worked out and abandoned will be noticed briefly. There is a marked improvement iu the manner of working the different collieries, and especially in the modes or systems of ventilation as compared with former years. Inside foremen have become interested as to the best methods of insuring grod ventilation in their respective collieries, while on the other hand a small minority are satisfied to plod in the same circumscribed tracks of their predecessors. Happily the numbers are small.

The number of fatal accidents this year are 37 and same as last year, while the non-fatal accidents are 61 and 45 less than in 1875.

These casualties are in a great measure due to negligence and a lack of practical knowledge of mining, as during the past few years we find the farmer and cobbler, and those not of the best kind, working as laborers in the mines for a short time when he wili provide himself with a few tools and can then be found assuming the responsibilities of a miner in a breast or gangway. This class of so-called miners are generally the first victims of their own inexperience; and if this evil ended here we should not be compelled to chronicle so many accidents from fire-damp explosions in our collieries which generate carbureted hydrogen gas so largely. It is no wonder why so many accidents occur while such a state of things exist.

Much has been said and written comparing the casualties in the anthracite coal fields with those of Great Britain, and which is manifestly unjust to us. While we are compelled, by force of circumstances over which we have no control, to leave at least twenty-five per cent. of our production on the dirt bank they, on the other hand, can utilize every ton of coal brought to the surface and be credited as their gross production.

I take the liberty of acknowledging my thanks to all with whom I have had official business during the year.

Very respectfully submitted,
WM. HEMINGRAY.

Date.		No. of acc't.	Name of Colliery.	Location.	Name of Owner or Agent.	Persons killed.
Feb. Mar.	26.		Brookside	Tower City	P. and R. Coal and Tron Company	Robert Evans.
	1		North Side	Iykens Valley	Edward Miller	Jacob Rikert.
	11.		Cameron	Shamokin ...	Mineral Railroad and Mining Co	Samuel Wenkel.
	24		Continental	Centralia	Gorrell \& Co...........................	Mike Monahen.
April	3.	5.	Monitor	Locust Summit	G. W. Johns \& Bro	Pat. Dougherty.
	11.		. . do	do	. do. do	James Wood.
	12.	7.	Luke Fidler.	Shamokin	Mineral Railroad and Mining Co	Samuel Jones.
	20.		Tunnel colliery	Ashland	P. and R. Coal and Iron Company	John Clark.
	27		\#. do	...do	. . . do........ . . do. do . . .	Pat. Galespie.
	27.	10...	Jurnside..	Burnside	May, Morgan \& Co	Andrew Yokoski,
May		11...	Bast colliery	Big Mine Run.	Jeremiah Taylor \& Co	Earnest Let.
	12.	12,..	Bear Valley shaft	Bear Valley	Heim \& Goodwell.	James Brooks.
	16	13...	Enterprise.	Excelsior	Thomas Baumgardner	Mike Hennefy.
	16.	14.	Hickory Rudge	Hickory Ridge	Mineral Railroad and Mining Co	William Taylor.
	24	15...	Stewartville	Mt. Carmel...	W n11. Montelius	Martin Manning.
June	$1 .$	$16 \ldots$	Williamstown	Williamstown	Summit Branch Ra	John Clouser.
	$\begin{array}{r} 8 \\ 23 . \end{array}$	17.	Short Mountain Morton	Wiconisco Mt. Carme do. d	Samuel Plean.
July	2.3.	18.	Morton.	Mt. Carme Shamokin	Thomas Morton ${ }^{\text {Mineral }}$ Railroad and Mining Co. ${ }^{\text {Co }}$	Dohn Blane.
	17.	20.	. . do	Stamokin	Miolo	Edward Walters.
Allg.	16.	21.	Miriam	Locust	P. and R. Coal and Iron Company	Jolnn Straub.
	31.	22...	Monitor	... do.	G. W. John	Constantine Mishler.
Sept.	11.	23...	Brookside	Tower City	P. and R. Coal and Iron Company	William Cheese.
	26.	24...	big Mine Rimı	Big Mine Run	Taylor \& Co	Charles M'Gillan.
Oct.		$25 .$.	Luke Fidler.	Shamokin ...	Mineral Railroad and Mining Co	
		26...	Itykens Valley	Wiconisco	Summit Branch Railroad	Pat. Mulvaney.
	17.	27...	Burmside.....	Burnside	May, Morgan \& Co	Vincent Adgaski.
	27.	28...	Cameron	Shamokin	Mineral Railroad and mining Co	John Boyle.
Nov.	4	$29 \ldots$	C'ontinental	Centralia	Gorrell \& Co..................... .	
		30...	Menry Clay shalt, No.	Shamokin	Langdon \& Co...........................	Michael Farrell.
	$11 .$	$31 \ldots$	'Tuunel	Ashland	P. and R. Coal and Iron Company	James Stephenson.
	$\begin{aligned} & 15 . \\ & 29 . \end{aligned}$	$32 . .$	Mt. Carmel shaft	Alaskido. do. do	Benjamin Rowe.
Dec.	21.	34.	Continental	Centralia	Gorrell \& Co	Genrge Turner.
	21.	35.	. . do do do	'Thomas Daly.
		36...	. . do do do	Thomas Monahen.
	21.	$37 \ldots$. . . clo do do	John Vernon.

TABLE of Fatal Accidents in Shamokin District, for the year ending December 31, 1876.

Accidents.								
Fatal Non-fatal.	$\begin{array}{r}1 \\ 13 \\ \hline\end{array}$	3 6	12	12 6	5 4	1 6	$\begin{array}{r}3 \\ 11 \\ \hline\end{array}$	37 61

LIST OF NON-FATAL ACCIDENTS in the Third or Shamokin district, for the year ending December 31, 1876.

Date.		No.	Nime of Colliery.	Name of Operator.	Name of Land-owner.	Name of Person Injured.
Jan. Feb.	17.	1..	Franklin	Lovett, Booth \& Co.	P. and R. Coal and Iron Company...	Cornclius Otto.
	1.	2.	Big Mountain	Llewellyn, Patterson \& Co.,		Thos. Speer.
		3.	Black Diamond	Swank \& Co....	Henry Saylor.........................	Dommick Oats.
Mar. April	15.	4.	Stewartville	Win. Montelins ...	Locust Mountain Coal and Iron Co..	John Britt.
	16.	6.do	do	. . . do.... do. do . .	John Backworth.
	16.	7.	Locust Run	do	do	Jno. James.
	18.	S.	Preston, No.	do	do	Mich'l Grady.
	18.	9.	Northumberland Coal	Treger \&	Unkı	Hanns Bolick.
	19.	10.	Summit Branch	Summit Aranch R. R. Co.	Summit Branch Railroad	James Warlow.
		11..	Tunnel Colliery	P. and R. Coal and Iron Co.	P. and R. Coal and Iron Company	Thos. Williams.
May		13.	Preston,		do	Eno. Ard Dooley.
		14.	Potts Colliery	do	do.............do.... do	Thos, R. Davis.
	4.	15.	Bear Valley.	Heim d (rood	do	Whil Wymn.
		16.	Buck Ridge	I. May \& Co	Renshaw \& Johuson	Jno. Snyder.
		17.	Henry Clay	J. langdon	${ }^{1}$ ', and R. Coal and Iron Company	John Curry.
	13 .	18..	Buck Ridge	I. May ic Co	Renshaw © Johnson...........	David Brown.
July	11.	19.	Monitor	G. W. Johns \& Bro	P, and R. Coal and Iron Company	Christ'n Snudon.
	12.	20.	Short Mount	Summit Branch R. R. Co	Summit Branch Railroad	Wm. Thontas.
	19.	21.	Henry Clay	J. Langdon \& Co.	P. and R. Coal and fron Company	Tsrael Krosaski.
		22.	Short Monntain	Summit branch IR. R. Co	Summit Branch Railroad	H. B. Matter.
	28.	23. 24. 8.	Summit Branch Rail ... dodlo .	do		Dan't Phillips.
	$\stackrel{2}{2}$	25...	Gieo. Fales	Heims \& Goodw	P. and R. Coal and Iron Company	Wm. Schlimm. John Dombriski.
Aug.		26...	Locust Gap	Graber \& Co.	.. do do	Wm. M'Cafferty.
		37...	Stewartvill	W'm. Montelit	Locust Mountain Coal and Iron Co	Edwin Hals.
	11.	28...	Bis Mountai	Patterson, Llewellyn \& Co.,	P. and R. Coal and Iron Company .	Jacob Hill.
	15.	$29 .$.	Marriam.	P. and R. Coal and Iron Co.	. . do............ do do . .	Henry Knock.
	20.	$311 .$. 31	Summit Branch Rail	Summit Branch R. R. Co...	Summit Brauch Railroad	John Kent.
Sept.	8	32...	Tunnel Colliery	P. and R. Coal and Iron Co.	P. . do............dlo.......... do .	Jno. J. Jones.
	12.	$33 \ldots$	Luke Fidler.	Mineral R. R. and M. Co.	Mineral Railroad and Mining Co.	Frank Kanaski.
	13.	34.	Monitor	G. W. Johns \& Bro.........	P. and R. Coal and Iron Company .	John Schraeder.
	21.	35...	Keystone	P. and R. Coal and Iron Co.	... do............. do........... do ...	Wm. Parry.
Oct.		$\begin{aligned} & 36 \ldots \\ & 37 \ldots \end{aligned}$	Summit Branch Railro	Summit Branch Railroad	Summit Branch Railroad do .do	John Curtney. George Kesler.

LIST OF NON-FATAL ACCIDENTS-Continued.

Date.		No.	Name of Colliery.	Name of Operator.	Naine of Land-owner.	Name of Person Injured.
Oct.	3.	38.	Sterling	Fulton \& Co...	P. and R. Coal and Iron Company	Wm. Blouser.
	9	39.	Locust Run	P. and R. Coal and Iron Co.	\ldots do.......... do do.......	Wm. Brennan.
	9.	40.	Lykens Valley	Summit Branch Railroad ..	Summit Branch Raiiroad	Chas. Hoover.
	9.	41.do	. . . do do	. do do	Wm. Price.
	9.	43.	.do	. . do do do do	. do do	Mike Hoffinan. Lewis Hoffman.
	9.	44.	do	do............. do do	. do	Anthony Blotzer.
	9.	45.	. .do	do	. do	John Hawley.
	10.	46.	Centralia	Dr. Prevost	Iocust Mountain Coal and Iron Co	Pat Joyce.
	14.	47.	Locust Run	P, and H. Coal and Fron Co.	... do do.......... do....	Chas. Brady.
	19.	48.	Trevorton	. .do do	P. and R. Coal and Iron Company,	Otto Lamb.
	23.	$49 .$.	Locust Run.	... do....... ${ }^{\text {a }}$. . do	Locust Mountain Coal and Iron Co.	Thos, Grimes,
	23.	50..	Big Mountain Buck Ridge .	Patterson, Lie wellyn \& Co.	P. and R. Coal and Iron Company .	Eli Haas.
	28.	52.	Linke Fidler	Mineral R. R. and in. Co..	Milneral Railroad and Mining Co.	Mike Lucas.
	28.	53.	Continental	Robert Gorrell	Girard Lands..................	Henry Dalton.
	30.	54...	Mt. Carinel Shaft	P. and R. Coal and Iron Co.	P. and R. Coal and Iron Company	Mike Delaney,
Nor.		55...	Locust Spring.	 do do........... do.	Jno. Chellow.
	7.	57.	do	do $\ldots . . .1$.... do		B-, boy.
	7.	58.	Luke Fidle	Mineral R. R. and M. Co	Mineral Railroad and Mining Co	Wm. Kohl.
	7.	59.do	. . . do do do do.......... do.	Henry Dresher.
	14.		...do do....		do do do	Mich'l Mushell.
	14.	61.	Locust Gap	Graber \& Co..	P. and R. Coal and Iron Company ..	James Car.

IMPROVEMENTS MADE DURING THE YEAR 1876.

Monitor Colliery.

Situated at Locust Summit, in Northumberland county, and operated by G. W. Johns \& Bros.

An addition has been made to the breaker, increasing its preparing capacity to 600 tons per day. New smith and carpenter shops have also been built during the year. New gangways and breasts have been opened, sufficent to meet any demand that may be made. The interior of the mine is in excellent condition as regards quantity, quality and management.

Bast Colliery.

Big Mine Run. Owned and operated by P. \&. R. (U. \& I. Co,
The improvements now making at this colliery consists of a tunnel driving southward, and is already driven 75 yards, and intended to cut the South dip in the Ashland basin.

Two air compressors, of 40 -horse power each, are erected at the surface, furnishing power to operate five boring machines, now in use, for driving the tunnel, and at the time of my visit, December 15 , these boring machines were in operation-only at night. The work being done by day by hammers and jumpers, owing to a scarcity of boilers to furnish steam to supply the air compressors.

Centralia Colliery.

Situated at Centralia and operated by Dr. Provost.
Extensive repairs have been made inside on the Mammoth vein. A new dry slope, on the Skidmore vein, has been put in working condition during this year. The coal from Mammoth and Skidmore veins being prepared at the new breaker recently built. This breaker has a preparing capacity of 1,000 tons per day. The coal is hoisted from both slopes in large cars, permanently attached to ropes, usually designated "gun boats or monitors."

The improvements made at this oolliery are of a durable character, and capable of producing and preparing a large quantity of coal.

Union Cohliery.

Situated at Dark Corner, one mile cast of Centralia. Operated by Anderson, \& Ryon.

A new slope has been sunk on the Mammoth vein, at the eastern end of the old water level workings. The necessary machinery for hoisting, pumping and ventilating has been erected, while the gangways, breasts and airways have been opened and are ready for future operations.

Caheron Colliery.

Owned and operated by Mineral Railroad and Mining Company.
A new slope has been sunk on the Lykens Valley vein and gangways, driven east and west, 225 and 250 yards.

On the east side the vein is in a rock fault, while on the west the coal is very good. The slope is sunk down 125 yards on south dip, angle of 40°.

Collieries Suspended and Abandoned.

Enterprise Colliery, at Little Mine Run, formerly operated by J. R. Cleaver, and on lands of Philadelphia and Reading Coal and Iron Company. The coal mined out and colliery abandoned.

Shamokin Colliery, in West Shamokin, on lands of Keller, Kelso \& Co., formerly operated by Aucker, Bower \& Co. The breaker burned in the spring of 1876 and suspended since that time.

Marshall Colliery, in Shamokin borough, on lands of William H. Marshall, and operated by Reese \& Bros., has been worked out and abandoned.

Suspended.

Morton Colliery, near Mt. Carmel, on lands of Northern Central Railroad, and formerly operated by Morton \& Bros.

Red Ash Colliery.-Situated in Melfenstein. Owned and operated by Achmuty \& Bickel.

New Collienies.

East Shamokin Colliery.-Situated on sonthern edge of Shamokin borough, on lands of Philadelphia and Reading Coal and Iron Company, and operated by John Cruikshank, and consists of one water level drift, opening No. 13 vein, Pink Ash, five and a-half feet thick, on a north dip of 45°. Also another, Red Ash, vein of six feet thick. A tunnel is now driving sonthward to open the No. 10 vein, which is expected to be reached shortly. A breaker of a capacity of 400 tons per day is in course of erection. This colliery is expected to be ready to ship coal in the spring of 1877.

Marshall Colliery.-Operators: Messrs. Roup \& Shields.
This colliery consists of a water level drift on one of the upper Red Asiu veins. The coal will be prepared at the old Marshall breaker.

New Collieries Opened.

Sterling Colliery--Located at Burnside, consists of a double track slope sunk down through the western workings of Henry Clay, and continued 120 yards below the gangway level of Henry Clay. Working gangways are driving east and west in the lower level, and the west gangway of Henry Clay workings is still continued westward and operated by this colliery. Steam machinery of 170 -house power with six boilers and one steam pump, used for drainage, are in operation on the Twin reins. The coal is of fine quality, and promises to be one of our first class collieries. Messrs. Fulton \& Kendrick are the operators.

Henry Clay No. 1 Shaft.-Is located outside of the borough of Shamokin, southward. This shaft is now in progress of sinking, being already down 60 yards. Estimated distance to reach the Twin veins is 40 yards more. This shaft is intended to work on the third lift, under the present Henry Clay slope workings. Messrs. Langdon \& Fulton operators.

A more extended notice of this colliery may be given in reports for 1877.

NUALBER AND GENERAL DESCRIPIION OF COLLAERHES LN SHAMOKIN HISRRIGT IN 1876.

$\stackrel{\text { ソ }}{\underset{y y y}{c}}$	Name of Colliery：	Name of Operator．	Land－owner．	Location．	Name of Veins．			E E 0 0 0 0 0 0 0 0.0	
	Brookside	I．\＆1：．C．AI．Co	F．\＆R．C．\＆ $1 . \mathrm{Co}$	Tower City	Lykens Valley	$2053-$			172，651．15
\because	Mr．Carmel shaf		．do．．．．．．．do	Alaska ．．．．	E or Matmmoth．	38.1516			71.354 .07
3 4	Trevorton		10	Trevorton Rig Mine	Twins and $L_{\text {c }}$ ，Valiry	36.51 1006 19	E		310，349．06
5，	Locust spmint			Locust tiap		165 है 11	5		－2，619．11
fi，	Wadley stone．	do．．．．．．． do	．．．do．．．．．．．．dı	Ashland．．		（i） $2 . .1+$			
	Lacust Rma．			．．．．．．do ．	15 and skithmo	221212			52， 23.308
8	Tunnel ．．．．				E ami 1rimarose	1．170 2 2 3 3	E！		76， $1+9.19$
9	Keyslone	0．．．．．．．．${ }^{10}$	do．．．．．．．．${ }^{\text {do }}$	ucust	1：．．．．．．．．．．．．．．．．．	1．006－1919	\％		32， 201.116
10.	Potts．	10	do．．．．．．．．do	．${ }^{\text {do }}$		8.04125	－	\ldots	319，（67\％．015
11.	Merriani．．． Helfensteii	dil	du．．．．．．．do	Locust summit	E．．．．．．．．	3751120	E		115， 326.11
	Melfenstein．		．10．．．．．．．．d． 10	Helfenstein tirardville．		$\begin{array}{lllll}10.7 & 1 & 1 & 5 \\ 1115 & 2 & 1 & 7\end{array}$	E		16．310．11
14.	Preston，Xo．	．．．do．．．．．．．．diı		giraravile	E：	115 5 1 175			32， 179.02
15.	Prestoh，No．		10			\＄1．5117 17	先		－2．， 09.02
16.	Prestoth，No．		do			341．$\because 1$			3x 10
17.	Burnside ．．．．	May，Morsals E C	d10	Burnsine	＇wins	241 3211	132	99	60． 510.410
18.	lear V゙alley	Heim d（bothrill	ds	Carlom lint		$55 \cdots \cdots$	17.5	50	55， 1017.16
19.	Rear shaft．． Georse Fite	． C （10．．．．．．．．．．．do do	（1）	．．do		385 1 1 10 1010 1 1	50 50		
	beorre Fite Bir Monntai			13is Monntain	Prinmuse and lied		50 340	15	$15,189.15$ $105,530,610$
22.	Diamond．．．	A．liameroft ．．．．．．．．．．．		Ifitto Mine linin．	12， $\mathrm{A}^{\text {a }}$ ．	$\cdots \cdots$			\％187．16
23.	Yauyhah	Vamband Co	do	Ashlaisd．．．．．．．					1，182．40
\％ 4.	Excelsior	（1）．Khngsley		Execisior	Twits	（1）．，．．． 6	119	99	37．433．01
25.	Enterpriso	＇Thmas liaumg				2414 1 13	129		72， 55012.17
26.	Brady．．．．	Thmmas dormat	\＆11，and 1 V	Treenback	Twins ami 1；，M	71.	5	68	23，917．04
$\frac{29}{29}$	Frankiln ${ }_{\text {leur }}$	Lovell \＆Bortl	＊L．U．A 1.0	Shamokín	Med Ash．．．．．．．．	${ }_{101}^{8}$ ；；$\frac{1}{1}$	15	14	1．052．．17
24.	leury Locusiay，	Stilimger don \＆		－	Twins ．	100 $)^{1}$	13）	72	8，3，374，14
214，	Locust Gay．			Lecust（tap	Mammoti		123	113 75	$52,371.16$ $81,620.00$
31.	Heliance	1ammgardner \＆Co．	，	sit．Carmel	Iwins	300 1：1111	5	96	32，70s．14
32.	Henry Clay，No． 1.	Langron d CO	do．．．．．．．do	Shamokin	Shatt Sinking	th．－ 2	50		32，70．14
33.	sterling．．．．．．．．．．．．．．	liendrlek \＆Fulton．		Rurnside	Twins ．．．．．．．	205118	93	46	21，394， 12
34.	Royal \ak	THuts Co．．．		Shamoki	Red Ash				760.00
35.	Beti．Franklin．	bouty d hanmgardner	vilu．a．da	Doutyville	L．ykens Valley	35116	92	63	31，145．01
$\begin{aligned} & 36 i \\ & 377 \\ & \hline \end{aligned}$	stoort Mountain． Lkens Valley．	S．B．R．K．．．．．．．．．．	．Valley Coal	Wiconisco．		1，711 if 2 5ti	4.50	152	149， 611.03
33，	1sig lick ．．．．．．			Disytou	do	な゙ご1121	33	43	1，482．05
39．	Willamst ${ }^{\text {n ors．}} \mathrm{H}$ ， k	．de	13．R．R	Whiliamstown	do	72n $\cos ^{2}$	631	170	239，768．04
10.	Big Run Gajı．		L．Valley Conal	Blg Run Gap．	do				3， 000000
41.	Norid side		1	1，ykens Valley		10．．．．	12		2，¢п̃）．en
42．	Centralia	$1) \mathrm{P}$ I＇rovost．		Centralia．．．．．	13．M，amd \＄1ammot	54\％ 4 1 6	132	168	38.217 .19
43.	Hazel Dell．．．．	liorreli \＆Co．．．	．．．do．．．．．．．．da		do．	$155 . . .{ }^{\text {．}}$	$12 \times$	0	\} $29,384.00{ }^{1}$
41.	Lilly Conliery	lieorge Troutman．	do		－．do．．．．．．．．do．	（i） 1 6	111		）$-9,28.10$
	Stewartille	Ytinam Montelins		Mt．（ar	Skithmore（ Matr	（6i） $1 \ldots$	111		60， 012.12
4 ti ，	lake l－hler	M．12，K，\＆3．Co．．．．．．		slamokin	＇19\％	（2） 118	20\％		101， 51011

Number and General Description of Collieries in Shamokin District rn 1876-Continued.

FATAL ACCIDENTS.

Explosions of Blasting Powder.

No. 1. Robert Evans, killed at Brookside Colliery, February 26, 1876, by a premature discharge of a blast. He had prepared a shut, and had lit the fuse, retreating to a place of safety. Having waited nearly half au hour, and the shot not having exploded, the deceased went back, and was in the act of boring out the tamping when the shot exploded, striking him violently and injuring him fatally that he died in fifteen minutes after.

No. 2. Jacob Rikert, kilied at North Side Colliery. The deceased was working in a breast with the inside foreman, Jacob Shire. They had prepared a hole ready for firing, the foreman tuld the deceased to go down to the second heading or cross-cut for safety, while he (the foreman) would fire the shot and go down to the upper cross-cut; when the deceased got down to the place assigned him he called ont all right. The foreman applied the match and went down to the upper cross-cut. When the blast exploded the foreman on looking down the chute saw the deceased man's lamp flicker and then go out. He then called to the deceased, but got no answer, when he immediately went down the chute and found the deceased laying dead, having been struck by a picce of coal flying from the blast.

My opinion is that the deceased was partly out of the cross-cut watching the explosion when it took place, and was struck by the coal, causing his death.

No. 3. Samuel Wenkle, killed at Cameron Colliery, March 11, 1876. He was working breast No. 27, and had driven a cross-cut over to No. 28 , which was worked nearly up to that point. On the morning of the accident the men working in 28 told the deceased that when they were ready to fire a blast they would rap on the pillar and he (the deceased) should answer by rapping back. With this understanding the parties in No. 28 had prepared a blast ready for firing, and gave the signal as agreed on, but got no answer, although they could hear the deceased on the outside of his breast and some distance above them. The parties in No. 28 considered him at a safe distance, and fired the blast, which cut through into the cross-cut, igniting some powder belonging to the deceased, creating a large body of powder smoke. It is supposed the deceased was suffocated by this smoke while trying to escape, as his body was found in the chute of breast 26 . He was dead when found.

No. 4. Michael Minehan, killed at Continental Colliery, March 21, 1876. The deceased went to work at night, taking a young boy along for company, intending to drive a cross-cut or heading out of manway into a breast. And from the evidence given by the boy Riley, it appears the deceased had bored and loaded two holes ready for firing, the deceased sent the boy down to a place of safety, when he fired the first blast and immediately went back to fire the second, which also exploded, putting out the light of the boy Riley, and who, being in darkness, called to the deceased but got no ans. wer, when Riley went up the manway in the dark until he reached the body of Minehan, who he thinks was dead at that time. ILe, Riley, turned him over and fell himself, (thinks he fainted, but finally recovered sufficiently to get out and give an alarm. The colliery was not shipping coal at this time, and the deceased had asked the inside foreman for some cars to load his coal into, but was told that the cars were all full. The manway and cross-cut or heading below were nearly all closed with coal at time of accident, and impeding the current of air that usually passed in the lower beading. I visited the place the following day and found the manway and
lower heading nearly closed up, and that the accident was caused by the deceased returning back too soon after firing the first shot. The manway being probably full of smoke, he may have applied his light to the squib and causing the shot to explode before he could get out of danger. This is another instance of a laxity of discipline in allowing men to work in the mines when not regularly at work, allowing them to block up air-courses, leaving doors open, sometimes reversing the currents of air entirely; and unless the officers in charge of the mine are on the alert daily and enforce discipline such accidents must be the inevitable resuit.

No. 5. Ernest Lex, killed at Bast Colliery by a premature explosion of a blast, while working in return airway. This accident occurred on the 6th of May, and he died on the 9 th inst.

No. 6. Mike Mennefy, killed at Enterprise Colliery, May 16, 1876, while making a cartridge, a spark from his lamp or pipe falling among the powder, causing the explosion which resulted in his death on the 26th inst ; another result of carelessness.

No. 7. Wm. Taylor, fatally iujured at Inckory Swamp, on 16 th of May, while making cartridge, and died on the 1st of June, 1876.

So. 3. Edward Walters, killed at Cameron Colliery, on the 16 th of July, by prenature discharge of a blast while tamping a hole.

Nos. 9, 10, 11 and 12. Dan'l Malloy, Thos. Daley, Thomas Monahen and John Vernon, killed at Continental Colliery, December 21, 1876, by an explosion of four kegs of powder. From the evidence elicited at the coroner's inquest it appears that two of the unfortunate men, Monaben and Vernon, on the morning of the accident, "Lst inst, took in to their work two kegs of powder each, and remarked to the inside foreman, Mr. Brakerty, that they were going to square up their breasts preparatory to being measured up on the following day. They had also told their wives the same thing, consequently no alarm was felt at their absence until the following morning, when a wite of one of the deceased men became alarmed at their absence and search was immediately made, which resulted in finding the four unfortunate men in the manway clead, and presenting a shocking sight ; they were mangled almost beyoud recognition.

The remnants of the powder kegs and oil cans were found torn and twisted into all conceivable shapes, while the strata was undisturbed, and presented no evidence of such a terrible catastrophe as had recently taken place.

Parties who were working adjacent on either side of them in breasts, until four o'clock in the afternoon and from six until eleven o'clock at night, testified that they neither saw nor heard anything unusual during that time ; and the exact time when the explosion actually took place will probably never be known, as no evidence could be produced to satisfy the jury on that point.

I made a personal examination of the place on the following day, but found no marks of violence in the manway to indicate the exact place where the explosion occurred.

The jury, after hearing all the evidence bearing on the subject, rendered a verdict that Thomas Daley, Daniel Malloy, Thomas Monahen and John Vernon came to their deaths by an explosion of powder, but the cause and time of the explosion was unknown to the jury.

Explosions of Carbureted Hidrogen Gas.

No. 1. Pat Muldowney, fatally injured at Lykens Valley Slope, October 7,1876 , and died on 14 th inst. From all the information which could be.
gained it appears that the deceased and six others were trying to extinguish a fire in one of the breasts. The inside foreman, Mr. Bateman, being present giving directions. A Babceck Fire Latinguisher was being used until the charge was exhausted, when the fureman ordered them to go down to the gangway and re-charge it, but in the hurry and confusion that prevailed at the time some of them neglected to obey the order given, when the flames of the fire communicating with a small body of carbureted hydrogen at face of breast an explosion took place, buraing several men, and the deceased among the number, who died in seven days after. This was another case of neglect in not obeying the orders given, as the foreman and a majority of the men engaged at the time went down to the gangway and escaped any injury whatever.

Falls of Coal.

No. 1. Pat Dongherty, killed at Monitor Colliery, April 3, 1876. The deceased was opening a new breast, and was trying to bar or pry down a piece of top coal when it fell on him, killing him instantly.

No. 2. Andrew Yokoski, killed at Burnside Colliery, April 26, 18:6, while trying to get down some top coal.

No. 3. Martin Manning, killed at Stewartville Colliery, May 24, 1876, by a fall of coal while skipping a pillar.

No. 4. John Blair, killed at Morton Colliery, June 23, 1876, by a fall of coal. IIe was running two loaded cars down a plane gangway when the cars got off the track, knocking out two pairs of timber, the coal falling on him, killing him instantly.

No. 5. Daniel Carroll, killed at. Cameron Colliery, July 6, 1876, by a fall of coal while working in a breas.

No. 6. John Straub, killed at Merriam Colliery, August 11, 1876, while working in a breast.

No. 7. Win. Cheese, killed at Brookside Colliery, September 11, 1876, by a fall of coal while workiug in a breast.

No. 8. Chas. M'Gillan, killed at Big Mire Fun by a fall of coal while working in a breast.

No 9. Peter Bobber, killed at Luke Fidler Colliery, October 7, 1876, by a piece of coal falling on him while working in a breast.

No. 10. George Turner, killed at Mt. Carmel Shaft, November 29, 1870. by a piece of top coal. He had fired a blast in one of the lower benches, and on returning sounded the top coal with a drill, and remarked to his partner that it sounded hollow or loose, yet in view of this fact he commenced to work again under this overhauging coal when it fell on him, killing him. The deceased was an engineer by profession, and was about to leave his work as a miner and resume his duties as an ergincer on the following day.

No. 11. Vincent Adgaski, killed at Burnside Colliery, October 17, 1876. He was working in a breast, and his partner was engaged in trying to pry down some top coal. The deceased told his partner to be careful, and while standing watching his partuer the top coal fell, striking a prop and knocking the prop against the deceased, killing him on the spot.

Falls of Roof.

No. 1. Samuel Jones, killed at Luke Fidler Colliery, April 12, 1876, by a piece of slate or roof while working in a breast.

No. 2. John Clouser, killed at Williamstown Colliery, June 1, 1876, by a fall of roof while working in breast.

No. 3. Ben Row, killed at Mt. Carmel Shaft, November 15, 1876, by a piece of slate falling on him while lifting a car on the track in a breast.

Crushed by Mine Cars.

No. 1. Constantine Mishler, killed at Monitor Colliery, July 31, 1876. The deceased was engaged in putting a slope car on the track, and having done so, sent his partner down to the bottom of the slope to put on another car while he (the deceased) staid in the slope to watch the car coming up past the place where the former car had got off the track. The engineer testified, at the inquest, that on hoisting the next car he felt an unusual resistance on the engine, and stopped and reported that something was. wrong in the slope, and on search being made the deceased was found laying between the rails, the car having passed over him. No positive account as to how the accident occurred could be ascertained, as the deceased was dead when found.

No. 2. James Wood, killed at Monitor Colliery, April 11, 1876. The deceased was a driver in the first lift, and was found dead under the train of cars, they having passed over him.

Miscellankous Undrr Ground.

No. 1. James Brooks, found dead in a chute, at Bear Valley Colliery, May 12, 1876. He was employed as a laborer by Thomas Robinson, miner, and had been sent up a manway to rap on the pillar, as Robinson was driving a cross-cut over to the manway. The deceased went away for the purpose of rapping on the pillar, but Robinson, after waiting for some time and not hearing any signal, went up the manway himself and found the deceased about six yards above the gangway, but dead. He was sitting upright in the manway when found.

No. 2. John Clark, killed at Tunnel Golliery, April 20, 1876. The deceased was working with his partner, James Melarkey, on the inside chute, when the coal started to run out from face of breast, Melarkey ran across the breast and got down the outside chute in safety. The deceased attempted to get down the inside chute, and succeeded in getting down to the battery, where the coal followed so close on him as to partly bury him. An alarm was immediately given, and parties went to his assistance at once, but owing to a large body of carbureted hydrogen gas being liberated from the strata by the rush of coal they could not get to him for some time. Every effort was made to get him out in the darkness, as no safety-lamp could be carried to the place, and while attempting to do so another heavy rush of coal came down, driving the rescuing party away to save their own lives, and covering the unfortunate man up. When another attempt was made to get him out they succeeded, but he was dead when found.

No. 3. John Garrety, killed at Continental Colliery, November 4, 1876. The deceased was working in a breast, and had made up a cartridge in the cross-cut, while coming across the face of his breast with the cartridge in his hand some top coal fell on the loose coal in the breast, causing it to rush down on the bottom slate, and carrying the deceased down in the moving mass of loose coal, and killing him.

No. 4. Mike Farrell, fatally injured at Henry (ilay Shaft, No. 1, November 6,1876 , by being struck by the hoisting bucket. He died next day.

Ko. 5. James Stephenson, killed at Tunnel Colliery, November $11,1876$.

The deceased was sitting in a crosscut or heading watching his employer, John Dougherty, who was driving another cross-cut a short distance inside, when a fall of coal took place in one of the breasts, bringing down a large body of carbureted hydrogen gas, extinguishing the lights in both the safety-lamps, when Dougherty told the deceased to get down the manway quick; Dougherty succeded in doing so, but the deceased did not get down. When search was made immediately after be was found part way up the manway, but life was extinct, being smothered by the rush of carbureted hydrogen gas.

No. 6. Pat Galespie, killed at Tunnel Colliery, April 27, 1876, from the results of an explosion of carbureted hydregen gas.

The deceased was working in a manway between 49 th and 50 th breasts, when an explosion took place in the return airway, supposed to be about No. 25 breast outside, as two men, Thomas Williams aud James M'Donald, were repairing the return airway at or about that point, and who also reported the explosion as having taken place, from their safety lamps; also they being the only two men burned by the explosion. The only theory given as to the actual cause of Galespie's death was, that immediately after the explosion Galespie retreated outwards through the monkey, or outward air course, from 49 to 37 , where his body was found and supposed to be killed by after-damp or carbonic oxyde, as no marks of violence were to be found on him when discovered. I made a careful examination of the seene of disaster and came to the following conclusion, viz: That at the time of the accident fully 40,000 feet of air was traversing the gangway inwardly, and making allowances for leakage, the velocity of even half that amount, returning outwards through the return airway, whose area was much less than the gangway inlet, would be considerably increased, so much, in fact, that the safety lamp afforded no protection to the men employed wheu the returning air was mixed with carbureted hydrogen gas in such quan. tity as to render it explosice. Also, that owing to the liberation of an unusual quantity of carbureted hydrogen gas, by falls of coal, \&c., in its returning outwards, and mixed with the return air, it formed an explosive compound, and traveling at a high velocity, when it reached the two men employed in the return airways it blew the flame directly through the gauze of the safety lamp, hence the explosion, which knocked down a few doors and brattices, and reversed the current of air temporarily, and the deceased in trying to escape outwardly, rushed direct to meet the after-damp, which no doubt was the cause of his death. Also, if he had retreated down into the gangway his life would undoubtedly have been spared, had he been thoroughly conversant with the most practical mode of retreat in such eases.

Miscellaneous Above Ground.

No. 1. John Boyle, killed at Cameron colliery, October 27, 1876. The deceased was picking slate off the cars outside the main railroad track after being loaded at the breaker. It is supposed that the train of cars got a sudden jar, throwing the deceased between them, crushing the deceased that he died on the place.

No. 2. Samuel Plearn, killed at Short Mountain colliery, June 8, 1876, by being run over by cars on the dirt bank.

Ventilation.

This very important subject of ventilation is becoming a matter of cousiderable importance by all persons of intelligence employed in mining anthracite coal, and especially by inside foremen in charge of collieries.

The old and unreliable system of rentilation by atmospheric action and furnaces are gradually giving place to more improved systems by mechanical means, viz: the steam exhausting fan now in general use in Europe and America.

Much has been said and written on the merits of the different fans now in use, each having its advocates in its favor as to the effectiveness or power to produce the greatest amount of air at the least cost. While there is no question as to the superiority of some over others we do not attach so much importance on the superiority of one fan over another to produce effective ventilation as we do to larger openings for the free passage of air in the mines. In order to illustrate this fact take two fans of equal dimensions revolving at the same speed, everything else being equal except the areas of air passages in the mines; on applying the water gauge it is not musual to find the drag or friction in the mine where the air course areas are large-not more than three-tenths of an inch-while in the case where the air courses are small the drag or friction will be one and a-half inches. While the fan operating from large air courses will show a displacement of 40,000 cubic feet per minute the one operating on the small air course will show a displacement only of 25,000 cubic feet per minute. Another serious drawback to the free passage of air circulating through mines is owing to sharp curves and angles in the inlet and outlet air passages, creating friction on the air in its return to the fan.

This question is not as thoroughly understood by our inside foremen as could be desired, often being passed by as of no importance; nevertheless this subject is receiving more attention at the hands of all interested in mine ventilation, and ere long we hope to see every mine ventilated that the miner can pursue his dangerous avocation in safety as far as ventilation is concerned.

Dangers of Mining Antiracite Coal, as Compared Aganst Bitumnous.

Reference or comparison has often been made on this subject, and the question is often asked, why so many accidents occur in the anthracite coal mines as compared with mining coal in the bituminous coal fields of the world? Any one acquainted with the methods of mining in the different coal fields may see at once the extra risk and danger in the anthracite coal seams over those of bituminous. While the miner in the small bituminous rein is compelled to curve, or undermine with the pick for every ton of coal he produces, and is constantly at the face of his work, he is enabled to see the appearance of danger far more readily than the miner in the large anthracite veins, lying at sharp angles, and who frequently cannot approach or even see the condition of the roof of the vein. Another source of danger, often fatal to the anthracite miner in large veins on sharp angles, is in miner's parlance from slips or fractures of the strata falling out from face the breasts, while he is at work, it being a moral impossibility for the miner to get up to examine this source of danger, which is a constant menace to his life and limb.

While the miner in the bituminons coal seam can undermine in the small vein with the pick, and then require but a small quantity of powder to throw down his coal, the miner in anthracite is compelled to use powder altogether to blast out all the coal he can produce, thereby increasing the risk and danger very materially. The quantity of powder used in one of our large veins, as shown by the returns for the current year from one of our large collieries-the Monitor, if Northumberland county-the quantity of coal produced was 81,620 tons. The quantity of powder consumed was $1,850 \mathrm{kegs}$, of 25 pounds each, making 46,250 pounds used in the produc-
tion of 81,620 tons of eoal, being an average of a little over one-half pound of powder for each ton of coal mined. This vein is 22 feet thick. At the Black Diamond colliery, where the vein is 8 feet thick, 35,207 tons of coal were produced in 1876 , and 29,825 pounds of powder used in its produc. tion, being a little over $\frac{3}{4}$ of a pound of powder for each ton of coal mined, and which may be used as the average in this district; and which may also partly account for some of the fatal and non-fatal accidents in the anthracite coal mines.

Another source of danger exists in mining anthracite coal, and which might, with ordinary care and prudence on the part of the miner, be avoided, viz: Making up cartridges in small crosscuts or headings with his lamp on his head, and not unfrequently a tobacco pipe in his mouth, with a strong current of air passing at the same time; when a spark of fire from either lamp or pipe falls among the loose powder in the keg or cartridge an explosion takes place, and sometimes none are left to tell the tale. Onethird of all the accidents in this district in 1876 were of this character.

It is an unpleasant duty to be compelled to record the recklessness with which the miner handles powder; and in the absence of legislative enactments the question arises: What can be done?

Another source of danger, of a more dangerous character than the above, exists in our mines which yield carbureted hydrogen gases in large quantities, by the employment of meu of no experience with fire-damp ; and while a colliery may be operated with comparative safety by miners of experience in gases. But in course of time a few inexperienced men get employment, and one mistake on their part involves too often the lives of all the rest in the mine at the same time. A case in point while writing: A miner on going in to work was met by the fire boss and told that a small quantity of gas was in his breast that morning, and to be careful and see that it was brushed out before commencing work. When the miner went up in the breast, which was driven up only seven yards, and brushed out the gas while in the darkness, until he thought it must be cleaned out, when . lo, instead of trying it with his safety-lamp, he struck a match to light his miners' lamp, when an explosion took place, but fortunately not very heavy and burning no one but himself, however not seriously. Had carbureted hydrogen gas existed in large quantities in that immediate vicinity the consequences might have been terrible, and could only be attributable to ignorance and recklessness. As a general rule, while we are yet in comparative infancy in this country in coal mining, we are fortunate in not having to record so many wholesale aecidents by explosions of fire-damp. But until onr miners exercise more care in the prosecution of their dangerous avocation, and legislative enactments are more specific in their character accidents will still continue to happen.

Names of Coilmeies.

Brookside
It. Carmel shaft
Trevorton
Bast slopes...
Wadley slope
Locust Run.
Tunnel slopes
Keystone
Locustdale
Mariam
Helfenstine
Preston, No. 1
Preston, No. 2
Preston, No. 3
Prestoy,
Burnside
Bear Valley slope
Bear Valley slope
Bear Valley shaft
Bear Valley si
Big Mountain
Diamond
Vaughan
Excelsior
Enterprise

Brady

Franklin
Henry Clay
Locust Gap
Monitor

Names of Orerators.

Names or Landowners.

P. and R. Coal and Iron Company.

. do..
....

Reliance...........
Thos. Banmgardner \& Co
Kindrick \& Fulton
Douty \& Bationgardier.
Lykens Valloy Coal Company
summit. 1
Henry Clay slaft
Royal Uai
Ben Frankilin.... Short Mountim Wig Liek......

North Sid
Centralia.
Silly
Luke Fidler.
Hicknry Siwann
Hickory Nidge.
Buck Tidige
Red Ash..........
Flack Dianound
Northmaberl'd
West Lehigh
filemn City Morton
Continental
Continental
Thion
Shamokin*
Big Mine Ri...
Enterprise.
Enterprise
Marshall..

Recapitulation.

Number of drifts 46
Number of tunuels 20
Number of inside slopes 8
Number of outside slopes 48
Number of shafts 5
Number of breakers 55
Number of boilers 647

COAL produced in tons per year, and number of persons employed in 1876.

LIST OF FATAL ACCIDENTS'.

List of Fatal Accidents-Continued.

$\begin{aligned} & Z 4 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	Occupation.	$\underset{\text { OP }}{\stackrel{\rightharpoonup}{\text { OR}}}$		- иexpi!ч јо ‘on	Cause of Injury.									H 0 0 0 0 0 0 0 0 0 0
31.	Laborer	31	1		Killed by being suffocated by C. H2 in manway						1			
32.	Miner .	40	1	5	Killed by fall of roof..........................		1							
33.	. . do .	44	1	3	Killed by fall of coal..........			1						
34.	. . do	40	1	6	Killed by explosion of powder.					1				
35.	. . do	28	1	2	Killed by explosion of powder.					1				
36.	. . do	43	1	3	Killed by explosion of powder.					1				
37.	do	26	1		Killed by explosion of powder.......					1				
						1	3	11		12	6	2	2	

REPORT

OF THE INSPECTOR OF COAI, MINES FOR TIIE SECOND SCIUYIKILL DIs'TRICT.

Office of Inspector of Coal Mines, $\}$ Shenandoah, Pa. $\}$

To His Excellency, John F. Martranft, Governor of the Commonweallh of Pennsylvania:
SIR :-I have the honor to submit herewith my annual report, as inspector of coal mines for this district, ending December, 1876.

The report contains, among others, the following items bearing on the subject of health and safety: Also some of the principal sources from which accidents occur, and the dangers attending the mining of anthracite coal in comparison with that of bituminous. Also a table showing the number of fans in use, and the amount of air discharged per minute. I have arranged accidents resulting in death and serious personal injuries in a tabulated form, also a detailed statement of the extent and cause of accident.

There has been 27 fatal, and 48 persons injured more or less. There has been an output of $2,891,117$ tons, of which $2,740,117$ tons was sent to market; making 107,078 tons for each life lost, 60,231 tons were produced for each serious accident which occurred, one life was lost for each $378 \frac{1}{2}$ persons employed in and about the mines.

I regret to have to say that the list of fatal accidents this year shows one more life lost than the report of 1875 , whilst the list of non-fatal accidents shows a decrease of more than fifty per cent. less than the year 1875. There has been an increase in the output of coal in this district this year over that of 1875 of 328,772 tons, which shows an increase of 12,177 tons more produced this year than that of last for each life sacrificed.

It will be seen by the detailed statement of the cause of accidents which resulted in the loss of life that there is a fearful lack of discipline in and about the mines, which is undoubtedly owing to the want of a code of special rules for the government of the employees of each colliery. I have made careful examination of all places where those accidents occurred, and do not hesitate to say that a large percentage of those accidents might hare been prevented under rigid mine discipline.

I have the honor to be
Your Excellency's obedient servant, SAMUEL GAY, Inspector of Mines.

Date.		No. of acc't.	Name of Colliery.	Location,	Name of Owner or Agent.	Persons killed.
Jan. Feb. April May	8.	1.	No. 2 slopo	Lost Croek	Philadelphia Coal Company	John Wilkes.
	4.	2.	Stanton ...	Gilberton	Miller, Hoch \& Co...........	Abraham Hainos.
	21.	3.	Ellen Gowon	Near Shenandoah	P. and R. Coal and Iron Company	Edward Broughall.
	1...	4.	Mahanoy City	Mahanoydo......... . do............ do do...	John Sthall.
		5.	Indian Ridge	Shenando	do	John M'Lendy.
	$\begin{gathered} 8 . \\ 26 . \end{gathered}$	$6 .$	Bear Ridge, N No. 1	Mahanoy Plane	Bear Ridge Coal Company	James M'Loughlin. James Holvey.
	$\begin{aligned} & 26 . \\ & 26 . \end{aligned}$	$\begin{aligned} & 7 . \\ & 8 . \end{aligned}$	Bear Ridge, No. 1	Mahanoy Plane	Bear Ridge Coal company	James Holvey. Jeremiah Mahony.
June	2.	9.	Kniekerbooker	Yatesville	P. and R. Coal and Iron Company	Patrick M'Grady.
	19.	10.	Furnace	Gilberton	Atkins \& Bros.	Michael Russell.
	30.	11.	Indian Rickgo	Shenandoa	P. and R. Coal and Iron Company	John Walsh.
July	26.	12.	Cuyler....	Raven Run	Heaton \& Bros	Edward Bearman.
	24.	13.	No. 2 slope	Lost Creek	Philadelphia Coal Company	William Thomas.
Arig. Sept.	18.	14...	Girard....	Girardsville	Beatty \& Garretson.	Henry Jones.
	11.	15.	Bear Ridge, N	Mahanoy Plane	Bear Ridge Coal Company	Patrick Gallagher.
	18.	16.	Indian Ridge	Shenandoah.	P. and R. Coal and Iron Company	Thomas Cassidy.
	28.	17.	Lawrenco.......	Mahanoy Plane	Lawrence, Merkle \& Co...........	Henry Folk.
Oct.	60. 20.	18.	Honey Brook, No. 1 ... do......... No. 4	Audenried	Lehigh and Wilkesbarre Coal Co	Miohael Hennessey. James O'Donnell.
	21.	20.	Stantou	Gilberton	Miller, Hoeh \& Co.	James Carrabine.
Nor.	13.	21.	...do	...do .	..do..........do do	William Jackson.
	33.	22.	No. 2 slope.	Lost Creo	Philadelphia Coal Company	John Cafferty.
Dec.		23.	((olorado, No. Koh-i-1100r	Colorado...	Richard IIdo.........	William Richards. Frederick Guest.

	dite.	$\left\|\begin{array}{c} \text { No. of } \\ \text { acc't. } \end{array}\right\|$	Name of Colliery.	Location.	Name of Owner or Agent.	Persons Injured.
Jan. Foly. Jan.	31.	$\begin{aligned} & 25 \ldots \\ & 26 \ldots \\ & 27 \ldots \end{aligned}$	$\begin{gathered} \text { Cuyler } \\ \text { Lehigh, } \\ \text { I...do... No. } 4 ~ \end{gathered}$	Raven Run. Shenandoah.........................	Heaton \& Bros. . Philadelphia Coal Company	Joln Walsh. . Daniel Ownes. Peter Boyle. John Jolins. Benjamin Beddall. Daniel Westwood. Isaac Jones.
				Lost Creek	Lehigh and Wilkesbarro Coal Co.	
	26.	29...	No. 4, Lost Creek		Philadelphia Coal Company	
Feb.	12				Villianı Ponn Coal Company	
	11.	$30 \ldots$	Mahanoy City	Mahanoy .	P. and R. Coal and Iron Company	
	13	31...	Tunnel Ridge		George W. Cole	
$\begin{aligned} & \text { April } \\ & \text { Mar. } \end{aligned}$	30.	$32 \ldots$$33 .$.	Knickerbocker	Yatesv	P. and R. Coal and Iron Company	Edw'd Fitzsimmons.
April	18.		Cuyler	Raven Run	Heaton \& Bros...	William Burns.
	23.	$\begin{aligned} & 33 \ldots \\ & 34 \ldots \end{aligned}$	Plank Ridge	Shena	P. and R. Coal and Iron Company	James Durkin.
	34.	$35 .$.$36 .$.				Robert Siddall.
	23.		Mahanoy City	Malia	.do..... do.... do	John Rowley.
	24.	37..	Knickerbocker		d	George Ellis. William Grecory
	29.		Indian Ridge	Yatesville..	do...... d	William Gregory. Evan Richards.
May	2.		Boston Run	Boston Ran		James Mittall.
		$41 .$.	Lawrence..	Mahanoy Pla Shenandoah.	Lawrence, Merkle \& Co	John Scanlon.
	10	42.			Haas, Brenizer \& Co... do............. do......	Edward Flattery.
	10.		Turkey Run	Shenandoah.do		Patrick Hughes.
Juno	13.	44.	Elmwood	Mahanoy	P. and R. Coal and Iron Company	John Kiline.
	14	45.	Plank Ridge	Shenandoa		David Fitzgerald.
	22	$46 .$.	Stanton.	Gilberton.......	Miller, Hoch \& Co.	John Eltringham.
		48.	Ellon Gower Thomas	Near Shenandoal Shenandoah....	P. and R. Coal and Iron Company Thomas Coal Company	Andrew Wisker. Philip Beck.
	28.		Plank Ridgo		P, and K. Coal and Iron Company	James Tallet-died.
Aug. Sept.	21.	50...	Lehigh	Mahanoy	Hazard, Fisher \& Co................	Frank Manied.
	8.	51..	Bear Run	St. Nichola	Wiggan \& Tribbles	Joseph Richards.
	$14 .$	52..	Plank Ridge..	Shenandoa	P. and 12. Coal and Iron Company	Bernard Smith--died. John Schwartz.
	$\begin{aligned} & 18 . \\ & 18 . \end{aligned}$	53.	Mahanoy City Hammond ..	Mahanoy Girardville	Gross, Moody \& ${ }^{\text {d Co }}$	John Schwartz. James Butler.
Oct.		55.	Vulcan	Mahanoy....	Samuel I. Atkinson	James Butier.
	12		Indian Ridig		P. and R. Coal and Iron Compan	John Siduskie.
	14	57...		Shenandoah. Gilberton...	Miller, Hoch \& Co...............	Villiam Irvin.
	18	58...	No. 2	Lost Creek	Philadelphia Coal Company	Martin Donohoo.
	21.		Turkey Run St. Nicholas Win. Penn.	Shenandoah St. Nicholas Wm. Penn	Haas, Brenizer \& Co....	John Radkin.
Nov.		$\begin{aligned} & 60 \ldots \\ & 61 \ldots \end{aligned}$			St. Nicholas Coal Company	Villiam Blair-died. Willian Jamer.
					William Penn Coal Company	Villiam James.

List of Non-Fatal Accidents-Continued.

Date.	No. of acc't.	Name of Collicry.	Location.	Name of Owner or Agent.	Persons Injured.
Nov. $16 .$.	62.	Wm. Penn			
$\begin{aligned} & 16 . . \\ & 18 . \end{aligned}$	63...	Plank Ridge Stanton	Shenandoah Gilberton.	P. and R. Coal and Iron Company Miller, Hoch \& Co.	John Stack. John Lamb.
	65...	Stanton	G. .do do........ do.	Dennis Mahony.
Dec. 1..	66.	Shenandoal City	shenandoa	James Neal, truste	Joseph Boeam.
	${ }_{68}^{67}$	¢ stanton $^{\text {do }}$	Gido	7iillo........	Petor Monaghan.
	69...	Ellen Gowen	Near Shenandoal	P. and K. Coal and Iron Company	Thomas Cook.
11..	70...	East Mahanoy	Mahanoy.	Focht, Whittaker \& Co...........	Alexander Coldy.
	72	Hammond	Girardville Boston Ru	P. and R. Coal and Iron Company	Michael Carney.

LIST OF ACCIDENTS.

$\begin{aligned} & { }_{2}^{1} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	OCCUPATION.	$\stackrel{\mathrm{c}}{\mathrm{o}}$	$\underset{~}{3}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 2 \\ & 2 \\ & 0 \\ & 3 \end{aligned}$	CaUse of Death.		7 0 0 0 0 0 0 0 0 \vdots \vdots	$\begin{aligned} & \text { n } \\ & \stackrel{2}{6} \\ & 0 \\ & 0 \\ & 0 \\ & 8 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$				Above ground		H 0 0 0 0 0 0 0
1.	Laborer	$2:$			Crushed between a water car and slope collar								1	1
	Spragger .	15			Crushed betweon two cars while riding on bumpers								1	1
3.	Diner.	24			Crushed by the cage in the shal't.......						1			1
4.	. . .do	56	1	4	Fall of roof in a breast......		1							1
5.do	24	1		Fall of coal in a chute.			1						1
6..	Laborer	56	1	1	Boiler explosion..							1		1
7.	Mmer	42	1	4	$\left\{\begin{array}{c}\text { Smothesed in trying to start dirt in an air hole } \\ \text { which was blocked............................. }\end{array}\right\}$						1			1
8..	do	38	1	3	Same as above. .						1			1
	. do	23			Fall of coal in a breast			1						1
10..	Laborer	24			Crushed by a car in slope								i	1
11..	Door boy.	15			Crushed between car and cloor in gangway								1	1
12.	Laborer.	18			Crushed by a car on the coal plane at breaker							1		1
13.	Miner	48	1	4	Fall of surface in a hole which had fallen to day-light						1			1
14..dlo.	38	1	9	Fall of coal in breast .			1						1
15. .	Laborer	26									1			1
	Miner .	33	1	3	Fall of coal in a breast .			1						1
17.	Faborer	18			Caught in a coal chute.						1			1
	Miner .	47		6	Fall of coal in a breast			1						1
19.do	48	1	5	Fall of top coal in a breast			1						1
20.	Driver	17			Fell under a car on the breakor trestling							1		1
21..	Miner				Fall of coal in a breast,			1						1
22..	. . . dio	30	1	3	Lamp of loose coal rolling down from pile in breast						1			1
23. ilo ...	21			Fall of coal			1						1
	Laborer.	24			Crushed by the ceage in bottom of shaft.						1			1
						1	8			S	3	4	24

List of Accidents-Coniinued.

List of Accidents-Continued.

IMPROVEMENTS.

There have been but rery few new openings under way this year to be compared with years previous to this, which is owing to the depression in the coal trade. Nevertheless in the face of these dull times there has been some extensive improvements made during the year, with an expectation of a good demand for coal in the future.

New Openings Completed During 1876.

Miller, Hoch \& Co.'s new slope, commenced and co.npleted this year, sunk to the depth of 720 feet, on an average angle of 60°; vertical depth, 623 feet. The opening is on Mammoth vein, which is 35 feet thick at this place, and in splendid condition. As a rule the coal in this basin is purer than any other coal basin north of the Broad Mountain, for geuerally the coal is a bright and glossy fracture through the whole of the benches, with but a small percentage of impurities ranning through the different beds or benches to be compared with the Shenandoah basin. A tunnel is about to be driven north from the Mammoth, which will cut the Seven-foot, Skidmore and Buck Mountain veins, which, when completed, will make this one of the largest producing collieries in the Mahanoy Valley.

At the Furnace colliery of Atkins Bros. a new slope has been sunk to the depth of 420 feet ou an average angle of 40°, south dip. The opening is on the Buck Mountain vein, which at this place ranges in thickness from 10 to 14 feet.

At the "Copley" colliery of Lentz \& Bownan, a new shaft that was commenced in 1875 and is now completed, striking the Buck Mountain vein near the centre of the basin, 230 feet deep. The outside improvements at this colliery is very complete and built in a very substantial manner. The hoisting cages are also provided with safety appliances in accordance with the requirements of the law.

At the Mahanoy City colliery a new inside slope was commenced in 1875 and completed early in the spring of this year. This opening is on the to ρ split of the Mammoth vein, and sunk 110 yards. The hoisting machirery consists of a pair of engines, 120 -horse power. There are also two pair of air conipressers, 80 -horse power, built by Messrs. Allison \& Bannon, which supplies the motive power. This is a great improvement on the old system of using boilers inside, and is also superior for carrying steam into the mines.

At the Willian Penn colliery a new inside slope has been completed this year, and sunk to a depth of 120 yards below the present shaft level, on an average angle of 45°. Steam is used as the motive power, and carried from the boilers located at the surface. One 40 -horse power engine is used for hoisting purposes.

At the Cuyler colliery of Heaton \& Bros. a new inside slope has also been completed this year. This opening is on the Buck Monntain vein, and sunk to the depth of 457 feet, on an average angle of 10°, north dip.

At Turkey Run colliery a new inside slope has been sunk 110 yards on au angle of 27°, north dip, and gangways opened. One $4 G$-horse power engine is used for hoisting. The steam boilers are located ontside.

CILARACTELINTICS OF COLLIERIES.

Plan irppescenting place where accident No 少\& 8 occurred at Bear Ridge Colliery N^{07}

1 Where Ilutiey wess found.
\therefore Where Ifahomey wases smothered.
3 Cross cut being opened.
fCrosssiut Dlint rush ouet of.
5 Brecest fill of toose Cocul.

offernay in Breast,
FHanwey ive Pilleer:
8.Man Gangway.

9 Outside Pillar of Breast.
10 Where the Hole was being entar ged.
11 A piece of Mranwely driven in the solid forthe purpose of wen12 tilnting the hole driven to sur face.
y

9

Fatal Accidents fron Falls of Coal.

No. 5. John M'Lendy, a miner, was killed by a fall of coal in a chute at Indian Ridge colliery. M'Lendy had just returned into the face of the chute after firing a shot, we suppose, without ever making an examination of the nature of the coal which formed the roof. From the evidence taken at the investigation it appears that M'Lendy had a car standing partly loaded, but had not sufficient coal to finish it until the shot was fired; being in a hurry, no doubt, to finish the car he rushed back to the face without taking the necessary precaution.

No. 9. Patrick M'Grady, a miner, was killed instantly by a fall of coal at Knickerbocker colliery. The seam is about 15 feet thick; the sense of hearing is about the only safeguard under these circumstances.

No. 14. Henry Jones, a miner, was killed instantly by a piece of coal falling on him while in the act of crossing his breast.

No. 16. Thomas Cassidy, a miner, was killed instantly by a fall of coal at Indian Ridge colliery. Cassidy had just fired a shot, and undoubtedly did not allow time for the place to settle, neither had the powder smoke time to clear away.

No. 18. Michael Hennessy, a miner, was killed instantly by a fall of coal at Honey Brook colliery, No. 1. From the evidence given at the inquest it would appear that Hennessy was doubtful in regard to the safety of working under the coal which fell on him, and eaused his death. A short time before the accident he called a miner, who was working the next breast outside of him, to obtain his opinion. After examining the coal they concluded that it was dangerous, and remarked one to the other that it was worth watching. In about fifteen minutes after the other miner left the place the coal fell, killing him.

No. 20. James O'Donnell, a miner, was killed by a fall of coal at Honey Brook colliery, No. 4. In this case I must say that there was a great deal of carelessness displayed. The dip in this place was about 45°, and coal very jointy, running at all angles, which makes large coal seams very dangerous even at the face. O'Donnell went down the middle of the breast a distance of 15 yards on top of the loose coal to drill a hole in the top coal of the seam. On examining the breast I found the manway in good condition, but in and down the middle of the breast there were large bodies of coal hanging ready to fall. Yet in the face of all these dallgers this man ran the risk of going down the distance before mentioned, with no place whatsoever in which to escape. From the evidence given by the laborer who was working with him at the time the coal hanging over them had been working all the while they were drilling the hole which they intended to fire, and they had retreated up to the face of the breast several times expecting a fall to come. The last time they went back it was to tamp the hole, having the powder in. While in the act of tamping the mass of eoal which they had the shot in fell, killing O'Donnell instantly and slightly injuring the laborer.

No. 21. William Jackson, a miner, was killed by a fall of coal in the Stanton colliery, near the Mahanoy Plane. It appears that he had just fired a shot and had returned to the face, and was in the act of dressing down the loose coal when a piece fell from the face, striking him on the forehead, cutting his head almost in two halves.

No. 23. William Richards, a miner, was killed by a fall of coal at Colorado colliery, No. 1. The angle here is from 60° to 70°, and worked by 3 Mine liep.
the run. On examining the place 1 found the manways in good condition, much better than manways are generally kept. At the face the coal was very jointy (what miners geuerally term slippy) and free, which makes these places very dangerous, unless there is a great deal of care and precaution used. As far as the working of this place was concerned undoubtedly it was worked in as safe a manner as the nature of the circumstances would permit. Nevertheless we think that the deceased exposed himself to dangers, which he ought not to have, by crossing into the middle of the breast, which was extremely dangerous owing to the steep angle and the nature of the seam.

Fatal Accidents from Falls of Roof.

No. 4. John Sthall, a miner, was killed by a fall of roof in a breast in Mahanoy City colliery.

Fatal Accidents from Mine Cars.

No. 1. John Wilkes, a laborer, was instantly killed at Lost Creek colliery, No. 5. He was caught between the cover of a water car and a piece of timber. He was assisting some other men to complete the bottom of the new slope, and he had been laboring in the slope while sinking, so be must have been fully aware of the danger of attempting to ride on the top of the water car out of the sump. There was not more than three inches of space between the top of the car and the under-side of the piece of timber which formed the floor of the gangway. Below this point there was from three to four feet of room above the top of the car; also above the same point there was from six to cight feet of room above the car. All the other men working with Wilkes came up out of the sump and waited to have the car hoisted to the level of the platform, where they made it a rule to get on the car to ride up the slope. Instead of Wilkes doing as they did, he remained in the sump until the car started, and threw himself on the cover of the car and was hoisted to the point where the top of the car and the piece of timber forming the floor of gangway came nearly together, and he was crushed to death in the most fearful manner. From the information gleaned at the investigation it appears that it was only a short time before this that the same man was thrown off the spreader-chain, barely escaping being crushed.

No. 2. Abraham Hains, a boy, whose work it was to sprag the cars at the botton of the slope at Stanton colliery, was mortally injured and died in a few hours after the accident occurred. He had left his place at the slope bottom, and was riding on the front bumper of a car, and in passing around a curve was thrown under the car, with fatal results.

No. 10. Michael Russell, a laborer, was crushed to death between a car and centre prop in the new slope at Furnace colliery, Gilberton. The deceased was attending to some blocking which was under the wheels of car that was off the track, down about twenty yards from the top of the slope. While they were in the act of trying to get it on the blocking slipped from under the wheels on the side at which Russell was standing, causing the car to lurch to that side, crushing him between the prop and car.

No. 11. John Walsh, a door-tender, was killed at Indian Ridge shaft, (owned by the Philadelphia and Reading Coal and Iron Company,) by being caught between a door and car. The supposition at the time was that the boy had fell asleep and did not awake until the car was close at hand, and in rushing to open the door was caught by the car, receiving fatal injuries, from which he died shortly after the occurrence.

No. 12. Edward Brennan, an outside laborer, was mortally injured at the Cuyler colliery by being thrown from off the front of an empty car on a coal plane. The car passed over him, crushing him internally, from the effects of which he died in a few hours after the accident.

No. 20. James Carrabine, an outside driver, was killed at the Stanton colliery. It would appear from the testimony given at the investigation that the boy had unhitched his mule from the loaded car, and was running ahead of the car; also that he was in the act of picking up a sprag from the track when he was knocked down by the car which passed over him, killing him instantly.

Miscellaneous Underground Accidents.

No. 7. James Holvey, a miner, was smothered at Bear Ridge colliery, No. 1, Mahanoy Plane. He and some others had just driven an air-hole out to the surface, and had commenced to enlarge it and also to timber it down from the top. The dip was 55°. After standing a few set of timbers the hole became blocked with dirt which they had put down. Holvey, as he could not work any longer on account of the hole being filled up, went down the slope. He saw the inside foreman on the gangway, and told him that the hole was blocked. The foreman told him to go and see where, and what the obstruction was which had blocked the dirt. It would appear that he went up about sixty yards from the gangway and there found the passage blocked. There is every reason to believe that, in the face of all the danger, he started the dirt without even trying to secure his own safety. The result was, he was caught with the rush and smothered before assistance could be rendered. We do not hesitate to say that if there had been anything like precantionary measures used in this case, by Holvey, this accident would not have occurred.

No. 8. Jeremiah Mahony, a miner, was also smothered at Bear Ridge colliery, No. 1, while helping to get Holvey out. There was a breast running parallel with the air hole, having six yards of a pillar between them, with cross-cuts cut through the pillar about every ten yards. Holvey was caught between two of these openings. The breast manway was open, and also the cross-cuts. Mahony, with two other men, passed through the last cross-cut they could get to in the air hole. It was supposed that Wolvey was between the last named cross-cut and the next above, which proved to be correct, as it was there where he was found. It appeared to have been the intention of Mahony to open the cross-cut above, which was full of dirt that had run in from the air hole, and from this point to put in poles to debar the dirt above the cross-cut from running until Holvey was taken out. The manway was very small, not allowing room for the three men to work. Mahony went above the crossent and sat in the manway while the other two men were clearing the cross-cut, which was a very unsafe position. From the evidence taken at the inquest it appears that these two men had told Mahouy several times that he was in a very unsafe place and wanted him to come down to the cross-cut, they dreading that the dirt would rush out of some of the cross-cuts and catch him. But he told them that he was safe and to go ahead with getting the dirt out of the cross-cut. As the men had anticipated so it happened. Before they had got near through with the work a rush of dirt came ol:t of one of the crossecuts catching Mahony and burying him alive.

No. 13. William Thomas, a miner, was killed at Lost Creek, No. 2, by a fall of surface while taking out coal from one of the old holes which had
fallen through to daylight. Thomas had the reputation of being a good miner and very industrious man, but also of being very anxious to make money, and that he often times ran risks which were unnecessary where life is at stake. From the testimony taken in this case it appears the man who was working with him had tried to induce him to leave the hole until the place would settle, as there were pieces of surface continually dropping from the sides, but remonstrances were to no purpose as he was in dread the fall would come and bury some loose coal that was laying in the hole. The result was the fall came striking Thomas and breaking his neck.

No. 22. John Cafferty, a miner, was killed at Lost Creek colliery, No. 2, by a lump of coal rolling down from the top of a pile out of which he and his laborer were loading at the time, catching him between a small car (called buggy) and the lump. of coal, killing him instantly. In this case Cafferty's attention had been called to the danger by his laborer, and they bad every opportunity of moving the lump and making the place safe, but failed to do so. The verdict of the coroner's jury was: that the deceased came to his death through gross carelessness.

No. 24. Frederick Guest, a laborer, was crushed by the cage, killing him instantly, at the bottom of Koh-i-noor shaft, while attempting to cross the bottom while the cage was in motion. This is against the rules of the colliery, and furthermore it is not necessary that any person should cross the shaft bottom at any time, as there is a traveling way around the bottom of the shaft from the east to the west side. It appears from the testimony taken at the coroner's investigation that he did not attempt to cross until the cage was within ten feet of the bottom. To prevent accidents of this description there might be self-acting gates used similar to those in use on the top of shafts, made to work inversely, so that the cage would press them down, and as the cage was raised they would follow it up until the opening was closed.

No. 15. Patrick Gallagher, a laborer, was killed at Bear Ridge colliery, No. 2, by being caught in a chute while in the act of drilling a hole in a piece of rock in a battery. The rock in which he was drilling gave way, catching him in the chnte and crushing him to death.

No. 17. Henry Fonlk, a laborer, was killed in Lawrence \& Merkle's colliery, foot of Mahanoy Plane. It appears that he had drawn the chute empty owing to the battery being blocked with a large lump of coal. The man, whose work it was to attend to the starting of the battery, thought it best not to start it before they had an empty car, as the coal might hare rushed on to the gangway. When the car arrived at the chnte the starter commenced to free the lump. In the meantime Foulk got up into the chute and when the coal started the large lump struck a centre prop in the middle of the chute which the deceased was standing against. It appears that the sudden jar of the blow in striking the prop which he was leaning against caused a concussion of the brain, as there were no marks of violence on his person. However, he had no business in the chute while it was being started, as he had nothing to do even on the platform until the chute was full.

No. 3. Edward Broughall, a miner, was killed iustantly at the Ellen Gowen colliery by being caught between the cage and the shaft timbers. This accident may be classed with several others. Provided proper care and precaution had been taken the accident would not have occurred. Broughall had just come down the shaft during the dinner hour, and on his arrival at the bottorn he got off the cage. Just at this time another mau alrived at the bottom of the shaft who had been kicked on the leg by
a mule. This man got on the cage to be hoisted up when Broughall also returned and got on the cage to make some inquiry regarding the extent of the other man's injuries. It appears that the deceased stayed on the cage until it started to ascend when he attempted to jump off and was caught between the cage and the shaft timbers, crushing his head in a most fearful manner.

No. 25. James Tallett, a miner, was injured at the Plank Ridge colliery by a fall of coal in his breast, and died from the effects about six weeks after the accident occurred. This man's attention had been called to the danger of working under the piece of coal which fell on him, and he was told by miners working in the next breast to him that it was not safe, but paid no attention to their warning. His neglect resulted in his being so serionsly injured that he died in the time abose mentioned.

No. 26. William Blair, a miner, was burned by an explosion of fire-damp (carbureted hydrogen gas) while in the act of entering his breast. Although this man did not appear to be seriously burned, and it was also the opinion of those attending him that there was no danger, nevertheless Blair died. In this case there was neglect on both sides, on the part of those in charge of the colliery and Blair himself. This was the verdict of the jury on investigating the cause of the accident. This accident occurred at the St. Nicholas colliery, Mahanoy Valley.

No. 27. Barney Smith, a miner, was serionsly injured at Plank Ridge colliery, by a fall of coal fracturing his thigh, which caused his death in about two weeks after the accident.

No. 6. James M'Loughlin, an outside laborer at Indian Ridge colliery, was mortally injured, only living a few hours after the accident. This accident occurred through the bursting of a steam boiler at this colliery. M'Loughlin at the time of the accident was under the breaker, which is located from 75 to 100 yards from the boilers, and was struck on the head with a piece of brick thrown from the walls which surrounded the boilers.

This was one of those mysterious kind of accidents which generally covers up its tracks in boiler explosions, but nevertheless there are a great many theories as to the causes, which was the case with this accident. These boilers had been examined by the boiler inspectol's deputy four months before the accident occurred, and the exploded one reported a second class boiler, which, according to the testimony of the inspector's deputy given at the investigation, he considered safe in carrying 75 to 80 lbs. pressure to the square inch, which was the steam pressure carried in these boilers at the time of explosion. This boiler was 34 inches in diameter and 30 feet long, and when new was made of iron five-sixteenth of an inch thick, but. at the time of the accident the bottom of the boiler was only one-eighth inch, increasing in thickness up to the water line, at which point it attained nearly its original thickness. The reducing of the iron in thickness was caused by the use of water containing mineral acid, which is very destructive to boilers and iron in general around the mines.

I think the testimony taken at the inquest leaves no room for doubt as to what was the cause of the bursting of said boiler. The first witness examined was Thomas Harkins, who said: "I am freman at the Indian Ridgecolliery; a few minutes before the accident I had coaled the fires, and also tried the water in this set of boilers and found the water between the second and top gange, and the feed pump still pumping water into this set of boilers. I did not observe any leak or anything wrong with the boiter when coaling the fire, but I had no sooner closed the fire-door and commenced
coaling the next set of fires to the boiler which bursted when I saw the firedoor fly open. I went and closed it, again it blew open, and I ran and got my shovel and tried to close it again, but did not succeed, as the flame and steam was blowing out too strong. I became alarmed and ran to the engine room to report to the engincer, just as I entered I heard the report of the boiler bursting."

The next witness, James O'Merron, said: "I am a carpenter at said colliery, and was standing in frort of the shop and saw the fireman trying to close the fire-door, and also saw the flame blowing out from two to three minutes before the boiler left its place." This man's testimony was corroborated by another carpenter who saw the whole proceedings

Verdict of the Coroner's Jury.-That the deceased, James M'Loughlin, came to his death by the bursting of a steam boiler at the Indian Ridge colliery; that the cause of the bursting of said boiler was owing to its being reduced to two-ifths of its original thickness and strength on the bottom part of said builer.

Jurors-E. A. Levering, J. F. Jacoby, Daniel Ellis, T. W. Wilson, Jos. Beacham, John A. Smith.

CHARLES DENGLER, Dep. Coraner.

Ventilation.

This is one of the most important subjects connected with mining. Drainage is also a matter which permits of no secondary consideration. Where these two important branches are neglected, or not thoroughly understood, no matter how valuable the seam of coal may be, it must virtually be wrought at a loss by the operator. Therefore these two branches require no argument to impress their importance on those who fully understand the true principles which must govern in the future in mining anthracite coal. The natural advantages of mining coal above water level in the anthracite coal fields are nearly exhausted, and as each year rolls by we are compelled to go deeper into the bowels of the earth, and the difficulties to be met with increase in proportion to the depth we are required to sink.

The cost of mining depends very materially on the condition of ventilation, whether it be in mines that generate explusive gas or in those that do not, but to a greater extent in anthracite than in bituminous mines. This is owing to the large amount of powder used, requiring large volumes of air to sweep and carry away the smoke which results from blasting. Ventilation is therefore a very important matter to be considered even in the most harmless anthracite mines, as the safety of the workingmen, and the amount of labor which can be performed in a given time, depend upon the length of time it takes to clear the working places of powder smoke after the firing of a shot. If the air current is slack the miner may be kept from the face of his working place a half an hour before he can return with safety, whilst with a large current of air circulating through his working place he might have returned as soon as the shot was discharged, thereby saving time. This is a matter which may be studied by many colliery owners to their advantage, and also to the benefit of the workingmen. We do not hesitate to say that in some of our mines from ten to twenty per cent of the miuers' time is lost from this cause, (powder smoke.)

At this time there can be no reasonable excuse offered by those in charge of collieries for not having an adequate amount of air for all purposes passing through all working places. At present it is only a question of dollars and cents, togetner with a practical knowledge of the natural laws, which
govern rentilation. If these two items are supplied there is scarcely a limit to the amount of air which can be circulated through the openings of a mine with the improved ventilators of the age.

There are forty-five fans in use in this district of varions dimensions, varying somewhat in their construction and nearly all on the exhaust prineiple. Most of the different patterns are claimed to be superior to the others, and some parties go so far even as to give the amount of air these fans will discharge per minute for each certain size fan running at a given number of revolutions.

These calcułations, no doubt, are correct theoretically, but there are very few of them which give the same results in practice. We do not wish to convey the idea but that some of these ventilators are superior to others, but the ventilation of a mine depends a great deal more on the size and construction of the openings the air has to pass through than it does on the ventilating machine.

It may not be ont of place here to give the results of experiments with some of these fan ventilators; in particular two, which are eighteen feet in diameter, Gubal pattern, and built by the same parties. One of these fans is in use at what is known as the Ellen Gowan shaft, and at the time of the experiment was running forty-eight revolutions per minute, and was discharging 45,300 cubic feet of air per minute; drag as per water gauge, $\frac{6}{10}$ of an inch. The Indian Ridge fan, of the same dimensions, at the time of the experiment was running binety revolutions per minute, and was discharging but 37,750 cubic feet per minute, water gange iudicating 1_{10}^{6} inches. In another case a common exhaust fan, with open periphery fifteen feet in diameter, vanes five feet square, running eighty revolutions per minute, discharged 43,000 cubic feet, drag indicating by water gauge ${ }_{10}^{7}$ of an inch. It will be readily seen by these results that whilst at one of these mines it only required a ventiating pressure of $3 \frac{12}{10}$ pounds per square foot to pass 45,300 subic feet of air per minute, in the other case it required a ventilating pressure of $8 \frac{38}{100}$ pounds to pass 37,750 cubic feet in the same given time.

TABLE showing the mumber of Fans in use.

Name of Colltery.		'1วอд แ! Su!		-uәr\{o әp!s us jo лoquun				6 0 0 0 0	
Tudian Hinge. Ellen towen shaft	ciubal tan		18	1	88	87.750 45,300	$16-10$	Closed	
mo...... drift ...	Fan...		18	1.	43 65		- $\begin{array}{r}\text { 6-10 } \\ 5-10\end{array}$	Open..	
Knickerbocker.	. do.		10	2	.				
Plank rilige.	. do.		15	2		
West Shenandonh	Fan		10	1	85	25, (60)		Closell	
Mahanoy Cíty....	do.		14	2	80	23,200	6-100	...do...	
$130 \ldots$......	. 10		10	2	85	10,000			
North Mahanoy	1 ropeller		$7^{1 / 2}$	1	120	10,500			
Einiwoorl	valo..		7	1	1391	8,250			
Einiworl ${ }^{\text {Easton } 13}$	Falı do.		12	2	40	17,000		Opent.	
Boston lun	. . do		10	$\frac{9}{2}$					
II ammond.	. ${ }^{\text {do }}$		14						
(i)rardsville drifts	. 10		10						
(${ }^{1}$ rard ${ }^{0}$. ${ }^{\text {do }}$		10						
Bear Ridge, No.			14	2	$1+6$ 80	13,200 20,000		Closed	
Do.......vo. 2	1ropeller		12		83	15. 300	2-10		
Lawrence.	Fan.......		12		12.	14,300	1 1-10		
Stanton.....	.do		14	2	80	25,0c0	$7^{1}-10$		

Table Showing the Number of Fans in Use-Continued.

The greater danger attending the mining of anthracite coal as compared with that of the bituminous mines of Great Britain and of this and other States.

1st. Owing to the Greater Thickness of the Veins.
It is a fact well known to practical miners and those who understand mining that the liability to accident in mining in thick coal seams is far greater than in mining seams of moderate thickness. In the first place if we take the thick coal seam of South Staffordshire and compare it with the other mining districts of the British coal fields we find the casualties, both fatal and non-fatal, far exceed in number those of any other mining district in Great Britain ; and a very large majority of the accidents occur from falls of coal or roof. Suppose one-half the coal mined in Great Britain were taken from seams such as the thick coal seams above mentioned, the result would be quite different in regard to the amount or number of tons mined for each fatal accident which occurs. We think it will be within bounds to say that there is not five per cent. of the whole amount of coal produced in Great Britain mined from seams as large as that of South Staffordshire, whilst in the anthracite coal fields of Pennsyivania there is 50 per cent. of the coal mined from scams over fifteen feet thick.

We will take for instance the Mahanoy and Shenandoah district, in which there are fifty-four collieries in operation, thirty-three of these are working the Mammoth seam, ranging from twenty-five to sixty feet in thickness; fifteen are working the Buck Mountain seam, ranging from ten to twenty feet in thickness; six are working scams varying from ten to three feet in

thickuess. The thirty-three collieries working the Mammoth seam produce fully seventy-five per cent. of the whole amount mined in this district, therefore the large amount of coal mined from this seam is one of the prin cipal causes of so many accidents occurring, as no ordinary timbering can be used to support the roof, nor can the eye detect in these vast openings where special danger threatens. The sense of hearing is the ouly sateguard the miner has, which must be very sensitive to catch any preliminary cracking of the coal or roek, which indieates the approach of a fall. Falls are also sometimes detected by small pieces dropping from the mass hanging over the workman. But often these falls occar without giving any warning, which is owing to the treacherous nature of the large seams; as the different beds are broken up by slips or plane surfaces running at all angles through the benches of coal which form the seams. Sometimes, under the most careful examination by the most practical workman, this sonrce of danger cannot be detected, as nature has so completely fitted the bloeks together that compose the beds of coal, and in such various forms, that the eye and the sense of hearing oftentimes are deceived. 'These blocks may appear to be solid from sounding them, whilst the next moment they may fall without any notice whatsoever. These places are only absolutely safe, therefore, when secured by timbering.

1. Because of the Greater Quantity of Powder Used.

Another prolific source of danger in miuing anthracite coal arises from the large amount of powder used for mining purposes, as nearly all of the coal has to be blasted. One keg of powder, weighing 25 pounds, is usually used for every fifty tons of coal sent to market.

The accidents which occur from the use of powder in the mines are due to various canses, and the miner is endangered in several ways, but the greatest danger arises from not using the precautions which are necessary in handling so dangerous an explosive. The mode generally in practice with the niners in making up the powder into cartridges for the purpose of blasting is extremely reckless. Generally they hold the keg containing the powder under one arm and the eartridge in the other hand, witk their lamps hanging on their heads; and, besides, almost always this work is done in some small heading where there is not room enough to turn around even when on their knees.

A nother source of danger arising from the use of powder is when a cartridge is being inserted into the hole which has been bored to receive it. The cartridge is pierced with what the miners call a needle, which is made of iron, varying from three to five feet in length, and about five-eighths of an iuch in diameter at the large end, drawn on a regular taper to a fine point. Should this needle be driven to the back of the hole while inserting the charge or shot of powder, there is danger of striking some flinty or fiery substances which are found to a greater or less extent in all minerals, but more so in anthracite than in bituminons coal. There is also danger in the process of tamping the hole, which is also done with an iron tamping bar, unless great care is taken not to break the eartridge while inserting it.

In either of the above cases there is danger of a premature explosion of the powder in the hole, and oftentimes the most fearful accidents that can befall a human being occur from them. Sometimes the results are fatal and at other times miners are blinded or injured and maimed for life.

There is also another source of danger, and probably the greatest of all arising from the use of powder in blasting. It is from shots which fail to expiode at the time generally allowed by the miner for the match to ignite
the powder in the squib, although this source of danger may have been somewhat lessened within the last few years by the invention of the "Daddow's patent squib and match combined," which is now used very extensively in the anthracite coal mines; nevertheless there is still a large percentage of accidents occurring from this source. The length of the match which is connected with the squib is regulated according to the distance the miner has to retreat to a place of safety, and it is upon his practical judgment alone that he must rely to measure the time necessary to be allowed. Through various causes the match oftentimes fails to ignite the powder in the squib as soon as the miner thinks it should. (This is often the case, as a large percentage of the holes cut small springs of water in passing through the various partings or slips which run at all angles through the coal seams.) Upon the impulse of the moment, from fear of losing the powder and also the labor of boring the hole out again, he rushes back to the face of his working place, without consulting his own safety, to apply another squib or match as the case may require, apparently unconscious that the jaws of death are almost ready to swallow him Nevertheless he knows the danger if a practical miner, for he is aware that these matches very often burn freely $n p$ to noar the powder and then the fire almost burns out, but still continues to smoulder slowly, but so dimly that it cannot be seen until the miner is close upon it, or perhaps in the act of catching hold, when the powder becomes ignited. We have known cases when the miner has lived to tell the tale, that when in the act of taking the squib from the hole he has in doing so pressed the fire on to the powder, causing the explosion of the shot. When these accidents occur they are generally attended with fatal results.

There is also another source of danger which is connected with the use of powder in general. This danger is to be apprehended in mines generating explosive gases. In the first place, if the naked light is used it is dangerous to apply the open light to the match in lighting it, as there is always great risk of igniting feeders or blowers which the bored hole has liberated. In such cases there is danger of the burning gas igniting the powder in the squib before the miner has time to retreat to a place of safety.

There is also danger of explosions should there be any standing gas, (carbureted hydrogen;) butif in our most fiery mines the use of powder or other explosives was prohibited, the consequence would be that some of the most valuable collieries would have to be abandoned, or the consumers of this fuel would have to pay sueh high prices that it would be only very few that would have the pleasure of using anthracite coal.

Powder, as a matter of course, is used in bituminous coal mines, but not nearly to so large an extent as in the anthracite mines, and then only under very stringent rules. If it has been deemed necessary to have stringent laws passed in regard to the use of powder where it is only used in small quantities, we think it is much more important to have strict laws here where we use such large quantities. We are sorry to say that there is neither law nor discipline in the use of powder in the anthracite coal fields.

In comparison between the bituminous mines of Great Britain and the anthracite mines of Pennsylvania as to the number of tons produced per life lost, the waste raised from anthracite mines should be taken into consideration.

There is an important item which is not taken into consideration by those who condemn the management of anchracite mines, because we do not produce as much coal per life lost as is produced in the mines of Great Britain, and the neglect to take this item into consideration works great injustice to those engaged in mining anthracite coal.

In the first place nearly all the coal taken from the bituminous mines in Great Britain is weighed at the top of the shaft; as a general rule the miuers cut the coal by the ton, and the number of tons produced by each colliery is taken from the weight or amount for which the miner is paid. If the estimates of the shipments of the collieries was calculated the same way here, (i.e.,) by weighing the coal before it passes the coal breaker, then wie would be found to produce as much coal per life lost as they do in Great Britain.

We have statistics to show the discrepancy between the coal actually mined and the amount sent to market from some of the best producing collieries in this district in which the coal is mined altogether by the car, and sent out in the best condition possible. And we find that the loss or waste is fully twenty-five per cent. in preparation, and a colliery that markets seventy-five thousand tons has actually mined one hundred thousand tons.

We do not wish to convey the idea, however, that a large number of accidents may not be prevented by enfurcing stricter mine discipline. Loose discipline is a fertile source of accidents in the anthracite mines, and while discipline is neglected accidents will continue to occur no matter what other precautions are taken. A large number of accidents occur from this sonrce every year, and the numbers will not decrease until each colliery has a code of special and general rules, not only to look at but to be strictly enforced. At the present time it appears that in some places where special notices have been posted by the officials of collieries that they are more for the purpose of keeping themselves clear of the law than for the prevention of accidents.

Conveyance Under Ground.

The motive power at a large majority of the collieries in this district is supplied by mules. There are also a number of mine locomotives used, both inside and outside of the mines, which undoubtedly are superior as a motive power to mules ; there are some serious objections however against the use of steam locomotives for hauling under ground, and these objections are not without reason.

In some instances there has not been that precaution used which is necessary to confine the gas and steam thrown off by the furnaces to the outlet, but they have been allowed to mingle with the intake air-current, thereby passing through the working places. Where this occurs it is very injurious to persons who have to breathe the air mixed with the gases and steam thrown off by the engines. This objection to the use of engines inside may be avoided to a very great extent, provided the proper care is taken in conducting the air-current, and by keeping the engine on the return outlet and not running it to places where persons are cutting or loading coal. These engines are not by any meaus safe in mines that generate firedamp, (carbureted hydrogen gas.)

Recapitulation.

There are 604 steam boilers in use in this district.
There are 308 steam engines, with an aggregate horse power of 15,975.
There are 19 mine locomotives.
There are 58 steam pumps used for drainage.
There are 14 rod plunger pumps.
There are 56 coal breakers.
There are 46 surface slopes.
There are 12 inside slopes.
There are 7 shafts.
There are 27 drift openings.
There are 10,218 persons employed.

List of Fatal and Non-Fatal Accidents.

Numberkilled.Explosions of carbureted hydrogen gas 1
Numberinjured.
Falling into shafts or slopesFalls of coal1013
Falls of roof 1
Explosions of blasting powder ${ }^{\circ} 5$
Crushed by mine cars 4
Miscellaneous under ground S
Miscellaneous above ground 8
Total 27 48
Recapitulation, 1876.
Number of persons employed 10,218
Quantity of coal produced, tons $2,891,117$
Number of fatal accidents 27
Number of lives lost by such accidents 27
Tons of coal produced per separate accident 107,078
Number of collieries 56
Recapitulation, 1875.
Number of persons employed
Quantity of coal produced, tons 2,562,345
Number of fatal accidents 26 26
Number of lives lost by such accidents 26
Tons of coal produced per separate accident 98,551
Number of collieries 56

REPORT
 OF THE INSPECTOR OF MINES FOR TIIE FIRST OR POTTSVILLE DISTRICT.

To His Excellency, John F. Hartranft, Governor of the State of Pennsylvania:

SIr :- In conformity with an act of General Assembly in such case made and provided, I have the honor to submit to you the result of the labor which the law imposes upon me as inspector of coal mines and collieries for the First or Pottsville district during the year ending December 31, 1876.

The number of fatal and non-fatal accidents which occurred during the year are ninety-one, of which number twenty-two were killed, six died subsequent to being injured, sixty-three others were seriously maimed and injured, and twenty others received but slight injuries not necessarily serious.

Of the twenty-eight fatal accidents that occurred, the character of which are here shown, it will be perceived that

Two persons lost their lives by falls of coal.
Three persons lost their lives by falls of rock and slate.
Five persons lost their lives by falling into slopes and shafts.
Ten persons lost their lives by explosions of fire-damp.
Two persons lost their lives by explosions of powder and crushed by wagons.

Five persons lost their lives by breaking of ropes and chains; and
One person lost his life by being crushed in machinery.

Maps of Collieries.

With the exception of a few new collicries all have furnished maps in conformity with the requirements of the law, and their extensions and corrections are properly attended to.

The collieries are daily receiving such improvements as are deemed proper and necessary. Their condition as regards ventilation and drainage is satisfactory.

The following is

A STATEMENT of the coal tonnage of the respective collieries of the Pottsville distriet, owned and operated by the Thiladelphia and Reading Coal and Iron Compa$n y$, in the year ending November 30, 1876:

No.	Name of Collieries.	location.	$\begin{aligned} & \text { Aunual } \\ & \text { tonuage. } \end{aligned}$	Decembei tonnage.	Aggregate tonnage for the year.
	Beechw	Mt.	57,617	7,785	65.402
	Eas	Tremont, 11	27,641	2,455	30, 098
	Giendower	Evencarbol.	23,6i00	${ }_{879}$	24,
	Mine Hill Gap, Kear	Mine Ilill ca	74,157	6, 6 6i3	80,825
	Utto.	Branchdale.	26,294	1.462	27,754
	Pine Forest	St. Clair.	31,537	5,932	37,519
9...	Thomaston	Glencarbon..	60,631	5,365	65,996
10....	Anchor.	Glencarbon	29,875	2,017	31.892
12....	Richle HIII	Eagle Hill	$\begin{array}{r}6.898 \\ 3+547 \\ \hline\end{array}$	1, ${ }_{4}$	8.351
13.	Pottsville shafts	1,ottsville,	${ }_{25,020}^{35,050}$	3,569	28,589
14..	Middle Creek slaft	Middle Creek	24,927	505	25,432
	Broozside West	Brookside.	154,543 23,448	11,159	154.543 $3+607$
17.	Buckville	Euekville.	Idle		
	Live Uak	Mine 1111 l (a)	. 40		
	Rainbo	Glencarbon St. Clair..			
21.	Wabash	Tamayua			
$22 .$.	Oakuale.	Glencarbon	.do....	
			647.126	..	699, 210

TONNAGE of leased collieries owned and controlled by P. and R. Coa and Iron Company.

No.	Names of Collieries.	Location.	Landowners.	Tonnage.
	Brought forward			698,210
23..	Kalmia..	Kalmia	P. \& R. C. \& I. C	55, 555
24.	Lower Rauch Creek	Tremont, W		38,535
26.	Swatara	Swatara	.do	541
27..	Pyne	do	do	17,562
	Phoenix Park	Phœnix Par	do	
29.	Diamond, No. 1	Forestville	do	19,357
$30 .$.	Lewis Tract	Minersville	.do	230
	White Oak	Greenberry	do	7,542
32..	Ellsworth	\ldots do.	do	9,595
33.	Hoffman drift	West Wood	.do	353
34.	Raber drift	do	do	115
35.	Keenan		do	145
36.	Schuylkill Iron Company		: do	12
37..	Phœnix, No. 1.	Plıenix Park	. do	115
38.	Magovern drift		.do	75
39.	Monitor	Wadesville	do	3,394
40.	Hickory shaft	do	d	25, 361
41..	Diamond, (Little)	do	do	457
42..	Eagle.	St. Clai	do	43,389
43..	St. Clair, Jackson	do	do	1,998
44.	York, Edw'd	do	.do	41
45..	Kentucky	Tuscarora	.do	412
46..	Alaska, (two drifts)	Tamaqua	.do	82
47.	Yoke	Tower City	.do	545
48..	Phonix, No.	Phoenix Par	.do	22, 488
$49 .$.	Bradley	Minersville	.do	
$50 .$.	Vipond	St. Clair	do	888
51.	Ledger Vein	Silver Creel	do	11,447
52.	Valley Furnace	d	do	53
53. do........ . No	... do	do	25
54.	.do....... . . No do	do	2,339
55.	. do.	do	do	8,879
56..	King, Tyler \& Co	Pottsville	do	6,090
57..	Valley Furnace drift	Silver Creek	do	
58..	West End	Donaldson	.do	98
59..	Black Min	Llewellyn	do	1,699
$60 .$.	Tremont.	Tremont.	do	291
61..	Rauch Cree	West Tremont	do	15,764
62..	Colket.	Donaldson.	.do	11,209
$63 .$.	Eureka	\ldots do.		9,093
64..	West Flowery Field	Wadesville		
$65 .$.	Egan	New Castle	do	
$66 .$.	Taylorville	Glen Carbo	do	
67..	West Pine Kno do........... do	
Eight small operations mined sone . 500				
				1,076,556
Railway consumption				60,000
				$1,077,056$
Local consumption of the same				530,000
Aggregate number of tons mined Plus the assumed shipments of New Boston, Altomount, Greenwood lands				1,667, 056
				650, 000
The aggrecate product of said collieries				2,317,056

[^0]FATAL ACCIDENTS IN 1876.

28 deaths, 8 of which died of injuries, subserfnently.

Date.	Names of the injured persons.	Names of the Collieries.	Remarks, өte.
Jan. 18..	George Martin ...	Anehor	
18..	Jolin H. Brannan Luke M'Cabe do	Body slightly erushed by same wagon.
$21 .$.	Luke M'Cabe.	Diamond	Seriously injured by a fall of slate. Seriously injured by a fall of slate.
Feb. ${ }^{23}$	John Harris ...	Black $\mathrm{B} i \mathrm{ine}$	Mortally injured-burned by powder ; died.
Feb. 7.	Patrick Commers.	Pottsville shafts	Severely burned by fire-damp.
29..	James Daugherty	Taggart's	Foot cut off by a train in motion. Severely burned by fire-damp.
29.	James Birchill .	Hickory shaft	Severely burned by firo-damp.
Mar. 27.	John Kirk. ${ }^{\text {lo }}$.	Slightly burned by fire-damp.
April ${ }^{27}$ 2.	Patrick Grace .	Lower Pauch Cr	Slightly burned by fire-tamp.
April 8 .	John W, Brannan.	West End	Breast injured by a run-away wagon. Crushed by wagons on the waste bank.
21.	Charles M'Henry.	Phœenix, No. 2	Severely burned by fire-damp.
21.	Daniel M'Henry	do	Severely burned by fire-damp.
22.	Wm. Snyder	Black Mine Coaldale...	Mortaliy injured by a fall of slate ; died. Head severely imjured by a fall of coal.
22.	Edward Lawler	Colket.	Head severely injured by a blast.
23.	George Engleman	Franklin	Leg severely injured by a fall of slate.
24.	Joseph Robson Wm. M'Gilroy	Harris slope Forestville	Side severely injured-kicked by a mule. Severely injured by a fall of coal.
May 4.	Wm. Whalen (boy)	Fotto	Fingers cut off-run over by wagons.
4.	Richard Casey.....	Beeohwood	Leg cut severely by wagons.
8.	Timothy Bierney	Otto .	Soverely burned by fire-damp.
8.	John Hanse.	Colket	Severely burned by a premature blast.
17.	Charles Williams	North Ame	Overcome by a rush of blood to his head.
17.	J. Mullin	West End	Hand shattered while blasting.
27.	Wm. Simms....	Phonix, No..2	Severely burned by fire-damp.
27.	John Williams	. . . do	Severely bumed by fire-damp; died.
27.	Cliarles Kavanagh	do	Severely burned by fire-damp.
27.	Johm Dommer	.do	Severely burned by fire-damp; died.
27.	John Braman.	..do	Severely burned by fire-damp; died.
28.	Peter Kerlman Henry Sheafer	Coaldale	Severely burned by fire-damp. Severely burnerl by fire-damp.
28.	George Dies.	do	Severely burned by fire-damp.

		J. Miller̈.	do.
	28....	J. Cornow do
	28.	Frank Boyle	do
	28.	Frank Andrews.	.do
1	28.	John Leckett.	do
2	28.	Eli Taylor.	do
5	25..	Thos. Ratchford	Plicenix, No. 2
(x)	28..	Wm. Sullivan.do..........
	28...	John Barrett.	do
\cdots	29.	Thomas Williams	New Boston
-	29...	John Grace.	Anchor
	29.	J. Davis	...do
Aug.	5.	John Haley	Franklin
	$36 .$.	Frederick Zimmerman	Colket.
Sept.	6....	Joseph Enters	Middle Creek
	$7 .$	Albert Elms.	Franklin
	$21 .$	William Wartiold......... .	Kalmia..
	21...	IS. J. Stile	New Boston
	22.	A miner	Beecliwood.
Oet.	3.	Alfred Dry	Fisher slope......
	6.	Elmer Hill....	L. Rauch Ereok.
		George Houghton (boy)......	N. Boston
		Janies Doyle	Beechwood.
	21....	James Fogarty do
	25.	Wm. Timmis.	. . . do
	25.	Chas. Touns.	. do
	25.	Joseph Evans	Midale Greek
	$25 .$.	A Polander ..	Eagle Hill..
	$30 . .$.	Mathew Dernody	Hickory shaft
	$30 . .$.	John Walsh......	. . . do.
	30....	Peter Rillcy	. . do
		Michael Nolan	Beechwood
	31.	Geo. Harrison.	. . . do...
		Levi Kantner	Kantner slope.
		Seth Vimmerman	L. Rauch Creok
Nov.	13....	Jno. IIagerty	Diamond, No. 2
	16....	Wm. Oskins.	Beechwood....
Dec.	5...	John Shiebel.	Franklin
	10....	Christ Rohrbach	I. Rauch Creek.

Severely burned by fire-damp. Soverely burned by fire-damp. Severely burned by fire-damp.
Severely injured by a fall of coal. Severely burned by an oxplosion of fire-damp. Severely burned by an explosion of fire-damp.
Fingers cut off, is colliery carpenter.
Head severely cut by falling down a chute.
Head severely cut and leg broken.
Foot severely cut with an axe.
Arm broken while coupling wagons.
Severely hurt by a fall of coal.
Severely burned by fire-damp gas.
Severely injured by a fall of coal.
Hand injured whilo coupling wagons.
Injured by fragments of a runaway wagon.
Severely hurt in the mine.
Haud injured by a fall of coal.
Severely burned by fire-damp.
Severoly burned by fire-damp.
Scverely injured by a piece of coal.
Arm cut off by a fall of slate.
Mortally burned by fire-damp; died.
Mortally burned by fire-damp; died.
Severely burned by tire-damp; survived.
Leg broken, run over by wagons.
Arm broken, he fell down a chute.
Foot crushed by a fall of coal.
Severely crushed by a fall of coal.
Severely injured by a fall of slate.
Leg broken by a fall of coal.
Severely crushed by a fall of coal.
Severely crushed by a fall of rocks.

Sixty-six cases of non-fatal accidents occurred during the year.
Eight persons received mortal injuries, of which they died subsequently.
Nine others received slight injuries, not necessary fatal.
Eighty-three accidents of all sorts took place in and about the collieries of my district during the year ending December 31, A. D. 1876.

The accident of June 2d, at Phonix Park, and that of October 7th, at New Boston, by which eight men lost their lives, increases greatly the list. of fatal accidents. Had these men followed out the instructions of the Inspector and the foreman of the mines these accidents would not have occurred.

In concluding my report I beg leave to state that there is a marked improvement in the condition of the mines compared with that of last year. Operators and employees seem ready and willing to carry out my orders and comply with the provisions of the ventilation act-time is required to fulfill all its requirements. I trust that in my next report I will be able to show to a greater extent the benefits resulting therefrom.

Very respectfully,
SAMPSON PARTON,
Inspector of Mines for First or Poltsville District.
December 31, 1876.

REPORT

OF TIIE INSPECTOR OF COAL MINES FOR THE SOUTH DISTRICT OF LUZERNE AND CARBON COUNTIES FOR TIIE YEAR 1876.

To His Excellency, John F. Hartranft, Governor of the Commonwealth of Pennsyluania:
Sir:-In compliance with the requirements of an act, entitled "An Act providing for the health and safety of persons employed in coal mines," approved the 3d day of March, A. D. 18i0, I beg to submit my second annual report, containing the particulars of the fatal accidents that have occurred in and connected with the collieries situated in the aforementioned district during the year ending December 31, 1876.

I regret that I have to report to you a greater loss of life during the year than in the preceding one. There were 37 lives sacrificed, an increase of 16 over the previous year ; this increase has arisen from unusual and unforseen circumstances, which can be seen by a careful examination of the different tabular statements contained in this report.

The first important accident was the explosion of carbureted hydrogen gas at Room Run colliery, lucated at Nesquehoning, A pril 12, 1876, whereby the lives of four persons were sacrificed. An explanation of the casualty will be found in the accompanying report, together with a map of the workings. The causes of death under any circumstances cannot be too closely scrutinized. The miners whose lives are in danger should not hesitate to complain. It is quite common to hear the accident accounted for by the negligence or recklessness of the miners themselves, but many accidents oecur annually for the want of proper timbering, and the operators are censurable when proper precautions are nut taken to insure the safety for their employees. It is obvious therefore that care should be taken in opening new works to provide for every contingency which may possibly arise. I have frequently had to complain of the insufficient propping often neglected or inadequately performed. It is a fact which cannot be too generally made known that true economy cousists in standing a sufficient number of props to support the roof. Nine persons lost their lives by want of such precautions the past year. This is a striking fact to substantiate the above, but of course it would be presuming too much to assert that all of that number would have been saved if a more rigid siscipline and a greater care by the men and sufferers had been adopted. The act is evidently working for the benefit of all concerned, yet traces of ignorance and incapacity will, I fear, appear from time to time to darken the calendar of coal mining by fearful casualties which the most careful inspection, short of actual mauagement, will never entirely remove.

In my previous report I advocated the use of fans for ventilation in licu of the many defective modes then in use, since then a number of fans have been put np, and many more will probably be erected during the coming summer. Those parties who were opposed to fan ventilation bave acknowledged their superiority since they have seen the benefits derived from them, and intend putting them up wherever required.

The inspectors of the anthracite coal mines of the State of Pennsylvania have the honor of presenting to you a subjoined tabulated statement of the number of men killed and injured during the year 1876, in each district, comprising the counties of Luzerne, Carbon, Schuylkill, Dauphin, Northumberland and Columbia. By it will be seen how each description of accident ranges in each respective district. Table No. 5 is a summary of colliery accidents since 1871, compiled from the Inspectors' reports. Also many other valuable tables are included in the report, which will be of great service to those interested in coal mining.

Having in my previous report given a general description of the different modes of working, system of rentilation, \&c., I deem it unnecessary here to make a repetition. Trusting everything will be explicit and satisfactory,

I remain your most humble and obedient servent,

> T. D. JONES, Inspector of Coal Jines.

Hazleton, February 26, 187%.

Explosion of Carbureted Hydrogen Gas.

Acciden't Nos. 10, 11, 12 and 13, in the list, Thomas Sheilds, Hugh Gaffield, Charles Collans and Thomas M'Govern-ages, 56, 38, 22, 27, respectively, were instantly killed, (except Collans, who died the next day,) by an explosion of carbureted hydrogen gas, in Room Run slope, No. 3, Nesquehoning, April 12, 1876. I had visited this colliery October 16, 1875, and at the time I considered it one of the best ventilated :nines in the district, and was at the time of the explosion, except the face of the gangway, which was partially due to the men changing the position of one of the 10 -inch square air pipes, from the top of the gangway to the bottom of the same, (or on top of the other 10 -inch air pipe,) both of which were expressly used for ventilating the face of the gangway, as can be seen by a superficial examination of the map accompanying this report, as the air circulating down inlet No. 2 (see map) was adequate to air the twenty breasts inside of said inlet, many of which were not working at the time, not making any allowance for the air that was circulating down inlet No. 3. There was but one breast opened inside of the terminas of the airway, and on imy examining the condition of the mine the day after the explosion I found the ventilation to measure as follows:

At outlet No. 4 , leading to a 16 -foot diameter fan, 15,586 cubic feet per minute.

At inlet No. 1, (on map,) connecting with two 10 -inch square air pipes, 8,400 cubic feet per minute.

At a point about 200 feet from the face of the gangway 1,187 cubic feet per minute. The leakage of 4,420 cubic feet from inlet No. 1 , to the point of measurement, in air pipes, is due to the dilapidated condition of the air pipes after the explosion, and the leakage at the bottom of the hole.

At inlet No. 2 (ou map) 5,580 cubic feet per minute, making in all 13,980 cubic feet, exclusive of the air that might have been circulating down in inlet No. 3, which was not measured at the time, neither was the volume circulating down the slope, which would compensate for the deficiency in the amount in the two inlets, and that of the outlet or place of exit. The aggregate number of men working in the slope or mine at the time were twenty, so that if the amount of air was circulating in the mine the day of the explosion as the day following there would be 396 cubic feet per minute for each

of the men in the face of the gangway, or, on the whole, 699 cubic fcet for each man employed in the colliery. The assistant superintendent, fire boss and myself went to the face of the gangway the day following and remained there abount ten or fifteen minutes, testing the gas, which was about three feet below the collar of gangway, for a considerable distance back, and while looking around found two miners' lamps and two safety lamps (Clanney.) None of the latter were opened, but at the inquest it was stated that they had been in the habit of keeping a naked light in the air pipe, which was strictly forbidden by the foreman. On the morning of the accident the three men, who were engaged in driving the gangway, went to their work early, before anybody was around, so as to load the car, which was left in the face the night previous, before the driver got in, so they proceeded directly to their work and commenced to load the car, without any one examining the condition of that part of the mine, and had the car nearly loaded when they heard the driver coming, (as stated by Meyers at the inquest, one of the laborers working in the gaugway at the time of the explosion, who fortunately got out scarcely any the worse,) and had no sooner said so than the explosion took place, consequently the driver could et be very far from the face of the gangray, or else they could not have eard him, as the driver had no car with him. Richard Bowden testified fat the driver passed him at a point of about 400 feet from the face with a naked light and a safety lamp, and supposed the gas to ignite from the driver's naked light, and that it was probable that the gas extend further back than usual, owing to the men hurrying to load the car. It is therefore obvious to me that the explosion is attributable to the changing of the position of the air pipes, and that, had the gangway men conceded to the request of the foreman to discontinue working until the air pipes were replaced, it is probable that the calamity might have been avoided. The question may be asked, why did they discontinue drising the airway? The only reasons adduced by the assistant superintendent, Mr. Eustice, was, that previous to his taking charge Mr. John P. Jones, (deceased,) general inside foreman, at Summit Ifill, under the same company, ordered the airway to be stopped, as they did not intend opening any more breasts until the upper gangway in tunnel No. 6 (see map) was finished, and also as the seam had become rery thin at the terminus of the airway, in not allowing sufficient pillar between the two gangways, and in lieu thereof to drive air holes to the upper gangway whenever it would be required, and to ventilate the face of the gangway by means of air pipes, until the gangway was driven far enough to drive an air hole in line with inlet No. 7 , or at a point of 140 fect from where the explosion occurred, (see map,) which has since been done, making it the main inlet hereafter, as the other inlets in course of time would become of no use, owing to the upper gangway being robbed of the pillars, \&c. Suffice it to say that a superficial view of the map accompanying this report, together with a copy of the inquest will I hope be explicitly and satisfactorily understood.

The Inquest.

A jury being summoned a coroner's inquest was held in the school honse at Nesquehoning, Benjamin Yeager, J. P., acting coroner. Jurors- IIcnry Watt, 'Thomas Meese, Owen M'Gorry, Hugo Ronamus, Benjamin Griffitis, Owen Garraghan.

Samuel Steventon, sworn.

I live at Nesquehoning; I am a miner; I worked in slope No. 3 last; those men were killed in No. 3 slope; I was present at the time of the ex-
plosiou of fire-damp; I was asked what that was; I replied that I thought it was an explosion of fire-damp; Thomas Rees and Michael Uassidy went inside to where the explosion occurred, as I thought; I was talking to Patrick Callan, and M. Cassidy had returned at this time ; he was exhausted in running; he could'nt run any further; Cassidy told me and Pat Callau for God sake to Lurry and get some safety-lamps, that the men were all burnt inside; I ran to the bottom of the slope for some safety-lamps; some of the men told me there was none there; started up in a car to get some at the top; as I was going up the top-man was coming down with some safety-lamps; I returned again on car; when I came to the bottom Mr. Wm. Smitbam, the boss, gave me a lamp; he told me to be careful; started to run in; I passed Thomas Míeese coming out in a car, with Joseph Norwood and Jacob Meyer in the car; Thos. Meese jumped off the car and told some of the men to take it; Meese started back with me; on the turnout we met Thomas Reese; he had Richard Bowden in a car; myself and Meese went on, and I gave Meese my safety-lamp; got into where the explosion occurred, as we thought; I fell over the body of Thomas Shields; Meese and I went on and met the mules coming out ; met Patrick and Hugh. Gallan carrying their brother Charles out; they told us that Levi Marsde/ was in a piece further; we went in and called him by name, and he an swered us; Meese and I picked him up and I put him on Thomas Meese' back; carried him out; left him in the fresh air and went back again to look for the rest, but had to come out on account of after-damp; Thomas Meese, John Rowe, Mark Meese, Patrick Callan and myself went back "gain; we had to clear a good many of the air pipes out of the road; got near the heading; Mark Meese found one of the men; he was dead; we started to carry him back, and Mark Meese found the other man ; be and his brother Thomas carried the body of one about forty yards; had to drop the body and four of us carried one body to the fresh air ; some other men went in after the other body; we all came out together; we got the dead bodies in a car and brought them home; I was away about three-quarters of a mile from these men at the time the accident happened, as near as I can tell; I was to work in the mines at the time of the accident; the mines were well rentilated where I worked; I can't tell how it was where the aceident nccurred; I was not there for a year.
(Signed) SAMUEL STEVENTON.
Michael Cassidy, sworn.
I live in Nesquehoning; I am a miner ; I work in slope No. 3; I was in No. 3 slope on the 12th day of A pril. 1876, the day the accident happened; as near as I can tell 1 was away abont three-quarters of a mile from the place where the explosion was; I felt a draft of air, and seen sparks fly ofi the men's lamps that stood in front of me, I told the rest let us go in they might need our assistance ; Thomas Reese said he would go, we went in, we saw sheets and things tore; first met Joseph Norwood and Richard Bowden they were all covered with mud; I saw blood on Bowden's face, Norwood told us Thomas Shields was in further, we went a past them in the dark; we called, but got no answer; Norwood told us that Charles Callan was lying in there; Norwood told us that Ingh Callan crawled in ahead of us. We went back to Bowden and Norwood; Thomas Reese carried Bowden, Norwood could walk some; I ran out, met Sam. Sterenton and Patrick viallan, told them to get safety-lamps, then I weut near to the bottom; some men went in with lamps, and I followed them in again; I met some men bringing Juseph Norwood and Meyer in a car ; a piece further on I met Thomas Reese tetching Richard Bowden in a car, we changed Bowden from
one car to another, then Mark Meese and I went inside along with other men shoving a car to bring the dead and wounded; they told us to put our lights out, we should not come any nearer with the naked lamps; David B. Griffith went back for safety-lamps, I went with him to show him where he could light his lamp; I did not go back where the accident happened any more. I have worked in No. 3 slope about eight or nine years off and on; where I was at the time of the accident the air was good; I was in towards the heading of gangway on the morning of the 11th of A pril, 1876, where Thomas Shields, Joseph Norwood and Richard Bowden were working ; Wm. Smitham, mine boss, was with them; I seen the men working with glass lamps; I mean the men in the heading. In my opinion I don't think No. 3 slope was properly ventilated, I mean the part where the accident occurred.
(Signed) MICHAEL CASSIDY.

Cornelius Zeangle, sworn.

I live in Nesquehoning; I am a miner; I was in slope No. 3, on the night shift of the night of 11 th day of April, 1876 ; there was more sulphur there than there was the day before; we had no naked lamps; we sent the drivers out to clean the lamps; those lamps were safety-lamps; I considered it safe that night to work with safety-lamps in slope No. 3 ; I had a naked. lamp in slope No. 3, and used it or had it lighted; I think I had a naked lamp in the night before the accident; I had the lamp in the air pipe about five yards from the heading or face; I did not think it dangerous at this time; I tried the sulphur with safety-lamp, but I could not reach it, therefure I considered it safe to leave the naked light in the air pipe; I considered the lamps I used this night safe; I was not in the slope when the accident happened; the air was not good the night I was in the slope; I was working in the heading of the gangway at or about the same place where Thomas Shields, Hugh Coffield and James M'Govern were killed the following day; in my opinion, I think, the sulphur came back further than usual; I think it was caused by moving the air pipes; I worked in slope No. 3 over two years; I considered it dangerous for the past two months; there was more sulphur than before; I knew the three men that were killed the 12th day of April, 1876.
(Signed)
CORNELIUS ZEANGLE.

John M'Caffrey, sworn.

I live in Nesquchoning ; I am an inside laborer for Cornelius Zeangle ; I work in No. 3 slope; I was in said slope on the night of the 11th of April, 1876 ; I was laboring for Cornelius Zeangle ; the air was worse that night than it had been before; I think the cause was of some pipes being down ; I didn't think myself safe this night; I was more afraid than before; I worked in slope No. 3 off and on over four years; I never told any boss that I wasn't safe in slope No. 3 ; I was not in at the time the accident happened; I knew those men that were killed and wounded in slope No. 3; Cornelius Zeangle tested the sulphur with a glass lamp; we were working our shift this night; Shields, Bowden and Norwood told me and the other laborer, inside of them between that and the heading, there was sulphur; we had naked lamps lighted in the air pipe about three or four days before this accident happened.
(Signed)
JOHN A'CAFFREI.

John Gilson, sworn.

I live in Nesquehoning; I am an inside laborer; I work in heading of No. 3 slope; I was in said slope on the night of the 11 th of April ; when

I was to work last the air was not very good; I seen Cornelius Zeangle try the sulphur with a glass lamp; he told me it was pretty bad; we worked our shift this night; I considered myself in danger ; I feared the sulphur would explode; we came uut the slope about 120^{\prime} 'clock at night; everything appeared to be right when we left the slope; I did not consider it safe yet I did not consider it dangerous to work with the safety-lamps; I think we hadn't any naked lamps in this week; the week before I think we had a naked lamp in air pipe.
(Sigued) JOHN GILSON.
Matthew Duke, sworn.
I live in Nesquehoning; I am an inside driver in slope No. 3, on the night shift; Wm. Smitham, mine boss, toid me I should'nt go in heading. of No. 3 slope with a naked lamp; he ordered me to take safety or glass lamp, that there was one in or on the pipe for me; I never went in with a naked lamp after I had been ordered not to; I think he said I could'nt take the naked lamp to the heading; about two or three months ago Mr. Smitham gave me those orders; I did'nt consider it safe to work there that night with those lamps; I did consider it safe with a good safety-lamp; I don't think I told any of the men about the orders Mr. Smitham gave me; I was not in the slope when the accident happened; I worked in slope No. 3 off and on about nine years; I heard some say it was not safe at the heading ; I was in slope No. 3 last week with a naked light in heading; some of the men "hollowed" at me; I did not consider the trap-door safe; they sometimes would open when a shot would go off; the doors would fall in; I thought the blasting was the cause ; I hung my naked lamp (lighted) about two hundred feet from heading.
(Signed) MATTHEW DUKE.

Henry Isaac Fisher, sworn.

I live in Nesquehoning ; I am a miner; I work for L. and W. B. C. Co. ; I work in No. 3 slope, vein 28 ; in this slope the accident happened, on the 12th day of April, A. D. 1876. I was sitting at the diamond, on the east side ; Thomas Reese was passing by; he told me that he wanted me, and told me to come on quick; when I got up he told me the fire had exploded ; he said there was five men inside; we hurried on as fast as we could, and the teamster hitched on to an empty car and took us into the turnout; when I got there met Michael Cassidy ; I asked how things were inside; he told me he did not know ; in a few minutes a car came out; Levi Marsden and Charles Callan were in the car; John Jenkins and Hugh Callan called for a coat; I gave them mine; I helped to shift them on the loaded track, in order to get two empty cars past; I helped to shove one inside to where the dead men were; when we got in as far as the cross-cut I told them to blow out their lights; we went on till we met Wm. Smitham with a safetylamp; Mr. Smitham told us to stop; after we stopped the car he told us to put the body of Thomas Shields in the car ; stopped about five minutes ; then we heard some one coming and we went and met them ; they had Jas. M'Govern; took him out and then went in after Hugh Coffield ; Patrick Callan had to turn back; the after-damp was too strong; we found Hugh Cofficld lying on his face on the middle of the track; carried him back and put him in the car; then we took the car out on the turnout; James M'Cann run two cars to the bottom and they were hoisted up with the dead men, Thomas Shields, Hugh Coffield and James M'Govern ; I worked in slope No. 3 on the 12th day of April, 1876, the day the accident happened; I was a little over three-quarters of a mile away from where the explosion
took place; when the door is shut the air is pretty well where I was; I could not account for the other side-I mean I conldn't say how the air was before the accident, because I was not there; outside the inside airshaft the eir was good ; after the explosion the air was poor inside the airhole ; I considered it dangerous inside or past the air-lole; Wm. Smitham is the mine boss at present ; he gave me orders at the time of the explosion not to go there with a naked light; I did not consider there was any danger where I was working last, of sulphur; the mine boss never cautioned me about taking a naked light inside where the sulphur was.
(Signed)
HENRY ISAAC FISHER.
Hugh Callan, sworn.
I live in Nesquehoning; I am a miner; I work for L. and W. B. C. Co. ; I was in slope No. 3 on the 12th day of A pril, 1876, the day the accident happened; the air was as good as usual; I was about a quarter of a mile from place where the explosion took place; the air was pretty good where I was; I found the air poor where the explosion took place; I mean where those men were killed, or near the place ; I knew the men that were killed ; I considered it dangerous where the men were killed for about a month; in one part of the slope the air was good; in the other part the air was poor; I was in with Mr. Smitham some time ago in the heading.
(Signed)
HUGH CALLAN.
Patrick Callan, sworn.
I live in Nesquehoning ; I am a miner ; I work for L. \& W. B. C. Co. ; I mine in slope No. 3; I was in said slope on the day the accident hap. pened; I was about three-quarters of a mile from the place where the explosion took place; I can't tell how the explosion took place; the air was good where I worked, on the 12th day of April last; I was in toward the heading after the accident; I found the air bad and turned back to where we left Thomas Shields; Thomas Reese was with me; I considered the air bad toward the heading as long as it was carried in pipes and as long as they swung on wire or straps; I knew those men that were killed; I am a brother of one of the men that died; I worked in slope No. 3 since it was sunk as a miner.
(Signed) PATRICK CALLAN.
Joseph Norwood, sworn.
I live in Nesquehoning; I am a miner; I was in slope No. 3 on the 12th day of April, 1876; I was going toward the heading at the time the accident happened; I have no idea how the accident happened--which way it ignited I can't tell ; I had a naked lamp and a safety lamp with me; I was about fifty yards inside the air shaft; we were on our way to go to our work; there was three neen working at the heading; I seen the driver pass us before we got to the air shaft; the driver had a glass lamp in his hand; don't know whether the glass lamp was lighted; I was not to the heading for a month until the day before the accident; I seen a naked lamp in the air pipe lighted that day ; we were moving air pipes the day before the accident and intended laying the rest of the pipes, and the explosion took place; the sulphur must have been back farther then usual ; I think by moving the pipes that it might have had a bearing to drive the sulphur back; I have worked in No. 3 slope about two or three years; we had about seventeen lengths of pipe to take down yet; I found the air all right at the air shaft ; I did not consider it dangerous while I worked there, except from the place where the pipes were disconnected; I worked in there
at diflerent times and did not see anything further back; it was not very dangerous in there the day before the accident-we were working with naked lights.

$$
\text { (Signed) JOSEPII } \underset{\text { mark. }}{\underset{X}{X}} \text { NORWOOD. }
$$

Jacob Meyer, sworn.

I live in Nesquehoning; I am a laborer inside ; I work in No. 3 slope ; I was in said slope on 12th day of A pril, 1876; I was in face of gangway; we used glass lamps; there wasn't much sulphur in face, but behind us; I think it ignited through the drivers; Hugh Coffield and myself walked in about half an hour before the explosion took place; we didn't examine or try the sulphur, but went right to work; we had a naked light in the pipe the day before; I was shoveling in the ear, when the explosion took place, at the face of the gangway; the first man I met was Charlps Callan; I can't tell how far it was from the face; I crawled out on my hands and feet; I did not consider it dangerous with safety lamps; I seen Joseph Norwood, Richard Bowden and Thomas Shields work at the pipes the day before with naked lights; I worked in No. 3 slope two years off and on; Hugh Coffield and James M'Govern were working with me at the time of explosion ; they were killed.
(Signed) JACOB MEYER.
Richard Bowden, sworn.
I live in Nesquehoning ; I am a miner ; I work in slope No. 3; I was in said slope at the time the explosion took place; I was about 400 feet from the heading at the time; Thomas Shields was next to me; he was killed; when Charles Callen passed me he had a naked lamp; it was lit; he lit his safety-lamp at the turnout; I think it ignited by the driver's light; I think the sulphur came back further than usual; I think it eaught from the naked lights; I did not think the air was bad the day before the accident; I have worked in slope No. 3 about four or five years off and on; I never considered it dangerous to work there; I saw no sulphur where I was the day before the aecident happened.
(Signed)
RICIIARD $\underset{\text { mark. }}{\underset{X}{X}} \mathrm{BOWDEN}$.
William Smitham, sworn.
I live in Nesquehoning; I am inside foreman or mine boss in slope No. 3 ; I was in said slope the 12th day of April, 1876, at the time the explosion; I was away from the place about one and a-quarter mile ($1 \frac{1}{4}$) when the accident happened; the slope was in good condition as regards rentilation; I was at heading on the 1Ith day of April last; the air wasn't as good as usual that day on account of moving some of the pipes; I was not near the heading the day the accident happened; on the morning of the 13 th, after the explosion, I was within twenty yards of the heading ; all miners and laborers are working under my instructions; my orders were not to carry a naked light to face; the drivers I ordered not to take a naked light within from 400 to 500 feet from the face; I don't think an explosion could have happened if the naked lights were kept that distance from the face; I think the sulphur must have been set off with a naked light; some one must have went too near to it; if my orders liad been obeyed this accident would not have occurred; I don't think the men obeyed my orders; I have charge of safety-lamps; the lamps were in pretty good condition; I considered them safe; I frequently asked the miners how low the sulphur was down when they came in in the morning and often tell them to try the sulphur ; in my opinion slope No. 3 was well
rentilated; I told Mugh Coffield and his laborers on the 10 th of April last they had better stop their work until the air pipes were repaired; the inside air shaft is about 600 feet from the heading; the day after the explosion I saw two hats found with common lamps on each of them at the heading; it was contrary to my orders to have those lamps at heading and have them burning; I have been inside foreman for eight or nine years in slope No. 3 ; when I suspected that there was any sulphur I had a man to test it.

(Signed) WILLIAM SMitIAAM.

T. D. Jones, sworn.

I live in ILazleton, Luzerne county ; my ocenpation is inspector of coal mines; was notified on the afternoon of 12 th day of April of three men being killed in slope No. 3 at Nesquehoning; repaired to the scene of the accident on the morning of the 13 th and made the necessary investigation, and offered such suggestions as appeared necessary for the safety of the men ; examined the mine in company with Mr. R. Eustice, superintendent; found circulating in the outlet 15,586 cubic feet of air per minute ; proceeded to the tarn-out; there we procured safety-lamps; went in as far as the upper pipe extended ; there measured the air circulating through those pipes ; found it to be 1,187 cubic feet- 396 cubic feet for each of the men working in the face of the gangway; then we proceeded to the face or heading; there picked up two hats with a lamp on each; stopped about ten or fifteen minutes; then we proceeded outward, to the inside inlet, and measured the air and found 8,400 cubic feet of air circulating; then we proceeded to second inlet and measured 5,580 cubic feet of air circulating; adding the amount circulating down the two inlets, and dividing by 20 , the number of men and boys employed in this gangway, we have 699 cubic feet for each man employed; the amount required by law for each man, 66 cubic feet per minute, or as much more as circumstances may require; when I first inspected slope No. 3 I considered it safe; did not apprehend any danger five months ago.

> (Signed) T. D. JONES, Dine Inspector.

$\left.\begin{array}{c}\text { Commonwealth of Pennsylvania, } \\ \text { Carbon County, }\end{array}\right\}$ ss:

An inquisition indited and taken at Nesquehoning, in the county of Carbon, the 12 th day of April, A. D. 1876, before me, Benjamin Yeager, a justice of the peace in and for the county of Carbon, upon view of the bodies of Thomas Shields, Hugh Coffield and James M'Govern, then and there lying dead, upon oath of IIenry Watt, Thomas Meese, Owen M'Gorry, Hugn Ronamus, Benjamin Griffith and Owen Garrahan, good and lawful men of the county aforesaid, who being duly sworn to inquire on the part of the Commonwealth when, where, how and after what manner the said Thomas Shields, Hugh Coffield and James M'Govern came to their death, do say that on the 12th day of April, in the year of our Lord one thousand eight hundred and seventy-six, at Nesquehoning, and in the county aforesaid, by an explosion of gas or fire-damp in West 28 -ft. gangway, near the heading or face of slope No. 3, Nesquehoning mines, while working inside said mine or slope, belonging or worked by the Lehigh and Wilkesbarre Coal Company.

We the undersigned, jurors, find that Thomas Shields, Hugh Coffield and James M'Govern came to their death on the morning of April 12, 1876, by an explosion of gas or fire-damp in West $28-\mathrm{ft}$. gangway, near the heading
or face of gangway in slope No. 3, Nesquehoning mines, worked by the Lehigh and Wilkesbarre Coal Company.

We believe the gas was ignited by a "raked" light, being brought in contact with the gas, on the heads or in the hands of one or more of the workmen (unknown to the jury) employed in West $28-\mathrm{ft}$. gangway, which was a violation of the law and of established rules.

No blame rests on any of the parties concerned, save only a want of proper precaution on the part of the workmen employed in that part of said mine.
In witness whereof, as well the aforesaid justice as the jurors aforesaid, have to this inquisition put their hand and seals this 18 th day of A pril, A. D. 1876 .

BENJAMIN YEAGER, J. P., Acting Coroner.
Jurors-Henry Watt, Thomas Meese, Owen M'Gorry, Hugo Ronamus, Benjamin Griffith, Owen Garrahan.

Falls of Coal and Slate.

Accident Nos. 2 and 3 on the list -John Erwin and William Boyd, aged 38 and 45 respectively, the former was instantly killed and the latter died in two days after the happening. Their occupation was timbering at night. They had taken out two sets of timber before standing one, thereby leaving too great a space between the other sets, (12 feet,) which resulted in about three cars of the 18 -inch slate falling. The practice of taking out two sets of timber at one time should by all means be prohibited, as it leaves, in a great many cases, too much vacant space above the timbers, which must necessarily be blocked up to the solid, in order that the timber may receive the weight of the strata evenly, and also to steady the timbers to prevent many accidents. The foreman told the inspector that he had repeatedly told them not to do so. It is customary for the foreman to select the places of working for the timbermen, by marking the timbers to be changed by clalk mark, (should he not happen to see them,) but in this case they did not work at the timbers marked, as they deemed it more necessary to change the timbers which resulted in their death.

Accident No. 7 on the list.-Neal Dougherty, laborer, aged 35 years, in. stantly killed while he and the miner were loading a car off the gangway, the latter fortunately escaped uninjured. The uninjured miner said he had just commenced to open the breast, and fired a blast about an hour previous to the happening, also sounded the top, which indicated to be perfectly sound, and apprehended no danger whatever. The seam at this point was unusually thick (12 feet), and the coal mined in the gangway, from top to bottom rock, thinking perhaps to avoid timbering, which in my opinion should have been done. The accident was attributed by the foreman and miner to a spring of water, which burst forth from a crevice between the slate and top rock, causing it to fall without warning. It was the first day the deceased worked in the colliery.

Accident No. 14.-Charles White, miner, aged 38 years, was dangerously injured by a lump of coal rolling out of the side of the gangway, close to the face, crushing him so severely that he died shortly afterward. He was engaged in drilling a hole in the face on the lower side of the gangway in the bottom bench of coal, where the accident occurred.

Accident No. 17.-Neal D'Cole, miner, instantly killed by a fall of coal while starting to open a breast. The deceased had fired a blast in the side of the gangway, and on returning, immediately after the blast, about two
cars of coal fell upon him, resulting as stated. Many accidents occur in this way, the miner not allowing a sufficient time for everything to settle before returning to work. In the Wharton or D seam, which is about nine feat thick, I have strictly requested the parties in charge to stand two centre props on each side of the chute before commencing to open the chamber, which will, I believe, prevent a number of accidents, especially where the seam is at a high angle.

Accident No. 18.-John Boyle, laborer, aged 40 years, instantly killed by a fall of slate, while in the act of loading a car. The miner had been told by the foreman to stand some centre-props previous to the accident, but he neglected doing so and narrowly escaped. Upon being questioned as to why he did not timber the top, he answered that he intended doing so as soon as the car was loaded. Thus it is, many lives are annually lost by procrastination, such as "wait till I load this car," or " until I drill this hole," or something eise in the same line, is the prevailing excuse, but if the foreman understood his duty be would not allow such to be the case, and would undoubtedly be more thought of by the employees by so doing.

Accident No. 19.-Pbilmon Stare, laborer, instantly killed by a fall of coal. The deceased and his partner were in the act of loading a car when a slip of coal (7 -foot bench) slid off the pillar. They were starting to open a breast from a gangway driven across the pitch of the seam, near to the face of the old breast which had been abandoned for some years. As it is well understood that there is more danger in connection with starting work in an old place than a new one the foreman should consequently be more careful and watchful over the employees.

Accident No. 21.-John Gilbert, miner, aged 45, instantly killed by a fall of coal (2 -foot bench) while collecting tamping wherewith to tamp a hole in the face of the breast. The breast had been driven up thirty feet from the gangway and twenty-two feet wide, and was mining the four and two-foot benches, leaving the top coal to be worked back from the face, which is customary in this region, providing the top coal will allow such to be done. His partner apprehended danger, and thought of blasting down the 2 and 7 -foot benches after firing said blast.

Accident No. 22.-Henry Daugherty, laborer, aged 28, instantly killed by a fall of (7 -foot bench) coal. The breast was worked a distance of 120 feet from the gangway and 30 feet wide. They had mined about 15 feet on the 4 and 2 -foot benches, and, as the miner stated, had fired seven blasts in the 7 -foot bench in order to have it down, and finding it not likely to fall re-commenced working on the face, thereby leaving the laborer who was killed in imminent danger. The miner escaped with slight injuries, and another laborer working with them had a leg broken.

Accident No. 23.-Patrick Kerman, miner, aged 26, instantly killed by a fall of coal. The deceased and his brother were working together in widening an air-hole for a breast in the Wharton seam, and had fired a blast in the bottom coal, and were then mining the loose coal when the top bench fell on him with the above result.

Accident No. 24.-Wm. P. Williams, aged 17, "Patch" with the teamster, instantly killed by a fall of coal. As the team was about starting the trip of empty cars standing on a very short curve the boy jumped into the front car, and the start being so rapid caused the first car to jump the track, knocking out the centre prop supporting one and a-half cars of coal, resulting as stated.

Accident No. 25.-Patrick Ward, laborer, aged 31 years, had his skull fractured by a fall of coal. The accident happened September 9 th, and he died on the 6th of October.

Accident No. 26.-Thos. P. Thomas, miner, aged 41 years, killed by a fall of coal. He had fired a blast in the face of the breast, and in crossing the breast to the manway, it is supposed, slipped and fell into the battery, where he was covered and probably smothered by the loose coal and dirt brought down by the blast. He was not missed for some time.

Accident No. 27.-Jas. C. Boyle, miner, aged 35, killed by a fall of coal (7 -foot bench) while loading a car. His partner stated that the deceased had examined said bench previous to commencing to load the car and pronounced it all right. Great cantion is exercised in and about this colliery, and wherever the top coal will not admit of the breast being worked eight yards wide with safety they are immediately reduced to that which is considered practicable.

Accident No. 28 -Sebastian Wagner, miner, aged 45, instantly killed by a fall of the dividing slate. He had fired a blast in the face of the breast, and upon returning to work he was struck on the head and so badly crushed that he expired almost instantaneously.

Accident No. 31.-Wm. Wallace, miner, aged 25 years, dangerously injured by a fall of coal November 1st, died November 5 th. He was working in the breast when some top coal fell, injuring him so serionsly that it resulted in bis death.

Accidents Nos. 34 and 35.-Martin Rimbach and Adam Hobert, both miners, aged 48 and 38 years respectively. The former was instantly killed and the latter so crushed that he died shortly afterward. These two men were working together in another breast, and left their work to see how a fellow miner was getting along, who was commencing to open a new breast off the gangway. When they reached the spot a fall of the 22 inch slate and some loose coal fell upon them with the stated result. The miner who was opening the breast was in the face of the chute working in the 4 -foot bench when the accident happened, and narrowly escaped sharing the same fate.

Falling In or Down Shafts and Siopes.

Accident No. 1 on the list.-The deceased, Mr. M'Cafferty, received a fracture on the knee January 31, and died in the hospital March 31. He was descending the slope, accompanied by four men, to pick up some tools, the car being stopped twice in order to facilitate the work. The second stop the car or rope stuck on the slope until about fifty feet of slack was out, at which time the car started, and when reaching the end of the slack he was thrown against the side of the slopa, resulting as stated. Fortunately the other three escaped uninjured.

Accident No. 36 on the list.-John Malloy, laborer, aged 23, fell off the spreader of the bridle chain while coming up the slope in company with three other men, two of whom were inside the car. Deceased and other man were riding in front of the car with their faces downward. It is supposed that the rope was jerked and Malloy's feet slipped off the bumper of the car, precipitating him to the bottom, which resulted in his immediate death. An inquest was held by Squire Kreider, and the jury rendered a verdict of accidental death.

Eiplosions of Blasting Powder.

Accident No. 5 on the list.-Robert Cunningham, miner, aged 40, was instantly killed by the explosion of a keg of powder. It is supposed that he fell with a cartridge of powder in his hand and when he was about leaving the cross-cut (where he kept the powder) to go up the breast, and perhaps fell igniting the cartridge, from which the keg of powder exploded. ILe was so terribly burned that he could not be recognized. Many accidents of this kind might be avoided if the parties themselves would use the necessary precaution by hanging their naked lights on the props or some convenient place so as to be far enough away from the powder while making their cartridge. An instance of this kind cane under my observation on my tour of inspection at slope No. 4, Buck Mountain, whereby four men were burned by the explosion of a keg of powder. At the time it was supposed that they were seriously burned but subsequently it proved otherwise, as they were able to be at work the next day. The general inside foreman, inside foreman and myself, had been a few minutes previous in the face of the gangway and back a considerable distance in the air-way but could not get through to the other gangway owing to too much water lodging in the return air-way. We were obliged to return back to the face of the main gangway, thence back towards the bottom of the slope. We had scarcely reached a distance of 200 feet when our lights were blown out by the terrific wind made by the explosion. I suspected what had happened, as I had been remonstrating with a miner whom I noticed was filling a cartridge of powder with a naked light on his head as I was passing by ; but it so happened to be ignited by another miner who was making a cartridge at the same time. Fortunately no one was any the worse, for iudeed it was miraculaus as no less than six men might have been hurled into eternity without a moment's warning by the culpable negligence of such men.

Crushed by Mine Cars.
Accident No. 4 on the list.-John Gallagher, miner, aged 40, killed January 21, at Buck Mountain slope, No. 6, by jumping off the mine car on top of the slope. The deceased had rode up the slope upon a loaded car and while in the act of getting off he fell under the car crushing him so severely that he died shortly afterwards. The foreman stated that he had repeatedly told him not to do so. I had been informed that such practice as that of riding on loaded cars on slopes, and more than the required number (ten) being permitted to ride at one time, at two of the collieries in the district are being done. I had occasion to prosecute four men for the violation of the law in this particular case at Ebervale slope, No. 1, but owing to the parties pleading ignorance of the law they were permitted to go free by paying the usual cost; but hereafter such will not be the case as I intend punishing the first offender and giving him or them the extent. of the law.

Accident No. 9.-Hugh Martin, aged 23, killed by mine car at Tresckow slope, No. 6, April 12. The deceased was a laborer in the gangway and had gone back to the head of the balance plane to assist the driver to change some cars on the turnout, and in order to do so the cars had to be changed by running thein to the apex of the plane. It is supposed, as the driver stated, that be thought the car had too much headway and likely to run down the plane so he ran along the upper side of the turnout to sprag the car and his foot slipped on the bottom slate precipitating him under the car.

Accideut No. 16 on the list.- John Carr, laborer, killed by mine car at Tresckow slope, No. 6, May 17. The deceased, in company with two other men, had been loading a car of sills or railroad ties on the plane, and when they were ready the deceased gave the usual signal to the man running the plane to go ahead, and after the car was started he jumped on to the track where the loaded car was coming down and was run over. Had the parties given the signal to the plane man to stop it is probable that his life might have been rescued. He was considered to be very active and had been in the employ of the company as road-man for many years. Just a little while previous to the accident he had told the other two men to be cautious for he could take care of himself.

Accident No. 20 on the list.-Thomas Davis, miner, aged 45, killed by a mine car descending the slope at Upper Lehigh, No. 4, August 4. The deceased was employed in sinking a double track slope which bad been sunk a distance for two lifts which was working at the time in opening breasts and driving gangway, \&c., at the same time the sinking of the slope to the cynclinal was continued by one track but leaving room enough for two tracks to be put in at the completion of the sinking. Davis and his two laborers when learing work at night walked up the slope to the second lift where a car was descending the slope. The deceased became bewildered and jumped into the track where the empty car was descending instead of standing with his laborers where he would have been perfectly safe. The second opening had been made but not completed at the time of the accident.

Accident No. 28 on the list.-Frank O'Donnell, driver, aged 21 years, arushed by mine car, at Beaver Brook slope No. 2, October 23, and died October 27. The deceased was squeezed between the car and centre prop. At the time of the accident did not deem it very serions.

Accident No. 32 on the list.-David Zimmerman, laborer, aged 28 years, crushed by mine car at Highland slope No. 1, November 2, and died November 11. The deceased was in the act of measuring a plank on the gangway, when a car was being drawu from the face by the mules and somehow he was caught between the end of the platform and car, where he received a severe crushing, resulting as stated.

Accident No. 33 on the list.-William Linskee, driver, aged 18, crushed by mine car, at Stockton slope No. 5, November 24, and died the same evening. The deceased was employed as driver at bottom of the slope. As the car was being huisted on the slope the side hook broke letting the car back to the bottom. It is supposed that he thought the empty car was - descending, as he left the safety hole, where the bottom men generally stay in while the car is being hoisted, to hitch his mule to the car, but unfortumately it happened to be otherwise.

Miscellaneous Undergrouno.

Accident No. 6 on the list.-Isaac H. Morgan, miner, aged 4j, was killed by the caving in of an air hole at Harligh slope No. 2, February 11. The deceased and Silas Ferridy, who was seriously injured at the time, were employed to drive a proving hole, (which would afterwards serve for an air hole,) from the face of an old breast to the surface. This part of the mine had been abandoned for some time, and the company finding the coal becoming scarce deemed it expedient to re-work this part of the colliery. These two men were set to work to drive the hole before mentioned to ascertain how much coal was left from the face of the old breast to the surface. The breast had been driven up at an angle of 40 degrees, a distance
wif aboutt 210 feet to the face, where the hole commenced, which was driven 75 feet in coal, thence 51 feet in clay, and was timbered every 3 or 4 feet apart, and mud-sills made of plank placed on the bottom. The collar was 3 feet long between the notches, and 7 to 8 inches in thickness; legs 5 feet long, 5 to 7 inches in diameter. Silas Ferridy stated that the hole had run on them before, and that ke apprehended danger, owing to the water bursting forth, causing the timbers to give way. Mr. Loyde, the foreman, stated that as the two men were practical miners and that they had their own way in driving the hole, and he had visited the place twice to see how they were getting along, and finding not as much work done as he had expected, had reasons to complain of them in not doing more work. In the morning, not finding the men in bed as usual, (as they boarded with him,) he went in search of them, and upon arriving at the place discovered that the hole had caved in, caused by a spring of water displacing seven scts of timbers and precipitating the deceased and Ferridy down the empty breast into the gangway where they were found by Loyde. Ferridy was in a precarious condition, while Morgan was probably drowned or killed by the fall, as the gangway was about one-third full of clay and water when discovered.

Accident No. 8.-Joln Gafigan, laborer, aged 28, instantly killed, at Beaver Brook slope No. 2, April 4, by the breaking of the clevic of the hoisting rope. The deceased was employed at hitching on the cars at the bottom of the slope, and was in the act of crossing the slope, i. e from the east to west side, when the car struck him. The rope had been cut and the two ends connected by two shackles and a clevic, which is entirely wrong when the rope has to make short angles as in this case. Since the accident happened I have strietly requested the parties in charge not to make such connection, that if the rope is not good enough to be spliced it certainly ought to be replaced by a new one.

Thickness of wire rope, $1 \frac{1}{4}$ inches; number of strands, 6 ; number of wire in each strand, 19.

Miscellaneous abore Ground.

Accident No. 30.-Frank Schmidt, boy, aged 14, was seriously crushed by the counter screen, at breaker No. 6, Tresckow, November 22, and died the same evening. The deceasod was employed in attending to the hopper and left his work to go to see what time it was, and in order to do so (as the clock was in the engine house) he went throngh some very intricate passages among the machinery, to evade the detection of the slate picker boss, and fell into the screen. On being questioned how it happened he said he did not know, but subsequently told his mother it had to be so.

Accident No. 37.-Demnis Kennedy, slate picker, aged 65, fell down a distance of 17 feet into the breaker "pocket," at Stockton No. 5, December 17, and died the same evening. The deceased was going to his work in the morning before daylight, and there being no one on the breaker at the time, except the man who was oiling the mathinery preparatory to starting to work, and upon hearing the old gentleman fall he went immediately to his rescue. An inquest was held by Wm . F . Roberts, justice of the peace, acting eoroner, and the jury rendered the following verdict: That the deceased came to his death by going up to the coal breaker yesterday morning in the dark and walked into one of the chutes, which resulted in his death, at about a quarter past three the same afternoon.

Dabages to Properts.

A breaker was burned down at Stockton February 15, 1876, called the East Sugar Loaf breaker, No. 2. Supposed to have taken fire from the stove-pipe, which extended out through the roof of the engine house.

Another breaker burned down at Yorktown November 27, 1876, called the Spring Brook, No. 5, belonging to the firm of A. L. Mumper \& Co. The fire originated in the boiler room at about 7 P. M. by the bursting of one of the boilers, attributed to the fireman cleaning tie fires and pumping water into them at one time, thereby necessitating the boilers to contract too rapidly, as is the custom too frequently to be seen among the firemen, and should strictly be forbidden by the parties in charge. Ample provisions had previously been made to meet such emergencies, by having hose and pipes attached to the pump, which was used for pumping water untothe breaker for washing the coal, but there being no one on the premises at the time except the engineer and fireman, who, instead of starting the pump, became bewildered and ran to town (about half mile from the scene) to tell the superintendent of the occurrence, and upon their arrival the foreman too hastily put the full head of steam on the pump, causing it to give out immediately; consequently they had done all they could to save the breaker, and had to clear to secure their own lives, as the fire by this timewas falling upon them from the roof of the boiler house. It is presumed that had there been a whistle at the colliery to give the alarm the breaker might have been saved. Suffice it to say that it is a common error to erect steam boilers, as is often the case, so close to the breaker, as they should be far enough away from the breaker in case of either taking fire one of them may be saved. The loss is estimated at about $\$ 60,000$; partially insured, $(\$ 30,000$.)

The fire in the Stockton mines is still burning, but not near as fierce as at the time of writing my previous report. The No. 5 or Sandy Run gangway, which heretofore was on fire, is now approachable to the face, and the fire stopped off at the region of its origin, in slope No. 1.

Also, the fire in tunnel No. 6, Panther Creek valley, near Summit Hill, is still burning, but not making much headway.

Also, the fire called " the burning mines," slope No. 1, at Summit Hill, which occurred on February 15, 1859, or about eighteen years ago, and supposed to be the work of an incendiary, as stated by Mr. Nathan Patternson, who was at the time general superintendent for the Lehigh Coal and Narigation Company, for there happened to be no fire in the slope at the time. This slope is sunk three lifts to the cynclinal, at an angle of about 20°, a depth of 780 feet; the seam is about 50 feet thick. The progress of the fire has not been very great by any means, for during a period of 18 years it only covers an area of about 12 acres. Allow me here to state that I merely make the above brief statement so as to have the same recorded for the benefit of whom it may concern, and will probably write an account of such fires sometime in the future.

Boiler Examinations.

There are 882 cylindrical steam boilers in the Sonth district of Luzerne and Carbon counties, averaging 27 feet in length and 33 inches diameter. They have been examined and reported to be safe and in good condition, as can be seen by a superficial view of the tabular statement of the number of steam engines and steam boilers accompanying this report. I have had occasion to return some of the reperts furnished me by the superintendents, as the examination dated back four and five months; hence I could not tell whether the boilers would be examined within the specified time according to law or not. Subsequently they have had their boilers examined in the latter part of December or the commencement of January, and in the latter part of June or the beginning of July.

Circumstances require inany boilers to be examined oftener than every six months, as they are necessitated to use swamp and alum water directly from the mines, which is very destrnctive to the boilers.

During the drought last summer some of the collieries had to resort to using the mine water, which proved very ruinous to the bailers, and many had to be dispensed with. Some of the engineers and firemen are commendable in such cases of emergencies for the necessary precaution they exercised in blowing off the boilers in proper time and not allowing sufficient time for them to corrode, whilst others are censurable for their neg. lect in not keeping the water gauges all opened instead of using only one or two, and also in not grinding down their safety valves in lien of piling on extra weights on the lever, \&c.

Another very injurious thing which is too common to be seen at many of the collieries, is the opening of the fire doors when the steam commences to blow off and should be strictly forbidden, as this should be regulated by the damper; but as many of those dampers are so poorly constructed that it is with difficulty they can be put down at all, it is not surprising when the fireman takes the easiest way of checking the surplus of steam, not thinking, perhaps, of the serious results caused by too rapid contraction due to the cold air rusbing at a great velocity under the boilers to take the place of the lighter air. It is evident that if a little more attention was given to the damper a great deal of coal could be saved annually and an injurious practice overcome. However, we have been very fortunate indeed in relation to explosion of stearn boilers. There has been but one boiler explosion in the district during the last two years to cause great damageto property, and that happened at Yorktown colliery November 27, 1876. Luckily no one was injurd. An explanation of the explosion can be seen in another part of this report.

It is a cognizable fact, as suggested by Mr. T. M. Williams, inspector for the Middle or Wilkesbarre district, that an inspector of steam boilers ought to be appointed for this district as well as that of Schuylkill county, and I fully corroborate with his views on the subject. By doing so it would eventually allow the inspectors more time to inspect the interior workings. Much time is now taken up by the inspection of the breaker machinery, hoisting machinery, boilers, \&c., that could be applied in visiting the mines oftener to see that the workings are properly timbered, that the airways are made large enough, also that cross-cuts are driven through the pillars whenever required, and that sufficient ventilation is made to circulate to the face of each and every working place for the health and safety of the men, \&c.
T. D. JONES, Esq.,
and Carbon Counties : SIR:-The following is a true report of air measurements for the month of January, 1877:

Local Nade of Eacil split.										
Slope No. 3, east gangway.......... Slope No. 3, west gangway........ Srope No. 3, east counter gangway. Slope No. -, west gangway........	Steam exhaust		3	17,900	3,400 5,300 3,500	16,200	16 32 19	9	39 39 39	60 67 62
Total measurements for week ending January $9,1877 . \ldots . .$.				17,900	12.200	16,200	65	9		
Slope No. 3, east gangway........ Slope No. ${ }^{\text {a, west gangway....... }}$, Slope No. 3, east counter gangway. Slope No.	steam exhaust 10.		3	17,700	2,900 4,200 3,600	15,300	16 32 19	9	45 45 45	67 78 70
Total measurements for week euding January 16, 1877........				17,700	10,700	15.900	65	9	
Stope No. 3, east gangway.......... Stope No. 3, west gangway........ Stope No. 3, east counter gangway.	team exhaust		3	18.800	3,400 5,600 5,200	16,700	$\begin{aligned} & 16 \\ & 32 \\ & 19 \end{aligned}$	9 \cdots	50 50 50	70 78 75
slope No. - , west gangway.........										
Tolal measurements for week ending January 23, 1877........				13,800	14,200	16,700	6.5	9		
stope No. 3, east gangway........... Slope No. 3, west gangway. slope No. 3, east connter gangway. slope No. -, west gangway..........	Steam exhaust do.........		3	18,700	$\begin{aligned} & 3,320 \\ & 5,200 \\ & 5,020 \end{aligned}$	16,800	$\begin{aligned} & 16 \\ & 32 \\ & 13 \end{aligned}$	9	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$	62 65 68
Total measurements for week ending Jaunary 30,1 sit........	$\ldots .$			18,700	13,540	16,800	6.5	9	\ldots
Inside Foren	uan, at IIum	$o l d$	$o l$	$e r y$	WI	LIAM lerma	$1 \mathrm{~J}$	$\begin{gathered} \text { MI } \\ \text { eer } \end{gathered}$	$\begin{aligned} & \mathrm{ES}, \\ & 0 \mathrm{e} \end{aligned}$	0

N. B.-This report is to contain fonr measurements in each month from as many mines, slopes, shafts or
drifts as there are place for in the blank, commencing first week of the month, and are expecter to be sent to the inspector betore the 5th of the following month.
A. gig 2 Some of the air escaping through the old workings could not be measured accurately.
T. D. JONES,

Inspector of Coal Mines.

Jancary 30, 1877.
T. D. JON゙ES, Esq.

Inspeetor of roal Mines for South District of Luserne und Cribon Counties:
Sir:-The following is a true report of air measurements for the month of January, 1577:

DAVID LAWSON,
Inside Foreman, at Slope No. 4, for I. \& W. B. Cort Co.
N. B. - This report is to contain four measurements in each month from as many mines, slopes, shafts or Irifts as there are place for in the blank, commencing first week of the month, and are expected to bet sent to the inspector hefore the sth of the following month.
od Uwing to repairing the outlet could not accurately measnre the air in the ontlet.

> T. D. JONES,
> Inspector of Cocl Mines.

The following table is the maximum, minimum and mean temperatures (Fah. thermometer) for each month during the year 1876 :

I. D. JONES.

TATBTE No. 1.-List of fatct colliery accidents and loss of life thisitg therefrom December

in the Southern district of Luzerne and Carbon countics during the year ending :1, 18%.

RECAPITELLATION.

| |
| :--- | :--- |

	Date.	Location of Colmeries.
1....	Jan. 13..	Sugar Loaf
2....	20..	Ebervale..
3....	Feb ${ }^{26 . .}$	Mlnesville East Crystai
$5 .$.	FCD. $26 . .$.	lorktown
6...	11..	Harleigh.
7...	Mar. $20 .$.	folly wood.
$\begin{gathered} 8 \ldots \ldots \\ 9 \ldots . . \end{gathered}$	April $10 .$.do.
10....	10..	Sngar Loaf
11	10..	
12...	12.	Nesquehoning.
14.....	.	
15....		
16....	April 21.	Yorktown
17....	May 3..	Sugar Loaf
$18 . . .$. $19 .$.	15...	Summityill...
20....	$30 .$.	Buek Mountain
21....	$26 .$.	Nesquehoning slaft
$\cdots 3$.	June ${ }^{26}$..	© Cross Creek ${ }^{\text {che. }}$
21.7.	June $16 . .$.	Summlt Hili.
$25 . .$.	17..do
$\stackrel{76}{27}$	$17 .$.	
28.r..	June	Smmmit ILili.
290...	Junc.....	
$30 . .$. $31 . .$.	July ${ }_{\text {ag }}^{22}$.	Buek Mountaido......
32....	22.do
33....	July......	Jeddo, Oak Dal
$31 . .$.	July 31..	Sugar Loaf
$33 . . .$ $36 \ldots$	Allg, $2 .$.	Smmmit Hill, (breaker N
37....	$8 .$.	Ňesquehoning
38....	10..	Lattimer
39....	$30 .$.	Jeanesville
41....	Sept. ${ }^{\frac{30}{7} . .}$	Jeddo Dak Dale
12....	18..	Harleigh.......
	¢2..	Summit Ifill.
	do

INJURED.

Nature and Causes of Accidents.

John Dlek
rhillp Felst..
Ilugh Dolon..
Edwhin Willoughi......
Thomas Jones Sllas Ferredy. Willam Guekavain
John Basque.
William Thomas.
Levi Marsden
Richard Bowder
Joseph Norwood
Charles Burns.
Edwardi Edwards.
James Kennedy.
Daniel Brislin...
Frank Cull \because..............
John Haggany.
Thonas Willians.
Thiliam Irammo
Thomas Kinley
John Fallon....
James Brennau
Hugh Kiennedy.
Johin alellet...

Hichuel | |
| :---: |
| ynn |
| , |

Ratrick Cunning
Philip Ross.
Thomas Boyle..
William Branch
John Conlin.....
Patrick M'Hugh.
John M'Fadclen
Thomas Sayers.
Jolm Treasurer
Kobert William
Mordeeai Richards

Shightly bumed by carlureted hydrogen gas in his breast
Sllghtly burned by blasting powder while making a carlridge.
Slightly injured by a fall of coal in gangway.
Slightly injured by a fall of slate.
Serionsly injured by the eaving in of an air-hole driven in face of an old breast. orlously injured by falling imio the crank-nit of the pumping engine.
Leg broken and ankle dislocated loy dumping the slate car cant
Seriously burned by earbureted hydrogen gas. These iwo men were working together, and had commenced opening a chute, and hefore starting to work startked light, from whleh the gas igniterl, burning both severely.
These four inen were in the explosion of earbureted hydrogen gas which resulted in the death of four others, (see fatial iceldeut repmit.) levi Marstent is the only one of these four who was seriously burned. The rest were around in a
short time afterwards. short time afterwards. door frame.
Seriously burned by explosion of carbureted hydrogen gas.
Leg broken-jammed between two mine cars on dirt bank.
Leg broken by a fall of slate.
Leg broken by a fall of coal.
Injured by a premature blast while rlriving rock tunnel.
Injured by a fall of the dividing slate.
Severely bnrned by an explosion of earhureted hydrogen gats.
Dangeronsly burned by carbureted hydreted hydrogen gas.
Darberaly barned by carbureted hydrogen gas.
Severey burned by in explosion of cantureteri hydrogen gas.
Severely burned by in explosion of earbureted hydrogen gais.
Severely injureal by the car running back on the sfope.
Arm broken-caught hetween eape rail of eas and slope collar. Seriously injured hy a fall of coail.
Collar-bone broken-fell from No. 1 to No, 3 table. (slate-pieker.)
(a breast. Leg broken-tbe tackle chain broke while hoisting tinuber np lis breast. Leg broken by a fall of coal : likely to necessitate amputation.
Serionsly injured by a fall of coal; negligence in not taking down top eoal Injured by assisting the driver to unloose his mules.
These three men were severely burned by an explosion of earbineted hydrogen gas whille opentug a breast. The fire boss had warned them a few minutes previous to be careful until their man-way would he eonnceled for the free passage of the alr. fie sting as stated,

TABLE No. B.-The Inspector's of the Anthracite Corl Mines of the State of Pennsyloania lave the honor to subjoin a tabular statement of the number of separate colliery accidents, and loss of life occasioned by such accidents, during the year cnding December il, 18\%G.

TABLE No. $3 \frac{1}{2}$. -The following table shows the quantily of coal produced, number of persons employed, and the number of lives lost in the Soulhern district of Luzsrne and Carbon combics, during the years ending December 31, 1875 and 1876 ; also the ratio of said production to each person employed, also to each life lost, and the ratio of persons employed to each life losi.

Coal prodnced in tons per year
Number of persons eaplo
Ratio of conl produced in tons to each emplo............................... \qquad

1875.	1876.	Total.
2, 555, 888	3, 503, 118	6,059,006
8,516	!,648	
300.1	363.0	
1875.	1876.	Average.
21	37	29
121,709	94,679	108, 194
405.4	260.76	3:30.0

Table of Comparison.

	Wegland.		Novi Scotia.		Antitrachte Coal Mines of Pennislyiania.	
	1874.	187 ¢ั.	15%.	1875.	187.	1875.
Coal produced in tons per year.	140, 713, 832	147,730,313			$21,516,2+8$	
Number of persons onployed.	538, 829	535,815	4,28:	3,777 2068	$\begin{aligned} & 61,40 ; \\ & 350 \end{aligned}$	$\begin{array}{r} 69,5 \times 9 \\ 310.0 \end{array}$
Ratio of coal produced in tons to each employe. Number of lives lost each year.	261.0 $1,0.9$	275.6 1,84	$20: 3$	206.8	-350.41	316.0 28.3
Ratio of coal produced per life lost.	133, 251	118,751	135, 063	390,5S3	81,195	92,437
Ratio of persons employed per life lost	510.0	430.0	011.0	1,885.0	234.7	292.0

TA BLE No．4．－Number of persons killed and injured during the years 1871－2－3－4－ $5-6$ in the south District of Luzerne and Carbon counties．The following table is intended to exhibit in a comprehensive manner the causes of and the liability of rccidents：

	1571.		18%		1873.		18 it．		18%.		1876.		－	$\begin{gathered} -1 \\ \stackrel{1}{2} \\ \hline \end{gathered}$
	$=$ 2 2	$\underset{\text { E }}{\text { E }}$	틀 응	E §	气	$\begin{aligned} & \text { E. } \\ & \text { E } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \underset{=}{シ} \\ & \text { B } \end{aligned}$	ב き 	气	E	亭	$\begin{aligned} & \text { E } \\ & \text { B } \\ & \text { 2 } \end{aligned}$	$\begin{aligned} & \text { ㄷㅡㅡ } \\ & \stackrel{\text { N }}{2} \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { B. } \end{aligned}$
Explosion of carbureted hydrogen gas． Falls of roof	\cdots	1	1	5	1	5	$\frac{2}{5}$		$\frac{2}{1}$		4	17	10 6	37
Fills of rock，slate and coal： Falls of coal．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	10	13	13	9	17				8	36	13	16	67	86
Falls of slate ．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1	1	$\stackrel{1}{2}$	9	4	．．．			2	＋	＋	12	14	19
	11	17	16	15	22	5	13	20	13	42	22	45	97	144
Falling into Sluafts and slopes： Falling invo shafts．														
Falliseg into slopes Hoisting machlnery breaking \qquad	1	．．．	．．．	1	1				－		$\stackrel{1}{1}$	．		
Hoisting machinery breaking sumdries in slones．．．．．．．．．．．	3	3	1	．．．．	1		4		1	3	1	．．．	6 5	3 3
Total in slopes	4	3	1	1	2		4	4	1	4	3		15	12
Misceillanfous Under Ground： Explosion of blasting powder． \qquad	2	2	1	2						1		1		
buffocation in stockion mine fire．	1	2	1						4	1			5	7
Crusherl by mules．．．					1	1				2			1	3
Cruslied by mine cars ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	5	6	3	2	2		6	8		18			23	46
Premature blasts．	2	6	2	2	4			2	i	2	\cdots		8	15.
sundries．．．．．．．			．．．	14	2	43	5	3	1	5	1	5	9	70.
Total miscellaneous under gromnd	10	14	6	20	9	44	11	14	5	28	9	21	50	141
Total under ground．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	25	34	23	36	33	49	28	38	19	i4	34	66	162	297.
By Above Grount：														
syffocation in breaker chintes ．．．．．．．．．．．．．．．．．．．．．．．．．．．	2		1	\ldots	1				1			1	2	1
Crushed by ears ．．．．．．．．．．．．．．	2		j	2	3			．	1			5	7	7
sundries．．．．．．．．．．		1			1	．．．	3			3	1	2	5	6.
Total above gromd ．	4	1	2	2	5	．．．．	3		2	3	3	8	19	14
Grons total ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	29	35	25	38	38	49	31	38	21	77	37	74	181	311.

${ }^{4}$ Ristimated: no rep me for this report.

+ Could not be furnished in time for this report.

otal	1,460
Total number injurad insidx years	S, 198
T'otal number of whows in six gear	650
Total mumber of ot phans in six j	2,162

Increase, ...

* Newly staited ; sinking slope. T.--tunnels. S.-shaft. D.-drift. The above table is the actual shlpments of coal, de.. In 1876 trom the Lehigh district, and can be relled
 tabie to a place having a lreaker, lirespective of No, of slopes, or, for in many cases we have 3 and 4 slopes producing coal to one breaker; bence we could not call each a colliery,

Beaver Brook	Frenchtown
Tunncl No.9.	Summit Ilill
Tunnel No. 6	
Breaker No. 5	
Slope No	P'leasant
	Buek Monntain
slope Nos, 5 and 6 (Sprling Rrook)	Yorktown
slope No. $6, \ldots \ldots \ldots$.	Tresckow
Cross Creek No. 1	prifton.
slope No.1	Ebervale.
Slope No. 2	laatimer..
Spring Mountain No,	Jeanesville
Spring Mountain No. 5	-...do
siope No. 4..........	1 1pper Lehigh
slope No. 1 slope Nos. 1 and	llighland.
slope No. ${ }^{\text {s }}$,	Coleraine....
East Sugar Loat No. 5	stockton
(rystal Rldge No. $4 .$.	11azleton
slope No. $7 \ldots .$.	Milusvilic
Room Run Nu. 3	Nesquehoning.
Slope N o. 3	Humboldt...
Council Ildge.	Eckley.

* Coal produced from two collierles.

Where the coal consumed at tho collieries, de., was not returned th, 8 per cent, has been added to the coal shipped to equal coal produced in the above calculations.
The ratio of coal produced, on the whole, to each death, is.
 94,679 tons. 3,213, Gi2s tons.

1 ABLE No. s.-Shows the number and dimensions of sterim and pole pamps at some of the eollicries in the Lehigh distriet; aiso the approximate quantities of water pumped to the surface during the time worked, and the ratio of tons of water pumped to erech ton of eoal promate quantities
duced in 1876:

The quantity of water lost though lie valves has not been taken finto consideration, which quatity is usually termed the slip of the valve-ls rarely equal in any two pumps of
© same dimenstons,
 on the working barrel as it was on the colnman pipe, (145 pounds, and as tho giange viberatel considerable a sma
indicating 145 pounts.

The findeations of the pressure gage at Ao. 1 Harlelgh, (as stated by Mr. Andrew Lee, M. M., when the pump was not in motion, was gis pounds per suate inch, and the vertical helght of column1 150 feet.
I deem it proper to make the above table to show the manner in which the mines in this district are drained. de., which is a very important part in mining, There are a greal
 onslatered practleal and competent men.

[^1]

Figures 1 and 2 lndicate the posltions of the water-ganges,

* The door was left open and the steam raised to 21 pounds, but onght to have been left at 18 pounds.
The above experiments were malle on a (iubal fan at Room Run colliery, December 14, 1876, by the Inspector and the Assistant superintendent R. Fistice, Esg. Irevious trials had been matle by Messis. Backet, Fustice, Smith and myself. The wo former centlemen were the assistant superintendents, and Mr. Smith, C, and M. E. for the L. future day; during fhe interval Mr. Eustice experimentedin trying of find he best position for the shutter, and found it to give the best results placed about the centre of the fan shaft. The results obtained by the internediate positions of the ghotter were not recorded, and only llat of the highest and lowest belng olserved. Each poslt ton should have been recorded, however about i2 per cent. more air was obtained by placing the shutter about the centre of the fan shatt. The shutter ls used for enlarging or dlminlshing the outlet. The volume of air draws by the far. can be so regulated as to suit the requirements of the mines and proluce the greatest economical effect. If the outlet is made too small the air cannot get euickly enough away, and if the outlet is made too large air will be drawn back into the fan, hence the necessity of experimenting to find the best proportions hand of sheet iron on the centre of the shaft, extenuhg to the commencement of the vanes, or equal in circumference and dameter to the opening of the fana. This is suppesed to be an advantage to the fan as a means to prevent the two eurrents of air coming in contact with each other: as to the percentage galned by such appllance lam not prepared to state. The distance from the Inkt to the fon is 2.9 wiles, and when run up to 128 jevolutions per minute the water-gauge fudlcated $25-10$ Inches. The alrway makes fourteen right augles, and ofters 464,500 square feet of rubling surface. The quantity of air exhausted when the fan was running 128 revolutions per minute was 31,130 cubic feet, and the average
 two tubular boifers 27.6 feet long, 32 linch dianieter.

Temperature above ground, 45°.
Temperaure under ground in outlet leading to fan, 52°.
Indlcations of barometer above ground, 28.66.
The weight of amomic foot of alr due to a to ian, 23.68
The weight of a cubic foot of alr due to a temperature of $52^{\circ}=.0743822 \mathrm{lbs}$,
The weight of a cublc foot of air due to a temperature of $45^{\circ}=.0753607 \mathrm{lbs}$
Difference
0009785 lbs

"1) D" Doors learling to Dutlel at bottom of Fiest SCALE: 10 FT.TOAN INCH.

Table No. 9-Continued.

DIAMETER AND CIRCUMFERENCE of fan.		no. of revolutions A Minute.		Indications of water-gauge, (h.)	Theoretical water-gauge, (h^{\prime}.)	$\frac{h}{h^{\prime}}$
D.	C.					
16	50.26	50	2,513.	. 45	. 40	1.12
16	50.26	70	3,518.2	1.05	. 79	1.33
16	50.26	80	4,020.8	1.20	1.03	1.10
16	50.26	90	4,523.4	1.57	1.31	1.19
16	50.26	128	6.433 .28	2.5	2.6	. 96

[^2]

Bollers in lincal feet equal 21,255 eq̧ual 4.59 mlles.
'TABLE' No. 11.-An account of breakers which have burned down in the lehigh Region, causes of and the loss sustained thereby.

DATE.		Name of Place Where Breaker was burned Down.	Catse of mreaker Burning Jown.				
1566.............	1	Jeddo.............	Fire fiom boller stove	\$31,500	815,500	86,000	Re-built but siace abandoned
Uct. 27, 1869..	1	Upper Lehigh...	Cnknown: originated jn the boiler house.........	40,400	30,000	10,000	Re-built and coumenced work March 9, 1870.
Oct. $29,1872 .$.	1	Ebervale.........	Supposed to have taken fire from l.oller the.....	36,000	27,000	9,000	
Feb, 15, 1876..	1	Stockton	Supposed to have taken fire from the stove-pipe in the engine house.....	*30,000			Re-built and com menced work August, 1876.
Nov, 27, 1876..	1	Yorktown.....	Barsting of one of the steam boilers and throwing the fire against the roof of the boiler house,	60,000	30,000	30,000	Re-built and commenced work in the spring of 1577.
	2		The work of an incendiary. Cannot ascertain the date of the burning ; about the year 1865......	*120,000			
	7			317.500			

*Estimated.
+The actual losi sustained by delars of shipments of coal, de., could not be obtained.
tity of air produeed per minute, dc.

	LUCATION OF COLLIERE,			$\begin{aligned} & \hline \text { Z } \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} .$	$\begin{aligned} & \text { Z } \\ & \text { 气 } \\ & \text { B } \\ & \text { B } \\ & \vdots \\ & \vdots \end{aligned}$																	
1.	Upper Lehigh, N	12	5	$\stackrel{\sim}{2}$	4	4	\$1,500	Belt ..	Horizontal,	105	1,600	1,65S	$311 / 2$	52, 227	. 65	5.35	18.84	1.774	72	fiz^{6}	Opened	
	Wrifton, Cross Creek, No. ${ }^{\text {a }}$.	12 16	5	$\frac{\pi}{2}$	4 5	1	1,000 1,020	idrect	verticai.....	79	1.950 1,400	1,996	38 36	37,848 52,344	. 45	2.69 4.95	10.98 16.52		74 62	67 85		
	Drifton, Cross Creek, No. ${ }^{\text {a }}$. ${ }^{\text {a }}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	8	$\frac{2}{2}$	5 5	1	1,020 1,020	Direct	Vertical....	74	1,400	1,454	36	52,344	. 60	4.95	16.52				Closed	8
	Buck Mountain	16	8	2	5	1	1,020	..dodo	80				26,7\%					$6{ }^{\circ}$	41%	..do...	8
	Ebervale, No.	16	8	2	5		1,020	Noi	finlsherd....										70	61	. do	8
7..	Stock to	16	8	1	3		1,020	Direcl	Vertical....	90	2, 160	2,224	25	55.650	1.00	8.76	25.29	3.197	65	70	. ${ }^{\text {do }}$	8
		${ }_{16}^{7}$	4	1	3 5	2	1, 300	Bit.	Horizontal,	140 80	520 500	559 559	25	13,975 $\mathbf{2 3 , 3 1 0}$. 20	+ 4	6.35	. 202	60	85	..do . .	4
	South sugar Loaf No.	16	8	2	5	1	1,020	Direct Not	Vertical....	80	520	559	41.7	23,310	1,15	4.22	6,35	.202	618		..do...	8
$11 .$.	Hicaver Breok, No.	10	3.5	2	3	1	350	Belt . .	Horizontal,	106\% ${ }^{1 / 2}$	I, 6000	1, 6.77	$\dagger 12.5$	20,712	. 38	1.24	18.83	1.772	63	19	..do	6
13	Nesqueloning, No.	15	\%	,	5	6	900	dodo.......	90	1,686	1,724	24.	41,376	1.10	7,17	19.59	1,918	68	53	. do	8
13.8	do.	16	8			1	900	Birect		128	1, 1100	1,148	28.3	32,488	2.45	12.54	13.04	. 8.5	5.2	45	.. do.	8
14.	Summit. ${ }^{\text {dol }}$	15	${ }_{6}^{8}$	$\frac{2}{2}$		6	900	Belt.	Viorizontal,	90	1,130	1,179	36 58	42,444 44928	1.00 80	6.69 5.66	13.40 9.82	. 8979	6.4	- 41	. $\mathrm{dio}^{\text {do }}$	8
16.	summition,	16	8	2		$1{ }^{4} / 2$. do...	Verdo...	90	${ }_{670}$	812	50		. 80	5.66 4.48	9.82 8.1	. 382	64 55	311		16
17.		12	6	2		1/2\%	750	Belt...	İorlzontal,	90	1,130	1,179	36	42,444	. 50	3.34	13.4	. 897	70	34	.do	$\ddagger 12$
18.		16	8	2		12	900	..do	,	83	1,100	1,148	32	36,736	1.10	6.36	13.4	. 850	6	65	\ldots	8
19..10.........No. 5*......	16	8	2		1	1,200	...do.	do	77	150	1610	84	51,240	. 90	7.28	6.93	.240	65	58	..do...	8

Fan No. 13 is counected to an air-way 2.9 mlles in length from inlet to ontlet, and offers 46,5 , 500 square fect of rubblug surface. rent was terrific, and the beat was so great that it meltcd the anememeter. It recelves its air onlv on one silde.

倍 over the outlet. The useful effect in U. P. is only calculated that due to one fan.
Note.-In case of horizontal fan engines using belt wheels, the size of these wheels is about two to one, i. c., one foot in dlameter on fan shaft to tiro feet on engine shaft.
The above fans, including engine, can be bought now for about \$850 .
Kim hot prepared to stato for which of the alove faus I have preference, as I did not have the reguisite means to ascertain the horse-power spent. \&e. Fan No. 13 midenltedly slows the
cept fans Nos. 8 and 11 .

T'ABLE No. 13.-Shows the number of tons of coal produced to each lieg of: powder used, de.

Total from Mammoth seam	2, 198, 573	2, 374,458	36,535	$6 \pm .99$	2.5996	67.78
Total from Buck Monntain seam	738, 022	797,065	14,132	56.40	2.250	22.75
Total from Wharton seam.	307, 083	331, 595	8,360	39.66	1.586	9.47
Aggregate	3,243, 625	3, 503, 11 S	59, 027	59.31	3.37	

Number of tons of powder used, 658. 78.
Ratio of coal produced in tons to each ton of powder used, 5,317.58.

TABLE No. 14.-T'he following is a table of fatal calliery accidents which were omitted in the report of the South District of Luzerne and

Date.		Location.		를 $\frac{0}{2}$ z	Name of Person Killed or injured.		$\begin{aligned} & \text { 首 } \\ & 0 \\ & \frac{3}{0} \end{aligned}$		Cause of Deatie.	DATE OF Examinations.
Jan. 12..	,	Stockton.	4		John Ward....	43	1		By a fall of coal: died the day following.	Examined on the 14th.
Mar. $29 .$.	2	Summlt IIII		9	Jolin Boyle..................	43	1	2	Falling under the cars; died in ten days.	
Jrne 1..	3	- w do.	4		John Thomas.	35	1	4	Falling down the alr-way; died in slx hou	th.
	4	Ebervale....	2		Frederick Hess	38 3			Falling under the cars on the slop	6th.
9...	6	Jeanesville	5		Dennts Boyle	30	i	1	Fall of coal; instant death.	
$11 .$.	7	Harlelgh	1		Conrad O'ilonmel	49	1		Fall of coal in air-uay ; fataliy inju	2th
16..	8	Eckley.	4		Patrick M'itugh.	18			Crushed by mine cras.	17 th .
July ${ }_{20}^{30 . .}$	${ }_{10}^{9}$	Summit sugar Lo	3	9	Hugh Kennedy Henry Sinih.	24	1		Pangerously hurned ly gas; died in sixteen days.	
duly $21 .$.	11	Eckley..	2	John Campbeli	14			Crusled by mine cars in the gangway	
23..	12	Cranberry	1		dawrney Holler............	26			Crushed by fall of coal; died minstantly	
$23 .$.	13	Laurel III	4		William Christiam		1		Fall of coal; Instant death..............	24 h .
Aug. 5 ..	14	Highland	1		August Gyster	38	1	2	Fall of coal ; instant death.	9th.
	15	-	1		Joseph Holt	45	1		Explosion of firedamp; dicd the day following	do............ 10th.
25.	16	Summit Hi		9	Thomas l'riece	55	1		$\left\{\begin{array}{c}\text { Instantly killed by the breaking of the hoisting rope. These } \\ \text { three men were changing a caras the bottom of the slope, } i \text {. } e \text {. }\end{array}\right.$	
25..	17do		\%	Jas. Heggarty	46	1	3	taklug the ear from the one side of the slope to the other while	
25.	18llo			Benjamin Willams.......	19			the slope was in motion, and when the car was near the apex	
Sept. 1..		Harleigh.			William Reiley	12			Crushed lin broke resulting as stated.	
$12 .$.	20	Buck Alou			Charles ILaileu.	45	1	4	Fall of slate; lnstant death.	15th.
Oct. ${ }^{2}$.	${ }_{22}^{21}$	Tresckow summit llil			Chiristopher (ireswiold ... Patick Fighe	22			Ktcked by a mule: died in two days.	
$6 .$.	23	Ebervale.			Hugh Tinney.	22			Jammeaking of the hoisting	do............. 5th.
$7 .$.	24	Coterainc.			Neil Gallaglier	18			Struck by fly-wheol of breaker engin	131 l .
Nov, $9 .$.	25	Uritton	1		Dinnes Housten.	26	1		Crushed by mine cars	10th.
$10 \ldots$	26	Tresckow	2		Peter M'Donnet		1		Fall of slate...........	do............11th.
ec. ${ }^{28 .} 1$	27	Drifton	1	-.	Michael Boyle	28			Fall of coal	30th.
Dec. $11 .$.	28	${ }_{\text {Suminini }}$	2		Thonas M Mage	${ }_{42}^{12}$			Falling luto dirt chnte in the break	11th,
$21 .$. $21 .$.	30	Y orktown	6		Charles Manealus.	85	1	6	These two men were killed by a fall of rock and slate whiles	
21..	31	do	6	John M'凶ee	30			S sinking slope................. do............ 22 d .

Miscellaneous under groind
Miscellaneous above ground.
Miscellaneous above ground....
Hoisting machlnery breaking.
Curbon counties durisg the year ending December 31, 187.

TABLE No. 15.-The following is a table of non-fatal accidents, which were omitted in the report of the South district of Luzerne and Carbon counties, during the year ending December 31, 1874.

Table No. 15.-Continued.

Mate.		Location.	Name of Peitson Injured.	Nature and Caunei of ACCIDENT.
Oct.		Eckley, No. 4	John Finley	Leg fractured by fall of coal, necessitating anputation.
		Eckloy, No. 2	L. Conrad Boner	Ifurt by a fall of coal.
Nov゙.		Taurel IIIl, No. 5	John Koons	Slightly injured, jammod by mine cars.
		Sugar Loaf...	Thonmas D. Thomas	Slightly burned ly gas.
		Crystal Ridge	Cormick Conopan.	Injured by mine car on slopo.
Hec.		Nesquehoning.	Nicholas Hol pin	Injured by mine car on slope.
		Nesimehoning.	Michaol Holpin	Injurea by minc car on slope.

Recapitulation.

By falls of coal. 12
By mine cars .

By falling into slope ... 4
liy blasting powder. 1
Total. 38
'I. D. JONEs, Inspector of Mincs.

REPORT

OF INSPECTOR OF COAL MINES FOR THE MLIDDLE DISTRICT OF LUZERNE AND CARBON COUNTIES FOR THE YEAR 1876.

> Office of Inspector of Coal Mines,
> Wilkes-Barre, Pa., March 21, 1877. $\}$

His Excellency Jno. F. Martranft,
Governor of the Commonwealth of Pennsylcania:
Sir:-I have the houor to submit herowitl my annual report, for the Wilkes-Barre or Middle district of Luzerne and Carbon counties, for the year ending December 31, 1876.

The condition of this district is still improving in relation to the requirements of the rentilation law of 1870, and with very few exceptions no canse for complaint exists, to my knowledge.

The descriptive part of my present report relating to accidents resembles my report of 1871 .

There were fifty-five lives lost during the year, against sixty-three last year.

The coal production was $4,615,386$ tons, against $4,261,263$ tous last year. This shows that 83,916 tons of coal were produced per life lost, against 67 ,i629 tons per life lost last year.

The collieries of the district were operated but 163.51 days of a general average, thus leaving 149.49 days to have been idle. This shows that if the district could produce $4,615,386$ tons when the mines were operated only 163.51 days, that it is capable of producing $7,627,741$ tons when working full time. In this case the accidents would no doubt increase to some extent, but I think not in proportion to the increase of production or time worked.

I have endeavored to show in the present report, as near as I could, the actual condition of this district at the close of the year 1876. By the aid of the accompanying tables and descriptions a pretty fair idea can be formed of the same.
TABLE No. 1.-Shows the name and location of each colliery; name and average thickness of each seam of coal warked: number of em. ployecs inside and outside: number of coal breakers and days operated; tons of coal shipped; number of kegs of blecsting pouder used; number of pounds of powder to each ton of coal shipped, de., in the Wilkesbarve distriet during 187o:

			B	Emplo	YEES.	Bre	OAT, AKERS.	$\begin{aligned} & 8 \\ & 8 \\ & 2 \end{aligned}$	$\exists \frac{\pi}{\#}$	$\stackrel{\rightharpoonup}{6}$	\&을
Name of Colliery.	Lucation of Colliery.	Name of Coak seam.		ㄹ..	C C 总			produced in 1876			
Horanarpua colliery	Shickshinlly.		Ft. Ins			1				L. 28. Jt wi	rking.
Paston cultery......................	Fist Nanticoke			97	67			34, 3100	1,200	. 87	1.15
Ne. I breaker .	East Nanticoke		$\begin{array}{ll}6 & 8 \\ 6 & 8 \\ 8 & 9\end{array}$	2 2 2	218	1	24934	178,280	5,775	. 81	1.23
No. 2 breaker .	du			530	177	1	2321/2	257,254	8,213	. 79	1.25
No. 3 breaker	West Nanticoke		61 21 9	263	221	1	21314	147,836	3,942	. 66	1.51
Warrior Kun colliery....................	Warrior Run...........................	E.	$\left.\begin{array}{rr}16 & 0 \\ 7 & 0 \\ 6 & 0\end{array}\right\}$	104	63	1	1.17	56,150	2,911	. 85	1.17
Franklin colliery	Near Wilkesbarre	kaitimore.....................	${ }^{6} 160$	132	142	1	1641/4	94, 683	2,539	. 68	1.47
Hillnan colllery	P'lains township...........................	1111man	80	77	22	,	172	41,060	1,400	+85	
Haitby colliery	Near W yoming					1					
Iftehison colliery.	Near Kingston.........................	Baltimore	$\left\{\begin{array}{ll}7 & 0 \\ 8 & 0\end{array}\right\}$	190	70	1	229	90,000	3,000	. 83	1.2
East Boston colliery	-		$\left\{\begin{array}{ll}7 & 0 \\ 8 & 0\end{array}\right\}$	167	58	1	18834	91,002	2,275	. 7	1.42
Waterman, Beaver \& Co. No. 2 colliery do	Baltimore split...........	$\left\{\begin{array}{rr}8 & 0 \\ 10 & 0\end{array}\right\}$	279	161	1	176	177,807	5,164	. 73	1.38
Do No. 1 colliery		...do	$\left\{\begin{array}{cc}8 & 0 \\ 10 & 0\end{array}\right\}$	157	91	1	1951/4	125,515	3,091	. 62	. 162
Chauncey colltery......................	Near Plymouth	Red Ash	21 6 21			1			No ret	urns	mate.
Boston colliery..........................	Near Kliggton.	Baltimore	$\left\{\begin{array}{rr}8 & 0 \\ 10 & 0\end{array}\right\}$	175	92	1	1741/2	100,030	2,129	. 53	1.88
Jersey colliery	Near Pilymouth	Red Ash	22 21					4,763	110	. 57	1.8
A vondale collierydo do	216 $\begin{array}{r}21 \\ 7\end{array}$	200	117	1	1938 8-10	120,605	2,494	. 51	
Enterprise colltery.......................	Plainsville.,..........................	Jaltimore	$\left\{\begin{array}{ll}7 & 0 \\ 7 & 5\end{array}\right\}$	253	84	1	1751/4	76,478	2,719	. 88	1.11
Wyoming colllery........................	dodo................	$\left\{\begin{array}{ll}8 & 0 \\ 7 & 0\end{array}\right\}$	267	165	1	1261/4	128,411	4,021	. 78	1.27
Forty Fort colliery	Near W yoming		$\left\{\begin{array}{ll}5 & 0 \\ 7 & 0\end{array}\right\}$	314	197	1	1331/2	132, 652	4,770	. 89	1.11
Hotienback colliery	Plains township.	IIIl1man	$\left(\begin{array}{lll}7 & 0 \\ 7 & 6 \\ 8 & 3\end{array}\right\}$	65	30	1	178	34,857	1,039	. 75	1.34
Henry colliery.	do	Baltimore	$\left\{\begin{array}{ll}8 & 3 \\ 7 & 0\end{array}\right\}$	161	62	1	2021/4	112,069	3,056	. 77	1.29
Midvale colliery	do		$\left.\begin{array}{ll}8 & 0 \\ 7 & 0 \\ 7\end{array}\right\}$	119	48	1	183/4	58,000	2,260	. 88	1.03

Table No. 1 gives the name and locatiou of each colliery in the district, name and thickness of seam of coal worked, number of employees inside and outside, number of coal breakers and days operated, coal production for the year 1876, number of kegs of blasting powder used-containing twenty-five pounds each, and the amount of blasting powder used in each mine in pounds per ton of coal produced, as also the number of tons to the pound of powder.

At first sight it may appear somewhat strange that such a table as this is bere presented, but I hope that any person that may peruse the same and the remarks relating thereto may see the propriety of the same at least. My prime object in preparing this table was to show to the public in general, but more particularly to our mining experts and others seeking information upon mining, what an important factor the use of blasting powder is in the matter of the "health and safety" of persons employed in our anthracite coal mines. To show this matter fairly I thought it was the best way to give the details as above described and as indicated in the table, so that whatever discrepency there might be in the quantities used, \&c., its explanation could be found by examining the table for the name and thickness of seam, \&c., thus, in the writer's opinion, avoiding the possibility of casting reflections upon any one party. The officers of the Delaware and Hudson canal company did not give, in the returns, the quantity of powder consumed in their mines for 1876, hence the blank in that part of the table. An average of the powder used, as per returns, for the years 1874 and 1875 , is given in the percentage used for each mine.

If that the quantity of powder consumed at each colliory should be given, and the name and thickness of seam worked not given, it would appear to some people, perhaps, as though the managing possibly was at fault. To avoid this error most particularly those items are given ; the thickness of seam in some cases is only approximated.

The above table shows that on an average, taking the thin and thick, good and bad seams together, it requires about three quarters of a pound to each tou of coal mined, or more correctly seventy-two hundreth of a pound.

Let us see what effect this enormous use of blasting powder has upon the ventilation of a colliery producing say eight hundred (800) tons of coal per day. According to the average above given .72 pounds is consumed per ton, hence $800 \times .72=576 \mathrm{lbs}$., or twenty-three (23) kegs per day. The above is only the general average, we have cases where the amount consumed exceeds one pound to the ton of coal produced, and in such a case the consumption of powder for eight hundred tons would exceed eight hundred (800) pounds, or over thirty-two (32) kegs daily. The 576 pounds of blasting powder is all or nearly all to be exploded inside of about eight or ten hours. It is true that a small proportion of it is used at night, when there is the usual quantity of ventilation and only a small number of persons inside the mine, yet the said amount is not enough to change our general average as here employed. We will assume that it requires ten hours of time to explode the above amount of powder in the manner described; therefure, $10 \times 60=600$ minutes, this would give .96 lb . of blasting powder to be exploded each minnte of the ten hours.

In "Andres" " work on mining it is given that the combustion of one pound of blasting powder produces .30 Ib . of carbonic acid gas; hence the weight of a cubic foot of said gas being . 1161 lbs ., it follows that $. \frac{3020}{1} \frac{0}{6}=$ 2.58 cubic feet of carbonic acid gas.

The sail gas being dangerous to life, in quantities larger than . 25 per - cent., it follows, that to cause the 2.58 cubic feet of carbonic acid gas, fit
ing on the periphery is cast-iron segments, and sides and chimney are bu:It of brick. It is driven by a horizontal direct-acting single engine, 18 . by 30 inclies. So far as experiments have been made upon this fan it appears to give pretty good results.

The fan shown in plan No. 2 is crected at No. 2 slope, of the Susquehan Coal Company, to ventilate No. 2 and No. 4 slopes, East Nanticoke, and io built similar in some respects to the fau shown on plan No 1.

This fan is twenty (20) feet diameter, six (6) feet face, and has but one side opening or inlet, eight and onc-half ($8 \frac{1}{2}$) feet diameter; also has an expanding chimney and a regulator or shutter attached.

The casing and frame is entirely of wood, resting upon a stone foundation. The vanes are of wood, one and one-quarter inches thick, secured by bolts to angle iron arms, which are bolted to two cast iron spiders or centres, and also braced by angle irous to the same. The arms are also braced laterally by light angle iron behind the vanes. Upon both ends of the vanes a sheet iron disk of the cotire width of the vanes is attached, and runs within one-half inch of the inside of the casing, their outer edges being strengthened by a curved bar of iron $1 \frac{1_{2}}{}{ }^{\prime \prime} \times 1 \frac{1_{2}}{}{ }^{\prime \prime}$. The inner peripheries of each disk is provided with a turned wooden ring that fits closely to the sides of the casing, and a piece of gum belting, about two inches wide, is laid around upon the inside of the casing and inlet, so as to overlap the ring and form a valve, to prevent the passage of air between the disks and casing. The advantages claimed by the use of theae disks, enclosed in the casing as above described, are as follow: The balancing of the fan from lateral pressure, less resistance from friction, the prevention of leakage past the vanes and smoothness of rmming at high speeds.

Judging from the experiments conducted upon this fan, independent of the engine, which is a single horizontal direct acting $16^{\prime \prime} \times 20^{\prime \prime}$, the results. appear very satisfactory ; but for want of an indicator no experiments were made with the engine to find the power applied, without which the percentage of useful effect to power expended cannot be given.

In the table giving the work of the various fans, two trials of this fan are recorded. Below will be found some additional tests upon the same fan.

Fan speed, 50 revolutions per minute ; air exhausted, 83,565 cubic feet. .75 inches W. G.

Fan speed, 57 revolutions; air exhausted, 95 W . G.
Fan speed, 70 resolutions per minute ; air exhausted, 110,160 cubic feet 1.50 inches W. G.

Fan speed, 72 revolutions per minute ; air exhausted, 1.60 W . G.
Fan speed, 80 revolutions per minute ; air exhausted, 135,363 cubic feet 1.95 inches W. G.

I also insert a table, \&c., containing a series of other experiments made in 1872. The reason why those were not reported in my report sooner is this, the result shown by the said figures in the table was not what I expected to find, and as a test, a short time subsequently, I made other trials, but having no indicator to test the engime, work, \&c., did not feel satisfied to publish. I therefore laid it over for the time being, with the intention of completing the experiments some time soon thereafter. Not having been able to do so ever since, and inasmuch as I was inserting so much relating to fans, and their work, in this report, I concluded to insert, with a promise that as soon as an opportuvity is had further trials will be made in the same direction.

When the fans were run up to the highest speed had 130 revolutions per minute, the closed fan appear to give the best result. In the table the rererse is the case, but the speed was comparatively low. Whatever differ-

ence that there may be between an open and a closed periphery fan, must be easiest detected when they are running from very slow to very fast speeds, causing heavy water ganges.

The following experiments were made upon the Avondale fan. Messrs. W_{m} Prudhoe, master mechanic for the Delaware, Lackawanna and Western railroad company, Plymonth division; E. C. Richter, mining engineer, assisted me in conducting the same.

Fan-diameter, 12 feet ; face, 3 feet 4 inches; 2 side inlets, with open periphery, and having a revolving disk.

The following air measurements were taken in the tumel between the hoisting and the air shafts a short distance from the fan.

1. Speed of fan, 104 revolutions; engine, 50 revs; area of measuring place $=98$ S. F.; velocity $=496 \times .97+47=529$, and $529 \times 98=51,842$ cubic feet of air per minute; water gauge as taken on side of fan, . 7 inches.
2. Fan revs., 52 ; engine, revs. $2 b ; V=262 \times .97+47=301$, and 301×98 $=29,498$ cubic feet of air per minute, W. G. . 25 inches.

3 Fan revs., 26 ; engine, revs. $12.5 ; V .=198 \times .97+47=180$, and $180 \times$ $98=1 \mathbf{7}, 640$ cubic feet of air per minute, W. G. nil. Temperature ontside, 44°; inside, 51°.
4. Fan revs., 130 ; engine, 62.5 revs.; V. $=610 \times .97+47=638.7$, and 638.7 $\times 98=62,592$ cubic feet of air per minute, W. G. . 875 inches.

In the latter measurement the temperature outside was 22°, inside 51°. The above are the mean of four measurements taken at each speed.

The following are the data in regard to the engine and the power spent to produce the above result.

1-a. Engine dimensions.-Piston head, 14 inches diameter; area of P head, 154 S. I.; length of stroke, 30 inches. Diagram taken on front end of engine cylinder at 50 revs; velocity of piston head $=250$ feet; mean pressure shown in diagram $=13.3$ pounds per S . I.; deducted for driving the engine and increased friction, 2.3 pounds; effective pressure, 11 pounds per S. I. $\therefore \frac{154 \times 250}{33,000} \times 11=12.83$ II. P.
b. Diagram taken on back end of engine when rumning 50 sevs.; eflective pressure $=10.2$ pounds jer S. T. $.{ }_{33,000}^{154 \times 250} \times 10.2=11.9 \mathrm{H}$. P.; mean of both ends $=12.35 \mathrm{II}$. P.

2-a. Diagram taken on front end of engine when rmaning 25 revs.; effective pressure $=4.0 \mathrm{lbs}$. per S. I.; velocity of piston $=125$ feet $\therefore \frac{154 \times 125}{33, v 00} \times$ 4.0 pound $=2.33$ II. P.
b. Diagram on back end of the engine when running 25 revs.; effective pressure 4.0 pounds $=2.33 \mathrm{II}$. P.; mean of both ends, $2.33 \mathrm{II} . \mathrm{P}$.

3-a. Diagram taken on front end of engine when running, 12.5 revs.; V. of piston $=62.5$ feet ; pressure, 2 pounds per S. I. $\begin{gathered}154 \times 625 \\ 33,000\end{gathered} \times 2$ pounds $=$ 5.83 I. P.
b. Diagram on back end of engine, 12.5 revs.; effective pressure, 2.3 pounds per $\mathrm{S} . \mathrm{I}=6.7 \mathrm{II}$. P.; mean of both ends $=6.26 \mathrm{II}$. P .

Hence the following :

1. Fan revs., 104 ; engine R., 50 ; power expended on ventilation as per diagrams $=12.36 \mathrm{H}$. P.; power utilized as per formula, $\frac{51,812 \times .7 \times 5.2}{33,000}=$ $5.72 \mathrm{H} . \mathrm{P} .=46.26$ per cent of useful effect.
2. F'an revs, 52 ; engine R., 25 ; power expended $=2.33 \mathrm{H}$. P.; power ntilized, $\frac{29,498 \times .25 \times 5.2}{33,000}=1.162 \mathrm{H} . \mathrm{P} .=49.87$ per cent of useful effect.
3. Fan revs., 26 ; engine R, 12.5 ; power expended= $=625 \mathrm{H}$. P.; power utilized, $\frac{17,640 \times .083 \times 5.2}{33,000}=$

In the above no correction or allowance has been made for the difference between the temperatures inside and ontside, there being about the same difference in the case held in comparison, which was 7°.

The highest velocity had was 130 revolutions of the fan, when it exhausted 62,592 cubic feet of air per minute $=8.67$ II. P., but touk no diagram to ascertain the power expended. This measnrement was taken at a different time, and there was 29° difference between the temperatures inside and outside.

The object of making the foregoing experiments was to make a comparisun of the useful effect obtained from the above (this fan being an open periphery) and the N. C. \& I. Co.'s fan, at No. 1 shaft, both being the same dimensions, the latter is an open periphery fan.

The following experiments were conducted by Messrs. E. C. Reichter, M. E., A. Weir, mine boss, and myself, at No. 1 shaft N. C. \& I. Co., near Plymouth, January 23, 1872. They were made upon the fan at this place, to be compared with a similar set made with the fan at Avondale mine.

Fan dia. 12 feet; engine cylinder, 10 inches dia.; Iength of stroke, 24 inches. Area of cylinder head $=78.54 \mathrm{~S}$. I.

Diagrams were taken by attaching one of Richardson's patent indicators to engine cylinder while being driven at different speeds.

The following air measurements were made in the return airway near the fan, to wit:

1. Speed of fan, 104 revs.; engine, 52 rers. ; area of measuring place $=$ $113.5 \mathrm{~S} . \mathrm{F}$. Quantity $=601.51 \times 113.5=68,271$. W. G. . 25 inches.
2. Fan revs., 52 ; engine, 26 revs. ; Q. $=301.625 \times 113.5=34,234 \mathrm{C} . \mathrm{F}$. and W. G. . 083.
3. Fan revs., 26 ; engine, 13 revs.; Q. $=195.41 \times 113.5=22,179$ C. F'., W. G. . 00 inches.

Temperature outside, 42°; inside, 48°.
4. Fan revs., 130 ; engine revs, 65 ; Q. $=953.85 \times 113.5=108,261 \mathrm{C} . \mathrm{F}$. and W. G. . 475 inches.

In the latter measurement temperature outside, 19°; inside, 44°.
The above are the mean of four measurements taken at each speed.
The following are the data in regard to the engine and the power spent to produce the above result, to wit:

Area of piston head=78.5 S. I. Length of stroke $=30$ inches.
1-a. Diagram taken on front eud of engine cylinder at 52 revs. Velocity of piston $=208 \mathrm{ft}$. Mean pressure, as shown per diagram=31 lbs. per S. I. deducted for driving engine, and increased friction $3 \mathrm{lbs} .=28 \mathrm{lbs}$. effective pressure per S. I. $\therefore \frac{78.5 \times 208}{33,000} \times 28=13.85 \mathrm{II}$. P.
b. Diagram taken on back end of engine, running 52 revs. Effective pressure $=26 \mathrm{lbs}$. per S. I. $\therefore \frac{78.5 \times 208}{33,000} \times 26=12.86 \mathrm{H} . \mathrm{P}$.

Mean of both ends=13.35 II. P.
$2-a$. Diagram taken of front end of engine, running 26 revs.; relocity of pis$t o n=104 \mathrm{ft}$.; effective pressure 13 lbs . per $S .1 . \therefore \frac{78.5 \times 104}{33,000} \times 13=3.21 \mathrm{H} . \mathrm{P}$.
b. Back end of engine, ruming 26 revs; effective pressure $=13 \mathrm{lbs} . \therefore$ $78.5 \times 104 \times 13=3.21$ II. P.; mean of both ends $=3.21$ II. P.
33,000
3-a. Diagram taken on front end of engine ruming 13 revs; relocity of piston $=52 \mathrm{ft}$.; effective pressure, 3.0 lbs . per S. I.
b. $\therefore \frac{78.5 \times 52}{33,000}=.37$ II. I'; back end the same mean $=.37$ II. I.

1. Hence the following : Fan revs., 104 ; engine, 52 revs.; power expended on rentilation as shown per diagram, 13.35 II. P.; power utilized as per formula, ${ }^{601.51 \times 113.5 \times .25 \times 52} \underset{33,000}{2}=2.69 \mathrm{II} . \mathrm{P}$., equal to 20 per cent. of useful effect.
2. Fan revs., 52; engine revs., 26; power expended=3.21 I. P.; power utilized $\frac{301.625 \times 113.5 \times .083 \times 5.2}{33,000}=.4477 \mathrm{II}$. P., equal to 14 per cent. of useful effect nearly.
3. Fan revs., 20 ; engine revs., 13 ; power expended $=.37 \mathrm{H}$. P.; power
 of useful eflect

TABLE of comperison between teo Foms.

In all the above experiments no correction or allowance has been made for the difference between the temperatures inside and outside, which was 6°.

The highest velocity had was 130 revolutions of the fan when it exhausted 786.5 cubic feet per revolution, or 108,261 cubic feet of air per minute; water gauge, $475=8.1$ II. P., but took no diagram to ascertain the power expended. This measurement was taken at a ilifferent time and there was $\because 5^{\circ}$ difference between the temperature inside and outside.

The open periphery fan at Avondale exbansted at the speed of 130 revolutions, 62,592 cubic feet of air per minute, or 481 cubic feet per revolution; water gauge, 875 , and $=9.671 \mathrm{I}$. P.; temperature outside, 22°; inside, 51°; difference of 29°.

I'A BLE No. 2.-Shows the number of fans, fan engines and their poner respectively; also the quantity of air circulated in cach mine, under ordinary circumstances; also a fow examples are given e.rhibiting how much the sume may be increasen, ut short noliee, by additional speed of the ventilator, other things remaining the same. The results, as ealeulated from this table, ape only approximately eorrect, yet they are sufficiently correct to show praclically the condition of this-the Willesbarre ilistrict-at the close of the gear ending Dec. 31. 18ig.

NaME OF COLALEKY.

I) Mevtions OF FANS.

IDE 1 NLhTs.

Table No. 2-Cuntinued.

Name de Culliers:	HORSE POWEI RECEIVED IN THE A1R BY			Elements in part of Horse Power EXPENDED.							Horge PowER EXP'dED on FANG At		HORSE Power Utiliz'D. [Negleetlug natural ventiIation.]		$\begin{aligned} & \text { PERCENT- } \\ & \text { AGES OF } \\ & \text { USEFUL LF }- \\ & \text { FECT OF } \\ & \text { FANS. } \end{aligned}$		12EMAKKS.
				No. of engines and thelr positions respectively.				Steam cut off at-inches......	Steam pressurein pounds per S. in.		$\text { 'sә.uod әs.toII-pəods su!cy.to } \mathrm{Al}$	rəmod as.rot-pards tumulxelt					
					Vertical or liorizuntal.					In steam boilers-lbs						E. \vdots \vdots \vdots \vdots \vdots	
Mocanayua..																	H/le since 18i\%.
S. U. Uo. No. 1 , siope No. 1		9.31	13.60	1	Vertical	12	36 18	11.85		$\begin{aligned} & 40 \\ & 80 \end{aligned}$							
Vo...... Honey Pot, No. 2		4.61	13.37	210..	14	18	9.,		50			4.61	13.37			doney Pot rai ventitates Nos. 1 and
1)o....... No. 2 , slope No. 2		3.50		1	…do.	9	18	11.25		60			2.50				No. 2 slope arn now ille.
		13.17 6.18	41.53	1	Horizontal,	16	24	12.00		65			13.17	41.59			No. 4 slone ventilates No. 2 slope.
10....... No. No. 3, slope ̇io.		6.18 5.29	8.50		Vertieal....	12	18			70			6.18 5.29	8.50			
Do.......No.3, Tmmel No		1.46	2.57	1do.	9	18	11.45		50			1.46	2.57			
E, seam Warrior kun......			1	d	12	18	12.		70							
B....dlo........do				1		10	18	12.		60							
Old Slope Franklin		3.25	15.18	2do..... $\{$	14	18	$\} \ldots \ldots$.	34	53	$\left\{\begin{array}{l}16.66 \\ 16.66\end{array}\right.$	42.7 48.7	3.28	15.18	9.8	17.77	
frown. .do				1do.......	12	18	\}	40	55	17.48						
1lillman Maltby				1	…do........	12	16									
Maltby.......										...							Hale since 18\%\%.
East Boston				1	İorlzontal,	13	30			60							Fan triven by breaker engine.
Waterman, leaver \& Co.,		2.83	4.36	1do.......	12	20	18.	57	61	13.		3.83	4,39	21.7		
110...............do....... ${ }^{\text {do }}$		5.2	9.49	1	...do	15	30	22.5	35.5	75	18.27		5.2	9.49	30.5		
(hauncey											Fentilated by furnace.
Buston...													3.2				Ventilated liy furnace.
dersey...																	Fan located at and coupled to A yon-
A vondale		3.69	9.52	1	Horizontal,	14	30		58	75	30.	45.	3.69	9.52	12.3	21.1	f cale fag, yet currents are separate.
Enterprise.		2.77		2do..... $\{$	9	18	$\} \ldots$	20	80	23.		2.76		12.		
Wyoming.		- 6.43	21.8	1	\%erlo......	16	30		25	80	31.		6.43	21.80	19.		
Fortr Fort.		4.26		1		12	18		25	70	21.25		4.26		21.		Exina fan for emergencies.
l'ools' Hollenback				1	Vertical....		18										\{ Natural ventiation assisten by) steam element.
Midvile				1do........	10	18		55	60							
Mineral spriug.				1do.......	16	18		40	80							
l'rospeet.......				1		16			60	60							The both fans are ased to venthate
Qakwood shaft				1.	Horizontal,	20	22	55	63							Y Prospect in part.

The foregoing table shows tolerably correct, in most instances where the calculation has been completed, the amount of work performed but not the useful effect of those fans. This table was designed by the. writer, however, to show practically the condition of the district as regards ventilation, and the safcty of our men from explosions of gas; and no claim is laid to it for accuracy in their useful effect, and especially so on account of the difficulty of ascertaining the exact power spent, having no indicator and seldom any means of getting the fan and engine separated in order to determine their respective frictions, \&c.

It can be seen by this table how much air is circualted in each mine per minute. The number of employees inside can be found on table No. 1, if needed. The maximum quantities in the table is intended to show the amount of air the ventilator is capable to produce by the additional speed of a few revolutions of the same, at almost a moment's notice.

This is what can not be done by furnace ventilation. The difference between the amount of air exhausted by a ventilator when working at ordinary or working speed and the said maximum speed is the surplus or margin reserved to meet emergencies, skould occasion require.

The speed of the tips of the vanes are given at each speed, as also the discharge in cubic feet of air per minute and per revolution.

The former shows the actual increase of velocity at the periphery at the higher speed of the fan, and gives a comparison of the speed of the different sizes of ventilators when running at their maximum speeds. It will be observed that very few exceed one mile per minute in speed of the vane tips, large or small.

The matter of discharge per revolution is given to enable us to see how much the quantity per revolution falls off or decreases from the ordinary to the higher speeds.

In most of the cases here given the difference is not very great, cansed no duubt by the extreme speeds of the ventilator, when running very low nor very high, not keing giren. The water-gange is given to enable any person to calculate the results here given. The sectional area, depth and temperature of the down-casts and up-casts are given only in a few cases in full. It is impossible to learn the exact work of a mechanical ventilator unless such data is bad to enable the experimenters to find out the amount of natural ventilation produced by the varying temperatures, \&c., of the mine and outside during winter and summer, or at least when testing the same. If we find that natural ventilation is acting in favor and assisting the ventilator, then the said amount should be deducted, and added to, if the reverse is found to be the case.

The engines or power required to drive the fans are given for two purposes. First to afford a means of calculating, approximately, the power expended in cansing said air-currents to circulate; in other words, the work of the rentilator ; and, again, to euable the different parties in this and other districts to compare the dimensions of engines used for similar work. The positions, whether horizontal or vertical, is also given for a similar purpose.

The primary object of this table, howerer, relates to the matter of safety of our men working under ground.

Whenever any structure is erected of any material, such as a bridge for instance, or if that a cable of iron or stecl is ordered, upon which a certain load is to be suspended, then in either case a factor of safety is used by adding to the strength calculated to do the woris five or six times as much. This factor of safety is intended to provide against danger from unforeseen defects in material or workmanship, or to meet any emergency that may arise, and thus if possible prevent accidents.

How is it in our mining operations? In the matter of hoisting men and material in our shafts, the same is found as hefore mentioned. An iron wire rope one inch thick is calculated to carry fifteen and seven-tenth (15.7) ions; 2. e. the said amont is the breaking strain, but it is only three and onetenth (3.1) tons that is called the working load-only one-fifth of its atual strength.

W'ith the exception of the cable for hoisting the factor of safety is little known of below ground. So far as my experience goes little systematic allowance or provision for emergencies is made in our mining operations In the matter of ventilation we have a few fans that are not run to their maximum capacities. I doubt whether many of those having a marginal speed have been erected with the anderstanding that the mine being new probably requires but a small amomet of air at the time of starting the same in comparison to what will be required; and that at the very time that the greatest quantity of air is required per minnte, that still there should be a factor of safety to meet emergencies that may arise at the said time. That is to say that a mine requiring a certain quantity of air ought never to have less than fifty per eunt. over and above the explosive point in a mine generating carbureted hydrogen gas, and in addition to this a factor of safety to provide for emergencies that may arise. The factor used in other structures, as before stated, is from four to five times. But I imagine to hear some of our mining people say that this is an impossibility in their case. This is true unless the matter is thought of and provided for before erecting the ventilator.

The matter of a proper system of dividing the air-current into a rumber of splits and securing large or roomy airways in each split, as well as to get the respective splits as near as may be of equal lengths, has much to do with the results of any ventilator; i. e. not the useful eflect of the same but the amount of air cansed to circulate through a mine per minute.

The writer has endeavored to impress the importance of this matter upon the minds of our mine officers from time to time ever since in office, but not always meeting with success when first adrocated, yet a similar course, to a great extent, has frequently been forced upon them by attending circumstances.

A glance at the table giving the quantity of air circulated will convince any one that what I claim that we should have as a factor of safety is to be found by but vely few, and then only to a very limited degree. I think, and entertain the hope that those figures canot fail to be of some benefit to many of mine officials.

The great extremes of the temperatures in this combtry has a very im portant bearing upon our mine ventilation : changing outside from zero, Fihrenhejt degrees, and sometimes below, to 90 above zero, the difference often reaching from 30 to 40 degrees between the temperature inside and outside of a colliery.

A mine in winter during cold weather may have ten or twenty thousand cubic feet of air per minnte circulated by natural ventilation. In summer this would probably be produced during very hot weather, but having reversed its direction. If the ventilator be a fan or other machine, being stationary-and the same would apply if a furnace-the difference innst be obvious in its work performed, i. e. in the amount of air exhansted during the difierent seasons. One season the forces of nature are its allies and the next its foes.

In addition to the above is the barometric changes, which is also very important. Little or no accomut is taken of the same in this district at least. It is really necessary therefore that more attention be paid to those matters that cause such sudden fluctuations in our air currents.

In my last annual report I dwelt upon the importance of having gorernors upon each of our fan engines. I am still, and ever will be, of the same opinion. I notice that M. Gubal, after whose name the Gubal fan is named, has invented an automatic or baromotric governor to be attached to mine ventilators so tbat when the barometer falls the speed of the ventilator is increased accordingly, and said increase in speed is not changed until some person attends to the same, thus giving ample time to have everything safe inside ere the change is made.

Furnaces.-We have but very few furnaces used in this district. Our mines being shallow, and at the same time generating large quantities of carbureted hydrogen gas, as well as consuming such large quantities of blasting powder, they must require large amounts of pure air circulated through, in order to enable persons employed to proceed with their labor.

The relative merits of the furnace and fan as mine ventilators has been treated of so often by the ablest of mining engineers and experts in different countries, the works of whom can be had by any person desirous of such information, that I do not deern it necessary to attempt such a task here, but suffice it to be said once for all that in my opinion the fan is infinitely better adapted to our wants in the anthracite coal fields than the furnace, hence the preponderance of the former over the latter in this district, our people having learned the lesson from actual experience.

TABLE No. 3.-Shows the number of lives lost in each colliery respectively: totat coal shipments; as also number of tons shipped per life lost, during the last five year:s

$\begin{aligned} & \text { NAME OF } \\ & \text { COLLIERY, } \end{aligned}$	NAME OF OYNER OR LESSEE.	LOCATION OF Colliery.	NO. OFLIVES LOST DURING: Eacirof the IEARS.			
Mocanartua	M. Coal Company	shickshinny				
1'axton.....	Paxton Coal Company		$1 \ldots \ldots$	1	200,500	200, 500
No. 1 lreaker	Suspuehanna Coal Company	East Nantic	3 2 1 1	7	697,384	99,612
No. 2 breaker			$\begin{array}{lllll}1 & 1 & 1 & 3\end{array}$	7	1,057,532	151,076
No. 3 breaker		West Nantico	$\begin{array}{llll}3 & 1 & 3 & 2\end{array}$	9	559,895	62,210
Wartior liun.	A. J. lavis \& Co	Warrior Run.	$\begin{array}{lllll}. . . & 2 & 1 & \cdots & 1\end{array}$	4	219, 150	54,789
Franklin.	Framklin coal Company.	Near Wilkesbarre	$\ldots .2 ; 1 \ldots 1$	4	340, 812	85, 203
Ifilman	11. B. Hillman \& Son...	Plainsville twp... 1	1	187, 000	187,000
Maltby	S. C. Maltuy	Near Wyoming.				Idle
Hutchinson.	U. Intchinson	Near kingston.	* ${ }^{*} \ldots i^{4} 4$	8	212,000	26,500 $362,833$.
East Boston vo	Wm. G. Payne \& C			1	362,333 538,933	362,833 269,466
No. 2...	,		111	3	520,608	269,466 173,536
Chaunce	Aibrightou, Roberts	Near Pi	$\ldots . . .{ }^{\text {a }}$.... *	+	195,938	48,954
Boston	1., L. and W. Hailroad		 \cdots 1 1 2	7	580, 997	82,999
Jersey			1	2	180,565	90,283
Avondal			$\ldots11$	2	653,993	326,993
Enterprise	Kiverside Coal Compan	Plainsy	1	5	403,617	89, 323
W yoming			2	4	348,608	87, 15\%
Forty Fort	J. 11. Nwoye	Near W yoming	1		147,806	44, 268.
Hollenback	R, s. I'oole	l'lainsville tw]	12		192, tifio	37,553
Henry.	Leligh Valley Coal (elamsile	4	12	361,915	30, 158
Midval			2	5	266, 507	53,101
Mineral Spr				4	320,000	80, 017
Prospect...			21	4	63,000	15,750
Fxeter.		West l'ittston.....	$\ldots2{ }^{2}$	9	-933,000	32, 220.2
Ellenwood	T. Broderick	Vear lingston	$\ldots \ldots1$	1	50,000	50, 640
Mill Creek.	1). and 14. Coal Company	Minl Creek.........		8	780,465	
line Ridge	, do	Nr, Miners' Stat'n	$\begin{array}{llll}1 & 2 & 3\end{array}$	11	441,309	40, 119
Laurel Run.	. ${ }^{\text {do }}$		${ }_{3} 1$	3	507, 297	169,099
No. 3 Baltimo			3	4	442, $6+6$	110,661
No. 1 Baltimo		Near Wilhesbare	$311 .$.		479,110	119,772
No. 1.		Near Plymonth ...	1	2	309,069	154,534.
No.			3	5	149.054	23, 810
No				1	190,370	190, 320
No.	do		1	2	531, 442	265, 721
	and if, coal Comp	anal	$1{ }^{1} 11$	3	489,487	129,829
No.	110	do	1	1	211,746	211,746
Expy		1Ianover township	2.	$:$	49,213	24,616
No. 1 Jersey		之 e ar Ashley.			Not wo	king.
$\begin{aligned} & \text { No. } 2 \text { dersey } \\ & \text { vo. } 9 ~ \end{aligned}$		sug	12	5	178,670	31,734
No.	do	Sugar	$\cdots{ }_{*}^{*} 11$	2	164,933	82, 166
l Sartfor	,	Ashley	$* 2$ 2 3 2	10	555.923	69, 490
No. 5 breaker	. 10	Vear Empir	,		95,655	47,822

NAMEAFM，NAMEOE OHSER ORLESSES． COLHERY．	LOCATEON OF Colliens．	No．OF LIVEs COST HURING VACH OF T LEARS． 			
	Near Empiro．		13	129，${ }^{317}$	54， 0×3
Ilollentrack，Jo，－．．．．．．．ti Jollentarek．No． 3		＊2＊．．．．．	2	179，4，${ }^{175}$	179， 174
1）iamun！．．．．．．．．．．．．．．．． d $^{\text {a }}$	Xcar viakeslat	2	10	7（ $3,4 \times 1$	1ヶ，く24
Andenried	\％．． 10.	＊＊$\quad \stackrel{2}{2}$	3	83，510	27．43t
1）orlson	Vear l＇jsmouil	1	1	150，9：90	1－10，250
lanuce	．．．do．		1	248,714	21x．tin
tiaylord．			3	3ヶ8，2゙2	3－4，\％2
Xotthigham ．．．．．．．．．．．${ }^{\text {Wio }}$	dor	1－．．1	8	502,627	62，529
		$\because 11$	6	410．433	6．is． 4 \％
1＇ort Bowekley．．．11．S．Coal and lron Company．	Phathsville	21^{-}	3	136， 0140	45， 303
1 l abantomed inin＇es．．．．．．．．．．．．．．．．．．．．．．．．．．			2		
1 l shafts and slol es while sinking．	．．．．．．．．．．．．．．．	$4 \quad 4 \quad 6 \quad 10 \quad 2$	25		
＇Totals，．．		$\begin{array}{llllll}40 & 46 & 57 & 63\end{array}$	261		

Where there is an asterisk thus＊in the table of accidents there is no cral production for that yar，hence the numberskilled durims sain yearsare not divited into the total coal．The accilents that occurred whilo shaft sinking is not phaced either agilnst the tonnage of the mine subscyuently．

Table No． 3 gives the number of persons killed in each colliery for the years $1972-3-4-5$ and 6 ，unless where there was no coal prodnced．Also the total quantity of coal produced for the same number of years that the list of lives lost are given ；as also the average number of tons of coal pro－ duced per life lost at each colliery for the same time．Heretofore a general average coly was given for the whole district，but in the present report each place has its own record to stand by，let that be what it may．A glance at this table will exhibit a wide range，extending from 15,750 to ： 362,333 tons of coal mined to a life lost．

TABLE No． 4 －Showing the number of persons lilled in the Middle district of Lir－ zerne and Carbon counties from 1872 to 18ig，inclusive；also how recident occur－ red，together with the percentage of each item．

Table No. 4 shows the total number of lives lost in this district during the last five years, classified under six general heads. Those items have been sub-divided into others, giving a more minute description of the same; also the percentages of each item to the whole number of lives lost is given in the right hand columi.

TABLE No. J.-E. Wibits u summary of fututities; aggregate coul production: ulso the production in tons per life lost in this distriet for the last five years.

Table No. 5 shows the number of lives lost during the year 1876 , under seven general heads, with the quantity of coal shipped to market ; also the number of tons produced per life lost.

TABLE' No. G.-Siummaries of fatul acciclents, unter five herads, for five yours, ending 18\%t.

	18% \%.	1873.	1374.	185.	1876.	Totals.
Filled by falls of root and	15	11	17	18	~ 3	84
Killed by mine cars.	7	13	9	5	4	38
Killed by explosions of Cill2	5	6	9	${ }_{5}^{6}$	7	36
Killed ty blasts ln and rock	1	\pm	4	8	10	$\stackrel{9}{7}$
Filled in sbafts..............	3	:	3	14	1	24
Tutal. for eacli yespectively and their sums.	34	37	42	51	45	298
'lotal mumber kalied each year, bucluding the above five items	40	46	57	63	53	261
Percentages of the above five items to the whole numbet killed	85	80.43	73.68	8.26	80.93	80

The above table of summaries exhibits the items that are most prolific of accidents. In the right hand rertical column can be seen the totals for each itent for five years, and the preponderance of one item over another in the list of accidents in the order which they are placed. In the horizontal column of total footings the numbers killed each year respectively under the above five heads are given, and to the right are seen their sums. The second horizontal column shows the total number killed each year, including the above five items and their sums. The third or last horizontal column gives the percentages of the five items before referred to for each year respectively of the whole number killed in each year and their generat average.

Table No. 6 shows the number of tives lost under five heads, being the ones considered the heaviest in the list of fatalities. This table also shows what per cent. each item bears to the total for each year, \&e.

TABLE No. .-Corel production, mumber of persons employed, de.

	1572.	15.3.	15\%.	1575.	$18 \% 6$.	Total.
(coal produced per year in tons ..	3,250, 040	4, 232,0060	4,513. 517	4, 261, 26i3	4,615,396	20,932, 496
Namber of persons employed.......	5,807	11,325	13,576	15, 5000	14,317	
1:atio of coal produced in tons to each employee	231.4	372.6	3 m	284.0	323.0	A verage. 325. 1
Number of lives lost each year............	49	45°	57	63	55	52.2
Ration coal produced in tons perlife lost	81,563	92. (k)	80,000	67.683	83,915	81,013\%
latio of persons employed to eachlife lost	233.26	$2+6.54$	248.17	23.**	2(ii).5	853

Table No. 7 shows the coal production of the district for the years $1872-$ 3-4-5-6 and total tons, number of persons employed each year, ratio of production to each employee, number of lives lost each year for the aforementioned space of time, ratio of coal produced per life lost, ratio of persons employed per life lost.

Table of Comparison.
This table exlibits a comparision of a few important items, between this and foreign countries.

	ENGLAND Bituminous mines.		Noya scotia Bituminous Mines.		Oillo Bituminous Mives.		PENNSYLYANIA Anthracite Mlines	
	1874.	18\%5.	15.4.	18 \%̄.	1875.	18.6.	$15 \% 5$.	1876.
Coal protluced in tons per year	140,713,832	147,730,313	872, 223	781,165	4, 267, 535		22,000,000	
Number of ${ }^{n}$ resons employerl.	538,829	535,845		3,77\%	12,500		69,553	
Ratio of probluction to em-ployees-tons	261.	270,	2,204	3,76 206,82	341,4		316, 17	
Number of lives lust each year.	1,056	1,244	7	2	23	13	238	
Ratluof prometion to lives lost-tons	133,251	118,730	135,043	390,552	142,252		42.437	
Ratio of employees per ilife lost	510	(530	611	1,858	+16.6		104 295	

Two of the columns in the comparison table I could not fill, although I had intended to have had them complete. For some reason we, the anthracite mines inspectors, failed to affect an interchange of these items in time to be used in the report, notwithstanding that we had arranged to do so. The coal production of Ohio was not in Inspector Roy's report for 1876, the reason for which was therein explained. I subsequently tried, but failed to gret the same.

HABI.E No. S.-Shows the momber of coal brieakers and days opented, classes and total number of employces; also total mumber of days of lnbor wrought, totce tons of coal producel, cund cecrage number of tons produced per emplayce, per miner; nlso for each collicry per dray in 1875.

Totals.
A wravis

8 Mine Rep.

The eighth table gives the number of employecs in their different classes. almost as returned from the companies' officers, number of coal breakers, number of days operated, which gives very nearly the days worked by the men; the total number of days of labor performed in the district altogether, from which the general average days per person is found ; also the total production of coal for the year 1876, after which the average nomber of tons is had to each employce; also to each miner for the year and to each colliery per day.

The following additional tables also accompanies the report. Table No. 9 , giving the number of surface openings, shafts, slopes and drifts; also under ground slopes; also the dimensions of the shafts, length and rertical depth of slope, elevation of head and botiom of each mine where returns of such were made as per request in blank, above tide, and in a few instances where a mine is below tide, which is also shown in this table.

Also table No. 10 gives the mine machinery. This table shows the number of mine locomotives, hoisting engines and their dimensions and nominal horse-power, number of other engines and horse-power, number of bull or cornish pumping engines, number of steam pumps or direct acting pumping engines; also the number of other pumping engines, giving some details of dimensions, \&c., relating to bull and steam pumping engines.

Table No. 11 gives the names and number of persons killed, name of mine, location, \&c., and table No. 12 gives the names of persons injured, and description of the same, \&c.

Casualties.

The total number of fatal accidents in the district during the year was 55 , classified, in table No. 1, as follows: By explosion of carbureted hydrogen gas, 7 ; by falls of roof and sides, 23 ; in shaft, 1 ; by mine cars, 4 ; by blasting powder, 3 ; miscellaneons underground, l4; above ground ${ }_{5}$. 3 ; total, 55 . Widows, 31 ; orphans, 85

Explosions of Carbureted Mydrogen Gas.

There were seven lives lost during the year under this head $=12.52$ per cent.

Aceident No. 8.-A miner, named James Kates, working in Mineral Spring colliery, was burned 80 seriously by an explosion of gas, that he died of his injuries some weeks after the accident, the gas having accumnlated in his working place while he and his laborer, who was also burned on face and hands, were working there.

Accident No. 10.-This accident occurred in Exeter shaft and was the most fatal case that we had in the district during the year, cansing the loss of four lives. Thomas ILarris, a fire boss, was in charge of the party at work, there being but a few persons in the colliery at the time, who were making repairs and improvements. The person whom it is supposed that ignited the gas was a driver boss named Alex. Jones, and was considered a very responsible and trustworthy man, as he had been in charge of the whole working party but a few days previous to this sad accident, while the other officers, including the fire boss (Ilaris), were attending court. The driver boss (Jones) was the only one burned in the whole party, the other three were killed by the concussion of the blast, which also injured several others slightly.

The mine being idle advantage was taken of the opportunity to make some improvements in the ventilation, and in part to carry out the requests of the inspector, by callsing the air current to be separated into another or additional split. To do this the main current had to be broken, cansing the accumnlation of gas in the face of the workings.

The party was disided into two or three equads, but were all working on the main roads or airways, and each received orders not to leave the main road for any purpose muless so ordered. The squad in which Ilarris, Jones, smalley and Allen were working was preparing to erect a new air erossing or bridge, and no person appeared to know for what purpose did Jones leave the othors of his gang and wander off for several hundred feet into the workings from off the main road, where his corpse was found after the explosion. The comity coroner, P.J. Pendergast, had the following named persons empanelled as a jury, who rendered a verdict exonerating the company officials from any blame or censure in the matter, signed by the coroner, P. J. Pendergast, H. L. Startwood, James A. Howell, William IIelf, IIathew Dougher, John Beardn, A. Armstrong.

Accident No. 45.-Thomas R. Davis, a miner, working in the Nottingham colliery, was seriously burned by entering the face of an old working place contrary to orders, which occasionally had a small quantity of gas in it. His injuries from burning probably would not have proved fatal, had it not been for an attack of erysipelas, as well as improper treatment.

Accident Nu. 48.-Thomas I Evans, a fire bors, employed in the llemry colliery, while in charge of a party of four or five men, foreing out a small quantity of gas from the face of a cross cat, near face of ellamber, was serionsly burned un his face and hands, as also were two of his comrades. The explosion was caused, it would apperr, through the disobedience of a laborer, named Simeon Kelly, who had beeu properly cantioned and instructed against entering the retum airway, where be subsequently ignited the gas. Kelly escaped nninjured. Evans' case was not cousidered dangerous, but erysipelas set in in the head, the efiects of winich, together with his burns, soon proved fatal.
Falds of Roof axd Sides.

There were 23 lises lost by falls of roof and sides, which is equal to 41.82 per cont. of the whole list. The same item averaged for the last fire years 8.2 .18 per cent. There were 15 miners and 8 miners' laborers lilled. The miners are generally held responsible for the safe timbering of their respective places, and are supposed to have aequired considerable knowhedge, by their experience in other branches of mining, of a preparatory nature, to entitle them to such a charge. Unfortunately, however, for ait concerned, there are large numbers acting in the capacity of miners who are illy prepared to assume such responsibilities, their inexperience resulting in many cases in their own death, or of those whom they employ.

Another feature which is still worse, is the fact that each person having charge of a working place generally hires an assistant or partner, whom is termed a laborer, who is required to do the most part of the unskilled labov required in their working place.

It is not supposed or required that a miners' laborer should know anything about the art of mining, but he depends for his safety and care upon the miner who enploys him. In this way the person in charge of a working place is directly responsible for the lives of his laborers, as well as that of his own How important is it then that a miner should be qualified ere he is permitted to act in such a capacity.

Should we follow up this matter and were able to show what an important bearing this has upon the whole item of colliery accidents, in the various ramifications of the subject, the result would astonish many of our mine managers and owners.

It has already been stated that fifteen of those killed under this head were miners, and that eight were miners' laborers, the latter being abont
thirty-four per cent. of the whole number killed in this class. This goes far to prove that those laborers need some further protection under the law.
'The miner', in this case, is his own protector, and in cases where his is not so and any personal injury befalls him through the carelessness of his employers the law provides that a suit for damages may be brought against them. On the other hand if a laborer, hired by a miner, should be injured or killed while nnder his employ and immediate care no suit could be bronglit against the company, as they did not employ him and had no immediate control over him in the case. Again there is no provision in the law to bring a civil suit against a fellow workman, and if there was in most cases it would not avail them anything.

Of the accidents under this head there are two that invite our particular attentiou.

Accident No. 35. Michael Hagerty, a laborer, was instantly killed by a fall of roof, on the 6 th of September last, while working loading coal in a chamber for a miner named Timothy Finerty in the Exeter shaft, West Pittston. After a careful examination into the cause of the death of IIagerty l had the miner Finerty arrested and was bound over to appeai at court. This course I pursued because it appeared to me that the miner was to blame in the case. I came to this conclusion after examining the place in a day or so after the occurrence in company with the mine boss, tire boss, Finerty, the miner, and some others, also after questioning Finerty as well as the mine boss, while together, as also the miner working in the adjoining place. The facts are as follows:

Finerty was working a chamber about 20 feet wide. The seam of coal is about 8 or 9 feet thick and having a natural parting or lamination in the direction of the deposition near the centre of the seam. The upper part is about 4 fect in thickness and the lower part about 4 or 5 feet The top bench, or that portion above the parting, is blasted out as a mining, after which the lower bench is blown up, i. e. whenever that the top part is far enough in advance to give a blast in the lower bench the most favorable opportunity to do effective work. In this case Finerty had his mining bench worked considerable in advance of the lower bench, and had just driven a cross-cut through the pillar to his left hand neighbor. The day preceding the death of Hagerty the miner, Finerty, had discovered a large slip or break in the roof extending nearly across the chamber and running from within a few feet of the face backwards along the side of pillar. The material of the roof was bone and slate for about 20 inches thick below the rock top. Finerty left his work and went to search for the mining boss the day above mentioned to learn what to do with the bad and dangerons roof; after waiting a length of time at the shaft head, A. G. Mason, who has control outside and inside at said colliery, asked him (Finerty) why it was he wanted the mine boss so particular. Finerty stated that he had a piece of roof in his chamber that appeared dangerous and wished to know what to do with it. Mr. Mason told him that he should take it down or secure it without waiting to see the mine boss, as each miner had always had their instructions under similar circumstances to do so. Finerty did not sce the mine boss this day. The next morning, about 7 A. M., Finerty by going to his work had to call at the fire boss' station to inquire if everything was all right, when he was informed by the fire boss that there was no gas found this morning in his place, but that his roof was very dangerous.

About eleven o'clock, A. M., the mine boss and a party of mining engineers were passing through Finerty's place, when the boss observed the dangerous appearance of a part of the roof. Finerty was then in the act of drilling a hole in the lower bench of coal, iumediately under the bad
roof, and within about three feet of one of the props supporting the same. The break in the roof was, as before stated, in advance of the tace of this lower bench, hence it had to be mined and taken away before timber support could be placed under the broken roof. The mine boss told Finerty to put an extra quantity of blasting powder in the hole when complete, to endeavor to strike ont the prop, and thereby let, down this dangerous roof; and if the blast did not accomplish the desired end to either take it down or make the same sccure before doing any more work under the same. Finerty eompleted the hole and exploded the blast, but the prop was not disturbed. The blast, according to Finerty's statement, looscned about twenty tons of coal. He and the laborer held a consultation, and concluded it would be safe to load the loosened coal, \&oc. In less than an hour from the time that the mine bass gave the aforementioned directions the roof had fallen and killed the laborer, Hagesty. Finerty, while upon the stand, stated that the place was full of coal, and that he could not timber the bad roof until the coal was loaded up to make room for the same; and, in answer to a question, stated that he could not have taken it down safely by placing a blast into it by standing in the cross-cut near the rib. The mine boss testified that he agreed with Finerty about the timbering, that it could not have been done until the coal had been removed, but that in his judgment there was ample opportunity to blast it down with comparitive safety hy standing in the mouth of the eross-cut, the side where the roof was most solid, where it rested upon the solid coal pillar, the slip or break being on the other side of the chamber.

Finerty himself, after directing the laborer to load the loosened coal, began to work in a cross-cut, a place perfectly safe from the dangerous roof inder which the laborer was placed.

These facts were all set forth in the trial on the 26 th day of December, before His Honor, Judge Harding.

The court in charging the jury took the grounds that there was as much blame upon the mine boss in this case as there was on the miner Fiuerty, inasmuch as he assented to the exploding of the blast for which Finerty was drilling a hole when the boss entered the chamber, as the said blast filler the place with loose coal, and thereby making it impossible for the miner to timber the place; and further, that instead of allowing the said blast to be exploded the drilling of the hole should lave been suspended, and the dangerous roof timbered. The jury, as might hare been expected, brought in a verdict of not guilty, and Finerty was acquitted.

It was, no doubt, fortunate for Finerty that this case was disposed of in this manner, yet in a general way it is unfortunate that such a decision shoukl have been rendered.

In my humble opinion there were two very important points overlooked in this case by the court and jury, to wit: First, that the large quantity20 tons-of material loosened, if it ever was, did not prevent Finerty frons blasting down the dangerous roof by standing in the mouth of the crosscut or upon the loosened coal near the solid rib, and that with a hundred times less danger than to load up the loosened coal. The danger in that case, however, would have been rather more to the miner than to the laborer. Sccondly, if ths hole had nut been completed, and consequently not exploded, the necessary timbering could not have been done, as the bottom bench of coal in which the hole was placed must have been taken out to make room for more timber since the roof outside of the said bottom bench had been previonsly pretty well timbered, and the dangerous roof extended inwards five or six feet over the bottom coal; hence it was impossible to timber, as the court suggested, until the bottom bench was removed, i.e.
and to work the chamber forward, but it was practicable to have put a blast in the ball roof either before exploding the blast above referred to or afterwards, when the prop was not struck out by the blast as contemplated.

The secret of the whole trouble in this case, as it has been found in many others, was this: That the roof was not passable coal, and its falling upon a quantity of good coal gives extra labor of cleaning, and a probable loss of a portion of the same, and losing their turn of cars; in this way incurring the risk and danger of losing a life and limb sooner than lose a car or two of coal.

It was to endearor to do something towards correcting this evil that this case was pressed; not so much to inflict a punishment upon Mr. Finerty for the death of a fellow-workman, nor yet to avenge the death of Hagerty, as it was to cause our miners in general, including Fis. rty, to consider their responsibilities in such cases and to exercise more care in this particular. In this way I intended the case to be in the interest of saving the lives and lintos of poor creatures in the future as well as to try and reduce the list of our fatal accidents under this head. In this anticipation I_{s} was at least partly foiled, yet 1 hope that many may take the lesson it was inrended to convey.

Accident No. 39. James O'Connell, a miner, was instantly killed by a fall of rock while working on shares with his brother in a gangway in No. 5 colliery, D. and H. C. Co.'s mines, Plymouth.

It appeared that James was not in the face of the gangway at the time that the first part of the fall came down, which caught his brother tharles, but hearing the same he immediately jumped to his brother's rescue, and no sooner had he done so than a large mass of rock additional fell, crushing hin to death instantly. His brother Charles' life, however, was spared, although very dangerously injured, his life being despaired of by his friends for many weeks.

This is one of the many cases on record in mining where one miner sacrifices his own life in the attempt to save that of his fellow workman. There is quite a contrast between this case and the one last mentioned, and it is bardly fair to soppose the difference is all to be attributed to the relationship exhisting ; in the latter case it is more in accord with the characteristics of a brave and daring miner.

In Silafts.

There was but one life lost during the jear, against fourteen lives lost last year. Last year this item was 22.22 per cent. of the whole number killed, and this year (1876) it was 1.82 per cent.

Accident No. 51.-Anthony Earley lost his life while working in the Dakwood shaft, Prospect colliery, about 8 o'elock P. M., Sunday, 31st day of December. He was attending to the water buckets to see that they would fill properly when lowered into the shaft bottom. He gave a signal to be hoisted, which was complied with by the engince: ; bat it appears that by some means unknown he fell out or off the hoisting bucket when a part way up, and dropped back probably four or five hundred fect. The shaft is altogether over seven hundred feet. There was nothing being doue in the shaft at the time except hoisting water, hence there was no other person in the shaft, and it will always remain a mystery what caused the uufortunate man to fall, as he was well accustomed to riding in a shaft, having worked in the said shaft in various capacities for some time. The distance fiom which he fell was judged from the manner in which his clothing was found along the shaft at different parts.

By Mine Cars

There were four lives lost by mine cars in various ways, against an average of eight for each of the preceding five years; one-half below the average of those years. The percentage of this number is 7.27 per cent. of the whole number killed during the year.

Of the four persons who lost their lives three of them were atults and one a youth of fourtecn years.

It is not to be wondered at that the aceidents from cars, in killed and injured, are so mmerous when we consider the enormous amount of handing there is upon each and every car where the inclination of the seam is not enough for the coal to slide upon the floor from the face of the chamber to the gangway. The cars in such a case have got to be hauled from the main gaugway up grades from one to ten, and in extreme cases as high as fourteen degrees to reach the faces of the chambers. After being loaded those cars are run down by a driver boy or car runner to the main gangway, requiring in most cases, if sprags are used, from one to four in each one; other places use friction brakes.

In many cases small boys are employed as drivers and as assistants, who handle most of those cars. The small door boys are employed ro attend to the doors, but it is a difficult task to keep them to their post, as they will ramble around more or less, and when the cars come they rush to attend to their door, but very often are caught by the cars, in the attempt, before reaching the same. Thus happens many accidents of this class.

By Bhasting Powder

There were three persons lost their lives by being burnt by explosion of blasting powder, against three lives lost during the four preceding years, an increase equal to twelve in four years, instead of three, as before mentioned. The percentage of this number equals 5.45 per cent. of the whole number killed. A similar increase is noticable in the list of injured as well.

To any person who travels around amongst the mon who are using blasting powder, and witnesses the very careless, yes, even reckless, manner in which they handle the same, it is more a wonder that many more of them are not destroyed, than it is of the number of lises sacrifice at presentannually.

At least nine-tenths of the risks run by our men in using blasting powder are umecessary.

There is one feature in comection with the powder question that deserves more than a passing notice. Some time ago some of unr powder manufacturers thought well of introducing powder already prepared in paper cartridges, in quantities equivalent to the usual keg-about twenty-five pounds. The new system was introduced by agents traveling through the various collieries. The powder contained in those cartridges was claimed to be a more powerful explosive than the powder heretofore furnished them in kegs, which the agent would endeavor to demonstrate to the satisfaction of the miner: Besides this, that, having those cartridges already made, it saved the miner to purchase paper and soap, and saved him the time and trouble to make them; as the same amount of a superior quality of powder, and those cartridges would be giren the miner for the same price as he formerly had to pay for the keg of powder.

But one of the strongest arguments used was this, that the new system would necessarily lessen the miners' risks from burning by handling the same, the powder in paper bags instead of wooden kegs. The powder thus placed is packed into paper bags called cartridges, about the same diameter as the ones usually used by out miners. These bags or cartridges are
about four or five feet long, and two or three of those doubled or folded in the centre are made equal in weight to the ordinary keg-twenty-five pounds-and packed into a rectangular or square box, sometimes fifty pounds are placed in each of those boxes.

When those boxes and cartridges were first introduced, the party furnishing the same gave a certain number of sheet iron cases or canisters free gratis to whosoever would use the new powder and cartridges. These canisters were calculated to hold three of those cartridges, doubled-equal to twenty-five pounds or the usual keg, and were intended to be strapped over the shoulders and carried upon the back. It has been customary for the men and boys to bring out the powder keg, sometimes for their own domestic use or to sell to some of the mine officers, or some person whom they had given this little perquisite to.

Those persons having this duty to attend to generally pay to the party bringing to them such kegs, a certain sum per keg, not always in cash, however, but in soap, cotton or miners' wick, oil or blasting paper, \&c. Those kegs, afterwards, accumulating to a goodly number, would be sold back to the agent of the party furnishing the powder, in the first place, or some one else, making from ten to twenty cents of profit upon each keg, exclusive of what they can make upon the articles given as pay for the said keg to the miners.

When the wooden boxes were introduced this field of operations became still more profitable, as in many places they denied the miners those boxes altogether. The cartridges in such cases are tied up in a piece of blasting paper, and in this manner it has to be carried into the mine. At other places the miners themselves, to save the trouble of carrying a box into the mine and out again, wonld turn and sell the same to the parties purchasing, right at the powder house or magizine. In some instances not less than the equivalent of two kegs of powder, the contents of one of those boxes, when so arranged, will be given out by those, thus compelling a miner who needs but one keg of blasting powder to take out two. The miner, then, to save himself from loss, from dampness of the powder, has to secure another person to take one-half of the contents of the said box, leaving each the equivalent of one keg of powder. This division, of course, is made right at the powder house, after which the box is sold to the purchasing party.

These boxes bring to those parties, when selling again, from 30 to 40 . cents each, depending whether they pay anything for them and how much, if any. Up to the present the powder has not been subjected to any material danger of explosion, but I make the above explanation to show where the abuses that I am about to point ont have had their origin, \&c.

The men and boys congregate at the head of the slope or shaft, as the case may be, at each colliery in the morning before descending in various sized groups, in some instances probably one hundred or more in one group. This gathering takes place between six and seven o'clock A. M., as they must wait to be lowered into the mine, with not over ten persons upon any car or carriage at one time.

A colliery producing about 500 tons of coal per day would require from 15 to 20 kegs of blasting powder per day, and one producing donble the amount, double the quantity of powder would be required. This would indicate that it would require on an average from one and one-half to one and three-quarters of a pound of powder to each person descending each, colliery per day, or over one-half a keg to each carriage load of ten persons, if taken down the same time as the men. This shows that there is an enormous amonnt of powder used and handled by the men in our mines,
and large quantities often accumulate at the head of the slopes and shafts; just as do the men in the mornings. Let us suppose a case: It is no doubt with miners and persons working in and about the mines, as with persons of other callings, that they are in the habit of nsing tobaceo, and should one of those tied up, in paper, kegs of powder be penetrated by one of the miners' picks or drills, letting out the contents, in whole or in part, while situated near several others at the head of the mine, where there would be, in all probability, a large number of persons waiting an opportunity to descend, having their lamps and tobacco pipes-those that smoke-all lighted up and standing in a place where the aif current is strong, driving sparks from their lamps in all directions; is it not likely that the said loose powder would be ignited, and should it do so would it not be very apt to explode each of the other paper bags with their contents, thereby injuring and perhaps killing a number of persons in proportion to the amount of powder exploded, together with the number of persons in close proxinity to the same? Again a similar supposition might be made of a party descending a shaft, when such could occur as before described.

What a feartul result either of the cases above pictured might be, and unless more care is taken such may take place any time. The above is not only possible, but it is probable where these paper or even canvas bags are used to earry such large quantities of powder into our mines. In fact the above is not all drawn from imagination, I am sorry to say. It happened that some time during the last summer one of those bags did actually open, and its contents spilled upon the floor of the hoisting carriage, where there were a few persons, while descending the Pine Ridge shaft. Fortunately, however, the powder was not exploded.

On the 25th day of July accident No. "S occurred in this same colliery, whereby John T. Moore, Jr., a son of the mine boss, aged thirteen years, lost his life by the explosion of one of those paper powder bags. Another boy, of about the same age, who was with young Moore at the time, was also very seriously burned, and his life was despaired of for a long time.

Mr. Moore, the mine boss, had made it a rule some time previons to this accident not to allow any person to ride in the same car with powder, even with wooden kegs, much less with these paper bags. But this day a miner's. laborer, taking a keg of powder, in those paper bags, for his miner, pitched it into a car near the foot of the shaft, and afterwards went and got a T iron rail and placed it upon the last car in the trip of empty cars. In due time the trip was moved forward by the driver, and at some point on the road the two small boys before mentioned jumped into the car where this porder was in, and soon afterwards an explosion followed, resulting as above mentioned. This is the only fatal accident in this district that can be placed directly to those paper bags, and this was independent of any danger in their usiug, being simply in their transportation from the magazine at the head of the mine into the working place of the miner.

I see by the papers that similar accidents have oceurred from those contrivances in other districts where they are being used. Nor is the danger ended here judging from observations made on my inspection of the different mines, where I see those temporary boxes when taken in lying wide open, the top having been broken by taking it off, the cartridges seattered promiscuously around, some in the box, others upon top. In my opinion the risk run by using those cartridges, as at present, does not lessen our dangers, but has a tendency to increase the same materially.

I call attention to this matter early before we may be required to record some one of those fearful catastrophies, which I have pointed out, that are possible to oceur at any time under our present system of handling powder.

I hare protested against the use of those paper or canvas bags, and endorse nothing as their substitate, unless it be mooden kegs ur boxes. sheet irou or tin cans or canisters. The said protest I sent to the oficers of the companies in shusc woths I found those nuisances being used. Messrs. A. H. Tanding and Christ. Scharar, oficers of the D. an I H. Coal Companr, hare cheerfully cumplied and are carrying out my request, haring issued orders to that eflect to their subordinate officers.

I hare seen as higit as two and three of those paper powder bars, equal to fift or serenty-ite pounds of blasting powler, lring together on the bottoin of a slope, thrown across each other as if they were bage of poza. tues, and that where there were a number of small bors, door attendants, aud others half grown.

What a contrast this manner of hising and banding of powder in this country is to that of England, where it is against the mining law to allow any person to take any more than some ire or six pounds at any one time. or to be in his working place. It is true that our requirements being so much mare we must hamale larger quantities: yet it shows that in England, where a macin less quantity is required to be used and handled, thes saw the need of stringent laws upon handling of sbe same.

Aceident No. 33. Thomas Colemain, a miner working in the Hillman colliery, was ev seriouslr burned br explosion of a kez of blasting powder that he died of bis injuries in a few dars at the City hospital. The poreder mas ignited from a spark dropping from his lamp into the open end of the keg.

Accilent So. 3!. Darid O. Uwens, a miner worning in the Notingam colliery, lost his life by explosion of blasting powder while haadling of it in a cireless manner, a spars from his lamp igniting an exploding nearly a hog of the same.

In those two cases the powder was ignitei and expiched while being handle?-premaring it into cartridges, sc. lievertheless it is true that with proper are it should uot and never would hare exploded in the manLer aforesaid, uuless by the most reckless mode of handing an? exposing of the sime.

The miners generally hare a rectaugular box for cash parts, male of inch bemloct or pine looards, varring ia length from two and a balf to three and a half feet, and about eighteen inches wide br eighteen or trentr inches in depth. In these boxes the miners heep their supplies, such as oll, wica, blastiug paper, soav and poxder, de.

The box is usualiy located prettr convenient to the face of the working place, as ther mast often risit it let it mast be protected from the flying coals from their blasts, hence they are geveralis placed in the inside cross-cut-i. e. the place where the air-curreat passes nearest to the faces through the piliar, between the two working places. If in a gangmar, the boy is also either place. in a cross-cut or in some recess in the side or rib, in either: case it is rery ofen phaced where there is a strong current of air passing, depending somewhat upon the sectional area of the place. as well as the quantity of air passing.

The milers in our antaracite coal mines use oil lamps for light, whicis are hooked upou a piece of leatcer fastened on the front part of their hats. And, strange to say, it is a rery common thing to see a miner-3 man of mature rears, perhaps haring spent the most of his rears in uader-ground wort-haring his lamp lighted and fastened upon his kead, and with cartridge in one hand, with ead open, and pouriag powder fato his cartridge from a keg, from the bang-hole of the beg. In other cases, and perhaps the majority of them, the one end of the keg is broken in and thrown amar, thus leting the whole face of the kez open, which is temporarily corered
by a sheet or twa of blasting paper. The miner who opens his keg thus, takes the paper off and nses a small tin can or cnp, or his hand to fill his cartridge with powder. Thas the powder in the cartridge and in the broken leg mast necessarily be exposed during this length of time, this is the eritical time and point which most of our men suffer from If the miner has his lamp upon his head. and the usual cinders upon the wick, which are continually being binwn around by the air-current and exploding like small torpedoes, or if he places his lamp upon the side, in close proximity to the box, to enable him to see his work of making and filling the cartrilge, and espocially if placed in the direction from which the wind blows towards the powder; then, I ask, is it any ironder that we have so many killed and injured thereby. Besides this the porrder is spilled in and around the hox, and for a short time is liable to be ignited by a spark from anywhere and explode the whole of the powder in the box. Tise miner and his laborer must needs open their box very often during each day's work, and freguently they use it as a scat or place uf rest ; during either of those visits they are lable to be blown up by this loose powder igniting and exploding the balance in kegs or otherwise.

In fact many accidents have necurred from powder exploding from sparks from lamps of parties while sitting upon and around those boxes.

Miscemaneous Under Groend.

1) ming the year there were fourteen lives lost under this head, equal to 25.44 ner cent. of the whole number of lives lost during the year.

In the sub-division of this head, the one item of by blasts in coal and rock, produced ten out of the furrteen, equal to 71.43 per cent. of those moder the head of the miscellancous, and equal to 13.18 per cent. of the total number of lives lost during the year. liesides this, fourteen person we:e seriously injured by the same cause.

As can be seen from the tahles accompanring this report, one life was Wost by blast in 1872, four in 1873, four in 1874, cight in 1875, aad ten in 1855 , erqual to 10.34 per ceut. of the total number of lives lost during thee five years.

Thus it will be obvious to any one that our accidents have inereaset, under this head, to nearly double the average of the last five jears.

Why this steady increase takes place I know not, nor can I think of but two ways how to acconnt for it. First, our mines are getting decper, and the working places are erolring greater quantities of explosire gas, consequently these feeders or jets may be the canse of some of this increase. secondly, there are ra:ious kinds of contrivances introduced to explode the blasts, called "safety squibs." Their names would indicate that their patentees lay claim to their being an improvement on our old mode of ex-ploding-by straw or paper squibs-in regard to safety. In my opinion the case is rather to the reverse of this, as I think they have a tendency to inerease rather than decrease our accidents by their use.

Ny reason for pointing ont these items is this: that we may endeavor to find out the canse of so great an increase in our fatalities, and if within firr power to prevent the same.

The increuse of gas, l a:n confident, has a tendency to increase the danger from explosions of blasts materially ; yet this caunot be the only cause of the great increase of the said item.

The question of those patent sfuibs is not quite so clear to my inind, althongh a mmber of accidents have occurred where they were being used. I am inclined, howerer, to attribute a part of this increase, from explosions of blasts, to their use. In conversing with the miners who are, or who have been,
using them, I meet very many who discomitenance their use altogether, others again speak doubtful of their safety. The mine bosses in most instances are arersed to their use, as they do not consider them as safe as the ordinary straws or squibs of the miners' own preparing.

The majority of those casualties occur when the miner is just on his return to, or has reached the spot where the hole is located, for the purpose of re-touching-supposing the first mateh to have quenched or straw to have missed fire. A few, however, occur while retreating, after igniting the match, attempting to reach a place of safety, caused sometimes by too short a match, or probably inclined too much, and other times by their falling on the road, the blast exploding ere they reach their contemplated place of refuge.

Again, it may happen that a small gas jet or feeder issues from the hole through the straw, or it may be that some carcless or thoughtless person has cut the both ends of the straw, thereby exposing the powder to the Hame immediately. A few, also, have been killed by the very foolbardy operation of ramming into a hole, not large enough or not quite circular, a cartridge of powder with the butt or tamping end of the drill, sometimes two men have undertook to force the cartridge in, in this manner.

I have hesitated a good while, rather than speak hastily against those patent squibs, knowing them to be a convenient article for the miner, and further, that they were introduced and manufactured by individual enterprise at great cost and risk. I have came to the conclusion, however, that it is my duty to call attention to what appears to me, at least, an additional source of danger. In this opinion I am sustained by some of our most experienced miners and ablest mining bosses. It may be well that I should point out some of the objections raised by miners against those squibs.

First, they are somewhat longer than the usual straw used by minersthat, could be remedied by making it shorter, by the miner or any one else.

Next, the match is attached to one or two kinds of them, made from the same paper as the squib, i. e., they are une and the same piece of paper.

The match is greased, or is prepared according to the kind of match desired. The one kind is intended to burn up into a flame, while the other is: much like the miners' touch paper, that does not cause a flame, it merely burns in what the miners call a dead fire.

Those matches in being made are twisted from the powder outwards, or the reverse, for about two inches or more. It is stated the powder extends sometimes out into the twisted match, thus deceiving the person igniting the same, in the actual length of time required, before it explodes the blast. after being iguited.

In this case the niner is liable to be caught before he reaches his place of safety.

The same is said of the match made to be used in gas, when the sameburns without showing any flame, they burn more rapid in some cases thanin others, thus disappointing the men in their time. Also that they burn so dimly that it is impossible to see, whether they are quenched or not, unless very close to them.

The most of those squids are being used in blasting barrels in this district, and it is generally the case that the barrel becomes bent by using into erery shape. It is afterwards straightened, yet the short bends or kinks are hard to get out, and sometimes it is bent by tamping to some extent, so that if a straw or squib of moch length is sent in it becomes fast or ties between those short bends.

It is questionable also with me whether or not that those patent squibs are more apt to hang fire, i. e. should the powder in them explode, than
the paper or straw squibs, and thus ignite some grain of powder that had been left unexploded from dampness or other cause, and thereby explode the blast. One thing is certain, and that is this: that with a proper means to explode those blasts the lives of many valuable men might have been saved; and unless some improrement is had in this direction this needless loss of life will continue. Had we a proper system of exploding the blasts in coal and rock, and not to attempt to pick out the tamping from holes that have minsed fire, especially in rock, then at least nine-tenths of these accidents would not occur. It appears to me that some arrangement could be used similar to the voltaic battery, as used at many of our rock tunnel driving and shaft sinking. In this way each miner before exploding his blast would necessarily have reached a place of safety before getting to the exploding apparatus, and no danger could exist from the blast hanging fire and exploding when being approached by the miner as in our present system.

In some of our fiery mines the blasting has been clone by using safety fuse, and is being used at present where the gas is very strong, the expense of which is borne by the company. In a few rare cases the battery has been applied. To the use of the fuse the matter of additional expense is quite an argument, when the very important part of its being liable, like a paper or patent squib, to hang fire and explode almost at any lengtlo of time after the proper time, is also against their adoption. This uncertainty of the fuse exploding the blast, or length of time required to do so, is caused, as our miners well know, from defects in the construction of the same, or it may have occurred from the place where they are kept, caused probably from unequal exposure. Other times difficulty is found from unequal pressure from tamping or stemming.

The matter of additional expense to explode blasts is still a more formidable argument to the use of the battery; as its first cost is great, as well as the continual expense of exploders and wire, or conductors that would require renewing frequently. Yet it is the question of almost perfect safety of life and limb against the matter of dollars and cents, in relation to the present system of exploding blasts in coal and rock, and one recommended costing more dollars and cents but less lives and limbs.

The objection on account of the expense is liable to be greatly modified, if not altogether removed, by having improved arrangements, specially adapted to such work. The gieat number required would also enable them to be :nanufactured much cheaper than at present when their sales are so limited. Should this matter be treated in a point of view relating to expense, how can we tell or make any estinate of what our present system does cost to explode blasts.

We have our own home-made paper squibs, straws and matches, which cost so much which is seldom if ever calculated, although the actual cost of this item may be easily had. Next comes the time required to explode the number of blasts required by a party of two-miner and his laborerfor a certain length of time, say a month, of twenty-five working days, o: three hundred days per year.

First, we must estimate the number of blasts required by such a party working in a wide place or chamber, in a seam of coal about 7 feet thick. In such a case it would require about six charges per day, equal to 25×6 $=150$ charges per month, or $=1,800$ per year.

If it should require five minutes to explode each blast this would equal for one party $5 \times 6=30$ minutes=one-half hour per day for two persons, and for one month equal to 25 half hours for each, or 25 hours for one person, equal to two and one-half days labor for one person, of ten hours per day-but really nearer three days, working time.

In a year the time would be equal to $2.5 \times 12=30$ days labor in this one item.

In the above we have calculated but the one item of time required to explode the blasts, when every thing is favorable, and no allowance is made for blasts missing fire, which they often do to the extent of a dozen timed if the hole be a dry one, if not the charge is lost by getting wet, perhaps immediately after the fist or second effort to explode it. This is the point in which the greatest amonnt of time is lost and danger incurred. The blast does not explode, the miner's laborer has a car partially loaded, and the miner has not sufficient coal loose to enable the laborer to complete the load. The miner by this time begins to be alarmed about the charge of powder that is likely to lee lost, and the time that will be required to pick out the tamping, make another cartridge, reload and explode. Besides this he is liable to lose his trip of cars, as the driver or runner may come any monent to run out and exchange his car if loaded. These and kindred thoughts hurry the, by this time, impatient miner to rush into his place, sometimes no doubt unwisely, not giving really the usual time for the blast, and especially so after a blast has missed fire several times. Again, it is impossible to say how long a time it will require for any of those paper or wick matches to burn a certain length, as it depends upon the manner of their oiling, the quantity and quality used, their length and the inclination of the same Another thing that effects the tine of their burning as much if not more than anything else is the condition of the air, ans if a current should strike or move the flame, then it is important to know whether it increases or decreases its time of buning. Many a time the strong air-current fans the flame rapidly th the straw or squib. The discharge of carbureted hydrogen gas also effects the preserit system of exploding blasts. It issues to such a great extent from some holes in our mines that hours have been required to explode a single blast, the force of the gas being too much to allow the straw or squib to penctrate the charge through the needle hole or blasting barrel. In some iustances the powder, when in small grains, has been forced ont of the eartridges, and frequently out of the squib. Other times the straw being fastened, the gas ignites from the match near the mouth of the hole, and keeps burning away, the blaze of which can be plainly seen a long distance.

The miner finally gets impatient and he ventures on towards the blast, with something in his hand to try and extinguish the flame or feeder and at the same time he knows not what instant the same may explode and in all probability be the cause of his instant death ; yet he must do something: or the gas may burn for any length of time, and it must be put out for fear of other consequences.

The reason that the gas doos not burn the straw or squib is this: the gas is forced out of the hole through the small straw and has considerable pressure, hence it is foreed a short distance beyond the end of the straw or squib with a constant force or pressure, nearly. The gas as it leaves the hole is not explosive, but becomes so by a certain mixture of atmospheric air, which it receives ere it is consumed outside the straw.

The flame, in the manner above described, in many cases is not in contact with the straw at all, while in many other cases the straw or squib is ignited by the gas-feeder or flame therefrom; the reason of which that in that case the quantity and pressure is less and the mixture required to canse it to bo explosive is reached quicker; hence the pure gas-which is not explosive-is not forced so far ontside the straw, therefore tie flame ignites the straw or paper and from that the powder explodes.

These frasfeeders have, in many cases, been extinguished, and the straw appearing unseorched and perfectly cool when taken out and exanined.

In addition to the above long list of items then comes the loss of time cansed by accidents occurring under this head. Whenever there is a serious accident, or a fatal case, the colliery is stopped for the day, and very often until the day after the funeral, cansing the loss of from one to three days per aceident to the miner and his laborer. This ought also to be added to the expense of our present system of exploding blasts.
ln the above we have only reckoned the matter of dollars and cents to the miner and his laborer, which is impossible to get exactly, on account of the time required to pick ont the tamping and re-tonch after re-loading of the charge ; also the expense of the powder lost and the value of the time lost in these varions operations.

Next comes the loss of human lives and loss of limbs. Many of those injured must be cripples for life, and therefore are objects of public charity generally. But the matter of loss of lives is not to be calculated by dollars and cents. In order to do what we can to save the lives and limbs of those poor and unfortunate beings any system should be adopted that promises an improvement over the present. I dwell more upon this item than on any other is the whole list of accidents, the reason for which is this: I see that it is one of the heaviest items on the list, fills of roof and sides. being the highest and blasts the second highest. In the second place 1 think that an improrement could and should be made in this department resulting in the saving of many lives that would otherwise be lost.

In the total number of lives lost in Eugland for 1574, amounting to 1,056, thirty were attributed to blasts in various ways, equal to 2.84 per cent. of the whole number, while ours in this listrict for 1876 equals 18.18 per cent., nearly six times the percentage of the former. This is due no doubt from the excess of powder used in this district over what they require to use ire mining the bituminons coals.

The other four deaths elassed muder this head occurred as follows: One by falling under a locomotive engine in the mines; one by being drowned in bottom of new shaft by falling under platform which was covered by several feet of water; one by being crushed by hoisting carriage in carriage pit at foot of shaft; a boy 12 years of age looking for employment, and oue died from wounds received by being kieked by a mule.

On Surface.

There were three lives lost under the above head. Oue by car un culny bank, one by railroad cars under coal breaker, one by falling into pony roilers in breaker, by carelessues, on his own part; his age being but about ten years, he probably did not comprehend the great danger incurred whens disobeying the advice of men and boys around him.

Imphorements.

There has been but a very limited amont of work done in this district under the above head during the year just ended. Indeed, much less than in any year since 1870.

Shaft Sinhing.

The Ellenwood coal company has completing one of their shafts to the coal, but a connection to the second shaft, which is intended as their second opening, is not yet effected.

The Naltby circular shaft, begun in 1872, has not yet been completed. The time of my last visit, during the summer, the cast iron tubing had
been lowered to a depth of about one hundred and forty feet, and the stiperintendent stated that they had about fourteen feet more to go before striking the solid rock. Subsequently 1 have been informed tlat the whole operation has been suspended for some time.

Second Opening. -The following shafts at present have no lawful second opening: Nos. 1 and 2, Susquehanna coal company, at East Nanticoke ; Conyngham shaft, Delaware and Hudson coal company, near Wilkesbarre ; Ellenwood shaft, Ellenwood coal company, near Kingston. The respective parties are driving for the second opening in each case, except the latter; operations in the same having been suspended since 1875 .

Mines on Fire.

The Empire mine fire is not extinguished altogether yet. Although it causes but very little inconvenience or expense as at present. Whatever amount of fire that there is in the said old mines is located very near the crop of the seam. The same being above water level is hard to overcome in any manner, as the periphery of so large an area is almost impossible to be made perfectly air tight; hence a certain amount of fresh fuel is added to the fire, no doubt continually. The inclosed space having been opened at the lower level several times, the carbonic acid gas has been drained from the higher point, and to get another fresh supply sufficient to fill the whole space, the same being mannfactured by the slow process of the consumption of oxygen by the present fire is almost out of the question.

The Baltimore Old Mine Fire.-This old mine is still burning. It is confined to the boundaries, as described in my last report, and requires but a few persons to attend to the same.

Prospect Shaft Fire. - The Prospect shaft colliery was again visited by the ravages of a fire during the year of a very severe character.

On the - day of January, at about 8 P. M., a blast was fired in the face of the north-west gangway, from which the gas ignited around the face. The men began to combat the fire, but by some mishap one of the water connections would not work, hence they could not employ their hose and force of water upon which they depended. Before they got the same changed and in order to work, requiring perhaps three-quarters of an hour, the fire had gained such headway that they were unable to cope with it. The fire had crept back opposite them throngh the airway or return, they being in the intake. In the combat the buss, Samuels and two of his men were more or less burned on their faces and hands, but not seriously, but before twelve o'clock midnight they were all compelled to abandon their efforts and retreat to the surface, after which the water from the reservoir was turned in to flood the mine. They had a two aud a-half inch gas pipe from the shaft's foot to the face of the gangway, connected immediately with the reservoir on the surface, thus having a head of six hundred (600) feet. This appliance had been kept in readiness and often successfully employed since the great fire of 1874. The operation of flooding the mine by letting in the water from the large reservoir near the shaft's head, and pumping from the river and canal, sufficient to prevent tie admittance of atmospheric air, took several days. After that the water had reached a height of about one hundred (100) feet, or sixty (60) feet above the highest point excarated in the workings-pumping water into the shaft was discontinued. Having given ample time for cooling the strata, the hoisting of water from the mine was now commenced Some of the chambers on the pitch had been worked up quite a ways, having reached perhaps, in some cases, as high as forty feet vertical above the shaft gangway.

On the seventh of March they had reached or got the water out to within about forty (40) feet of the shaft's bottom.

At this time they noticed that the gas was escaping very fast, judging from its noise in the shaft, and in consequence orders were immediately given by the boss in charge, Mr. Wms. Patten, not to let any naked lamp or fire be brought near the shaft head. Abont nine o'elock P. M. Jacob Glotz was un duty as headman, with nothing to do but to see that no person violated the orders above mentioned, and that nothing might go wrong unnoticed with the water tanks, as they were provided with a trip so that they emptied their contents automatically. The night watchman, Charles Nolan, came along with his lantern upon his arm, and Glotz, the headman, stated that he hailed the watchman, and told him to stand away with his lantern. Just at the time a tank or bucket of water was being landed, and at once the gas was ignited from the watchman's lantern. An explosion followed, from which both the men were severely burned on their faces and hands, and were violently thrown in different directions.

This was the first scene in this surface panorama, and was considered by eye-witnesses as one of the most terrible yet grandest spectacles ever witnessed at the head of coal pit or shaft, at least in this country. The explosions followed each other at intervals of abont fifteen minutes, decreasing in force to some extent each time. Thus it continued until between twelve and one o'clock that night. The gas that was escaping in such fearful volumes from its pent-up reservoir in the mine, no doubt, ascended the shaft in a solid stream in the upward enrrent formed by the water tank's fast motion, which must have been moving at the rate of about fifteen feet per second. The water having been high enough in the shaft to prevent a circulation of air through the mine since a few days after the fire took place, and increasing in its pressure or head continually until it reached the highest point, the escape of gas during this time must have been very limited. When the water had filled twenty-fire feet at the shaft-foot all eireulation must have been suspended. The highest point reached in the interior of the mine would be about forty (4θ) feet vertical. This would indicate that the difference between the highest point in the excavated mine and the level of the water when the admittance of atmospheric air was cut off, consisting of fifteen feet vertical, covering an extensive area, must have been a cavity full of gas and air. This eavity would act in this case much like an air chamber attacherl to a pump, an elastic or spring; besides this, it would be a receptacle for the gas that could penetrate it. The pressure in the aforementioned space must have been increasing from two causes: First, the continued increase of pressure in the strata, which must have been considerable, as the one side of the mine, where the explosion occurred, generated about two thousand $(2,000)$ cubic feet of pure carbureted hydrogen gas under the ordinary atmospheric pressure. The other parts of the mine altogether must have given about the same quantity. What amount of this discharge would be retarded from the increase in pressure from the head of water is hard to tell. Secondly, the pressure upon and consequently the density of the contents of the same must have been affected materially from the increase in the head of water in the shaft. In fact the density of the contents of said aeriform cavity or dry part of the mine must bave been sufficient to withstand the pressure from the head of water above it in the shaft at the time.

It was stated by the officers of the mine that so strong was the force of the pent up gas that when there was sixty feet of water in the shaft the timber, that had fell into the shaft from the head frame and otherwise, of large dimensions were kept up from the surface of the water two or three feet by the force of the gas. The head frame, generally called head house, was of wood, but had not a board or plank upon it, yet it was ignited from
the flame of the first great gas explosion, the sparks from which either fell and touched off a fresh supply of gas down near the surface of the water, or else the gas was escaping so fast from below that it ascended to the head and iguited from the burning timber, causing the balance of the intermittent explosions. Those volcanic cruptions, as it were, could be seen for many miles of the surrounding country, and the concussions were felt by several parties in Pittston, a distance of some seven miles easterly; to the west they were not so far heard or felt.

After many months of anxious and hazardons working the mine wasagain got into working order.

The new Gubal fan, 30 feet diameter, was started, and has been kept runuing since work was resumed.

I wuuld state that the fan above mentioned was ready the time of the fire, all except about one or two days' work to make the necessary connections, which was to have been completed during the week the mine took fire.

It will be remembered that there was a fan of the same pattern, 20 feet diameter, there since the opening of the mine, and the new fan is erected at the Oakwood shaift or second opening to the Prospect shaft.

Since work was resumed they have put in a second water pipe, to the face of the north-west gangway, of the same dimensions as the other one a forementioned, with connections to either of the two shafts; and even with all the above facilities to fight the fire they have had several hard struggles since.

The officers have made some very important improvements in the rentilation by cutting a new return, with its accompanying intake, which enables them to employ additional splits of the main current. In fact this and many others of our mines cannot be worked unless they have the main current divided into many separate currents or splits, at the same time each must have a strong force, as well as large quantity, to prevent them from being too weak to penetrate the corners and places in adrance, and not be overcharged with explosive gas. On my visit to this mine in December last, in company with the visiting inspectors from four of the other districts of the anthracite coal fields of this State, I found it in what I called first class condition, considering what difficulties they had to contend against. The officers are Frederick Mercur, superintendent; Wm. Patton, outside foreman, and Wm. Samuel, mine boss.

I wonld here state that we also visited the Wyoming colliery the same day, and must also statc that we found this colliery in most excellent condition in every particular. This mine generates explosive gas at about the same rate as Prospect colliery, in some of its parts, requiring from 20,000 to 25,000 to enable them to drive a gangway and its accompanying airway, and then not be able to carry a naked lamp near the face, when brattice, in adrance of the cross-cut, would be within 8 or 10 feet of the solid face. There is over $100,000 \mathrm{cubic}$ feet of air circulated in this mine per minute, being divided into four separate splits. The officers are J. H. Swoyer, general manager; Charles II. Leonard, general superintendent; William M'Culloch, general mining superintendent; Philip Wintersteen, outside foreman, and Jenkin B. Joncs, mining boss.

Steam-boller Inspection.

Although fortunately we did not lose any lives by explosions of steamboilers during the year, yet the remarks made in my last report is just as applicable in the present, still they need not be repeated, but wish to call attention to the subject, as I am fully convinced that something should be dove in the premises similar to what was recommended in the report of 1875.

Inspectors' Report.

During the last several years successively the annual reports of the Ponn sylvania Inspectors of Mines have been made the subject of unfavorable criticisms, and a great deal of ridicule, from some of our scientific jommals and other sources. Those criticisms have been more particularly upon the document as an official State report purporting to contain original contributions upon scientific subjects, also extracts quoted from varions works in the shape of compilation. The said conglomeration is generally placed in the front part of the said reports and is accredited to the clerk of the mining district of Potsville. The reports, or work of the inspectors themselves, have not been quite so mercilessly treated. I do not here intend to defend our mutilated and much abused reports so much as to explain some few points relating thereto. In my opinion our reports would receive as hard blows from able critics for not having in them what they ought to contain as they possibly can receire for what little there is in them, if not more so.

In relation to the matter of clerkship it is generally supposed by the public that the officer called "Clerk of the mining district," \&c., is really an assistant to the inspectors to attend to their writings, \&c. I would like to correct this wrong impression. The said clerks are not required by the law creating the said oftice to do any such a thing, as wiil be seen by reading the same, which I insert to prove my statement. It is true that the clerk of the Schuylkill district has been doing considerable work for some of the first inspectors appointed in the said district by a mutual understanding amongst themselves. The first clerk in this, the Luzerne and Uarbon counties, or Wilkesbarre district, during his term of tive years lived strictly up to the letter of the law. The present clerk is walkiug in the track of his predecessor in this regard. He has been in office since 1875. Mr. Chase resides in the city of Scranton and runs the paper called "Daily Tmes." He keeps a clerk to attend to the work of the "mining clerk"-keeping an office open, \&o., in this city. The law requires the clerk to keep an office open, but really nothing else. This is equivalent to doing nothing, and so far as our clerks are concerued they have done so admirably for the last six and a-half years, with prospects of several more years of the same fatiguing task.

Many persons suppose that those "mining clerks," or as generally called the "inspectors' clerks," are officiating under the rentilation law of 1870 , or a supplement thereto. It was passed and sigued just one month and two days later than the rentilation law, as can be seen by the date attached thereto. This, together with its title, is sufficient proof that it is neither a part of nor supplement to the mining law aforementioned. The haw creating the said clerkship was enacted for the express purpose of ereating an office for a person that was about being legislated out of office by the mining law of 1870 , which superceded the law of 1869.

In the inspectors' reports for 1875 I observed that a copy purporting to be the mining law of 1870 had been inserted, but on examination, to my great surprise, I found some of the most glaring errors incladed in said document. The said document is inserted immediately preceding the reports of the inspectors and following the name of the clerk of the district of Schuylkill, hence it is to be inferred that it was a part of his report.

The first item of importance that I wish to call attention to, is the insertion of the following words in section tel (10), page seventy-six (76): "shall be guilty of a misdemeanor, and upon conviction thereof shall be punished by a fine not less than ten dollars nor more than one hundred, and no owner or agent shall employ any boy knowing that he has not attained
to twelve years of age." In section twelve the following clause is sandwiched in in a similar manner, "or his deputy." But the climax is reached in the insertion of the " Live Stock Amendment," between sections nineteen and twenty.

The aforementioned live stock amendment, during the passage of the law in 1870, was offered by Senator Brodhead, from Carbon county, but never passed, hence it should not have been quoted as part of said law. The placing of said words between the sectious before mentioned appears as if it was lesignedly done to deceive the unwary.

The above quotations are only a few of the most extraordinary changes or errors appearing, as the whole of it is mutilated more or less. There are any number of omissions of one, two or three words, and nearly as many substitutions. The three parts quoted from in sections ten, twelve and nineteen and twenty are left ont, but the other corrections can be seen by noticing those parts in italics.

I fail to see what object there could have been in view in inserting the law in this mutilated condition, it was rery wrong to say the least, as it is calculated to mislead persons seeking reliable information relating to the same, and thus add to our reports more cause of sarcasm and unfavorable criticisms. Persons having those reports will naturally say and think, that they have the mining law of 1870 correct, as it has been published by the inspectors in their annual reports, and are subject to be deceived in this ridiculons manner.

I msert a copy of the law creating the useless office of "mining clerks," also the mining law of 1870 , as published in the pamphlet laws. I say useless office of mining clerks, \&c., because the Commonwealth has not had or received one penny's worth of value or service for all the money paid towards the maintainance of the said office since its creation in 1870. The insertion of these laws here will enable any person to examine those matters for themselves.

Ventilation Latw of $18 \div 0$.

'כection 1. Be it enacted by the Senate and House of Representatives of the Commonvealth of Pennsylvania in General Assembly met, and it is hereby - enacted by the authority of the same, That the owner or agent of every anthracite coal mine or colliery shall make, or cause to be made, an accurate 'map or plan of the 'workings of such coal mine or colliery on a scale of one hundred feet to the inch, and when there is more than one seam of coal worked in-said coal mine or colliery the map or plan shall exhibit the workings in each seam of coal, and shall state the general inclination of the strata with any material deflection therein in said workings, and the boundary lines of the lands of said coal mines or colliery, a true copy of which map or plan the said owner or agent shall deposit with the inspector of coal mines and collieries for the district in which the coal mine or colliery is situated, within four months from the passage of this act, and one copy shall be kept at the office at each colliery; and the said owner or agent shall furnish to the iuspector aforesaid, on the first day of January and July in every year bereafter, a statement or map or plan of the progress of the workings of such coal mine or colliery during the year past up to date, to enable the inspector to mark the same upon the map or plan of the coal mine or colliery furnished him and deposited with said inspector as hereinbefore provided for; and when any coal mine or colliery is worked out preparatory to being abandoned, when any level or lift thereof is being finished with a view and
for the purpose of being abandoned, or when any of the pillars therein are to be removed, the owner or agent of such coal mine or colliery shall havethe map or plan thereof fumished as hereinbefore provided, or such portions thereof as the case may require, carefully verified; and notice shall be griven to the inspector of the coal mines and collieries for the district, in writing, of the purpose to abandon or remove the pillars, as the case may be.

Section 2. That whenever the owner or agent of any coal mine or colliery shall neglect or refuse or from any canse fail for the period of two months to furnish to the inspestor the map or plan of or the addition thereto provided for in the first section of this act, or if the inspector finds or has reason to believe that any plan or map of any coal mine or colliery furnished him under the provisions of this act is materially inaccurate or imperfcet, he is hereby authorized to cause an accurate map or plan of the actual workings of such coal mine or colliery to be made at the expense of the owner thereof, the cost of which shall be recoserable by law as other debts are from said owner.

Section 3. That four months from and after the passage of this act it shalinot be lawful for the owner or agent of any anthracite coal mine or colliery worked by or through a shaft or slope to employ any person in working within such coal mine or colliery, or to permit any person to be in such coal mine or colliery for the purpose of working therein, unless they are in communication with every seam or stratum of coal worked in such coal mine or colliery, for the time being at work at least two shafts or slopes or outlets separated by natural strata of not less than one hundred and fifty feet in breadth, by which shafts, slopes or outlets distinct means of ingress and egress are always arailable for the person employed in the coal mine or colliery ; but it shall not be necessary for the two shafts, slopes or outlets to belong to the same coal mine or colliery if tho persons therein employed hare ready and available means of ingress and egress by not less than two shafts, slopes or outlets, one or more of which inay belong to another coal mine or colliery : Provided, That a second opening can be had through coal, but that if any tunnel or shaft will be required for the additional opening work upon the same to commence immediately after the passage of this act, and continue until its final completion, with not less than three shifts in cach twenty-four hours, and as many hands to be employed as can be put to work to advantage, the inspector to be the judge as to the least number of hands engaged per shift. This section shall not apply to opening a new coal mine or colliery, nor to any working for the purpose of making a communication between two or more shafts, slopes or outlets, so long as not more than twenty persons are employed at any one time in said new mine or working ; and the term "owner," used in this act. shall mean the immediate proprietor, lessee or occupier, of a coal mine o: colliery, or of any part thereof, and the term "agent" shall mean any person: having, on behalf of the owner, the care or direction of a coal mine or col liery, or of any part thereof.

Secrion 4. The owner or agent of any coal mine or colliery to which there is only one shaft, slope or outlet may petition the court of common pleas in and for the county in which such coal mine or colliery is situated, which said court is hereby empowered to act in the premises, setting forth that in consequence of intervening lands between the working of his coal mine or colliery aud the most practicable point or the only practicable point, as the case may be, at which to make or bring to the surface from the working: of his mine he is unable to make an additional shaft, slope or outlet iss ar:cordance with the requirements of this act, whereupon the court max mnikean order of reference, and appoint three disinterested persons, residenctsol
the county, viewers, one or more of whom shall be a practical mining engincer, all of whom, after being sworn to a faithful discharge of their duties, shall riew and examine the premises and determine as to whether the owner ought or onght not, under the circumstances, to have the privilege of making an additional ontlet through or upon any intervening lands, as the case may require, and report, in writing, to the next term of the court, which report shall be entered and filed of record. If the finding of the viewers, or ally two of them, is in favor of the owner of such coal mine or colliery, he may make an additional shaft, slope or outlet under, through or upon intervening lands, as may be determined upon and provided for by the award If the finding of the viewers is against the owner, or if no award be made by reason of any default or neglect on the part of the owner, be shall be bound to comply with the provisions of this act in the same manner as if this section had not be enacted. In case the said owner or agent desires to and claims that he ought to make an additional opening under, through or upon any adjoining or intervening lands to meet the requirements of this act, for the ingress or egress of the men employed in his or their coal mine or colliery, he or they shall make a statement of the facts in the petition, with a survey setting forth the point of commencement and the point of termination of the proposed outlet which he or they, their engineers, agents and artists may enter upon said intervening lands and survey and mark as he or they shall find it proper to adopt for such additional outlet, dning no damage to the property explored; and the viewers shall state in their report what damage will be sustained by the owner or owners of the intervening lands by the opening, constrncting and using of the outlet, and if the report is not appealed from it shall be liable to be confirmed or rejected by said court as to right and justice shall appertain ; and any further and all proceedings in relation thereto shall be in conformity with like proceedings as in the case of a lateral railroad across or under intervening lands, under the act in relation to lateral railroads, approved the fifth day of May, 1832, and the supplements thereto, so far as the provisions of the same are applicable hereto; and the notices to the owner of intervening lands of the intention to apply for the privilege of making an outlet and meeting of the viewers shall be given, and the costs of the case shall be paid as provided in the said act of fifth day of May, 1832, and the supplement thereto.

Section 5. Any of the courts of law or eqiity of this Commonwealth having jurisdiction where the coal mine or colliery proceeded against is situated, upon application of the inspector of coal mines and collieries of the proper district, acting in behalf of the Commonwealth, shall prohibit, by injunction or otherwise, the working of any mine in which any person is employed in working or is permitted to be for the purpose of working in contravention of the provisions of this act, and may award such costs in the matter of the injunction or other proceedings as the court may think just, but this section shall be without prejudice to any other remedy permitted by law for enforcing the provisions of this act.

Section 6. The owner, lessee, operator or agent of every coal mine or colliery shall erect or provide, at or near the mouth or entrance to such mine, and maintain the same at all times where men are employed in such mine, a suitable building or buildings, supplied with soft water, and properly lighted and warmed for the use of the men employed in such mine to wash and change their clothes when entering the mine and when returning therefrom.

Section 7. The owners or agents of erery coal mine or colliery shall pro-- vide and establish for every such coal mine or colliery an adequate amount
of rentilation, and not less than fifty-five cubic feet per second of pure air, or thirty-three hundred cubic feet per minute for every fifty men at work in such mine, and as much more as cireumstances may require, which shall be circulated through to the face of each and every working place throughout the entire mine to dilute and render harmless and expel therefrom the noxious, poisonous gases to such an extent that the entire mine shall be in a fit state for men to work therein, and be free from danger to the health and lives of the men by reason of said noxious and poisonous gases, and all workings shall be kept clear of standing gas. The ventilation may be produced by using blowing engines, air pumps, forcing or suction fans of sufficient capacity and power, or other suitable appliances as to produce and insure constantly an abundant supply of fresh air throughout the entire mine, but in no case shall a furnace be used in the mine where the coal breaker and chute buildings are built directly over and covering the top of the shaft for the purpose of producing a hot up-cast of air ; and there shall be an intake airway of not less than twenty square feet area, and the return airway shall not be less than tweuty-five square feet.

Section S. The better to secure the ventilation of every coal mine and colliery, and provide for the health and safety of the men employed therein, otherwise and in every respect the owner or agent, as the case may be, in charge of every coal mine or colliery shall employ a competent and practical inside overseer, to be called mining boss, who shall keep a careful watch over the ventilating apparatus, over the airways, the travelingways, the pumps and sumps, the timbering; to see, as the miners adrance in their excavations, that all loose coal, slate or rock overhead is carefully secured against falling, over the arrangements for sigualing from the bottom to the top and from the top to the bottom of the shaft or slope, over the metal tubes from the top to the bottom of the shaft or slope for the purpose of talking through, and all things connected with and appertaining to the safety of the men at work in the mine. He or his assistants shall examine carefully the workings of all mines generating explosive gases every morning before the miners enter the coal mine or colliery, and shall ascertain that the mine is free from danger, and the workmen shall not enter the mine until such examination has been made and reported, and the cause of danger, if any exist, be removed ; and he or his assistant shall also, every evening when the workmen leave the miue or colliery, go over the mine and see that the doors of the passageways are all properly closed, and that all the airways are free and unobstructed to the passage of air through them; and it shall be the duty of the mine boss to measure the ventilation at least once per week at the inlet and outlet, also at or near the face of all gangways, and all measurements to be reported to the inspector once per month.

Section 9. All and every of the safety-lamps used in coal mines or collieries shall be the property of the owner thereof, and shall be under the charge of a suitable person, under the direction of the mining boss, who shall keep them clean and in good order; and the mining boss shall provide that all doors used in assisting or in any way effecting the ventilation of the mine shall be so liung and adjusted as that they will close of their own accord and cannot stand open, and the main air-doors on the traveling. roads shall be double, and an extra door shall be fixed to be closed only in the erent of an accident to one of the others; and the sides and top of such doors shall be well built with stone and mortar in mines in which the inspector shall deem it necessary and shall so order, and all main doors shall be provided with an attendant, whose constant duty it shall be to guard them and prevent them being left open; and every mine having explosive gas in each and every part of such a mine or mines shall be divided into
two, four or more panels or districts, each ventilated by a separate split or current of air, and fifty persons shall be the greatest number that shall: work in any one panel or district at the same time, and bore holes shall bekept twenty feet in advance of the face of each and every place, and if necessary on both sides, when the same is driven towards or approaching an abandoned mine or part of a mine suspected to contain inflammable gases, or which is inundated with water.

Section 10. The owner or agent of every coal mine or colliery opened and operated by shaft or slope shall provide and maintain a metal tube from top to bottom of such slope or shaft suitably calculated and adapted to the free passage of somnd therein, through which conversation may be held by aud between persons at the bottom and at the top of the shaft or slope; and also the ordinary means of signaling from and to the top of the sbaft from the bottom ; and also provide an improved safety catch and a sufficient cover overhead o.i every carriage used for lowering or hoisting persons: and they shall provide and arrange the flanges or horns of sufficient dimensions are attached to the sides of the drum of every machine that is used for lowering or hoisting persons in or out of any mine; an adequate break shall be attached to every drum or machine, worked by steam or water power, that is or will be used for lowering or raising into or out of any of said mines, and the main link attached to the swivel of the wire or any other rope shall be made of the best quality of iron, and tested, by weights. or otherwise, satisfactory to the inspector, and bridle chains shall be attached to the main link from the cross pieces of the carriage, and no single link chain shall be used for lowering or raising persons into or out of any of said mines; and no boy under twelve years of age shall work or enter any mine, and proof must be given of his age, by certificate or otherwise, before he shall be employed, and no father, or any other person shall conceal or misrepresent the age of any boy. The neglect or refusal of any person or parties to perform the duties provided for and required to be performed by sections six, seven, eight, nine and ten of this act, by the parties therein required to perform them, shall be taken and be deemed a misdcmeanor by them or either of them, and upon conviction thereof they or any of them shall be punished by imprisonment and fine or either, at the discretion of the court trying the same.

Section 11. No owner or agent of, or at any coal mine or colliery operated by shaft or slope, shall place in charge of any engine whereby the men are lowered into or hoisted out of the mine, any but experienced, competent, sober engineers; and every engineer so placed in charge of an engine shall constantly attend to the engine of which he has charge, and shall not allow any person, except such as may be depnted by the operator or agent, to touch or meddle with it, or any part of its machinery. He shall work his engine slowly and with great care when any person is ascending or descending the shaft or slope, and when any person is about to descend or ascend the shaft or slope the men at the bottom or top, as the case may be, must inform the engineer by the metal tube, the signal, or otherwise, thereof ; and no one shall interfere with or in any way intimidate the engineer in the discharge of his duties, nor ride upon a loaded wagon or cage in any shaft or slope, and in no case shall more than ten men ride on any wagon or cage at one time in any of said mines; and upon any person violating the provisions of this section he shall be held and deemed guilty of a misdemeanor, and upon conviction thereof he shall be punished by fine and imprisonment, at the discretion of the court trying the same.

Section 12. Whenever loss of life or serious personal injuries to any person shall occur, by reason of any explosion or other accident whatever, in
or about any coal mine or colliery, it shall be the duty of any party having charge of such coal mine or collicry to give notice thereof forthwith, by mail or otherwise, to the inspector of coal mines and colleries for the distriet, and to the coroner of the connty if any person is killed thereby, and due notice shall be given by the coroner of any inquest to be held as the result of any such explosion or accident; and it shall be the duty of the said inspector to immediately repair to the scene of the accident and make such suggestions as may appear necessary to secure the safety of the men; and if the result of the explosion does not refuire an investigation by the coroner he shall investigate into and ascertain the cause of the explosion or accident, and make a record thereof, which he shall preserve with the records of his office ; and to enable him to make the investigation he shall have the power upon such occasion to compel the attendance of persons to testify, and to administer oaths or affirmations thereto, the cost of which investigation shall be paid by the county in which the accident ocenred in the same manner as costs of inquests held by the coroner or justice of the peace are now paid; and the failure of the person in charge of the coal mine or colliery to give notice to the inspector and coroner, as provided for in this section, shall subject him to a fine of not less than twenty-dive dollars nor more than one hundred dollars, to be recovered as other fines are to the county treasury.

Section 13. All boilers used for generating steam in and about coal mines and collieries shall be kept in good order, and the owner or agent thereof shall have them examined and inspected by a competent boilermaker, or other well qualified person, as often as once in six months, and oftener if needed, and the result of such examination, under oath, shall be certified in writing to the inspector for the district ; and all machinery in and abouk the mines, and especially in the coal breakers, where boys work, shall be properly fenced off, and the top of such shaft shall be securely fenced off by vertical of flat gates covering the area of said shaft, and the entrance of every abandoned slope and air or other shafts shall be securely fenced off:

Section 14. Upon the passage of this act the Governor of the Commonwealth of Pennsylvania shall, upon the recommendation of a board of examiners, selected for that purpose, composed of three reputable miners in practice and two reputable mining engineers, to be appointed by the judges of the courts of cominon pleas of Luzerne county, all of whom shall bo sworn to a faithful discharge of their duties, appoint three properly qualified persons to fill the office of inspector of coal mines and collieries in Luzerne and Carbon counties, whose commissions shall be for the term of five years or during good behavior, but they shall be at all times subject to removal from office for neglect of duty or malfeasance in the discharge of duty as hereinafter provided for; and the person so appointed shall haveattained the age of thirty years, be a citizen of Pennsylvania, and have a knowledge of the differcut systems of working coal mines, and have been intimately connected with the anthracite coal mines of Pennsylrania for a period of five years, and have had experience in the working and ventilation of coal mines where fire-damp and noxions gases are evolved. Before eutering upon their duties they shall take an oath or affirmation, before an officer qualified to administer the same, that they will perform the duties of the office with impartiality and fidelity, which oath or affirmation shall be filed in the office of the prothonotary of the county; and they shall provide themselves with the most approved modern instruments and chemical tests for carrying out the intentions of this act. The examiners provided for in this act shall be appointed by the judges of the courts of common pleas for the county at the first term of the court in each year, to hold.
their places during the year, and vacancies shall be filled by the court as they occur; and the said examincrs shall meet whenever caudidates for the office of inspector of mines are to be appointed, of which meeting public notice shall be given in at least two papers published in the county at least two weeks before the meeting. The examiners shall agree in their recommendation of candidates to the Gorernor, and they shall recommend only such as they find qualified for the office; the said examiners shall receire three dollars per day for every day they are actually engaged in the discharge of their duties of examiners under this act, to be paid to them by the county ; one inspector shall be appointed for the district in the Wyoning coal field, Luzerne county, lying east of and including Jenkins township, and one district shall be composed of that part of Wyoming coal field lying west of Jenkins township and west of the Susquehanna river, and one other district shall be composed of that part of Luzerne county lying south of the Wyoming coal field, together with Carbon county.

Section 15 The term of office of inspector of coal mines, appointed under an act for the better regulation and rentilation of mines and for the protection of the lives of the miners in the county of Schuylkill, approved A pril the twelfth, one thousand eight hundred aul sixty-nine, shall expire on the first day of June, Anno Domini one thousand eight hundred and seventy, and in his room three inspectors of mines, for the counties of Schuylkill, Dauphin, Northumberland and Columbia, shall be appointed by examiners, to be appointed by the court of common pleas of Schuylkill county in like manner and form provided by the fourteenth section of this act ; and the said examiners and inspectors, when so appointed, shall be subject to like regulations and duties, and entitled to like privileges, franchises and salaries as are in the said section provided for the examiners and inspectors for the counties of Luzerne and Carbon ; and the inspectors for the said counties of Schuylkill, Northumberland, Dauphin and Columhia shall be assigned to duty in separate districts in said counties, which said districts shall be laid out and fixed by the examiners as aforesaid, to be appointed by the court of common pleas of the county of Schuylkill.

Section 16. It shall be the duty of the court of common pleas of the proper county whenever a petition, signed by not less than fifteen reputable coal operators or coal miners, or both, setting forth that any inspector of coal mines or collieries grossly neglects the duties, or that he is incompetent, or that he is guilty of malfeasance in office, to issue a citation, in the name of the Commonwealth, to the said inspector to appear, at not less than fifteen days' notice, on a day fixed, before said judges, when the said court shall proceed to inquire into and investigate the allegations of the petitioners : and if the court find that the said inspector is grossly neglectful of his duties, or that he is by reason of causes that extend before the appointment, or that have arisen since his appointment, incompetent to perform the duties of said office, or that he is guilty of malfeasance in office, the court certify the same to the Governor of the Commonwealth, who shall declare the office of inspector of the district vacant, and proceed, in compliance with the provisions of this act, to appoint a properly qualified person to fill the office ; and the costs of the said investigation before the courts shall be borne by the removed inspector; but if the allegations of the petitioners are not sustained by the final judgment of the court the costs shall be borne by the said petitioners.

Section 17. The salaries of the said inspectors appointed for Luzerne and Carbon counties shall be three thonsand dollars each; the maps and plans of mines and the records thereof, together with all papers relating thereto, shall be kept by the inspector properly arranged and preserved in a convenient place in the district for which each inspector shall have been appointed.

Section 18. Each of the inspectors of coal mines and collieries shall give this whole time and attention to the duties of the oflice; and it shall be his duty to examine all the coal mines and collieries in his district as oftell as his duties will permit him to do so, to see that every necessary precaution is taken to insure the safety of the workmen, to see that the provisions of this act are observed and obeyed ; and it shall also be each inspectors duty to attend at every inquest held by the coroner, or coroners, in lis district upon bodies killed in or about the coal mines or collieries.

Section 19. That any miner, workman or any other person who shall knowingly injure any safety-lamp, water gauge, barometer, air-course, brattice, or obstruct or throw open air-ways, or carry lighted pipes or matches into places that are worked by safety-lamps, or handle or disturb any part of the machinery of the hoisting engine, or open a door and not have the same closed, whereby danger is caused in the mine, or enter any place of the mine against caution, or disobey any order given in carrying out the provisions of this act, or shall ride upon a loaded car or carriage in any shaft or slope, or on any plane in or around any of said mines, or do any other act whereby the lives or the health of persons, or the security of the mines or the machinery is endangered, or any miner having charge of a working place in any coal mine or colliery who shall neglect or refiuse to keep the roof thereot properly propped and timbered, to prevent the falling of cual, slate or rock, every such person shall be deemed guilty of a misdemeanor, and upon conviction shall be punished by imprisonment and fine at the discretion of the court.

Section 20. It shall be lawful for any inspector to enter, inspect and examine any coal mine or colliery of his district, and the works and machinery belonging thereto, at all reasonable times, by night or by day, but so as not to impede or obstruct the working of the coal mine or colliery, and to make inquiry into and touching the state and condition of such coal mine or colliery, works and machinery, and the rentilation of such coal mine or colliery, and the mode of lighting and using lights in the same, and into all matters and things connected with or relating to the safety of the persons employed in or about the same, and especially to make inquiry whether the provisions of this act are complied with in relation to such coal mine or colliery; and the owner or agent of such coal mone or colliery is hereby required to furnish the means necessary for such entry, inspection, examination and inquiry, of which the said inspector shall make entry in the record of his office, noting the time and material circumstances of the inspection.

Section 21. No person who shall act or practice as a land agent, or as a manager, riewer or agent of any coal mine or colliery, or as a mining engineer, or be interested in operating any coal mine or colliery, shall act as inspector of coal mines or collieries under this act.

Section 22. It shall be the duty of each inspector to make an annual report of his proceedings to the Governor of the Commonwealth at the close of every year, in which he shall fully enumerate all the accidents in and about the coal mines and collieries of his district, marking, in tabular form, those accidents producing death or sarious injury to persons, and the state of the workings of said mines with regard to the safety of the workmen therein and to the ventilation thereof, and the result of his labors generally shall be fully set forth.

Section 23. The salaries of cach of the inspectors of coal mines and collieries, and the expenses of carrying into execution the provisions of this act, shall be paid by the State Treasurer, out of the Treasury of the Commonwealth, upon the warrant of the president judge of the court of common pleas
of Luzerme county for the salaries of the inspectors for Luzerne and Carbon counties, and upon the warrant of the president judge of the court of common pleas of Schuylkill county for the inspectors for the counties of Schuylkill, Columbia, Northumberland and Dauphin; and all inspectors under this act shall reside in the districts for which they are appointed.

Section 24. That for any injury to persons or property occasioned by any violation of this act, or any willful failure to comply with its provisions, by any owner, lessee or operator of any coal mine or opening, a right of action shall accrue to the party injured for any direct damage he may have sustained thereby; and in any case of loss of life by reason of such willful negloct or failure aforesaid, a right of action shall acerue to the widow andlineal heirs of the person whose life shall be lost for like recovery of damages for the injury they shall have sustained.

Section 25. All laws of this Commonwealth that are inconsistent with the provisions of this act are hereby repealed.

BUTLER B. STRANG,

Speaker of the House of Representatives. CHARLES H. STINSON, speaker of the Semate.
APPROTED - The 3d day of Margh, 1870.

AN ACT

For the preservation of the records of the inspection of mines in the mining districts of Schuylkill and Luzerne, embracing the anthracite coal region of Pennsylvania.
Section 1. Be it enacted by the Senate and House of Representaiives of the Commonwealih of Pennsylvania in General Assembly met, and it is hereby enacted by the authority of the same, That the judges of the courts of conmon pleas of Schuylkill and Luzerne counties are hereby dirested to appoint, for their respective mining districts, one competent person each, who shall be designated "clerk of the mining district of Schuylkill," which district shall embrace the counties of Schuylkill, Columbia, Northumberland and Dauphin respectively, and "clerk of the district of Luzerne," which district shall embrace the counties of Iuzerne and Carbon, and who shail hold their said office for the term of five years.

Section 2. It shall be the duty of the several and each inspector, appointed under the provisions of an act for the preservation of the health and safety of miners employed in coal mines, approved the - day of March, Anno Domini one thousand eight hundred and seventy, to make true returns to the said clerks, on or before the first Monday in each and every month, of all data, statistics, matter and thing of which they severally are required to take notice and record under the provisions of said act, and all information deemed by the said courts useful and necessary to the health and safety of miners and workmen, and the proper, skillful and safe working of the miners, in the several districts respectively, and of deaths and accidents, resulting from injuries or neglect, or otherwise, and the circumstances of the person so injured.

Section 3. The said clerks so appointed as aforesaid shall receive and keep a record, under directions of said judges, of all data, statistics, matter, thing or information, either in tabulated form or otherwise, of all such information so returned, and shall allow, at all business hours, full and free access, to all parties interested, to the rocords of such information in his office, where maps of coal mines shall be filed and kept for safety and pre- . servation.

Section 4. The office of the said clerks shall be located in the boroughs of Pottsville and Wilkesbarre respectively, and they shall receive for their services the sum of fifteen hundred dollars per ammum each, payable in like manner as the salaries of the said inspectors under the said act for the preservation of the health and safety of miners, approved as aforesaid.

Secrion 5. Should the said clerks, or either of them, neglect or refuse to discharge the duties of his said office, it shall be lawful for the judges of the said courts aforesaid, or either of them, upon the petition of fifteen reputable citizens, interested in the mining of coal, to examine into the cause and reason of such neglect or refusal, and if said charges are sustained, it shall be the duty of the judges of the said courts haring jurisdiction, to discharge said cleaks, or either of them, forthwith, and appoint a successor.

Section 6. The said clerks shall be citizens of the United States of America, and shall be residents of the district for which they are appointed, and attain the age of thirty-five years, and shall be conversant with the coal mines of their districts for which they are appointed, and shall take an oath or aflirmation before an officer properly qualified to administer the same, that he will faithfully discharge the duties of his office, to the satistaction and under the direction of the judges of the conrts aforesaid, and as the interest of people and law require ; and shall, if so discharged or remored, deliver over to the said judge of the district, and to his successor, all papers, records, maps and things in his office, as the property of the State and district, and shall not be interested in any other business or calling other than the duties of the office for which he is appointed aforesaid.

BUTLER B. STRANG, Speaker of the House of Representatives.

CIIARLES II. STINSON,
speaker of the Senate.
Apprnved-The 5 th day of A pril, A. D. 1870.
JOILN WT. GEARY.

Summary.
 Coal Production for 1876.

Coal shipped to market	$\begin{aligned} & \text { Tons. } \\ & 4,273,506 \end{aligned}$
Home consumption-8 per cent. of shipments	311,880
Total tons.	4,615,386

	Miners.	Inside.	Outside.	Totals.
Number of miners	3,208			
Men employed...		9, 376	1, 897	11, 873
Boys employed.		1, 467	2,763	4,2:30
Tutals	3,208	10, 843	4,860	15.703

Number of persons killed 55
Number of persons injured 87
Total number killed and irjured 142
Tons of coal produced per life lost $83,916.10$
Blasting powder consumed in district in pounds 3,096,500
Blasting powder consumed in district in kegs 123,860
Blasting powder cousumed in district in tons of 2,000 pounds $1,548 \frac{1}{4}$
Blasting powder cousumed per ton of coal mined 73 lbs .
Coal mined per pound of blasting powder. 1.33 tons.
Number of breakers in district, 56 ; less one burnt down and one taken down 54
Total number of days worked by the whole number of employees during the year $2,340,151$
Average number of days worked per person 163.51
Number of tons produced to each employee 298.49
Number of tons produced to each miner $1,332.14$
Number of tons prodnced to each mine. 99,383
Number of tons produced per day per colliery 599.29
Average thickness of 86 seams, counting the seams as worked separately 9.82 ft .
Total number of horses and mules in district 1,278
Total number of locomotives in district 25
Total number of double hoisting engives 71
Total number of single hoisting engines 26
Mine Machinery.
Total number of Bull or Coruish pnmping engines 5
Total number of horizontal pumping engines, with rods 32
Total number of hoisting engines 97
Total number of steam pumps 75
Total number of breaker engines 58
Total number of fan engines 66
Total number of engines 258
Steam boilers
Total number of rentilating fans 69
Total number of ventilating furnaces 4

 besides totril depth of eweh mincs, shoming ulso clecution of hottom wbove or below tiele, mumber of surfuce openings atnel coul brealiers in Hilkesturer district for 15% \%.

Table No. 9-Continued.

T'ABLE No. 10. -shous the number of mules anel horses bmployed, number of steam boilers, number of locomotives, hoisting und fan chgines; also the number and various kinds of mumping engines, with some detaits relative thereto, ineluding their incticated horse power respectively, as cmployed in the Wilkesbarre district at the close of the year $18 \% 6$.

Table No. 10-Continued.

TABLE No. 11.-Lisl of fulat culliery aocidents, and loss of life arising therefrom, in the Middle district of Luzerne and Carbon counties, during the year $1 S^{7}$.

TABLE No. 12.-List of colliery accidents not mroving fatul during 1876, in the Wilkes-Barre District.

A				
$\begin{aligned} & \text { Jan. } 5 . . \\ & 14 . . \\ & 15 . . \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	No. 3 slope, W, Nanticoke, Nottinglam colliery. (irand Tunnel colliery...... Prospect shaft colliery, near Wilkesbarre. Jersey colliery \qquad	Wm. Hawkins.... Severely injured by kick from a mule. Patrick Driscol... Injured severely by a fali of coat. John Tigue........ Injured severely by prop falling ipon him. Hugh Blorris Ed. Jenkins....... rete severely burned by explosion of carbitreted hydrogen gas while trying to subdue or extloguish a large fire.	
	6	Mineral Spring colliery, ir. Parson station.	Charles WileyPeter smith......	Badly injured by car on culm bank. Smlths was lurned by carburetel hydrogen gas on face and hands the same time and
		Grand Tunnel colliery...		Brulsed and cut from a prenature explosion of a blast.
	10	No. 2 breakcr, E. Nanticeke Conyngham shatt, near Wilkesbarre.	Joln Cowitch..... Nicholas Jobe...... Larey owens.	Injured whille loading cars under breaker. The three men were burned more or less by explosion of carbureted hydrogen gas causeil way and brushing the gas into it.
2	11	Exeter coll'y, W. Pittston,	Joseph York....... Tbos. Graham	
				York and crahlam were injured by the con- cusslon of an explosion of carbnreted hydrogen gas, which caused the death of four parsons and others slightly injured.
Mar. ${ }_{\text {7... }}$	13	Exeter coll'J, W. Pittston, Prospect shart coll'y, near Wilkesbarre.	$\begin{aligned} & \text { Thos. Mangan } \\ & \text { Jacol Glantz....... } \\ & \text { Charles Nolan..... } \end{aligned}$	injured by explosion of a blast. Glatz and Nolan were both burned severely ly explosion of carbureted hydrogen gas, igniting at head or shaft from a lantern of the ulght watchman, Glatz, while water was being hoisted by large tanks, and one of which was belng emptled at the time.
29.	14	Exeter colliery.............	Simon Carrol......	Burned severely on face and hands by explosion of blastling powder, caused by careless fandlling.
Apr. $11 .$.		Nottingham colliery Exetor colliery.	Wm. Danaugl.... Solomon Jernyyn.	Brulsed and cut bally by a fall of coal. Injured severely by a piematiure explosion of
				Injured severely by a piemature explosion of a blast.
14..	17	Hartford colliery	Wm. Stevens	
		Diamond colliery, nearWikesbarre,Audenreld colliery, nearWilkesbarre.	H. Bergenstock Thos. Thomas..... Peter M'Manifan,	Haxl hand injured so hadly by being crushed Both were burned on faces and hands quite severely by explosion of carbureted hydre-
18..	19			
May $4 .$.		Lance shaft colliery, near Plymouth. No. 1 tunnel, E. Nanticoke. Midvale colliery	vans.	Lost an eye from explosion of a blast white returning to re-touch. Injured severely by a fll of alate from roof
			Samuel Wylan.... W. G. Callson	
				Injured severely by a fall of slate from roof,Had four fingers cut off by a plece of coal striking them while having hold of a prop. lial leg broken by belng caught between mine cars.
ne 1.	2	Enterpriso colliery	Robert Hyslop Henry Kirk Jannus U'Donald Thomas F. Jones, Charles Brazlle ...	Messrs. H yslop, a mine boss, Kirk, a fire boss, and O'Donah, a track-layer, were burned by carbureted hydrogen gas severely.
	26	Minl Creek colliery.........Midvale colly, Plansvile,		Leg severely injured between car and side. Had both hips dislocated and otherwise injured by fall of slate from roof. Serlously burned by explosion of blasting powder in paper cartridges in car the same thme and place that John T. Moore, Jr., lost
July $13 .$. 25.				
		Pine Ridge colliery, neal P'arson's statiou.		
	23	E	m. 13 Iontangue,	Had an arm broken-caught between bumpers of railroad cars. Arm injured by falling under car.
	30			Arminjured by falling under car. Head and breast cruslied severely by carriage at shaft-foot.
	31	East Boston colliery......	Win. H. Johns... Danlel Sullivan...	Injured severely by premature explosion of a blast while tamping it.
	32	Mindvale colliery \qquad Hollenback No. 3 slope		
	33		Danlel Sulli van... Wm. Jones.........	11 ad hit dislocated and was otherwise injured by being caught between mine car and door.
		Exeter colliery		powder, ignited from his lamp. Severely injured by car runuing over his foot while fast vetween ralls.
			Wim. Dampman .	
	35	Forty Fort colliery	J	Injured severely-crushed botween mine car and side at shaft-foot.
	3		Robert Vivian..... Johu Hamill \qquad	
	${ }^{37}$	Conynglam shaft.: Exeter colliery		lnjured severely by a premature explosion of a blast. Injured severely on head by coals from a blast
		Gaylord colliery	11. M' Caffery	he had just flred. llad both hips disfocated by fall of rock in a tunnel.
	3940	Forty Fort colliery		
			Henry Maynard. . Wm, Morgan	Face and hands lourned by explosion of blasting powder. 1 tad loose powder in open keg and ignited it by spark falling from his lamp. Had skull fractured by a kick from a mulu.

Table No. 12-Continued.

REPORT

-OF THE INSPECTOR OF COAL MINES IN THE EASTERN DISTRICT OF THE WYOMING COAL FIELD LYING EAST OF AND INCLUD. ING JENKINS TOWNSHIP, IN THE COUNTY OF LUZERNE AND STATE UF PENNSYLVANIA, FOR THE YEAR ENDING DECEMBER 31, A. D. 1876.

To His Excellency, John F'. Hartranft, Governor of the Commonwealth of Pennsylvania:

Sir :-I had the honor of receiving my commission as mine inspector for the above named district from your Excellency on the 4th day of October, 1876. I entered upon the duties of the office on the 6th day of the same month; hence my term of service covers only a little less than three months of the year, and my report, for that reason, will not be as exhaustive and elaborate as I could wish. In compliance with the requirements of section twenty-two of an act, entitled "An Act providing for the health and safety of persons employed in and around coal mines," approved the third day of March, A. D. 1870, however, I herewith most respectfully submit the following report of my labor for so much of the year as I have bad the honor to serve.

All the information that I have gathered relative to fatal and non-fatal accidents is submitted in tabulated form, from which it will be found that the number of persons killed during the year is 44 , and the number of persons injured is 120 ; the number of widows is 21 , and the number of orphans 79 ; the number of deaths as compared with the number in 1875 is 18 less, while the non-fatal accidents show an increase of 18 ; the ratio of coal produced for each life lost in 1876, as shown by table No. 4 , is 110,511 tons, while the ratio for 1875 is 128,340 tons per life lost, and 92,143 tons per life lost in 1874 ; the total production of coal in this district in 1876 is $4, \$ 62,512$ tous; for 1875 it was 7,956,452 tons, and for 1874 it was 6,357 ,879 tons.

Table No. I contains a statement, in detail, of all the fatal accidents ; table No. 2 gives the same statement relative to non-fatal accidents; table No. 3 gives a condensed statement of fatal and non-fatal accidents for four years; table No. 4 gives the total coal production for four years, number of persons employed, ratio of coal production per person employed, ratio of production per life lust, ratio of production per person killed and injured, and ratio of persons employed per life lost, for four years; table No. 5 gives the number of tons of coal slipped to market, sold for home consumption, and used for motive power, furnaces, \&c., at the mines of all the collieries in operation during the year 1876 , together with the number of kegs of powder used, the number of days worked, the number of persons employed, and the ratio of coal mined per person employed, per person killed and injured, and per person killed, at every colliery in the district; and it also gives the ratio of coal mined per person killed and injured and per person killed at each colliery named for the last three years. Each colliery is thus charged with the fatal and non-fatal accidents occurring in thern, and the collieries which are free from accidents get due credit for their careful and safe management. Table No. 6 gives the number and mominal horse-power of the stationary engines used for hoisting the coal
out of the mines, for breaking the coal, for pumping the water out of the mines, and for driving fans to produce ventilation, and number and dimension of boilers, \&c.

In conclusinn, I have deemed it proper to notice the most prolific causes of accidents, upon which I have given some suggestions, and it will be well for the several parties interested to give them due consideration. I have also noticed the condition of the ventilation in the difierent collieries throughout the district, giving due credit to all parties deserving credit, and moderately criticising where I thought it necessary. I have given my attention also to several other matters of more or less importance, all having. a direct bearing on the "health and safety of persons employed in coal mines," my views upon which will be found in the body of the following seport, and all of which is most respectfully submitted by

Your humble and obedient servant,
WILLIAAE S. JONES,
Inspector of Jines.
Scranton, Pa., March 10, 187.

Calses of Accidents.

What are the most prolific causes of accidents in our collieries? This is, in my opinion, a very important inquiry, for if we succued in finding the causes we can then seek for and apply the proper remedies so as to avert them in the future. I do not presume to assert that accidents can be wholly averted by any means, but I do assert that with the proper and timely use of precautionary measures, which are simple and within easy reach of all, our mine aceidents can and onght to be reduced very much. By referring to the long lists of accidents, which are detailed in tables Nos. 1 and 2, it will be seen at a glance that a very heavy percentage consists of "killed by a fall of roof," and "killed by a fall of coal;" and "injured by a fall of roof" and "by a fall of coal." Now I am perfectly convinced that, with the proper use of their common sense on the part of the workingmen themselres, nine-tenths of those accidents from the above named causes can be avoided. No man should work under either roof or coal which he suspects to be mnsafe. A ferv minutes' work in such cases would make the place absolutely free from danger. Where a slab of rock, or a piece of coal, or bone, hangs orer a man's head, and cannot be taken down, temporary props should be stood under it so as to make it impossible for it to drop without a moment's warning, as it so often does, with such serious and fatal results. In my examination of collieries throughont the dis. trict, so far as I have been able to visit them, I mnst say that as a rule 1 find too little timber used everywhere. The workmen, however, are not alone to blame for this. The mining bosses are almost invariably as reckdess in this respect as are the workmen. When their attention is called to this fearful insufficiency of timber to support the roof of the workings, they will argue that "no timber is needed"-that "the roof rock is as found as an anril," or "as soumd as a bell," \&c., and the men under their charge are thus not only allowed but are encouraged in their criminal negligenee to make their working places safe. It is a well known fact that almost in every case of accidents from falls of roof they occur in those apparently safe places, where the rock is said to be " as sound as a bell," and that an accident very rarely occurs in bad, rotten and shelly roof. Accidents occur where danger is not suspected-in comparatively safe placesand not where danger is imminent. The fact is, howerer, that there is
danger to life and limb, lurking in secret and hidden slants and fissures in rock and coal, frequently in apparently the safest places; and it is the experience of every competent, observiag and considerate miner that good strong props are excellent companions even where danger is not suspected. It appears passing strange that the workmen will not guard in every way against accidents. They are the sufferers. It matters not what safe-guards may be thrown around them by legislation, nor what efforts may be made on the part of others to protect their lives and health, they must continue to meet with serious and fatal accidents unless they learn to protect themselves.

I have said that mining bosses are almost invariably as reckless in this respect as are the workmen; but there are honorable exceptions, however. I have found several mining bosses who complain bitterly that they cannot induce their workmen to stand props; and in some instarces men have been killed instantly by not obeying the orders of their mining bosses, while many more have had their limbs broken through the eame disobedience. One of the first cases of fatal accidents that occurred after my entering upon the duties of my office, in October last, was a case of this kind. The mining boss, in this case, had threatened to discharge the man for refusing to stand props in his chamber; but the threat was unheeded because it had repeatedly been made before but never executed. This unfortunate man paid the penalty of his disobedience with his life. His laborer was with him, and it appears that he was so overcome with fear that he became actually ill, and had announced his purpose of going home, leaving the car which he was loadiug unfinished. But the miner asked bim to remain and to go and drill a hole which he had commenced, and said he would finishe loading the car himself. No sooner than the two men had thus oxchanged work than the roof of the chamber fell, killing the miner instantly.

There are several cases of this kind that I might mention, but the above is sufficient for my present purpose. Now, would it not be an act of mercy towards such men, in such cases, for the mining boss to discharge them rather than to allow them thus to commit willful self-murder, or to be the canse of the untimely death of the men who work with them? The mining bosses are too reluctant to use severe measures to enforce obedience to their orders; they know that the poor miner has a very hard struggle to keepstarvation fiom his door, even when working every day, and, out of compassion for the offender's family of little ones, he will not discharge a man though he may have threatened to do so a dozen times. This feeling is undoubtedly a credit to his heart, but it is, in my opinion, an unwise and mistaken policy. A man's judgment should govern him in all such cases.

All parties are absolutely withont an excuse in this matter, for the operators always provide all the timber for propping that is needed, and I have not found one instance where they complain that the amount of timber used is too great.

"Crushed by Mine Cars."

Another cause of numerous accidents is classified under the term "crushed by mine cars." Drivers and runners are the principal sufferers from this cause. These accidents are generally the result of reckless daring on the part of the boys, and of narrow main roads which are frequently obstructed on the sides by rubbish. How often the inspector is notified that a driver has been killec or seriously injured by being "crushed between cars and pillar, "between cars and props," or "by falling under the cars," on account of the rubbish on the road-side. The remedy for this class of accidents is very simple. Give adequatc space between the cars and pillars
and between the cars and props, and keep the road-side free from rubbish, and these accideuts will cease almost entirely. There may be places, occasionally, where this might be impracticable, but as a rule these simple remedies are easily applied. The coal seams in this district are such that nothing but incompetency in the management can be adranced as an excuse for crowding the main roads so elose to the pillars that there is no place to pass.

Then, again, the drivers very often attempt to couple the cars while they are in motion; this they should never do, and the driver bosses ought to prohibit the practice at once. If these boys were outside, in broad daylight, the practice might be excusable, for then they would be enabled to see any obstruction that might be lying in their way and avoid them; but under ground they are comparatively in midnight darkness, and cannot see but a few yards in advance, at the best, and they are hence liable to be thrown under or between the cars by the first obstruction they meet. There were nine killed and nineteen injured by mine cars in divers ways during last year; and every effort should be made by our colliery managers to save these boys' lives.

Explostons of Carbureted Mrdrogen Gas.

There were six fatal and twenty-one non-fatal accidents from explosions of carbureted hydrogen gas during the year. Many of the non-fatal ones, however, resulted in only slight burnings of hands and faces. The collieries generating this gas are nearly all supplied with strong currents of pure air to dilute and carry it off as fast as it is generated. But I am sorry to say there are exceptions, and I have given them my partienlar attention with the riew of securing adequate ventilation in them all. There are several causes for complaint in regard to this matter. One of them is that the gas is allowed to accumulate in large volumes in those collieries which have not the adequate amount of ventilation for its dilution. These accumulations are designated, in the Mine Ventilation act of the third of March, 1870, as "standing gas," and are beyond all peradventure under the legislative inhibition. I have been compelled to order a suspension of work in a part of one colliery, on account of "standing gas," until such time as the owner shall provide a sufficient quantity of pure air to dilute and carry it off. Mr. Tompkins, the owner and operator of the colliery referred to, feels that my course respecting his colliery is severe and arbitrary, and has suspended work altogether. But I cannot see how I could have taken any other course. I had a duty to perform, and had no choice in the matter.

I found, also, when I commenced my official examinations, that it was nearly the universal custom to decrease the speed of the fans during the night. The natural and unaroidable consequence of this was, that large accumulations of gas were found by the fire bosses, when making their morning rounds, in many of the chambers where the men work. Then it becomes necessary to resort to the old custom of "brushing out the gas". to break up these accumulations and hasten their exit, with the renewed full current of air, to the upcast. The law evidently provides but one means to dilute the gases so as to render them barmless, and that is by providing such an amount of pure air "as circumstances may require, which shall be circulated through to the face of each and every working place throughout the entire mine." The necessity of "brushing out the gas" shonld never exist.

Another custom which I found in very general practice was, that work. men were abliged to do this "brushing out" business themselves. The fire
boss would make his tour of inspection in the morning, and on his return to the bottom of the shaft or slope, would inform the men in whose chambers he had found gas of that fact, and then the men would go in themselves to "brush out the gas," notwithstanding that the law explicitly provides that, "the workmen shall not enter the mine until such examination has been made and reported, and the cause of danger, if any exists, be removed." This provision of the law is eminently wise and proper, for the ordinary miner, especially in this conntry where a man assumes to be a miner when he can drill a hole and charge it-in some shape--do not understand but very little about the nature of gas, nor the proper way to deal with it. However incredible it may seem, it is nevertheless a fact, that two men in one of the collieries of this district entered one morning to their work, and one of them entered into the face of his working place without a light, and taking off his coat, he commenced to "brush out the gas." The other man walked in with his naked light, apparently to hold a light for No. 1, and the result was an explosion, as a matter of course, which gave both men a foretaste of Hades.

Two men in another colliery went to work "brushing out the gas" from their chambers, leaving their lighted lamps down on the heading road, directly in the course the gas must take to escape, and both men were severely burned by an explosion that under the circumstances was inevitable. And still another couple of miners in another colliery were fatally burned by an explosion of gas, ignited in the same manner. All of these unfortunate men were violating the plain letter of the law, by entering the mines before "all cause of danger was removed," and the foremen of such mines were violating the law by allowing them to euter. These irregularities, however, are being corrected, and I am happy to bear testimony to the cheerful alacrity, with which almost all mine superintendents second my efforts to inaugurate a radical reform in this direction.

Other "Noxious and Polsonous Gases."

When on my oficial visits of inspection to those collieries in the district which do not generate carbureted hydrogen gas, and when I have found, as I have in many cases, that the ventilation of the mines has been entirely neglected; the invariable excuse given for the neglect is, " 0 , we have no gas here!" "There is no danger here in any part of the mine!" And when I inform them that they are sadly mistaken, that they have gas in their mines, and that it destroys the health and shortens the lives of their workmen-slowly it may be, but as surely as they are compelled to inhale it-these would-be wise and efficient mining bosses open their eyes in incredulons surprise, and appear as if they seriously doubted my sanity. There is a fearful ignorance in relation to these "noxious and poisonous gases" on the part of very many of the mining bosses thronghout this whole district. Ninety per cent. of the number to whom I propuunded the question, "Are there other noxious and poisonous gases generated in your colliery?" answered "No." And several of these men were in charge of collieries where there was not a sufficient current of air traversing in any part thereof to move an anemometer, and sume of them are actually suffering untold misery from the effects of those gases, the existence of which they deny.

The workmen, however, know, to their sorrow, that there are "noxious and poisonous gases" in thuse colleries. It is rery probable that they cannot desiguate one gas from another, and even the names of the gases may be as Greek to them; still, they are weil aware of their existence and of their presence in the atmosphere which surounds them, and they feel their
poisonous and life-destroying effects on their constitutions every day of their lires. I met one of these men sitting by the roadside one day, and I asked him why he was sitting there, and he answered, "I am sick." And uponmy questioning him relative to the condition of the ventilation of the colliery in which he liad worked, he complained most bitterly, and said that. "the men are kill't entirely for the want of air ;'' and in regard to himself he said, "I could think there was a blacksmith's shop in my head this very minute." This poor sufferer did not know who I was, and l knew he did nut exaggerate. I had been in the colliery in which he worked that very day, and had found it fully as bad as he represented. There were parts of this colliery where an eternal cloud of powder smoke filled all the workings and not a breath of pure air to dispel it. The atmosphere of the mines was heavily charged with carbonic oxide, and yet the mining boss had succeeded, apparenty, to persuade himself-and he tried to persuade me alsothat there was no gas whatever in that colliery. There are other collieries in which carbonic acid gas, carbonic oxide and sulphureted hydrogen gas are met with in large quantities, and yet the mining bosses assert that there is no gas there. I withhold the names of those collieries at present, because there are important improvements inangurated which will effectually remore these glaring evils within the coming year, and I am very pusitive that I shall be able to give a good report from them in my next annual report.

Vextilation in Gexeral.

In collieries where carbureted hydrogen gas is evolved, with but few exceptions, the ventilation is passably good; and in many instances it is excellent-the amount of air ranging from forty thousand up to one hundred and twenty thousand cubic feet per minute. Then again, in collieries which do not generate this explosive gas, with few exceptions, the ventilation is very far from being up to the requirements of the law. The superintendents and mining bosses of several of this latter class of collieries had apparently succeeded in making themselves believe that the proper ventilation of their collieries was nearly, if not absolutely, an utter impossibility. They evidently thought they had succeeded in deluding everybody elsewith the same sophistry, but they are being convinced to the contrary. Preparations are now muder way to sink air-shafts with the purpose of putting in fans of the most approved pattern to produce the amount of ventilation required; and when these contemplated improvements are perfected no further trouble in this respect will be had, and I will renture the prediction that no party will be better pleased with the result than those very superintendents and mining bosses above referred to. There are many collieries where no air-ways are worked parallel with the gangways, and some with no gangways even; and I readily admit that it is no easy matter to provide good ventilation in such workings. If there be no system in working the colliery it will always be difficult to provide good aircourses to conduct an adequate amount of pure air to the face of the workings as the law requires. It is always much better, and even much cheaper, to conduct the colliery on scientific principles than to root out the coal in every which way-without any regard to system or science-as is so often done; and those who work up to the highest standard will readily admit this fact.

In justice to the superintendents and mining bosses of the Delaware, Lackawanna and Western railroad company I must give them the credit of having by far the best ventilated collieries in my district. They have no poorly ventilated collieries. Every care is taken to utilize all the pure-
air that enters their collieries by conducting it systematically through excellent air-ways to the face of each and every working place in the mines. Their air-ways are large and shapely; their stoppings in cross cuts, or entrances, are all walled with stone and mortar; their ventilators consist almost entirely of fans, which for the present give excellent results; and their furnaces, what they have of them, are first-class and give entire satisfaction. No labor or expense is spared to keep the collieries in good condition in overy respect ; and the company deserves great credit for their honest efforts to comply cheerfully with all the provisions and requirements of the mine ventilation act.

Of the large corporations, the Pennsylvania coal company must be classed second on the list for efficient ventilation. The general mine superintendents are men of long experience in the busincss of mining coal ; and they seem to be ready and willing to do their whole duty in the matter of providing an adequate amount of pure air for their workmen. They have considerable room for improvement, however, in several of their collicries, but I feel very confident that they will inangurate the necessary improvements without monecessary delay.

The Delaware and Iludson canal company is the third large corporation in the district, and the third also in regard to ventilation. The greater number of the collieries of this company are free from explosive gas, and their proper ventilation for that reason has been sadly neglected. Indeed I must say that I was astonished to find this pioneer company in the business of mining coal in the Lackawanna Valley, so far behind its younger competitors. When I entered upon my duties as inspector, this company had some of the very worst ventilated collieries in the Lackawanna Valley. The mine ventilation law of 1870 , so far as those collieries were concerned, was a dead letter. It seemed that the doctrine and practice of the managers of these works was: "As it was in the beginning, so it is now, and ever shall be." There was no effort made to improve the ventilation, and their workmen were suffering untold misery in consequence. The men in their employ have become oid in appearance, decrepit, asthmatic and consumptive; and their lives have been materially shortened by a process of slow starration for the want of the proper quantity of oxygen to sustain life. It is an astounding fact that the old miners of Carbondale can be recognized from all others throughont the valley by their wornout and asthmatic appearance.

The above remarks are applied especially to No. 1 shaft, White Bridge tunnel, No. 3 shaft and the Coal Brook collieries at Carbondale. I cannot understand how matters were allowed to go on in the manner I have faintly described above, nor how the plain requirements of the law were so glaringly ignored for so long a time after the law was enacted. It certainly was not caused by the ignorance of the general mine superintendeut, for the gentleman holding that position is above the average in intelligence, and has had many years' experience as a mine manager. The excellent ventilation of other collieries under his charge-Leggett's Crcek shaft, Providence, for instance-is positive proof of his intelligence aud competency, so that the plea of ignorance will not avail for this inexcusable negligence. Then the cause must be sought for in some other direction, and I believe it is found in the fact that the Carbondale mines have been worked on this health-dostroying and man-killing system for the past fifty years or more, and in the absurd tenacity with which the managers cling to the old system, with no better reason for it than that it is old. They have excused, and justified themselves in the course they have pursued, also, to a great degree, with the defence that there is no gas evolved in their collieries;
but that, as I have already shown, is no defence. In the three collieries first named they have relied entirely through all these long years on natnral ventilation for a supply of air for their workmen. They have done litcrally nothing to assist nature to do the work, and as the workings extend from year to year the ventilation gets worse and worse.

Soon after I entered upon the duties of my office, I gave No. 3 shaft, Carbondale, my particular attention ; and after making a thorough examination of the workings I immediately called the attention of A. II. Yandling, Esq., general agent for the company, to the condition of the colliery, and in reply to my communication Mr. Vandling assured me that the matter would be attended to immediately. His note is couched in the following words:
"Noting your favor of the 4 th inst. (December, 1876,) concerning ventilation in our Carbondale mines-the results of your examinations and conclusions are surprising, for the reason that I was not previously aware of such defieiency or sufficient cause for complaint. The matter will have our due and immediate attention."

I am happy to state that improvements were projected immediately after this correspondence, which, when perfected, will remove all eause for complaint, and will put those collieries on an equality, regarding ventilation, with the best veutilated collieries in the district. An air-shaft is to be sunk for No. 3 shaft, and a fan is to be placed there; and I expeet this will be followed with another fan for No. 1 shaft, and another for the Coal Brook colliery in place of the miserable little furnaces they now have there at the bottom of very shallow shafts, and hence almost worthless. I feel under great obligation to A. If. Vandling, Esq., general superintendent, for his prompt co-operation and manly course in relation to my efforts to enforce the mine ventilation law; and I am certain that the miners at Carbondale, before another year ends, will lave cause to bless him for his prompt action in the premises.

Misceleaneous Companies and Operators.

The collieries of the smaller companies, in regard to ventilation, may be divided into three classes-the first class having good and satisfactory ventilation, the secoud class having middling, and the third class having poor and very unsatisfactory ventilation. The first class consists of the following. collieries: Roaring Brook colliery, Dunmore; Jermyn's shaft, Green Ridge; Mt. Pleasant slope, Hyde Park; Pine Brook shaft, Scranton; Green Ridge slope, Dunmore ; Capouse shaft, Hyde Park; and Meadow Brook collicries, Scranton. The second class consists of the following : Eric shaft, Carbondale township ; Phœnix shaft, Ravine shaft, Twin shaft, Seneca slope, and Butler shaft, Pittston; Hillside colliery, Pleasant Valley ; Filer \& Livey's collieries, Winton; Greenwood colliery, Lackawanna township; Columbia colliery, and Beaver mines, Pittston. The following make $u p$ the third class: Sibley shaft, Old Forge township; Everhart colliery, Jenkins township; Jermyn's slope and shaft, Jermyn; Park coal company's slope, Hyde Park; Fair Lawn slope, Scranton; Jones \& Simpson's colliery, Archbald; and Tompkins shaft, Pittston. All are graded, as regards merit, in the order in which they are named in each class. The collieries which are not named in the above classification, I as yet know comparatively nothing about. I have suggested important improvements in many of the collieries in the third class, and the owners and agents have shown a ready disposition to act on the suggestions given. Some of them, it is true, complain of the hard times and consequent lack of funds to provide themselves with the necessary mechanical power to properly ventilate their mines, but all admit that the improvements demanded are sorely needed. I deeply sym11 Mine Rff.
pathize with these parties, and if it were possible, in justice to the workmen and in compliance with my oath-bound duty under the law, for me to pass them by and allow them to continue working without the improvements I have demanded, it would give me great pleasure to do so. I have not been disposed to use severe measures towards any party; but I have invariably signified my williugness for them all to continue working, provided extra precautions are taken to guard against and avoid accidents while the improvements demanded are being made.

Air Measurement Reports.

During the months of October and November I received but few air meas ${ }^{-}$ urement reports, and several of those that I did receive were only measurements at the inlet and outlet, and only one measurement for the month, while the law very properly requires weekly measurements to be made "at the inlet and outlet, and at or near the face of all gangways; and all measurements to be reported to the inspector once per month." The most important measurements-those that should be made "at or near the face of all gangways"-were omitted. Of course such reports were but little better than none at all. It is of very little importance what quantity of air enters into and exits out of a colliery unless it is properly conducted to the face of the workings.

It was very important that I should receive true air measurement reports when I first entered upon my duties as inspector, to enable me to judge of the condition of the several collieries until such time as I could make a personal visit of inspection to each, and I demanded such reports from all the collieries. Almost all the mining bosses complied with my demand, but the reports of many of them were utterly worthless. Some of them knew nothing about the relative value of figures, and did not know how to take air measurements ; and, in one instance, a mining boss actually attempted to measure the air with a tape-line! I have reports which are curiosities, and I shall keep them carefully on file, and hand them over to my successor in office. There are some collieries which did not make air measurement reports up to the end of the year, and the unavoidable inference is, that they have no air that they can measure.

I was considerably provoked by the attempt of a few presumptious semisuperiutendents to impose upon me by sending false air reports-reports of air measurements which were never made. They evidently supposed that the "new inspector" was an ignoramus, upon whom they could impose with impunity. They are welcome to all the pleasure and satisfaction they derived from their attempt to impose upon the "new inspector," but I surmise that they would sell out all the capital they made thereby very cheap. One of them must pardon me for displaying a sample of his handiwork by inserting one of his reports, which is only one of a dozen others just like it which accompanied it. His scientific report is as follows :
"Sir:-The following is a true report of actual air measurements for the month of November, 1876:

Loeal name of each split \qquad					
	$\begin{array}{r} 9.500 \\ 8,06,10 \\ 41.000 \\ 15,000 \end{array}$	$\begin{gathered} 1.500 \\ 2,000 \\ 10.040 \\ 15.100 \end{gathered}$	$\begin{aligned} & 20,000 \\ & 46,200 \\ & 19,400 \end{aligned}$	$\begin{aligned} & 37 \\ & 30 \\ & 63 \\ & 50 \\ & 50 \end{aligned}$	3 4 9 6
Flust week's maasurement, -th-total....................	75,500	23,500	85,8000	$1: 3$	22
$\begin{aligned} & 1 \\ & \frac{1}{3} \\ & 4 \\ & 4 \end{aligned}$	$\begin{array}{r} 9,500 \\ 8.0100 \\ 40,000 \\ 18,000 \end{array}$	$\begin{array}{r} 1,500 \\ 2,000 \\ 10.000 \\ 15,000 \end{array}$	$\begin{aligned} & 20,000 \\ & 48,200 \\ & 19,400 \end{aligned}$	30 29 205 30	3 1 9 18
speond week's matsurement, -th-totat	75.540	28.5009	S5. iom	17.3	$\because 2$
1 2 3 1 1	$\begin{gathered} 0,500 \\ 8,0,00 \\ 40,603 \\ 18,603 \end{gathered}$	$\begin{gathered} 1,5(n) \\ 2,0(0) \\ 110,060 \\ 15,1000 \end{gathered}$	$\begin{aligned} & 29,000 \\ & 46,200 \\ & 19,4(x) \end{aligned}$		3 3 9 9 6
'Thitel week's measurement, -th-total	75.500	28.500	85.600	173	22
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	$\begin{gathered} 9.500 \\ 8,000 \\ 40.000 \\ 1 R_{1}, 060 \end{gathered}$	$\begin{array}{r} 1.5(90 \\ 2,(k 10 \\ 10,000 \\ 15,000 \end{array}$	$\begin{aligned} & 20,000 \\ & 49.200 \\ & 19.4100 \end{aligned}$		3 4 1 1 1
Fourth week's meagurement, -th-total.........	75, 560	29.500	8.7.60n	173	2

Now, every intelligent man will see at a glance that the above is a fraud on its face. Here are eleven measurements for four consecntive weeks exactly alike. Verily, the gentleman who performed such a miracle must be in league with the "prince of the power of the air." But if the gentleman has snccecded in attaining such absolute control of the air as the above figures indicate, then why does he not utilize a much greater proportion of the air he claims to hare at the inlet, by conducting it to the face of his gangways, and through to the face of all the chambers to the workmen where it is so much needed? In the two first splits there are 17,500 enbic fect at the inlet and only 3,500 cubic feet at the face of the gangways, which show a loss of 14,000 ont of 17,500 cubic feet. The reason for this is seif-evident and need not be adranced. But how comes this wodderful uniformity in these figures for four consecutive weeks? Evidently there was but one measurement made, and the measurement for one week was set down in the report, over and over, and over again, for the other three weeks of the month; and this was done to cover up their neglect to make weekly mensurements as the law requires, and with the purpose of imposing on the inspector.

Mine Instruments.

The anemometer is the only instrument that has come into general use in our collicries. But there are a few which are not supplied even with this instrument; and in some instances the same anemometer has been obliged to do service for two, three and even a half dozen collieries. In such cares the air measurements are irregular, and frequently omitied altogether because the anemometer may be at another colliery several miles away. The thermometer and barometer are but very seldom used, and but few of them can be found in the possession of our mine nanagers; and, indeed, but few of our mining bosses have the remotest idea what use can be made of them, especially the barometer. There are honorable exceptions, however; and
these men are by far the nost efficient and competent superiutendents and mining bosses in the district. The water-gauge is very rarely seen around our mines. But very few know how to use it, and many do not know what it is good for, and have never seen one. The use of these scientific instruments, however, are being liscussed, and I have strong hopes that the near future will bring many of them into use.

Steam Evgines and Machinery.

The Delaware, Lackawanna and Western railroad company have 45 hoisting engines, of 2,038 -horse power ; 16 breaker engines, of 910 -horse power; 34 prmping engines, of 2,553 -horse power: 12 fan engines, of 600 horse power-making a total of 108 engines, with a combined horse power of 6,191 . They have 194 boilers to provide steam for these engines. The Pennsylvania coal company have 32 hoisting engines, of 1,010 -horse power; 7 breaker engines, of 225 -horse power ; 30 pumping engines, of 850 -horse power; 4 fan engines, of S0-horse power-making a total of 73 ongines, with a combined horse power of 2,165 ; and 96 boilers. The Delaware and ILudson canal company have 25 hoisting engines, of 1,211 -horse power; 7 breaker engines, of 418 -horse power; 17 pumping engines, of 921 -horse power ; 5 fan engines, of 321 -horse power-making a total of 54 engines, with a combined horse power of 2,871 ; and 89 boilers. All the smaller companies and single operators combined have 60 hoisting engines, of $2,43 \geqslant$ horse power ; 34 breaker engines, of 1,311 -horse power ; 27 pumping engines, of 690 -horse power ; 8 fan engines, of 362 -horse power-making a tutal of 129 engines, with a combined horse power of 4,795 ; and 232 boilers. This will make a grand total of 162 hoisting engines; $6 \pm$ breaker engines; 108 pumping engines, and 29 fan engines- 363 engines in all, having a combined horse power of 15,832 ; and 1611 steam boilers to provide steam for them.

The supervisory care of the inspector over this vast amount of machinery with its innumerable additions of rolls, screens, cages, safety-catches, bridle chains, ropes, sheeve wheels, drums, brakes, signals, and many other things, is a fearful responsibility, and cause of inconceivable anxiety. Great care is exercised, as a rule, by all the engineers, and I am highly gratified that no accidents, excepting those that occurred through falling on screens, have happened in connection with machinery during the year. I an thoroughly convinced that all screens should be roofed over, and then it will be impossible for the slate pickers or any cne else to fall upon them, as has been so often the case. The proposed covers to the screens can be put ou in sections, so that they can easily be removed when the screens need repairing.

New Collieries and Opexings.

Jermyn's New Shaft, Green Ridge.

The sinking of the abore named new sluaft was commenced by John Jermyn, Eeq., on the 21 st day of June, 1875, and the work of sinking was finished in six months and eleven days-that is, on the 2d day of January, 1876. The shaft is located at Green Ridge, Scranton, on a tract of land of about three hundred acres, leased by Mr. Jermyn from Messrs. Meylert \& Sanderson.

Knowing that he had a difficult task on his hands, Mr. Jermyn was very careful in starting. And it was very necessary for him to be careful, for he had forty-six (46) feet of quick-sand to go through before be reached the surface of the rock. The size of the shaft is 32×17 feet, and the timber used was 12 天14 inches. The timbering was done from the top. The
first four sets of timber were mortised together and firmly bolted on to the fifth set. Each set of timber was bolted thus with twelve one-inch bolts, which were four feet long, so that every fourth set of timber was bolted to the three sets above it. This frame work was forced dorm with two pieces of cast-iron, weighing 900 pounds cach, and a fiame twenty feet high was made for each of these, and they were used in the same mauner as pile drivers are usca, and the timber was thus foreed down without auy trouble. There were castings, nine inches wide, bolted under the bottom set of timber, which had a flange fonr inches deep, cutting its way through the sand. 3untons of 8×14 inch timber were put in every ten feet aeross the shaft; but when they had gone down 35 feet the pressure was so great that the timber were breaking in the centre. To remedy this, false scts of timber were put in inside of the others, leaving a space of two feet between them, which was filled with cement and small stones about the size of an apple. Four hundred barrels of the best quality of cement were used for this purpose, and it was hoped that the surface water would be thus kept out, but it was only partially successful. Buntons were put in with the inside timber every four feet, and each set was braced in the four comers of the shaft with $8 x$ is timber. The outside timber was hemlock and the inside was pine. The sinkers did not put in the timber. This work was done by carpenters, who framed the timber and put them in place, and who took especial care that the frame-work was kept square. The bucket was filled in a space of only four feet square. The sides and ends of the shaft were not touched, for they kept rumning in to the centre coutinually.

There were three pumps in the shaft the whole time-two of them in continual operation, and the third, an extrin one, ready at all times when one of the others should need repairing; and they nsed a pair of small engines, with 8x10 link motion, of Dickson's manufacture. After strikingo the rock, and after securing the timbering, cementing, \&e, the further sinking was suspended for a time for the purpose of putting in permanent hoilers. Then they resumed and commenced sinking through the rock. They first went throngh 32 feet of hard sand stone, and then met with a seam of coal four feet six inches thick, with six inches of slate in it. The coal is of a very poor quality and will not be worked for many years. Then they went through 14 feet of slate rock and met with another stam of coal, of rery good quality, six feet and six inches thick, with four inches of slate intermixed. Below this they had 45 feet of tough slate rock, and then struck a nine-feet seam of coal of excellent quality, with only three inches of bone in the whole thickness. A sump was made in this coal for the water. Then they sank throngh 40 feet of very hard rock, upon which drills would make no impression. It was very slow work sinking through this, but perseverauce overcame even this, and still another seam of coal, six feet thick, was met with, but this seam las slate all intermixed, making it utterly ummarketable-in the present condition of the trade, at least. Next they had $40 \frac{1}{2}$ feet of slate rock, and met a three-feet seam of very good coal ; then 40 feet of hard rock, which worked very well, and then met six feet six inches of coal of very good quality, with a foot of fire clay near the bottom. This seam was struck on a saddle, and as they worked in some distance the fire-clay scemed to be thimning out, but as there was considerable gas evolving, and as they had wo fan as yet, they did not enter rery far. They made a sump here and then stopped sinking. The distance from the surface of the rock to the bottom is 255 feet. The sinking throngh the rock was done entirely with Rend Rock powder, which was fired with: battery, and not the least accident happened to any one from beginning to end.

Second Opening. -The second opening is 100 yards from the main shaft, and is also a shaft 10×15 feet in the clear. They had 55 feet of quicksand to sink through in this shaft, and the work was done in the same manner as in the main shaft, but they did not sink so fast. They have a pair of $14 x$ 30 link motion engines, with compond brakes, at this shaft. No coal is hoisted-only the workmen and materials for the nse of the inside workings. There are two of the largest size steam pumps, of Guild \& Garrisou's make, of Williamsburg, N. Y., put in here, and one of them is more than sufficient to take out the water. These pumps gire entire satisfaction, and only cost $\$ 1,450$ each, and the expense of putting them in is very trifling.

The Breaker. - The breaker is a mammoth concern. It is located in a hollow, and for that reason they were obliged to build it very high so as to insure fall enough for their chutes to the railroad. About a million feet of lumber was used in its coustruction, and the greater part of it is pine, shipped from Williamsport. It has two sets of rolls and six screeus, and can make all sizes of coal, or run it all into stove, chestnut and pea coal, according to the demands of the market; and the breaker has a capacity of E00 to 1,000 tons per day.

Outside Improvements.-They have a fan of twenty feet diameter and five feet face, which is driven by an 18×22 link motion 80 -horse power engine, and it is run at about fifty revolutions per minute, giving all the ventilation that can be desired. The fan house is built of brick. They have four hoisting engines, 220 -horse power, and a 60 -horse power breaker engine. The boiler honse is built of brick and contains 12 boilers. There is also a machine shop connected with the works, in which there is a 15 -horse puwer engine, which runs a lathe, bolt cutter, the saws in the carpenter shops and a fan for blast in the blacksmith shop. The carpenter shop is large and commodions, and is fitted up with circular and rip saws, and all the modern improvements for dispatching work. The blacksmith shop is alles of the first class.

Note.-The time consumed to sink through the 46 feet of quicksand in the man shaft was just five weeks; the time required to go through the rock, a distance of 255 feet, including the coal seams, was six months and eleren days; the time in which all this work was done-sinking the two shafts, bnilding the breaker, boiler house, engine house, fan house, shops, office, and the whole thing complete-was just eleven months and two days. John Jermyn, Esq, leserves great credit for the natiring energy he has displayed and the enterprise he has manifested in undertaking and successfully accomplishing this great task, which he did on his own individual responsibility. Aud this must be my excuse, if any is needed, for this extended notice of his colliery.

No. 13 Shaft.

This shaft was sunk by the Peunsylvania coal company-the sinking being almost all done doring 1870 . It is located in Lackawanna township, near Moosic. It is 31 feet 6 inches long by 12 feet wide, and about 137 feet deep, from the top of the cribbing to the bottom of the coal seam. The coal is raised 65 feet above the top of the cribbing, making the full depth of the shaft about 202 feet. They have no second opening to this shaft, but expect to make a comection with the Law shaft as soon as possible. No coal was shipped from here during the year.

Jones \& Simpson's Slope.

This is new s!ope, located at Archbald, and owned by Jones, Simpson \& Co. The area of the slope is 6×10 feet, and its length is 5.47 feet. The
angle of iuclination is $9^{\circ} 35^{\prime}$. The slope was driven part of the way through coal, at a cost of $\$ 364$, but there were $28 \frac{2}{3}$ yards of rock to cut, from nought up to eight feet, which cost $\$ 283$ 33, and 77 yards driven through sandstone, which cost $\$ 3,080$. The whole cost for sinking the slope was ouly $\$ 3,95233$. They have a pair of engines, 13 -inch cylinder and 18 inch stroke; estimated horse power, 50 ; the size of their drum is six feet diameter, which has an approved brake attached to it. There is no second opening to the slope, but they are driving for one toward No. 1 drift, and expect to make a connection soon.

Other Nef Openings and Connections.

The Delaware, Lackawanna and Western railroad company have made comections between the Hampton shaft and the Oxford shaft, at IIyde Park, and between Tripp's slope and the Brisbin shaft, in the Third ward, Scranton. They have also sunk an air shaft, at Hyde Park, into the workings of the Oxford shaft, and connects also with the Ilampton shaft workings. A fan is to be placed at this air shaft which will assist in ventilating both collieries named.

The Pennsylvania coal company have completed a new slope at No. 1 tumnel, in Pittston township, which is intended for hoisting coal. They have also made a second opening for No. 4 slope, in Jenkins township, which is to be used also for ventilation; and the workings of old No. 10 shaft in the 14 -foot seam, have been connected with the new No. 10 shaft, in Pittston. No. 2 shaft, Dunmore, was sunk to the lower seam.

The Delaware and Ifudson canal company have made a connection, in the 14 -foot seam, between Marvine and Leggetts Creek shafts, Providence ; and at No. 1 shaft, Carbondale, an air shaft has been sunk, and two more air shafts at No. 3 shaft, and still another at the Coal Brook colliery. These air shafts are only poor-make shifts, unless mechanical means are used to produce ventilation. There are too many of them in Carbondale. What is needed there is a system of air courses inside of the collieries.

At the Filer colliery, Winton, a drift has been driven from a ravine into the workings, for a traveling way for the men to go to and from their work. A new drift has been opened at the Greenwood colliery for mining coal, and the same company have made an additional opening for coal at the Sibly colliery, in Old Forge township. An opening has been made at the Green Ridge slope for ventilation. The above are all the openings and connections made in the district during the year, so far as I am informed.

Idle and Abandonded Coblieries.

The Archbald shaft, Lackawanna township, and Oxford shaft, Hyde Park, owned by the Delaware, Lackawanna and Western railroad company, were idle all through the year ; the last work done at the Ilyde Park shaft was done in February, and the Scranton coal company's drifts at Bellevue were idle. Bellevue slope and shaft worked only $22 \frac{1}{2}$ days.

No. 1 shaft, Pittston township, owned by Pennsylvania coal company, was idle; No. 2 and No. 3 shafts were abandoned as hoisting shafts, and are now used as pumping shafts.

The Marvine shaft, Providence; Powderly slope, Carbondale township, and Breaker, Forrest and Jefferson tunnels, Carbondale City, all owned by the Delasware and Hudson canal company, were idle.

The following collieries have also been idle : Rolling Mill colliery, Scranton, consisting of a slope, tunnel and drift; the Ontario colliery, Pleasant Valley, and the Heidelberg colliery, Pleasant Valley. Spring Brook No. 1
and No. 2 drifts, Lackawanna township, and Carbon Hill slope, Old Forge township, were abandoned by the Glenwood coal company, in September, 1876, on account of the poor quality of the coal.

Experiments on Fans and Furnace.

I have not had time to experiment but little on account of multiplicity of other duties ; but Benjamin Hughes, Esq., general mine superintendent for the Delaware, Lackawanna and Western railroad company, together with Thomas D. Davies, Esq., his assistant, and others, have made some very interesting tests on fan and furnace ventilation, which are too good to pass by unnoticed. One of the tests was made with the water-gauge on the fan at Pyne shaft. The fan is 12 ft . diameter, 4 ft . face and has two circular inlets 6 ft . each, and was run at two and a-half revolutions to engine's one. The area, where the velocity of the air was taken, is 105 ft . from the tests made, we have the following table:

Tests made on Fan at Pyne Shaft, Lackawanna Township, Pa.

Revolutions ofengine.	Revolutions of tan.	Velocity of the air per minute.	Watergauge.	Amount of ventilation in cubic feet per minute.	Amount of air exhansted per revolution of the fan.	Horse power.
40	100	760	. 6	79,800	798	7.5
4.5	1121/2	835	. 8	87, 675	779	11.0
50	125	950	. 9	99,750	798	14.1
55	$1371 / 2$	1,016	1.0	106, 680	776	16.5
60	150	1,108	1.1	116,340	775	20.1
68	170	1,255	1.2	131,775	775	24.9

After the above tests were completed the doors at the head of the shaft and slope were thrown open, making two inlets; the fan was run at the speed of the last test, and gave 141,750 cubic feet per minute. This is an exceedingly favorable showing, and if all our mine managers would devote part of their time in testing their ventilators in this manner they would be richly rewarded in the valuable information and experience gained, which must result in great good to themselves, to their employers and to the ininers.

Another series of tests were made on the fan at Taylor shaft, Laekawanua township. The dimensions of this fan are as follows: Diameter, 14 ft .; face, $4 \frac{1}{2} \mathrm{ft}$. ; area of section where the ventilation was measured, 92 ft .; and fan running two revolutions to engine's one. In this case we have the following table:

Tests made on Fan at T'aylor Shaft, Lackawanna Township, Pa.

Revolutions of engine.	Revolutions of fan.	Velocity of the air per minute.	Watergauge.	Amount of ventrlation in cubic feet per minute.	Amount of air exhansted per revolution of the fan.	Horse power.
40	80	725	. 4	66,700	833.75	4.30
45	90	775	. 6	71,300	792.02	6.74
50	100	862	. 8	79,304	793.	9.99
55	110	917	. 85	84,364	766.94	11.29
60	120	1,012	1.1	93, 104	775.86	16.14
70	140	1,175	1.4	108, 100	772.14	23.81

The result of the test made on the power of the furnace at the Dodge shaft, Lackawanna township, by the same gevtlemen, is equally creditable to them as the above. The furnace is a double one, with grate surface of 48 square feet for each, or a combined surface area of 96 square feet; the:
downeast and upeast shafts are 300 feet deep ; the barometer indicated an atmospheric pressure of 29.4 : the mean temperature in the downcast is given at, 24° Fah., and 153° as the mean temperature in the upeast; the motire column or the difference in weight of air column in the shafts was 5.103 ; the amount of ventilation was 115,330 cubic feet per minute ; and the horse power of the furnace (worked out as per formula of J. J. Atkinson and others) is $17.83 \pm$ II. P.

If the gentlemen liad gone a step further, and liad calculated the percentage of power expended to overcome the friction and actually expended to produce the rentilation, in each of the foregoing experiments, they would have added much to their valuc. They will do so undoubtedly, and will not rest until they have completely mastered the subject of scientific ventilation in all its various phases.

Forest City Colliery.

This colliery is located in Clifford township, Susquelanna county, and is therefore outside of my district. It consists of a drift, which is worked by the Hillside coal and iton company, for which Samuel Hines, Esq., Scranton, is agent. The other officials are: W. E. Colborn, general mine superintendent; David M'Donald, mine boss ; and B. F. Storm, outside foreman. They employed 58 men and boys during the jear 1876, and mined 13,508 tons of coal. A fatal accident occurred at this colliery on the 6th day of December, caused by a premature explosion of a blast. Thomas Donohue, the miner, and John Gilmartin, the laborer, were tamping a hole, when the powder exploded, killing Gilmartin instantly, and severely injuring Donohue. The accident was promptly reported to me by Mi. Iines, but I did not fcel that I had any right to make an investigation because the colliery is not within my district.

TAELE No．1．－List of deaths reponted to the Inspeetor of the Eastern District of the Hyoming Coat Fietds，Luzerne county，Stute of Penn－ sylvania，and the cause as shown by his investigation，for the year ending 81st day of December，A．D．18jc．

1）ate．	 會 \vdots Names． \vdots	䂞	Colliery Whimee Accideyt OCCURKED．		Nature ur chuse of Accidents Colising deatir．
alı． 8 8，	William Jempsey．．． 12		Fair Lawn slope，Scranton．．．．． l＇ark Coal Co．＇s slope，Scranton	Jar． 8,	Killed ly being caught under a coal car in the mine， Killed by a fall of roof immediately after firing it blast．
	Thomas E．Davies ．． 49	5	1＇ine Browk shaft．Scranton．．．．．	$\begin{aligned} & 17, \\ & 19, \end{aligned}$	Killed by a fall of roof immediately after firing a blast． Fatally injured by behg erushed between a mine car and mop；diod next day．
20.	Henry Falkenhagen． 46		Taylor shaft，Taylorville．	21，	Killed ly falling down the shaft at bight；he was not an employee．
Mar． 6,	Johu Linnen ．．．．．．．．． 30	5	Coal Brook tumue，（arbon	Nar． 8	Killed by being crushed letween a car and shde of the tumnel．
	Johin Morrissy．．．．．．． 17	4	Leggett＇s Creek shaft，l＇rovidence．．		Faially injured by a piece of rock roof falling upon him，crnshing lis skull ；died next day． Killed by it fall of roof，
$\begin{gathered} 25 \\ 25 \end{gathered}$	Anthony Kelly ．．．．．．${ }^{4}$	4	line brook shaft，scranton，．．．．．．．．．．		Killed by it fall of roof， lilled by same fall of rot
25，	John Cottell ．．．．．．．．． 20		Mit．Pleasant slope，Ilyde Par	8，	kimled by same fall of
31，	Thomas Brenuan．．．． 24	1	Erie sliaft，Carbondale tow		Filled by a fall of roo
Apr，2S，	Johin Munley ．．．．．．．． 13		Fik llill colliery，Blakely township．＇	May ${ }^{4}$	Killed by being crushed by falling under a mine car．
Nay 13，	John Whlliams ．．．．．．． 17		Diamoud No． 2 slope，Scianton．．．．．．	16,	Killed by a blast：he left the chamber and went around the pillar for salety from the blast，but went exactly opposite to where the blast was put on the other sifle．aul when the blast exploded it broke through the millar and killed him．
20.	Frank l＇aff．．．．．．．．．．． 20		Oxford Air shaft，LI M le I＇ark．	21.	Killed by beiug liurled down the shaft plo feet by an explosion of carbureted hridropren
20,	John Powell ．．．．．．．．． 39	1		21.	Killed by the same explosion that killed l＇alf；but l＇owell lived in the most exeruciating pains for ten days when he died．
20.	John Snyder ．．．．．．．． 50	1 ： 5	C＇entral shalt，Hyde Park	．	Killed by a fall of top cual． Filled by being smothered with culm，causad by culu chute civinc way，literally burv－
23.	Hicliael Clarke．．．．．． 70		Diamond No． 1 brcaker，	23,	Klled by being smothered with culm，caused hy culn chute giving way，literally bury－ ing him allve．
－5，	dohn Andrews．．．．．．${ }^{3}$	15	Jermyn＇s slope，Jermy	26.	Kilued by a fall of roof． Killot by same fall of roof as Andrews．
	Wwen Reap．．．．．．．．．．． 38		Ilampton shaft，IIyde Pa		Killed by same fall of roof as Andrews． Fatalty burned by an exploslon of carbureted hydrogen gas；died the evoning ot sane
J nne 3.	James diallagher ．．．． 40		lillsite colliery，Pleasant Valley	June 5，	Kllled by a fall of roof．
July 13.	John Fadten ．．．．．．．． 19		Gipsey Grove colliery，Dmmmore．．．．	July 15，	Killed by a fall of roof．
Ang． 19,	Henry Lebonrne ．．．． 39	11	Elk lill colliery，Blakely township．	Augr 12,	Killed by a fall of top coal． Killed by being crushed between mine cars．
Sept． 5	Kenjamin Williams．${ }^{\text {den }}$		1）iamond No． 1 slope，Scranton．．．．．．	sept．${ }^{6}$	Kllled by being crushed between mine cars．
23,	Patriek Alurray ．．．．． 48	10	Ioaring bruok eolliery，Dummore．．．	25,	Fatally burned by an explosion of powder while tre was making a cartridge with his
					lamp on his heal：died Octoner $3 d$ irom the effocts of his burns． Killed by falling down the shaft while playing．
	John Rutledge．．．．．．． 51	15	No． 8 shaft，${ }^{\text {litenton }}$		Filled by a fanl of roof．
	Francis Davies．．．．．． 13		L＇yne shatt，Latkawanua township．．	9,	Killed by being crushed between the pony screen and timber encasing it．（This was the first case luvestlyated by me．）
9.	Michael Killcan ．．．．． 50	13	lope，l＇ort（irim	11.	Fatally injured by cars striking him which had run away on the slope，breaking his legs and otherwise injuring him：dled October 18.
2．	James Flemmings ．． 12			13.	Killed by beiag crushed by a mine car un
17.	Michael Holland．．．． 49	1		18，	Killed by barring down top coal upon
18，	Michael Malia ．．．．．．． 35	1 4	Legrgett＇s Creek slaaft，l＇rovidenco．．	20,	Killerl by a fall of roof．
20,	Joseph Phillips．．．．．． 13	．．．．	Cayuga shalt，I rovidence．	21 ，	Fatally burned by an explosion of＂cartrldge powder，＂which was being carried into the mine encased only in a paper wrapper by l＇eter Cerrity，who was also burned． The boy died at one a＇clock．A．M．next moriling．
24.	40		No． 10 shaft，l＇ittston	20，	Fatally injured by a premature explosion of a blast．This accldent ocenrred on the 141 h
					t was not reported untll the 24 th，at which date the man died from his injnies．
Nov．${ }^{26,1}$	Patrick llouston ．．．．3． Juhn F゙．Montforti．．．\＆	10	Meadow 13rook lumel，Scianton．．．．． Jermyn＇s slope，dermyn．．．．．．．．．．．．．．．	Nov．	Killed instantly by a fall of roof throngh his own criminal negigence． killed lastanlly by a fall of ton coal．

Nov. 22, 1re. 7.

Fibled instantly by a fall of bony coal.
Fatally burned hy an explosion of powler whith was ignited from a spark from his lamp, whth he lat hanging fiomphis lat white miking a cartridge, ibled December 2d from his injuries.
atally injured by having his head crushed between bumpers of cars white attempting
 co eomple them while in motion: he was taken home alive hat diet the same day. had by an explosion of carhureted hyilhogen gas. This man was a "fire hoss" and mine sume into the mines on Christmas morning, pursiant toorders from the generat mine superintendent, to see that ine mine was clear of gas. Ine was fonnd dead, bebouicachd gas generaterl by the explosinn. It anmears that he did not hive his safetylamp with him, as it could not he lound anywhere near him after mamy hours' search. The lanp, howevor, is inlssing and its disappearance is a hystery.
 Violating the phang letter of the law by entering hefore "the chans of dinger was reviolating the phan letter of the law by entering hefore "the canse of danger was re-
moved; and ine mime boss was much to blane for allowing the mon to enter in violittion of the haw. Italo dlen lecember :2y, and landanl lingered in great agony mutil danuary 2. 1N77, when le died also.

TABLE No. 2.-List of accidents reparted to the Inspector of the EHstern Distriet of the Hyoming Cord Fictets, Luzerne county, State of lennsylvania, and the cause as shown by his investigation, for the your ending sist day of December, A. D. 18ic.

DATE.
1ratrick Madden.
James Irwin.
Michael F゙arry
Benjamin 11 ff.
11enjy Taylor...
David Watters..
1dward T'ierney
bavid Morgan
Johm Foundation....
James cireeue......
Authony Thorntoll.

John Limen
dolin 1surns..
l'atrick Henehan
l'allick Condua
labert Armstrong.
havin 11 ill.......
Michael 11^{\top} (ruinnes
Martin Murphey...
dohn Gafteny...
Edward Kellett....
Job 1 . Vavies
Jaines Andrews.
Willam Marshail.
Richard Clupper..
Oenjamin Dimiels
Owen Owens.......
Potriek N'Andiew
Patrick M1 Andiew
John 1karry..........
Martin AT Guire....
John Launing.....
William Rateliford,
Jolnn Jarrett........
Timotily Falvey....

Cobhient Where ACCident occurred.

Frie colliery Carmondele township Marvine slaft, Providence............ Phoulx shaft, l'ittston Von storch slope, providence.
Lerrgett's Crepk shaft, Providence.
Fair Lawn slope, Neranton............ Elk 11111 colliery, Blakely townsinp. No. 5 shatt, Jenkins townsh1].
Sibley shaft, Old Forge towassili.....
Von Storel slope, Providence.........
Mt. 1'leasant sipye, Hyde Park.
P'honix shaft, P'itston
Plognix shaft, l'itistom
plinznix shaft, 1'itstom
Leggett's Creek shaft, Jrovidence.
Twin shaft, l’ittston
Winton slope, Winton..
Ldely Creek shafi, Olyphant
Legyent's crerk slatit, rrovilence...
No. 10 shaft, Pittston.
No. 10 shaft, l'itiston.
Oxforl air-shaft, 11rde Park
Oxforl air-shaft, Hyle l'ark
Uxford ait-slaft, llyde I'uk
No. 6 shaft, I'ittston
Springr Brook shaft, Hoosic
Ravine shaft, Pittston.
lampton slaatt, Hyde Tirk.
Lampton slaft, Hyde Park.
Brislm sliart, provilence.
Spring Brook shaft, Hoosle
Coal Brook tunnel, Carbond
Central shaft. Il de Park.
Sprine lirook shatt, Archlak Krislim sliaft, providence
White Oak colliery, Archlaidi
Vou storelh slope, providence
Carbon Hill sliaft, lackawania ti..
Brisbin shaft, Providence.
Phoenix shaft, Pitiston
Phoenix sbaft, l'ittston.
Phonix shaft, l'ittston.
collar bone broken liy a plece of coal fanline on him
Slighty burned by an explosion of carbuteted hydrogen gas.
slightly injured ly a fall of roof.
Severty hinjured by the balance ear tuming over upon him on the slope
Injured by an explosion of a cartridge whith he was lotcing inlo a drill hobe
Burned ly ang explosion of powder. Nolan carried a lighted lamp over a keg of powder. and a slark from the lamp ignited it, lmurning Fary and hinself.
Leg, arm and collar bone broken ly falling in front of al which wats in botion.
Leg and arm broken by an explosion of powdur.
Injured by a fall of roof while taking out 1inther
Head crushed by being canght betweentwo mine cars.
Injured liy a fall of roof.
Burned slightly ly an explosion of carbureted hytrogen gas.
Rurned same way as the above,
Slightly injured hy a fall of roof.
 Sliglilly injured by a fasl of roof.
Leg broken by a fall of toj) coal.
Bnrned silghily hy an explosioni of earmureteal hyironeln gas
bumed by an explosion of carbureled hytrogen gas.
\} Both of these men were burned by an explosion of powder.
These three men were burned by an explosion of earhureted hydhngen gas. Which had accummlated binder a phaform whel was put aceross the shatt at the rook rem, ant upon whith they wert working in company with frank laff ant John lowell, who
were killed. A pank was taken uy and one of the men dropped mis fighted hap int Collar-bone broken and ot thervise injur
Slightly injured by a fall of top eoal.
Severely injured by a fall of cond.
These men were slightly burned by an explosion of carbureted hyurgen gas. Bumed slightly in the face, arms and body by a premature explesion of a blast, slightly injure hy a fall of top coal.
Arin broken whth a blow from a hammer.
Slighty injured by being kicked by a mule.
Skall ractured lyy a fall ot top coas.
Sliglttly Injured by a fall of rool.
Face and arms burned by an explision of p:weler. rnjured ly a rall of roof.
Burued slightly by an explosion of carbureted hydrugen g.s.
mjured by being rum over hy mine cars.
moner by a man coal.
Stightiy burnod by an explosion of enbmreted hothersen gas.
Monatel Judre
Fawat Cuskel
James Moran
Jolan Devlue

Whliam Logain
Norris Evans Michatl Regant........
James 0 'Boyle.

Anthony liamson..
Henry denklus....

Edwarl Rlley

David Chlton
WIllam Itayo..... David I Davlest dames liley Samuel Edwar Darby Grossman. Danlel M'Anlrews. Josedn Evans. doln Foreby Llowelyn Jons Thomas Sydelons.

Patrick I riseol Whllam Thomas..

```
William Horall ....
Amdrew liavit
Rees WV. Latoyd........ ti
Parrek ormangs. lohut Adrian Peter Ilarman
``` Valenthe Cotmeily Mehael Frerguson
Agernon Patten..
Jom Wriber ...
Sushma Hutchuings
O.. Evitn I. Jones.
11. Patrlek scankon.....
\(17 .\).
\(14 .\).
10
2. Sames 1:hek..........

\begin{tabular}{l}
11 \\
11 \\
... \\
\hline
\end{tabular}

ii

\section*{\begin{tabular}{l|ll}
37 & 1 & 4 \\
\(\ldots . .\). &
\end{tabular}}

Con Storeb slopn, Provitence No. 10 slaft, Piciston tark shatt, Mososic
P'yo shaft, lackiw:.................. on sorms slope, Proviteuce Mt. I'leasant somp, Hyde l'ark
Green kidge slope, Scranton
pring Brook slart, Mnosic.
potge shaft, Lack: wamua tow ionshia

\section*{No. 4 slope, dittston.}

Meadow lirook tunnel. Scranton .
 1) iamond mines, seranton

Spring lirook shaft, Moosic
Seneca slope, D'itstor.
Diamond mines. Scrinion
(lentral shart, II yde Park.
Taylor shaft, Taylorville.
Taylor shaft, Taytorvile..................
Butler shaft, 1'itistou township....
Soan shaft, lackawamm township.
Whiton slopet Whiton

Connell-s new sirtuc, Latk:1. to.....

Sibley shaft, old Forge lownship...
Leggetl's Creek shaft, Irovidenco.

Filer colliery, Wintom
No. 10 shalt Pittsion Caponse slatit Ilyte bairk (ireenwoorl eblluers. Itekil (ireenwool coltery, La:ka, (1), Fair Lawn sfors, serantous

Eddy Creek shaft, Olyphant Butler slaft, Pitiston Butler slart, I'itaston Contineatal shatt, Lackibvabui............. White gak colliery. Arehbakl (Contluental shaft, Lackawamna io. Fller collery, Whatent.................

Injured silghty ly a memature explosion of a hlast. explosion of carbuteted hydrorm pas. One of them wats troushing omt the past and
 lesson they will not soun forget.
severely injured intornally by a fill.
Slighty burned in the fice and hands by an explosion of cathmeted hydrogen gis binmed by an explosion of "catrtage powder." Which he wats carrying fito ble mine encised only tha paput wrappur
Leg broken by coal mom a blast
Lye put ont hay a pieco uf coal from a mast.
Lye put ont ley a pieca of coad
Back lnjured ly a fall of roof.
Back injured by sime fatl of root
Back injured by same fath of roof.
Log broken and otherwise injurst
 off. hear the mouth of the slope.
9
10
10
10
tack sighlity cut loy a fall of coal and 1 oof.
Rips injuret by a fall of root.

RH1, broken and back and hip. injured ly a fall of roof.
Arm broken ly couphing ears white they were in thatom, Head cnt and injured in H1e loins lyy a fall of root.
Internally injubut hy falline from a joist in the lireakor
Ankie distocated and bono lratinred loy a lall of lop) coral

Table No. 2-Contimucd.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Date. & Names. & P2
¢
\(\vdots\)
\(\vdots\) & 三 & ¢ & COLLIERY WHERE ACCIDEST uccurred. & \\
\hline Nov. 22. & Thomas Mascha & 16 & & & 1)odge shaft, Lackawama township. & No \\
\hline \(23 .\). & Thomas Clarke...... & 2.5 & 1 & 2 & stark shaft, DIansic. & \\
\hline 23. & dames \({ }^{\text {d Maliat..... }}\) & 35 & 1 & 3 & Datvson shaft. Pleasant Valley & \\
\hline 25. & & \(\frac{22}{30}\) & & & & \\
\hline \(28 .\). & John Burke, Jr..... & 30 & 1 & 2 & Eaton colliery, A relibald............. & Nuv \\
\hline 28. & Richard Bevan. & 61 & 1 & & No. 2 slone. Port Griti & \\
\hline \(\cdots 9\). & Parick Jourdan & 17 & & & Blamond slople scrant & \\
\hline 29. & Frank Gebliart. & 43 & 1 & 3 & Nu. 10 shatt, Pittston. & \\
\hline Der. \(1 .\). & & 40 & 1 & & No, 2 slone, Port Griftith............. & 1 \\
\hline 4... & \begin{tabular}{l}
David Hnghes \\
Thomas Edwards.
\end{tabular} & 19 & \(\ldots\) & & Continental sliaft, Lackawanna if.. Hodge shaft, Lackawama township, & \\
\hline 11.. & John Cawley & & 1 & & Hodge slaft, Lackawama township, & \\
\hline 12. & Owen Mirtough..... & 37 & 1 & 2 & Dodge shart, Lackawanna towuship, & \\
\hline 12. & Mlichael Forli....... & 38 & 1 & 2 & Joulge shaft, Lackawamna fownship. & \\
\hline 19. & Thomas Erals & 13 & & & Yon storch slupe, Providence........ & \\
\hline \(12 .\). & Asa B. Wells....... & 27 & 1 & & stark shaft, Moosie. & \\
\hline \(16 .\). & Simuel Broadhead.. & 4 & 1 & & Hillside colliery, Pleasant Valley Pheale shaft. Pittston. & \\
\hline \[
18 . .
\] & lsaae Ithuscriff...... Patrick (ioldin & 24 & 1 & & \begin{tabular}{l}
Phoulx shaft. Pittston \\
No, 6 slope, pittston.
\end{tabular} & \\
\hline 30. & Thomas W. Murgan & 50 & 1 & 3 & Twin shaft, Pittston. & \\
\hline 21. & Morris Mlangan & 45 & 1 & 8 & Meadow Brook tunuel, Scrantor & \\
\hline & Patrick Hopkins & 40 & 1 & 5 & No. 10 sliaft, Pittston & \\
\hline 28.. & \begin{tabular}{l}
Thomas Sivift. \\
Daniel James.
\end{tabular} & \(\frac{55}{55}\) & 1 & 5 & \begin{tabular}{l}
Eaton colliery, Ar(fibald................ \\
Slibley shaft. Old Forge township
\end{tabular} & \\
\hline
\end{tabular}

\section*{Natule or Cause of Accident.}
llips and loins severely injured by being crushed betwean a car and pillat. Slightly injured ly being syueezed hetween a car ind at prop.
Face and eyes injured by going into a chanher where a blast was heing fired.
Face, neck and hands bumed by an explosion of powder while making a cartridge with
Arm broken and hadly ent by a fall of roof.
Fex chushed by cars so that amputation was nocessary, which was done.
Fiace, breast, arms and shoulders severely burned by an explosion of powder while making a cartridge with his lamp hanging in his hat
Leg injured slightly by a plece ot coal sliding agalust him.
nujured slightly by heing kicked by a mule.
Hip distocated ly a fall of roof.
Leg broken ly a fall of top coal, whild fell hmmediately after firing a blast. Face cut ly a jiece of rock falling from the roof.
Arm broken by falling upon the pony screen while clating avay culn.
Arm broken by falling upon the pony screen while ckstring away
Face and hands slightty bumed by an explostou of earbureted hyilsogen gas. Letgs severely bruised by a fall of coal.
Silglitly hinured by a premature exploslon of a bliast.
Face and hands sli haty bnrued by an explosion of carburcted hydrogen gas. IIip Injured by a fall of coal.
29. Buth legs and one arm severely brnised and dead slightly cot by coal fiom ablast.

TABLE Fo．ふ．－N゙umber of persons killed and injurek，ctud cause of recidents，in． the Eastern distriet of the Wyoming coct fielets，Luzerne county，I＇e．，durimy the years \(18 \% \geqslant-3-\frac{1}{2}-5-6\) ．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Caldes or the hecidents．} & \multicolumn{2}{|c|}{1872.} & \multicolumn{2}{|l|}{1873.} & \multicolumn{2}{|l|}{15it．} & \multicolumn{2}{|l|}{150.} & \multicolumn{2}{|l|}{18.6.} & \multicolumn{2}{|l|}{Total．} \\
\hline & \[
\stackrel{\text { 를 }}{\stackrel{y}{8}}
\] & \[
\underset{\text { E゙를 }}{E}
\] & 를 & E
ミ
玉 & \[
\stackrel{r}{\stackrel{\rightharpoonup}{\mathrm{a}}}
\] & E
E．
© & \[
\begin{aligned}
& \underset{\Xi}{\Xi} \\
&
\end{aligned}
\] & \[
\begin{aligned}
& \underset{\Xi}{\Xi} \\
& \underset{\underset{\sim}{\underset{\sim}{x}}}{ }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 玉 } \\
& \text { E }
\end{aligned}
\] & 를
玉 & & E．
․
® \\
\hline 1explosions of catbureted hydrogeng & 5 & 21 & ．．． & ． & \({ }^{6}\) & 10 & 3 & ， & 6 & 21 & 23 & 51 \\
\hline Falls of roof．．．．．．．．．．．．．．．．．．．．．．．．．．． & 19 & 43 & & & 25 & 23 & 18 & 29 & 16 & 93） & 7 S & 11＊ \\
\hline Falls of coal．．． & 17 & 25 & ． & & 13 & 8 & 11 & 25 & 4 & 15 & 43 & 73 \\
\hline Falling down shafts ．．．．．．．．． & 4 & 3 & ．．． & ． & 1 & 2 & 1 & 2 & 2 & & ¢ & 7 \\
\hline Fxplosions of blasting powde & 7 & \({ }^{6}\) & & & & 3 & 1 & 10 & 3 & 12 & 11 & 31 \\
\hline l＇remature blasts & & 21 & & & 6 & 13 & 10 & 5 & & & & \\
\hline Cruslied by mine cars & 8 & 40 & ．．． & ． & 13 & 13 & 12 & 1.5 & 9 & 19 & 42 & ！ \\
\hline Discellaneous under groumd & 1 & 15 & & & 2 & 5 & 2 & 16 & 2 & 19 & 7 & 5. \\
\hline Above ground．．．．．．．．．．． & 6 & 10 & & & ， & 4 & 4 & 8 & 2 & 5 & 14 & 8 \\
\hline Whole numbers & 67 & 1.87 & & ． & 69 & 8. & 62 & 102 & 4 & 120 & 226 & 459 \\
\hline Whole number of widows． & & 38 & & & & 38 & & 36 & & 21 & & 13？ \\
\hline Whole number of orphans & & 119 & & & & 112 & & 118 & & 79 & & 42S \\
\hline
\end{tabular}

TABLE No．4．－Coal production and number of persons employed，dec．，dic．
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 18 T \％ & 157.1. & \(18 \%\) & \(15 \% 6\). & Averages and totals． \\
\hline I＇rodaction of coal per year in ton & 6，580，450 & 6，357，879 & 7，956，452 & 4，862，512 & 25，735，293 \\
\hline Number of persons emplosed．．．．．． & 15． 261 & 16，561 & 17，808 & 17，152 & 16．620 \\
\hline Ratlo of productios for each person employed．．． & 423.3 & 333.9 & 46.8 & \(2{ }^{2} 3.46\) & 385.5 \\
\hline Jatio of proluetion for each life lost．．．．．．．．．．．． & 97，917 & 92， 143 & 125， 340 & 110，511 & 113，889 \\
\hline Ratio of production for each person killed and itijured & 25， 823 & 40.292 & 49.515 & 39，453 & 57，162\％ \\
\hline datio of persons employed ror each lite lost ．．．． & 2027.77 & 240.00 & 287.22 & 384， 81 & 73.76 \\
\hline
\end{tabular}
'ABLE No. 5.-This table gives the amonnt of coal minerl, in tons; kerfs of ponvicr used, ways worked, number of persons cmployel, ratio of cocl minel per employce, per accillent, per life lost, for each working colliery, uluriny the year 15 , and rutio of eorl mined per aceident and life lost in \(1874-5-6\).

DELAWARE, LACKAWANNA and Westhrn Raikroad Company.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline NAME OF COLLIER1ES。 & & & & & & & & & & & & \\
\hline lyne sla & 93, 50.1 & 293 & 3, 600 & 17,607 & 2,1311/2 & \(120{ }^{2}\) & 3013 & 320.02 & 21.401 .75 & 97, 6117. & 2l, 974.20 & 134, 871. \\
\hline Taylor shaft ami & 99, 406 & 1, 192 & 3,428 & 103,906 & 3,1065 & 14912 & 351 & 296. & 34,635.33 & 103,905. & 35, 101.53 & 128.705.33 \\
\hline Archbald slatt. & 5,933 & 122 & 2.345 & 8, 400 & , 27 \% & 39 & 117 & & & & 19,278.33 & No ileath. \\
\hline Siloan shaft. & 84,590 & \({ }_{1,469}^{409}\) & 3,000
2,210 & 97,499
92,120 & 2,605 & \({ }^{1489} 18.4\) & 293
302 & \[
331.11
\] & 21, 19.47 .50 & Nodeath .. & \(28,317.15\)
\(25,194.14\) & 368, 123. \\
\hline teranton coal compat & 763 & & 2, 190 & 2,833 & 23 & & 4 & & & & 33,500. & 100,501. \\
\hline Bellevne shatt amd stop. & 9,274 & 40 & 8.060 & 12,314 & 312 & \(221 / 3\) & 358 & & & & 3), 364. & 61,268. \\
\hline Mampton sliaft & 104,415 & 350 & +,616 & 109,347 & 3,00\% & 1531/4 & 34.1 & 317.48 & 36,462.33 & 109.387. & 36,552.50 & 91,381.25 \\
\hline Cortinental sl & 96,169 & 608 & 2,210 & 98,987 & 2,442 & \(162^{1} 2\) & 318 & 311.28 & 24,7.16.75 & No death & 27,725.54 & 180, 216. \\
\hline Central shaft & 110,95\% & 1,010 & 6,500 & 118, 462 & 2,609 & \(172{ }^{2}\) & 276 & 427.03 & 339,487.75 & 118, 462. & 35, 42. & 70,842. \\
\hline Ilyde Park shart & 8,763 & 128 & 150 & 9, 9.4 & 233 & \(131 / 4\) & 270 & & & & Noaccident & ur 3 years. \\
\hline Miamond. No. 2 slatif & 123,06\% & 976 & 3, 312 & 129,3.30 & 3.355 & \(162{ }^{1}\) & 860 & 315.42 & 124,350- & 124,350. & \(66,588.71\) & 116, 5330. \\
\hline liamond, No. 2 slop & 50,907
48.762 & 3138 & \(\stackrel{3}{1,830}\) & 54,135
\(51,(45\) & 1,217
1,686 & \(16{ }^{162}{ }^{2}\) &) 319 & - 329.72 & \(\left\{\begin{array}{r}\text { So } \\ \text { No, } 02.50 \\ \text { accide }\end{array}\right.\) & 27,067.50 & 30,294:20 & 151,471. \\
\hline krisblu shaft & -19,702 & 151 & 2 CHO & 51,8.52 & 1,640 & \(933^{\circ}\) & & 102.56 & - 17.284. & No death. & 17,738. & No death. \\
\hline Cityuga shati & 93,539 & 511 & -, 023 & 96,076 & -73012 & 158 & 261 & 359.87 & 30, \(0: 5.33\) & 48,038. & 27,473.30 & 51,031.11 \\
\hline Total for D., L. \& W. R. & 1,075,934 & 7.104 & 45,289 & ,129,627 & 29.713 & & 1,150 & 271.95 & 25.0939.15 & 125.493. & 32,287.71 & 113, 354.66 \\
\hline \multicolumn{13}{|c|}{PENNSYLVAN1A COAL COMPANY.} \\
\hline No. 1 Lumel Pittston townshyp & 25,200 & & 700 & 25,900 & 864 & \(23 \%\) & 70 & 370. & No accirlent & nor death.. & 97,588. & No death. \\
\hline No. 2 slope, Port (ritith.... & 3:1,813 & & 1,275 & 41.118 & 1.337 & 22 & 99 & 415.83 & 10,029.50 & 41,118.
No death & 19,549.87 & \[
\begin{aligned}
& 52,133 . \\
& 263^{2}, 233 .
\end{aligned}
\] \\
\hline No. 6 slope, Pittstoll do... & 20,2336 & & & 26,236 & 1,607 & 216 & \(5 \times\) & 504.51 & 26,236. & do & 91,247. & No dealit. \\
\hline No. 1 slaft... dodlo & -975 & & 830 & 1,3155 & 20 & & 27 & & & & Noaccident & Nor aeath, \\
\hline No. 4 shaft....do..... boroug & 77,629 & & 500 & 78,199 & 3,005 & \(\cdots\) & 150 & 520.86 & Noaccideut & nor death. & 61,752.20 & 10\%,920. \\
\hline No. 5 slart, Jenkins townsli & 67.943 & & 500 & 68, 483 & -2,633 & \({ }_{2}^{238}\) & 130 & 456.28 , & \({ }_{5}^{34,221.50}\) & No death & 36, 171. & 84,349. \\
\hline & 77, 898 & & 1,225 & -79, 7118 & 8, 8.048 & \(\stackrel{238}{203}\) & \({ }_{1}^{103}\) & 331.88
492.42 & Noaccitent &do....... & 53,381.25 & \(106,762.50\)
97.408 .66 \\
\hline So. 8 shart, Dittstou townshly & 73,505 & & 1. (m) & 74,505 & 2,866 & 2116 & 197 & 378.20 & 74,515. & 7,505. & \$4,88t. & 127,326. \\
\hline No. 9 sbaft.....do... borough & 46,394 & & 725 & 47,119 & 1,812 & 217 & 142 & 331.82 & 47,119. & 17,119. & 24,010.14 & \(56,114.66\) \\
\hline No. 10 shaft.... do....towns & 120,666 & & 3,730 & 130, 393 & 5,015 & 220 & 335 & 367.31 & 18,608. & 130,396. & 39, 716. & 103. 261.50 \\
\hline No. 11 shaft, Jenkins....do & 41.038 & & 780 & 41, 318 & 1,608 & 238 & \({ }^{1113}\) & 406.04 & Noaceident & nor dealh. & \(150,344\). & 150,34. \\
\hline No. 12 shaft, Pittstun ...de & 59,230 & & 1,125 & 60, 3.5 .5 & 2,325 & \(\underline{297}\) & \(13{ }^{2}\) & 458.60 & do. & . . do. & 32,286. & 32,286, \\
\hline Brown's eollery, Dleasant Valie & 11, 635 & & & 11,635 & 147 & 219 & 11 & 1,056, 81 & do.... & & Noaccident & \\
\hline 1.aw's shaft.....do. & 41,537 & & 2,025 & 43,502 & 1. 6.515 & 223 & 120 & 363.00 & 43,562. & 43, 362 & 43,562. & 43,562. \\
\hline 1)awson's shatt & 65.478 & & 72.5 & 66, 203 & \(\because .516\) & 219 & 171 & \(3 \times 7.15\) & 66203. & No death .. & 130,363:3, & No death, \\
\hline Ntark shaft................do. & 85,800
48,127 & & 1, 290 & 86,400
45,417 & 1,108
1,862 & 220 & \({ }_{123}^{238}\) & 374.13
393.15
3 & \(23,433\).
\(48,417\). &do & 35,979. & Noderth. \\
\hline dipsey Girove collierydu. & 95,011 & & 352 & 95,363 & 5,431 & \(213^{1 / 2}\) & 24.1 & 390.82 & \(47,481.5\) & \(47,481.5\) & 78,118.69 & 97,648,25 \\
\hline Total for l'ennsylvanla mal company & 1.133, 311 & & 18,359 & 1,151, 663 & 46, 801 & & 2, Ses & 172. 23 & 44,678.5\% & 161.523 .28 & \(53,276.58\) & \(105,919.23\) \\
\hline
\end{tabular}

DELAWARE AND HUDSON CANAL EOMPANY,

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collieries. & Hoisting engines.. & & & & & & & & & \[
\begin{gathered}
\overline{0} \\
\stackrel{0}{0} \\
\stackrel{0}{5} \\
\vdots \\
\vdots \\
\stackrel{0}{0} \\
\vdots
\end{gathered}
\] & & \[
\begin{aligned}
& \stackrel{4}{0} \\
& \stackrel{D}{6} \\
& 6 \\
& 0 \\
& 0 \\
& 0 \\
& \vdots \\
& \vdots \\
& \vdots \\
& \vdots
\end{aligned}
\] & Kind of stemm-gauge. & Time of bollers in use. \\
\hline Pyne shaft Lackawanna townshlp. & \(\stackrel{2}{2}\) & 300 & 1 & 60 & 1 & 230 & 1 & 40
100 & 12 & 30 & 30 & 85 & & 6 years. \\
\hline Taylor shaft and drift, Taylorville & \(\frac{2}{2}\) & \begin{tabular}{l}
80 \\
80 \\
\hline
\end{tabular} & 1 & 30
60 & 1 & 110
150 & 2 & 100
60 & 12
10 & & & & Annerlean & 99 years. \\
\hline Archliald shaft, Lackawanna towns & \(\frac{2}{2}\) & 100 & 1 & 50 & 1 & \({ }_{2}^{150}\) & 1 & 40 & 10 & 40 & 36 & 75 & Asheroft & 6 years. \\
\hline Dodge shaft. do & 2 & 80 & 1 & 60 & 2 & 101 & & & 9 & 32 \& 38 & \(3 \pm\) & 80 &do & 6 years, \\
\hline Scranton coal conpaiy & 2 & 160 & 1 & 100 & 1 & 60 & 1 & 40 & 12 & - 32 & 34 & 70 & & 7 years. \\
\hline lellevue shart & 2 & 80 & & & 1 & 100 & & & 9 & 40 & 36 & 90 & Welling's & 10 years. \\
\hline Hellevue slope. & 4 & 160 & 1 & 60 & 1 & 21 & 1 & 60 & \({ }^{9}\) & 40 & 36 & 90 & ...do...... & 2 years. \\
\hline Mamptor shaft & \(\stackrel{4}{4}\) & 108
80 & 1 & 60
30 & \(\stackrel{2}{3}\) & \({ }_{500}^{130}\) & & 40 & 13
9 & 36
40 & 34
36 & 70 & American & 9 years. \\
\hline Contmental shaft.......̈rk.................................... & \({ }_{2}^{2}\) & 80 & 1 & 80 & 2 & 300 & 1 & 40 & 12 & 30 & 36 & 80 & & 68 years. \\
\hline Hyde Park shaft...do. & , & 120 & 1 & 60 & & & & & 6 & 36 & 31 & 75 &do & 6 years. \\
\hline \%xford shaftd.do. & 4 & 155 & 1 & 60 & 5 & 140 & & & 12 & 30 & 36 & 80 & do & 8 years. \\
\hline 1)iamond, No. 2 , shaft, Serai & 5 & 130 & 1 & 65 & 4 & 330 & 1 & 80 & 19 & 40 d 30 & 34 & 75 &do & 12 years. \\
\hline & 2 & 120 & 1 & 35 & 3 & 200 & & & 7 & 40 & 36 & 75 & ...d & 12 years. \\
\hline Tripp's slope.........do.......................... & 2 & 80 & & & 3 & 76
40 & & & 7 & 33 & 31 & 65 & & 12 years. \\
\hline Brisbin shaft. do............................... & \(\stackrel{2}{2}\) & 80 & 1 & 60
40 & \(\frac{1}{2}\) & 40
300 & 1 & 60
40 & 12 & 30
30 & \begin{tabular}{l}
36 \\
30 \\
\hline
\end{tabular} & \begin{tabular}{l}
80 \\
80 \\
\hline
\end{tabular} & & \begin{tabular}{l}
5 years. \\
6 years.
\end{tabular} \\
\hline Total for 1)., L. and W. R. R Co................. & 45 & 2,038 & 16 & 910 & 34 & 2,553 & 12 & 600 & 194 & & & & & \\
\hline \multicolumn{15}{|c|}{Pennsyluania Coal Company.} \\
\hline \begin{tabular}{l}
No. 1 tunnel, or No. s slope, littston twp \\
No. 2 slope, lort Girithth
\end{tabular} & 2
1 & \[
40
\] & & & \multirow[t]{14}{*}{\(|\)\begin{tabular}{r}
2 \\
5 \\
1 \\
\(\ldots \ldots\). \\
3 \\
1 \\
1 \\
\(\cdots\) \\
\(\cdots\) \\
\(\cdots\) \\
\(\cdots\) \\
1 \\
3 \\
\(\cdots \cdots\) \\
1 \\
1 \\
2 \\
2 \\
\(\ldots\) \\
\(\ldots\)
\end{tabular}} & \multirow[t]{14}{*}{} & \multirow[t]{14}{*}{} & \multirow[t]{14}{*}{} & \multirow[t]{14}{*}{[\(\begin{array}{r}3 \\ 6 \\ \{ \\ 2 \\ 3 \\ \text { Gets } \\ 6 \\ 7 \\ 3 \\ 6 \\ 5 \\ 5 \\ 3 \\ 3 \\ 3\end{array}\)} & \multicolumn{2}{|l|}{\multirow[t]{14}{*}{}} & 75 & & . \(. . .1\). \\
\hline No. 4 slope, Jenkins township & 3 & 00 & & & & & & & & & & 75 & & \\
\hline No. 6 slope, Pittston township. & 1 & 25 & & & & & & & & & & shaft. & & \\
\hline & \(\stackrel{2}{1}\) & 40 & & . & & & & & & & & 75
75 & & \\
\hline No. 5 shaft, Jenkins township & 1 & 40 & & & & & & & & & & 75 & & \\
\hline No. 6 siaftt......... do.. & 2 & 65 & 1 & 25 & & & & & & & & 75 & & \\
\hline & 1 & 40 & & & & & & & & & & 75 & & \\
\hline No. 9 shaft, P'ittston borough. & 2 & 60 & & & & & & & & & & 75 & & \\
\hline No. 10 shaft, P'ittston township & 3 & 105 & 1 & 40 & & & & & & & & 76 & & \\
\hline No. 11 shaft, Jenkius townshlp & 1 & 40 & & & & & & & & & & 73 & & \\
\hline No, 12 shaft, Pittston township. & 1 & 40 & 1 & 40 & & & & & & & & 75 & & \\
\hline No. 13 shaft, Pleasant Valley & 1 & 40 & & & & & & & & & & 75 & & \\
\hline Stark Shaft, Lackawanna townshly & 3 & 80 & & & & & & & & & & 90 & & \\
\hline bawson shaft, Pleasaut Valley & 1 & 40 & 1 & 40 & & & & & & & & 75 & & \\
\hline
\end{tabular}
No. 2 slipe, 1 unimore o. 4 slaft. Gipsey firove, bummo
'Tomis. teru'a con connt
 \(\left.\begin{array}{r}2 \\ 1 \\ 1 \\ \cdots \cdots 2\end{array} \right\rvert\,\) \(\left|\begin{array}{r}55 \\ 30 \\ 30 \\ \ldots \ldots \ldots . \\ \hline 1,010\end{array}\right|\)
 \(\frac{1 . . .}{30}|\cdots \cdots . .| c c ..\).

Delaware and Hudson Canal Company.

MISCELLANEOUS COMPANIES AND OPERATORS.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Everhardt colliery, Jenkins township................ 2 & 80 & 1 & 40 & & & & & 5 & 30 & 30 & \((6)\) & & 12 years. \\
\hline Tr.mpkins shaft, Dilitston & 45 & 1 & 30 & 3 & 75 & & & 6 & 30 & 30 & f0 & U̇ic & is years. \\
\hline Seneca slope.........did & 30 & , & 350 & 1 & 30 & & & 4 & 32 & 30 & 70 & & 10 years. \\
\hline litvlne shaftds)................ \({ }^{\text {a }}\) & 45 & 1 & 100 & & & & & 4 & 30 & 30 & 65 & & 10 years. \\
\hline & 45 & 1 & 40 & i & 25 & 1 & \(\underline{30}\) & 9 & 30 * 28 & 33 & 70 & & 10 years. \\
\hline Beaver colliery & 30 & & & & & & & 2 & 40 & 30 & 55 & & 13 years. \\
\hline Bunler shati. Pittst on township............................ \({ }_{\text {P }}\) & 40 & I & 40 & 2 & 30 & & & 7 & 30 de 39 & 30 & 70 & Wisuer is strong & 12 years. \\
\hline Phasmix shaft......do................................... 1 & 60 & 1 & 40 & & & 1 & 12 & 6 & 32 di 27 & 30 ※32 & & & 5 years. \\
\hline Columbla colliery . do. & & 1 & 30 & & & & & & 31 & 30 & 50 & Utica..... & 12 years. \\
\hline 1tillside colliery I'leasant & 90 & 2 & 85 & 2 & 40 & 1 & 10 & 10 & 30 & 30 & 60 & American & 5 years. \\
\hline Spring lirook, Moosic.. & 30 & 1 & 25 & & & & & 6 & 30 & 30 & \(6_{60}\) &do & 6 years. \\
\hline (ireetwood colliery, Lackawanna township \({ }_{2}\) & 80 & 2 & 125 & 3 & 60 & & & 13 & 30 & 30 & 69 & ..do & 11.2 years. \\
\hline Sibley shaft, Hld Forge township..................... \({ }_{2}\) & (k) & & 8.5 & & 49 & 1 & 10 & 10 & 30 & 30 & &lo & 5 years. \\
\hline (iblyin 1111 shaft, Olit Forge Lownshit \({ }^{\text {a }}\) & 85 & 1 & 25 & 1 & 60 & & & 8 & 30 & 30 & 60 &d & 16 years. \\
\hline Headow trook tumel, scranton & 52 & 1 & 40 & 1 & 1)onkey & & & 4 & 32 & 31 & 70 & Hi. Belfield's & 1/2 year. \\
\hline Meadow Brook shaft.... .do & 160 & 1 & 45 & 2 & loukey & & & 7 & 31 & 34 & 60 & Schofield's. & 2 years. \\
\hline l'ark coal company's slopue, llyde l'ark 2 & 13.1) & I & 3 5 & & 1)onkey & & & 6 & 30 & 3.4 & 80 & Shafer \& Badenberg. & 1 year. \\
\hline Catpouse shaft.....................lo.................... \({ }_{\text {d }}\) & 160 & 1 & 40 & 1 & & & 80 & & 30 & 36 & & Smatr * indomberg. & 3 years. \\
\hline Mount Pleasant skge10.... & \(1(0)\) & 1 & 35 & 4 & 25 & 1 & 150 & 11 & 35 & 30 & 70 & ... & 3 years. \\
\hline Pinte 13 rook shaft, Scrimton & 60 & 1 & 40 & 1 & 70 & & & 9 & 30 \& 21 & 36 & (10) & & 12 years. \\
\hline Fitir lawn slopve......do................................. 1 & 25 & 1 & 35 & & & & & 4 & (30 & 30 & 75 & -ica & 33 years. \\
\hline Jermyn's No. 2 shafi do................................. & 220 & 1 & 60 & & & 1 & so & 12 & 36 & 34 & 80 & Glftord's & 1 year. \\
\hline direen 181dge slope Dunmore & 180 & & 25 & & & & & 9 & 40 & 34 & 75 & & 7 years. \\
\hline & 95 & 2 & 45 & 1 & 60 & & & 13 & 36-22-24 & 36-34-30 & 75 & Ashicrort and Utica... & 8 years. \\
\hline Elk 1111 collery, Blakely township & & 1 & \(3)\) & & & & & \(\stackrel{3}{2}\) & - 50 & - 30 & 70 & & 16 years. \\
\hline Filer colliery, Wrinton................................... \({ }_{\text {F }}\) & 180 & 1 & 45 & & & & & 12 & 30 & 30 & 80 & Dickson's & 13 years. \\
\hline Winton colliery, Winton.............................. \({ }_{\text {W }}\) & 90 & , & 45 & & & & & 0 & 30 & 30 & 80 & . \(1 .\). do & \(2 y\) y ears. \\
\hline Eaton colliery, Archlath................................... E \(_{\text {g }}^{\text {g }}\) & 50 & , & 25 & & & & & 4 & 40 & 34 & 60 & 13est. & 5 years. \\
\hline Jermyn's slope, Jermyn....... \({ }_{\text {d }}\) & 60 & 1 & 33 & & & & & 4 & 36 & 34 & 80 & & 7 years. \\
\hline & 60 & 1 & 洮 & 1 & 60 & & & 9 & 36 & 31 & 80 & & 1 year. \\
\hline & 60 & 1 & 21 & 1 & 35 & & & 9 & 31 & 32 & 70 & & 6 years. \\
\hline folling am mines, scranton . & 60 & & & & & & & 7 & 40 \& 36 & 34 \& 36 & 60 & Mercury & 7 years. \\
\hline & \(2+43\) & 34 & 1,311 & 27 & 690 & \({ }^{8}\) & 262 & 232 & & & & & \\
\hline
\end{tabular}
-```

[^0]: Ratio of coal mined to each life lost is 82,752 tons.
 Ratio of tons mined for each person employed is 273.
 Ratio of tons mined for each serious injury is 27,917 .

[^1]: 1. 1), doNES.
[^2]: * There was 4,350 cubic feet of air per minute circulating through the up-cast, due to the power of rarefaction in the workings. Now, if we take the difference in the weight of a cubic foot of air between the indet and the outlet, (. $0009785 \mathrm{lbs} .$,) $\times 300$ feet, the depth of the shaft, and the product by the number of cubic feet of air per minnte (4350^{\prime}) circulating and divide by 33,000 we obtain $.038+$ H. P., due to natural causes.
 F. N. Spon, furnishes the following formula for ascertaining the theoretical water-gauges: $\mathrm{h}^{\prime}={ }_{2}^{\mathrm{V} 2} \cdot{ }_{8}^{12} 15$ inches of water column. Where $v=$ velocity of extremity of the vanes in feet per second. The shutter was not varied in each case, as it ought to be to produce the best results. If $\frac{\mathrm{h}}{\mathrm{h}^{\prime}}$ is multiplied by the number of revolutions, (no alteration being made in the pressure of steam nor in the opening of the regulator-valve,) is an indication of the best position of the shutter when such product gives the highest results, for it shows that the minimum resistance is offered to the fan at the same time that a maximum water-gauge is obtained. It is upon this principle that the position of the shutter can be experimentally tried, for the production of the best economical effect.

