Jniversityof Scranton
The Library

For Reference
Not to be taken from this room
ϕ
9

- Pamplimentá'.

Of grobicliny,
as
©omphoments
*

«EPORTS

of THE

IISPECTORS OF MIDES

OF THE

YEAR 1880.

HARRISBURG:

IN D EX.

Page.
Report of Samuel Gay, Inspector for the First Distrint, 5
Report of Robert Manchline, Inspector for the Second Distriet, 21
Report of James Ryan, Inspector for the Thirl or Shamnkin District, 62
Report of G. M. Willians, Inspector for the Middle District of Carbon and Luzerne counties, S6
Report of Willian S. Jones, Inspector for the Eastern Distriet ol Carbon and Lu- zerne connties, 137
Report of T. D. Jones, Inspector for the South Dintrict of Carbon and Luzerne counties, 203
MAPS AND ILLUSTRATIONS.
Map of Anthracite coal fields, Frontispiece
Sketch of explosion at Riehardson colliery, 9
Map of Shenancloal coal basin, 25
Plan of working Kehley Run colliery, 29
Sketch of Campbell \& Co.'s gas gemerator, 33
Kehley Run and Kohinoor collieries, 51
Plan of working Short Mountain and Lykens collieries, 65
Plan of thirty-five foot fan, 100
Plan of section Leggitt's Creek shaft 156
Plan showing ear clrag, de., 166
Plan of opening breast at IIazleton mine, 208
Ventilation of Hazleton No. 6 colliery, 203

REPORTS

OF THE

INSPECTORS OF MINES

OF TIIE

FOR THE YEAR 1880.

Pottsville, Schuylkill County, Pa., March 14, 1881.
To His Excellency Henry M. Hoyt, Governor of Pennsylvania:
Sir : In accordance with the provisions of the second section of the act of 2 d day of June, A. D. 1871, I have the honor of herewith submitting the following report of the office of clerk of the mining district of Schuylkill for the year ending 31st December, 1880, together with consolidated and comparative tables of production of coal. number of employés and fatal and non-fatal casualties which are severally given in the reports of the respective inspectors of each division of the district in detail and hereto attached.

The term for which Samuel Gay, inspector of Shenandoah division, and that of Sampson Parton, inspector of Pottsville division, were commissioned, expired on the $22 d$ day of Sptember last. The first was re-commissioned for another term and assigned to Pottsville division. Robert Mauchline was commissioned in place of latter gentleman, for term commencing on date above named, and assigned to Shenandoah division.

Mr. Parton's health for some months prior to the expiration of his term of office, had been failing, so much so as to render him unable to make any
extended examination of mines, and necessitating his employment of a deputy, upon whose reports he was compelled to rely. Il is health continued to fail until 26 th of Jannary ; when his disease (dropsy) resulted in death. Mr. Parton was a gentleman very much respected for his varied attainments and superior knowledge of mines and mining. His deeease is regretted by a large circle of sincere friends.

The monthly reports to the eourt commeneed May, 1879, as ordered by the court, March, 1879, have been made regularly throughont the year, but regret to state that they were not as aecurate or reliable as it is desirable they shonld be.

Owing to refnsal of some operators and failures of others to furnish their monthly tomage, we have been compelled to rely to some extent upon eopies of weekly scale reports sent to newspapers for the tomnage of these collieries ; these, in some instances are liable to be diplieated. and with others who ship coal east and west we frequently only receive the eastern shipment, so that the reports of tomage for each month lack that aceuracy they shonk have. These reports could be made to serve the interests and le of the very greatest adrantage to those engaged or interested in the production and sale of this raluable and important fuel, by having monthly an accurate statement of the coal shipped for the preceding month from each district, thus enabling them to make up tables of prodaction and quantity marketed from month to month and thereby forming an important element in forecasting the future trade of the season.

In order that it may be possible to accomplish this mneh to be desired end, a tounage blank has been prepared and will be forwarded monthly to each operator. which, if filled up and promptly returned, will enable me to issue early in the month a report perfect? acemrate of the preceding month's shipments from each division of the district.

We desire to express our thanks to the coal companies and operators who have, hy the information given, assistance rendered, and conrtesies extended, materially aided us in the discharge of our duties, and with an earnest desire that these pleasant relations of the past may ever continue in the future.

The expenses for year 1880 for office rent, light, fixtures, postage, and incidental expenses of clerk's offee, with stationery of the several inspeetors and clerk's oflice, for which vouchers were returned to Auditor (iencral's office, amounted to $\$ 59800$.
Total amount coal shipped to market, Potts-
ville district,
$1,367,531.06$
Consumed or sold at colliery,
93,549.11
$\begin{array}{ll}\text { Total amount coal shipped to market, Shen- } \\ \text { andoah district, } & 3,543,663.04 \\ \text { Consumed or sold at colliery, } & 210,122.10\end{array}$
Total amount coal shipped to market, Shamoken district,

$$
3,285,216.15
$$

Consumed or sold at collicry,
176.155 .03

Total production of Schuylkill district.
 3,461,371. 18

Decrease for 1880 ,
1,382,027.07
Total number employés, First, or Pottsville division, . . 6,913
Total number employés, Sccond, or Shenandoah rlivision, 11,471
Total number employés, Third, or Shamokin division,. . 11,616
Total number employés entire district, 30,000
Increase for 1880 ,
1,584
A verage days worked by breaker, First division, $151 \frac{3}{4}$
A verage days worked by breaker, Sccond division, . . . $175 \frac{1}{2}$
A verage days worked by breaker, Third division, . . . $174 \frac{1}{2}$
Arerage in entire district,
Total fatal casualties, Pottsville division, 15
Total non-fatal casualties, Pottsville division, 129
Total fatal casualties, Shenandoah division, 39
Total non-fatal casualties, Shenandoah division, 92
Total fatal casualties, Shamokin division, 34
Total non-fatal casualties, Shamokin division, I24
Totals, . 34588
Total fatal and non-fatal, 433
Ratio of tons per life lost, 98,593 10
Ratio of tons per person injured, 25,14809
Ratio of employés to each life lost, $340 \frac{10}{10}$
Ratio employés to each person injured, 87
Total number of tous of coal, fire clay, iron stone, and shale
mined in Great lritain and Ireland, as per report of $1879, \quad 145,366,369$
Of which there was tons of coal, 133, 720,393
Total number of employés, 476,810
Total number of accidents, 782
Total number of deaths from tibove accidents, 973
Number of tons coal mined to each life lost, 137,431
Number of employés to each life lost, 490
The English mines report for 1879 is taken for comparison, as being the latest received.

> Very respectfully, \&c.,
> ED IV ARD J. GAYNOR,
> Clerk Mining District of Schuylkill

FIRST DISTRICT.

Office of Inspectur of Mines, Potisville, I'a., March 7, 1881.

To His Exeelleney, Menry M. Hoyt.

Governor of Pennsyluania:

Sir: In compliance with the act of Assembly of 3d March, 1870. requiring annual reports of the proceedings of inspectors of anthracite mines, I have the honor of heremith submitting my first annal report for the First or Pottsvilie district, and in connection with my suecessor, the sixth ammal report for the Sceond or Shenandoah district of the mining district of Schuylkill, for year ending 31st December, 1880.

The term for which I was appointed and assigned to the Shenandoah division having expired on the $2 \boldsymbol{z}$ d of September, and bonored by a recommendation for re-appointment by the board of examiners, which was confirmed by a commission from Your Excellency for the ensuing term, with assigmment to the Pottsville district.

Owing to chauge from Shemandoah to Pottsville district prior to the expiration of the year, and as several matters of grave importance occurred during my term in the former district, I have made a report for that district in connection with that of my suceessor. The aecidents and tabnlated statements are, however, given as one for the entire year, being embodied in those of my successor in the Shenandoaln district, and for Pottsville district with those of my prederessor.

The Kehley Run mine fire and explosion of gas at Kohinoor colliery, with attendant loss of life, being occurrences of more than ordinary importance to the mining region, and requiring more than a simple notice, occurring, as they did, while I had charge of the Shenandoah district, I have rleemed it ineumbent upon me to give a detailed account of them in the report for that district.

The Pottsville district embraces all that part of schuylkill county lying south of the north side of the Broad momntain, extending from the eastern to the western homdary of the county, a distance or length of forty four miles, containing an area of about one hundred and fifty scuare miles within the enal limits, or nearly one thich of the anthracite coal dield. Notwithstanding the very large area of the distriet, get the production is much less than that of any of the other districts.

There are over fifty collieries in opration within its limits, yet fully fifty per cent. are small or what is known ats " hand sale collieries," employing from two \quad, to twenty jersons each, and having a eapacity for production
ranging from five lundred up to ten thousand tons for each per annum. There are also quite a number of collieries throughout the district that have either been suspended or abandoned during the past depressed period in the coal trade, and more than likely to remain in that condition for some time to come.

In this district, for the year, there were fifteen accidents, resulting in the loss of the same number (fifteen) of lives, a decrease of nine from that of 1879 , and attributable to the following causes:
Explosions of gas, 4
Premature explosions of blast, 1
Falls of coal, roof, de. 6
Mine cars, 2
Miscellaneous, 2

One hundred and twenty-nine persons were injured, a decrease of twentynine from that of 1879. Many of those injured, however, were not of a serious character, and fully ninety-five per cent. were members of the Philadelphia and Reading Coal and Iron Company's beneficial fund. Total number of tons of coal shipped to market; $1,367,531.06$ Sold or consumed at mines, 93,509.11

Total out-put of coal,
1,461,070.17
Total number tons of coal produced in 1879,
$1,855,164.00$
Decrease for 1880 ,
394,093.03
Total number of employés, 6,913
Production of coal to each employé, 211.07
Ratio of one life lost to tons of coal produced, $97,404.14$
Ratio of one person injured to tons of coal produced, $11,323.02$
Ratio of one life lost to total employés, 461
Ratio of one person injured to total employés, $=\underline{=}$
When consideration is had of the number of years a large majority of the collieries have been in operation, and the great depth many of them have reached, it was an agreeable surprise, upon assuming charge of the district, to find them generally in fair coudition, and much better than I had anticipated, although in some matters of the greatest importance there had been neglect. In four collieries the second outlet had been allowed to either close or from other causes of neglect become useless for the purposes for which such openings are required.

These evils have now heen remedied, and I do not know of any colliery now in the district that has not a sceond outlet in such condition as to be a vailable at all times for either egress or ingress.

The greater unnber of collieries in the district are working below water
level, and more or less generate fire damp, and, as a precautionary measure of safety, the workmen are confined to the use of the Dary lamp, although in my examination I have not found any bodies of standing gas, (fire damp,) with exception of one colliery nor detected the rentilating eurrents in return air courses as being charged with gas in sufticient quantity to be noticcable on the flame of the lamp, with exception of one colliery.

The precaution taken for safety in providing anc? using safety lamps is worthy of the highcst commendation, and shall always receive my most earnest approval, as too great care and precaution cannot be exercised in fiery mines, and the opposite is more generally the rule than the exeeption in the anthracite region. Notwithstanding that it has been held by many that where safety lamps were used the rentilation has been more neglected than in other places where open lights were in use, yet in this district such has not been foum to be the fact, but rather the contrary has been fully proren.

I have selected days when the barometer has been musually low for the purpose of examining the return air currents in collieries where safety lamps were in use, and could not detect any cap on the flame of the lamp.

Through courtesy of A. B. Cochran, mining engineer, I am enabled to attach to my report a map of the anthracite region, showing the coal field in each country, and each inspector's district, with table of total tomage for each year from commencement of shipments.

> Very respectfully, $\&$ \&e., SAMUEL GAY, Inspector.

Ventilation.

In all the collieries of any extent or importance in the district, rentilation is produced by means of fans, the majority of them being constructed on the Guibal principle.

The power is ample to furnish a copions supply of air, if all the other arrangements and chamels whereby the eurrents are conducted to the ventilating machinery were constructed anywhere near the principles required by natural laws.

In this district, as in many others, the practice of carrying small airways, are noticeable, in some of the collieries very much so, thus preventing that full supply of air that would otherwise le securch. An important matter connected with the ventilation of the most fiery mines in the district is that where they strike a piece or section of coal where the usual amount of gas is not given off, the mine ofticials become neglectful and eriminally"curcless in not carrying the air forward to the face of the several workings as required by the ventilation act.

In examinations made, I fomm places driven ahead of the brattice or air current a distance of from fifty to sixty feet, and this in the most fiery colliery in the region.

When remonstrated with for this mlawful and dangerons negleet the general excuse has been that no gas had been seen for several days or a week, de., this excuse being considered suflieient to justify or exonerate them from all llame in ease of aecident, forgetful or ignorant of the fact that this lax diseipline is the primary cause of fully ninety per cent. of the casualties in our mines.

Wherever this condition of things was found to exist demand was made upon the officers in charge to have it reformed and the workingmen restrained from working therein until remedied, or legal proceedings would be instituted against them for violation of the eighth section of the rentilation act.

Some few mine officials have taken exception to this, and held that I was exceeding my authority as ifispector, and therefore deserving of censure. I have ever and always endeavored to avoid, as far as prudence would admit of, using the authority which the law has elothed me with, preferring to suggest or request rather than to demand the cessation of unsafe, unworkmanlike, and dangerous practices, although submitting to them, if not complied with, the alternative of answering before the court why they did not comply.

Explosions of C. H. gas.

Thirtcen explosions of gas occurred in this district during the year 1880, by which four lives were lost and thirteen persons injured. Six of these accidents oceurred since my assuming charge of the district, resulting in one death, and seven more or less injured. The explosion at Richardson colliery on morning of November 25 th, by which two persons were seriously burned, one of whom died a few days later, was the result of gross negleet or earelessness on the part of the men injured, and loose discipline, combined with neglect, on the part of those in charge of colliery. It appeared from information elicited at examination that the fire boss had made his usual morning rounds, and that he had found gas in the working place of these men, viz: The chutes and cross-headings in West Daniel vein, near face of the gangway; the gas extending downwards about fifteen inches from the roof of the heading, and "tailing "outwards about twenty-tive feet, ending in a feather edge.

That after completing his examination, he returned to a station near the foot of the slope, where he was acenstomed to meet the men as they came to work, and there notify them of any danger that existed in any of their working places.

Upon this morning these two men passed the station on their way to work without having been noticed by the fire boss, and withont on their part stopping to make any inquiry as to the condition of their working place, which prudence and a due regard for their own safety, as well as the requirements of the rentilation act, shoukl have taught them to do.

It appeared that this was more the result of habit than of reeklessness.
They proceeded, however, with others, to face of gangway, and one of
them, having lighted his safety lamp, went ip the chute to cross-heading, and commenced dressing down loose coal that had been loosened by a shot the day previous. Having observed the gas upon entering the working place, he hung his lamp near the bottom and below the level of the gas.

His "butty " had in meantime gone into the breast outside of the one they were working in, and the last working, two new breasts not working, or a distance of eighty feet, being between them.

This "butty," having completed a conversation had with the two men working in the breast, started to join his partner, going along cross-heading with an open light, and when about twenty-fire feet from breast he had left, the gas exploded, burning him and his partner in a fearful manner, the latter injuries resulting fatally:

These men had violated the eighth section of the rentilation act, and were guilty of a misdemeanor in passing the lamp station as they did without making the necessary inquiries as to condition of working place; but, as heretofore stated, was more the foree of habit than any mistake, showing a sad want of proper discipline in this mine. The boss is to be censured for not having the rentilating eurrent carried or conducted up to the face of the workings, which he had failed or neglected to do, as by leaving three chutes open outside of where the explosion oceurred, and thereby allowing the air to escape into the return before reaching the face of workings, fully sustaining the charges of neglect, carelessness, and want of proper diseipline.

Underground Fires.

Two days after assuming charge of the Pottsville district, or on the 24 th September, 1880 , information reached me that fears were entertained by the oflicials in charge of Mine Hill Gap colliery that a fire existed in it, near the face of the East Daniel rein gangway, opened on middle lift. With the adverse experience had with the fire at Kehley Rum mine, I determined on an immediate examination that no lives should be jeopardized here if in my power to prevent it ; fortunately, however, no loss of lite or serions aecident las up to time of this whiting (Mareh 1st) oecurr d.

This mine is located in Greenlumy ralley, two miles northeast of the borough of Minersville, and operated by the Philadelphia and Reading Coal and Iron Company. It is opened en the north dip:of the Mammoth rein by a slope which is down three lifts below water level or about 1,000 feet below the surface, on an angle of 65°.

The last time the slope was sunk, two lifts were opened with the design of operating hoth lifts at the one time ; this, howerer, after an unsuceessful attempt to work them together. Was fomb impracticable, owing to the steep angle and free character of the coal, and mining in the lower lift was temporarily abandoned.

Upon examining the mine, whatever doubts may have existed in regard to the fire, were quickly dispelled by secing large vohumes of fire rushing down one of the chutes into the gangway and also by looking throngh crossheading in pillar, fire buming fiereely in breast.

A foree of men were engaged to make preparations to crect stoppings, consisting of wooden shells, the center filled in with clay, in gangways on the west side of the fire, with the purpose of cutting it off from the werkings on that side and also for the purpose of hermetically sealing that portion of the mine where the fire exists.

Howerer scrions the results may be in the future, for the present, the fire fortmately exists in a part of the mine where but a small portion of the workings are exposed to its ravages, as on the east side it has a solid face of faulty ground to operate against, and on the west side a fifty feet pillar of coal extending the length of the first lift, or about three hundred feet.

Above this are the old workings which have been robbed ont many years since.

In the gangways at this pillar the stoppings spoken of above have been erected.

The coal companies oflicers are now of the opinion that the fire has been extinguished through the means employed; this may be possible, but searcely probable, from the fact that I do not believe it practicable to hermetically seal that part of the mine so as to cut off the air that supports combustion, hence my opinion that it is still burning, and fear that it will in the future cause great trouble and expense if not the abandonment of the colliery.

The basin on the south dip for a distance of four miles has been flooded for several years in consequence of underground fires, and yet in many parts thereof fire still exists.

IMPROVEMENTS.

Lehigh Nos. 10 and 11.

A new breaker erected, new machinery added for improving and increasing ventilation, a new slope sunk from second to third level with gangways, outlets, \&e., complete.

New machinery for rentilation was also erected at Greenwood Slope No. 2 and breaker at No. 11 enlarged and improved.

Lincoln.

Inside tumnels were driven from No. 3 to Nos. 4 and 5 veins, a distance of two hundred and nineteen yards.

Kaimia,

Rock tumnel driven, cutting the No. 4 Lykens Valley rein orerlying the No. 5 rein. The rein has three and a half feet of good coal.

East Lehigh.

Breaker improsed by rebuilding poekets, erecting a new screen, putting in new rolls and necessary additional machinery.

Gencral improvement made of inside traek and workings, placing colliery in good eondition for season of 1881.

Middle Lehigh.

A second lift in present workings has been opened and a new slope on Mammoth rein started.

Black Mine.

This colliery has not been worked for nearly two years past. The present operators commeneed oparations during the latter part of the summer, making general improvements in machinery and workings of mine that were required, erected a steam pump.

Palmer Vein.

Tumel N , on third level helow water level extends $186 \frac{2}{3}$ yards. Air hole driven to surfice from third level, west gangway on Charley l'ott vein, and 12 -feet fin, with upright engine, ereeted in eomection therewith. Palmer slope and west gangway Palmer vein to loug tumel re-timbered. Dirt plane and engine erected. An air hole started on what is believed to he the P'each Monntain vein ent by the long tumnel north from the Palmer rein on third level below water level.

Long timmel is now driven 400 yards.

REGISTER OF FATAL CASUALTIES

Dates.	Names of Persons Injured Fatally.	Oceupation.	Naine of the Colllerles.	¢		豆	REMARKS.
Jan. 21	Luke McGerity,	Miner,	Eagle IIIll Shaft, .	45	Married,	5	In the act of firing a shot, a plece of coal fell, fracturing his skull, eausing death on 2 sth lnst.
Feb. 9	latrick Brennan, .	Mince,	Eagle Itill Shaft,	30	Single,		Explosion of gas. Deceased went into chute with naked light, igniting gas and fatally burning him.
Mar. 15	Juseplı Dix,	Drlver boy,	Warlesville	15			Fell from front elud of empty wagon on which he was riding and dragged underneath, injuring him Interially.
April 21	Thomas Rhoades,	Muer,	Phounix Park No. 2,	54	Married,	3	Fall of slate in lreast. Deceased had been ordered by inside boss to place a prop to prevent fall, but as the next daty was to be an lite one he concluded to defer obeying order until thell, with above fatal result.
2	John Owens,	Engineer,	Gate Vein,	55	Married,	2	Supposed to have falleu ofl wagon that was being holsted, receiving injurles causing immediate death.
	John Winlams, Patrick Rooney,		Lower Rausch Creek, Widlesville,	56	Widower	5	
$\begin{array}{rr}\text { May } & 10 \\ 17\end{array}$	Patrick Kooney, Elward Murphy,	Boy, . . . Miner, . . .	Widesville, Thomaston,	$\begin{aligned} & 14 \\ & 46 \end{aligned}$	Married,	9	Drowned in sump. Upon descenting shatt with his father to go to work in the mine is supposed to have lost his way and walked into sump. Fall of top coal. Deceased and "butty," John ILoran, had drilled a hole and were tamping it preparatory to firing a shot, when without any previous indications (having somnled the top and considered it sale before commencing work) of danger, a barge mass of top coal fell, burying both beneath it. Murpliy was instanty kitled, and II oran severely injured.
July ${ }_{13}^{26}$	Willam Morgan,	Miner,	Richardson,	50	Married,	6	Explosion of gas. Died from injuries on May 80.
July 13	Johu Bonawitz, . .	Mlner, . . .	Lincoln,	53	Sarried,	9	Fall of slate. Was engaged robbing piltar in breast 6t, east side gangway, No. 2 slope, and while endeavoring to prevent fall it occurred, cansing instantancous death.
28	doseph Briggs, . .	Bottom man,	Swatara,	19	Single,		Deceased and two other men were pushing a loaded wagon in back switch or slope bottom. While a loaded wagon was being holsted on the slope, when loaded wagon was about being landed on top of slope, the rope broke, the wagou descending to bottom. Coal from wagou struck leceased, breaking his leg, the inflummation of which causell death on August 5 .
$\begin{array}{r} \text { Sept. } 13 \\ 13 \end{array}$	Thos. J. Williams, Willtam Morgan,	Miner, . . . Nmer,	Poltsville, Lower Rausch Creek,		Married, Married,	6	Fall of slate and coal, receiving injuries from which he died on Sentember 19. Explosion of gas. Deceased, wihh Isaiah Morgan, was working in breast 73, west. Deceased had fired a shot which ignited gas, causing explosion. From evidence glven at inquest it appeared that the fire boss had examined this breast at about six 0^{\prime} elock in the morning, and found no gas as high as he could reach. The breast was worked up about 19 yards, and from 151025 feet high. It also appeared in evilence that the superintendent of eolliery had cautioned thase men on the Saturday previous to aecilent to fire no shots, as it was dangerous and unnecessary, as small feeders of gas existed. Morgan died from injuries on Suptember 26.
Nov. 13	Griffeth Lewis, . . Richard Sparnell,	Laborer, . . . Miner, . . .	Wadesville, IRichardson,	$\begin{aligned} & 23 \\ & 26 \end{aligned}$	Single, Married,	1	Fall of slate at face of gangway. Explosion of gas. Deceased was driving a chute in whieh constherable gas had accmulated during the night. He went to work in the morning without consulting fire boss. George hartin, his butty, coming into chute with naked Ight Ignited the gas, burning both, and from effects of which sparnell died on November 28 .

Date.	Nimes of Persons Injured.	Occupation.	Names of the Collieries.	Remarks.
Jan. 2	John Patmer,	Repairsman,	Glend	Leg imjured by prop falling upon it.
	Michael Lawle	Miner,	Wast Franklin,	Trall of piece of top soal ; head ind shoulders injured.
7	Daniel Merionigle,	do.	Wadestille,	Frall of piece of top eoal ; legs amd eliost injured.
12	David Watkins,	do.		Dumping buggy ; bar ran through his hand.
15	Bernard larkin,	do.	I'hoenix Park, No. ${ }^{\text {2 }}$,	Pall of piece of coal : two fingers cut off.
16	John Wrelsh,	Laborer,	${ }_{\text {do. }}$ do.	Caught between car and breaker; leg broken.
16	Moses Finley,	Bottom man,	Fagle Hill Shaft,	Struck by piece of coal : ribs broken and side bruised.
16	Daniol Couway,	Miner,	Otto,	Lamp of another workman accidentally ram into his oye, burning it.
19	Ralph Elliott,	do.	e,	Foot slipped while lifting a lump of coal ; back soverely sprained.
19	Jacol Redding ,	do.	I	Fall of piece of coal ; foot broken.
22 30	Lewis Reese, William Giles,	Laborer,	Lehigh C. de N. Co., No. 11,	Fall of slate; leg brokeln.
30	Willian Giles,	do. .	Wadesville,	In trying to save himself from filling, struck his hand against sharp piece of eoal, inllieting severe cut.
	John Trainor,	Miner, do.	Eale Hill Shaft	Fell down chate from healing to gragway ; skull fractured. Top eoal fell while undermining: ribs and sitle injured.
	John Larkin, James Civanangh,	do.	Eagle Hill Shatt,	Standing prop against pillar, piece of coal fell ; knee cut.
9	John Lloyd,	do.	do.	Explosion of gas.
14	Thomas Clore,	do.	Thomaston,	Barring coal from top piece of slate fell; foot injured.
14	Henry Williams,	Boss loader,	Wadesville,	Door of car fell; back injured; land bruised; forelinger broken.
17	William Linsey,	Miner,	C. © N. Co., Foster's tun'i	Explosion of $\frac{2}{3} \mathrm{keg}$ of powder; burned.
17	Johm McFlhaney,	do.	do. do.	Explosion of $\frac{2}{3}$ ker of powder; burned.
23	Robert Gilgore,	do	Phoenix Park, No. 3 ,	Faall of coal ; head eu
24	Martin Cummings,	do.	Wadesville,	Fall of coal ; thigh broke.
24	John Reese,	do.	do.	Fall of slate ; struck on side and rib broken.
24	George Johin,	do.	Pine Forest,	Fill of coal ; head eut.
Mar. ${ }^{24}$	Francis Farrell,	do.	Lincoln,	Lobbing pillar, piece of leo slate loll ; side and back injured.
Mar. 2	Willam liavis,	Laborer,	Pottsville,	Fall of slate; head ent and brnised. Fall of coal ; injured internally.
3	Edward Grant,	Ioader,	Glendowe	Struck on leg ly piece of coal, breaking leg
9	James Samons,	Miner,	Black Heath,	Fall of rock: leg broken.
18	James Edwards,	Laborer,	Mine Hill Gap,	'Trimming end of gangway ; axe slipped euting toe off.
19	Jocl Dinger, .	Miner,		Fall of coal; knocking him, lown, the chnte injuring leg and side.
22	John MeKenna,	Bottom man,	Eagle IIill shaft,	Head caught between wagoins, and injured.

Alex Hart, Martin Deegain, Joln Muldowney Jeff Cauffield, Peter Keilman, Thonnas F. Jones, Thomas Wilson, Daniel Oakman, John Murphy Grifl' Sulnth, William MeGee William Weaklan, Joseph Purcell, Henry Eichenberg, Henry Hughes, Dudley Gordon, James Clemens. Fronemins Houtz, George T. Shaw, Dennis Buckley, Willian Ddwards, Willian Watkins, James Churchill, Daniel Melarkey, Daniel Melarkey,
William Brennan, William Brenna
Howell Davis. Howell Davis.
George Wagner, Michael McFadden,

Thomas Wilson

 John V. Ryan, Nicholas Mosen Willian E. Price Nicholas Slobsky, Thomas Keating,James Hayes.
Ldward Quirk, Henry Williams,

Joseph Hurst, Daniel Evans,

Pine Forest
Anchor,
Mine llill Gap,
Thomaston,
L. C. \& N. Co., No. 10°, .
do.
do.

Wadesville

Wadesvile, ${ }^{\circ}$. . .
Phcenix Park, No. 2, . . .
Wadesville
Richardson,
Phoenix Park, No. 2,
Beechwood,
Wadesville,
do.
Tower Rausch Creok,
Kalmia,
Colket,
Pottsville,
Mine Hill Gap,
Colket,
L. C. \& N. Co., No. 10 ,
do. do.
Beecliwood
Beechwood
Richardson
Glendower,
L. C. \&N. Co., No. 8,

Pottsville,

Thomaston,
Beechwood
Wadesville
do.
Glendower,
Beechwood
Thomaston,
Wadesville,

Pottsville,
L. C. \&N. Co., No. 10 ,

Explosion of gas; liands and face burned
Fell from platiorm, a distance of 20 feet; foot and side injured.
Struck by piece of rock; leg broke
Explosion ot gas; body injured.
Fell under empty cars in gangway.
Fall of coal in breast, knee scverely cut.
Log fell on his foot and crushed it.
Thumb caught between car wheel and sprag, and cut off. Qaught between wagons; breast injured.
Cauirht between coal and prop; arm broken ; back hurt.
Fall of coal ; back and head injured.
Wagon ran over his leg injuring it soverely
Caught between cars; collar bone broken.
Knee cut severely with an adze.
Fall of piece of coal ; head cut.
Fall of piece of coal; back and shoulder injured.
Fatl of coal ; arm broken.
Full of coal at fice of gangway; back severely injured.
Canght between I aded wagon and prop; hips injured.
Fall of slate ; back and legs bruised.
Piece of coal struck and injured eye.
Blasting needle ran into foot.
Explosion of keg of powder ; seriously burned.
Fall of slate in breast; head and face cut.
Fall of coal ; head and face cut.
l'ingers caught in cogwheels of fan and mashed.
Fingers caught in wheel and mashed.
Struck by pieceof timber while timbering cross-cut ; injured in groin.
Kicked by a mule; head cut.
Fall of piece of coal; head ent.
Fall of coal; head and shoulders eut.
Kicked by mule; nose broken and chin cut.
Struck by piece of coal; artery on temple cut.
Struck by piece of coal; eve injured.
Wagon ran over his finger, cutting it off at first joint.
Janmed between mule and side of shaft; body bruised.
Mules rumning away, caught him between wagon and door frame; leg broken in two places and otherwise severely injured.
Explosion of gas ; face and hands burned.
Fall of slate; ankle bone broken.

Patrick Gailacher,	Miner	Wadesvi	
John WVithelder, .	do.	Swatara,	niting a shot of dynamite; eyes injurerl.
Ben Howart,	(lo.	Wadesville,	Fxplosion of gas ; face and hands burned.
Christ Shistle,	Iaborer, .	Wadesville,	Explosion of gas; lace and hands bumed.
Patrick Klahr, .	Miner, .	Thomaston,	Struck by lump of coal ; hip hurt.
Moses Parkin,	do.	Wadesville,	Fall of piece of coal ; knee fractured.
Patrick IInpkins, . Michael Hopkins, .	$\begin{array}{lll} \text { do. } \\ \text { do. } & \text {. . . } \end{array}$	Phœenix Park, No. 3, . . . Phœenix Park, No. 3,	$\left\{\begin{array}{l} \text { Taking timber up the breast, a sliot fired in next breast } \\ \text { blew throurh the pillar, eutting them about face and body } \\ \text { seriously. } \end{array}\right.$
Daniel Brennan,	do.	Thomaston,	Fall of piece of coal ; thumb recently cut off.
Thomas Maley,		Otto,	Fatl of slate; back and leg injurer
John MoGinley,	Inside engineer,	East Fran	Leg broken b'y striking against a shaft.
Patrick Moran, .	Miner,	Otto.	Struck by piece of coal ; hip hurt.
Evan Edwards,	do.	Eagle Hill Sha	Finger cat off, while getting on a wagon
William Cammon,	do.	Palmer Yein,	Explosion of gas, while robling pill
David W. Peregrine,	Driver,	Mine Hill Gap,	Kicked by a mule; hip hurt.
James Harron, . . .	L.oader,	Eagle Hill Shaft,	Cauglit between wagons; bo
George Williams,	Miner,	Glendower, . .	Struck by coal from shot; face and arm cut.
William Devine,	do.	Oito,	Fall of piece of coal : shoulder and breast in
Thomas Cautield,	Starter,	Mine Hill Gap,	Fall of piece of ecal ; back hurt.
George Jenkins, .	Dijver,	Richardson, .	Spragging wagon ; thumb caught between sprag and wagon and broken.
George Martin, . . Themas Curroll,	Miner	Fagle Hill Slart,	Explosion of gas; fifed with naked light; burned severely.
Thomas Carroll, . .	do.	Eagle Hill Slatt,	Fall of coal; leg bruised.
W. I1. Welbb,	Coal] usher,	Waclesville,	Fell off the platform ; arm broken in three
Henry Pugh,	Miner,	Glendower,	Fell off a wagon; leg injured.
William Daley,	do.	Greenwood, No. 2, Lehigh No. 10. .	Explosion of gas; slightly burned.
Thomas McCalley,	Loader	Wadesville,	Shculder dislocated while loading a wagon.
Richas d Toben, .	Staiter,	Richardson,	Piemature discharge of dynamite; preparing a charge, his l:mp ionnted, the squib cansing premature explosion; hands slattered and humed.
lin Swank,	Miner,	Middle Lehigh,	Fall of coal in breast, starting coal at chnte heading, a piece of coal from fall came down chute and struck him on the leg, breaking it.
Tim O'Herion,	Miner,	Eagle Hill Shaft,	Fall ©f scme timber sucl loose coal and rock; back injured.

Recapituiation of Fatal Accldents in Pottaville District for 1880.

Explosion of gas， 4
Explosion of powder and blast， 1
Falls of coal，slate，\＆c． 6
Mine cars， 2
Miscellaneous， 2

Recapitulation of Non－Fatal Casualties In Pottsville Distriet for $\mathbf{1 8 8 0}$.

Explosions of gas， 13
Explosions of powder and blasts， 11
Falls of coal，slate，\＆c．， 59
Mine ears， 17
Miscellancous， 29

Comparative Statement of Casuaities，Tonnage，and Employees tor Six Yeara，in Firat or Potts－ ville Division of Mining District of schuylkill．

Years．	豆							放言 どす 오을 むこ园㩆云		
1875	28	88	116	8，646	7118	2，853，629	101，915．06	32，427．12	24，600．05	330
1876	23	63	91	8，487	93！	2．317，056	82，752	27，917	25，462．03	273
1877	29	111	140	5，847	417	1，550，780	54，510	15，151	11，291．05	270
1878	14	30	44	5，300	120영	1，229，081．03	87，791，10	40，969．07	27，933．13	232
1879	24	158	182	6，242	34］	1，855， 164	77，293．10	11，741．11	10，193．04	297．04
1850	15	129	144	6，913	53\％	1，461，070．17	97，404．14	11，326．02	10，146．06	211.07
Total，	138	579	717			11，296，781				
Arerage	23	96\％	119¢	6，906	693	1，882，796．16	83，612	23，255，03	18，271．03	268．18

COLLIERIES.

Beceliwood,

Colket,
East Franklin
Fangle Hill,
Glendower
Mine $11 i l l$ Gaj,
Otto,
Phoenix Park No. 2,
Phoenix Park No. 3,
Pine Forrest,
Pottsville,
Riehardson,
Thomaston
Swatara,
Waderville
Black Heath
Chandler,
Kilsworth,
Eagle,
Gettle \& Wagner Tract
Gate Vein,
Kiılmia,
Linesln,
Ransch Creek,
Lewis 'Tract,
Lehigh, No. 8,
Lehigh, No. 10,
Lehigh, No. 11,
Palmer Vein
it. Clair,
OPERATORS.

Philadelphia \& Reading Coal and Iron Company,

do. do.

do.
do.
do.
do.
do.
do.
do.
do.
do.
do.
do.
do.
do.
do.
do.
do.
do.
Willian H. Harris,
Patrick lieenan,
Jolin R. Davis, i © Brother,
W. \&J. S. Heffner,

Gate Vein Coal Company,
Phillijs if Sheafer,
Levi Miller \& Co.
Miller, Graeff \& Co.
Seth W. Geer,
Leliggh C. \& N. Co.
to.
Alliance Coal Company
Joseŋh Atkinson,

106	232
85	211
76	185
85	239
88	238
59	238
75	202
64	149
72	166
75	192
145	352
109	303
168	376
71	154
234	467
60	90
.	2
12	38
54	165
\cdot	5
9	30
64	242
136	400
96	252
.	.
112	396
98	397
50	230
54	138
7	11

$157{ }^{3}$. -	6	$45,078.05$
102	. .	3	25,481.08
171		3	34,418.18
170	2	13	56,427.16
$106 \frac{1}{2}$	- .	10	25,738.19
$121 \frac{1}{4}$. .	7	35,028.18
$99 \frac{1}{4}$		4	35,639.09
149.	1	4	23,468.11
$117{ }_{4}^{3}$. .	3	18,771.01
112		4	33,050.11
156	1	11	39,062.10
$165 \frac{1}{4}$	2	5	70,773.14
$171 \frac{1}{4}$	1	8	77,186.03
124		3	21,463.18
195	3	23	106,388.00
. . .		2	26,883.09
,	- .	. .	426.05
260			10,126.13
$176 \frac{3}{4}$. . .	41,466.14
- ${ }^{\text {. }}$			895.07
37	1		398.17
194		1	76,026.16
197	1	2	125, 170.08
190	2	1	82,608.19
.		- -	773.07
188		4	$96,145.12$
$191 \frac{1}{\frac{1}{4}}$		7	91,509.01
$125 \frac{3}{4}$		3	40,806.05
165		1	23,772.00
180		. .	2,253.13

Colmieries.	Operators.							
Slaarpe Mountain,	Thomas Wren, .	7	17	50	264			3,913.15
Wolfe Creek Diamond,	Thomas if Parnell,	21	69	100°	98			5,060.11
Swatara, .	John D. Felty,	2	1	.	719.00
Chandler Tract,	IVilliam Lloyd,	-	2	6000
Monitor,	John H. Denning,	20	. . .	\cdots		.	2,585.04
Peach Orchard,	do. ${ }_{\text {dor }}$ (.	- . ${ }^{\text {a }}$	5	. . .	\cdots		\cdots	1,743.15
St. Clair, Tract,	Thomas Burke,	2 1 1	3 3	- 14	240		.	294.13 $1,306.06$
Shaft No. 1, .	Wood is Pearce,	10	64	300	140			14,357.10
Black Mine,	II, Av Moodie d Co.,	30	80	80	60			1,259.15
Tremont Lands,	Peter Lanx,	2	8	. . .	\cdots		+402.15
Whipporwill,	John Wylam,	. . .	2	\cdots	239.00
	Theodore Helman,	\cdots	2	\cdots	323.00
	Edward Hoskins,		6		1,710.03
	James F. Donahoe.	4	9	. . .				5,005.01
Delaware Lands,	Small operators,		5	. . .				1,055.10
Russel Lands, .	de.		29					3,670.04
Middle lehigh,	M. W. Price, superintendent,	156°	406	1,025	77		1	47,601.00
Hiawatha, . .	Sebastian Kestenbach,	3	150.00
	Stephens \& Bossler,		3	. . .				150.00
Pine Dale,	Lonis Lorenz, .	20	34		100			3,000.00
East Lehigh,	Mitchell d Symonds,	5	17	164	$171 \frac{1}{2}$			5,677.17
Consumed or sold at collieries,	$2,530$	$6,913$	$23,970$	$\text { * } 151_{4}^{3}$	15	129	$\begin{array}{r} 1,367,531.06 \\ 93,549.11 \end{array}$
								1,461,070.17

* Average.

SECOND DISTRICT.

> Office of Inspector of Mines, Silenandoah, Pa., March 7, 1881.

To His Excelleney Henry M. Hoyt, Governor of Pennsylvania:

Sir: In compliance with the requirement of section twenty-two of the "Ventilation Aet," approved March 3, 1870, I have the honor to submit the following report:

- My predecessor, Samnel Gay, having been assigned to the First, or Pottsville district, I assumed charge of this office on September $22,1880$.

That the report may be nore convenient and uniform, the accompanying tables and data contain all the aceidents, tonnage, improvements, $\& c$., for the year 1880, covering the period of Mr. Gay's ocelpaney of this oflice, as well as my own. At the time I assumed charge of this district efforts were heing made to extinguish the Kehley Run mine fire and are still in progress. As no result has been reached, I only note a few incidents that have fallen under my notice, in connection or additional to the rery full and detailed account given by Mr. Gay in this report, in regard to it.

There were thirty-nine parsons fatally injured, as against forty-three in 1879, a decrease of four for year. Ninety-two were injmed, many of a slight eharacter, as against one hundred and eleven for preceding year, being a decrease of nineteen.

Through courtesy of secretary and geologist of board of commissioners of State, I am enabled to attach to this report a contour map showing the Mahanoy and Shenandoah basin.
Total amount of coal shipped to market, 3,543,663.04
Consumed or soll at colliery, $210,122.10$
Total output for year, $3,753,785.14$
Total ontput for 1879 , $4,386,969.00$
Decrease of tonnage for $1880, \ldots \quad 633,18306$
Total number of employés, $11,471.00$
I'roduction of coal to cach employé, 327.04
Ratio of life lost to total production, $96,250.18$

Ratio of persons injured to total production, 40,802.00
 Ratio of life lost to total employés, 294.12
 Ratio of persons injured to total employés, 124.68
 > Very respectfully, \&c., > ROBERT MAUCHLINE, Inspector.

 Very respectfully, \&c.,

 Very respectfully, \&c.,

 ROBERT MAUCIILINE,

 ROBERT MAUCIILINE, Inspector.

 Inspector.}

IMIROVEMENTS.

Colorado.

Engine-house ereeted to replace that burned down on 28th October; drove about fifteen hundred feet of gangway and same length of air-way.
shenandoah.
Erected pair of direet hoisting engines to work deep slope, fourth lift; opened four gangways on the top and bottom split of mammoth veins from fourth to second lift.

Lelligh, No 3.

A new hoisting slope sunk to fourth lift; erected a single hoisting enigine to hoist from fifth, sixth and seventh lifts to fourth lift ; also a large fan and engine. Sink a new air way to fifth lift, and opened gangways on third, fourth, fifth and sixth lifts, extending same 4,813 feet.

Packer, No. 1.

Erected one pair geared hoisting engines; inside slope sumk to basin, 788 feet; tunnel driven from mammoth to the Holmes and Primrose veins, 328 feet; .tunnel driven towards Buck momntain vein 50 feet; drove 2,500 yards gangway, 2,500 yards air-way heading, and upwards of 1,000 feet main air-way.

Cambridge.
One large dump chute built at breaker.

Coplay.

Erected fan, with necessary machinery, 15 feet diameter.

Iiohineor.

Wrected two new boilers 28 feet long, 40 inches diameter, outside; two large boilers erected inside to serve as air receivers; slope No. 2 sumk to basin 180 yards.

Staiton.

T'uncl driven from mammoth to Buck mountain vein, 60 yards.
Stallordshire.

1) rove tumel 130 yards.

Webater.

Erected two sereens, one set of elevators, one set of new monkey ernshers in breaker.

Suffolk

Erected four new boilers 30 feet long, 34 inches diameter.

Cuyler.
Opened new terel.
Oakdale.
This eolliery was formerly named Roanoke. Erected eight-horse power engine to run rolls and sereens in breaker, and to hoist coal from drift to breaker. Machinery and hoisting were run by mules working gin.

Primrose.

Tumel drove south from lower split of mammoth to Skidmore rein, and tumel drove north from middle split of mammoth to top split of same vein.

Bear Ridge, No. 1.
West gangway on south dip, abandoned four years ago, has been reopened, and eight Breasts opened to fair to good coal ; drove counter gangway on north dip one hundred yards, with room to open four breasts; drove an exhanst hole 97 yards.

Bear Ridge, No. 2.

Erected outside plane, engine and boiler-houses, and two new dwelling houses; built 11 new ears; drove east side center chnte 97 yards; gangway driven 200 yards, with room for 10 breasts; muleway driven to surface; drove counter chute west side 105 yards, with gangway 200 yards, and room for 10 breasts.

Suffocated by Gases.

Two accidents under above head occurred during year by which four ratuable lives were lost; both aceidents at Kehley Run colliery.

The first oceurred on the night of July 26-27, when Jonathan Wasley, superintendent, and Frank Willman, inside boss of this eolliery, with John Reese, district superintendent of the Philadelphia and Reading Coal and Iron collieries, in Shenandoah basin, were the victims.

Owing to the prominent positions oecupied by the deceased, both Mr. Wasley and Mr. Reese being gentlemen who had always taken an active part in all that related to benefiting the people among whom they lived. and now stricken down in the prime of their life and usefulness, under such mysterious cireumstances, caused widespread excitement not only in Shenandoah, the scene of the accident, but throughout the Schuylkill region. On the night above stated, between ten and eleven o'clock, they entered the old water level gangway workings, which had been abandoned for upwards of fourteen years; whiy they did so, or what their object was in entering these workings at such a time has never been positively ascertained, as they had not imparted any information to any person of their contemplated movements or designs ; they had said to their wives they were going to the mine and would be back in about an homr.

Their purpose, therefore, has ever been a matter of conjecture, yet with the facts and incidents that occurred prior to accident or were developed afterwards the following hypothesis would appear to be correet.

A tumel, marked on sketch, had been driven from the Buck mountain to the mammoth win ; at the north end of the tumel, or Buck momentain vein end, there had been an old breast driven out to the surface; in the
tunnel niucty-four feet from mammoth vein a battery, marked " i ," had been built.

On the night of the aceident and prior to the entry of these men, the evidence tends strongly to prove that the battery door was closed, that they entered the old gangway, thence to this battery in tumel with the purpose of opening it. that in doing so the gas that was causing the trouble, and which was escaping through the old gangway into the new slope, would then escape through the north end of the tumel to the surface, it being the most clevated point.

Two mine locomotives used in the old slope workings, but which some time prior to accident, owing to complaints of the air current being fouled by the gas generated by them, the superintendent, upon my positive demand for their removal, agreed that they shouk be kept out of the part of the mine complained of and mules employed in their stead.

With this change no further difficulty was experienced until about the 14th of July, when my attention was again called to the condition of the air, this time, however, in the new slope workings.

In the examination of the air currents and workings, I found the rentilating current passing in the intake sufficiently strong for all purposes, had it been pure air. Upon interrogating the workmen, those working at bottom of slope stated that the air appeared to be good and in suflicient quantity. that their lights burnt as brilliant as though they were outside on surface; about same statements were made by the miners in the gangway and breasts, exeept that they added that there was an odor readily detected and which hey attributed to the locomotives in use in the old slope, the west gangway of which erossed the new slope at right angles and brattieed from comnection with it, with one inch boards, a door having been placed for passage of persous from gangway into slope or vice versa. The bratticing. however, was of a temporary character and through which the vitiated air, produced by the locomotives, could readily escape into the new slope, which was the intake or downeast.

At this time there was not the remotest idea entertained by any person of the existence of fire in the mine, other than that in the locomotive furnaces, and atl agreed in their opinions that the fouling of the air was directly attributable to them, this view being sustained by openings, cracks, de.., through which the gas from the ofl workings could escape into the intake or new slope.

That this view or opinion was held also by the superintendent, is substantiated by the last letter written by him to the president of the mine company on the evening of the night he entered the mine, in which he stated that the tronble they were having was eansed by gases generated by the locomotive fires, although on examination of the mine on the 13th instant, he did not admit to me that such was his belief, hut rather hek that my opinions were to be attributed to prejudice against the nse of locomotives in the mines.

\qquad

On completion of examination of mine, the changing of the ventilation fan from an exhaust to a foreing power was urged, thus making the new slope an upcast instead of a downeast, as it then was, so that gas escaping into it from old slope workings would be carried direet to the surface. This advice was not accepted, but preference given to a temporary plan of converting Kohinoor colliery workings, that had been holed throngh to Kehley run workings, near fice of west gangway, into an intake, closing the new slope current by a door about seventy-five rards west of the slope.

This did not aceomplish the desired result, as on the 26 th the men working at the bottom of the slope became sick fiom the effects of the gas, and were compelled to quit work at abont noon in consequence thereof; upon learning which facts I visited Mr. Willman, inside boss, at his home, to make further inquiries, as also to notify him and Mr. Wasley that if any further attempts were made to work the new slope until satisfactory ventilation was permanently secured, a petition to court for an injunction to restrain them would be immediately presented, notifying Mr. Willman, at the same time that I would be at the mine in the morning to protest against the workmen going down the slope. The following morning, while engaged in preparing to go to the mine, a messenger from Mrs. Reese came to my house to make inquiries in respect to her husband, stating that Messrs. Wasley and Willman had come for him about ten o'clock to go with them to the mines, and that he had been absent all night, having sent assurances by the messenger that Mr. Reese was all right, as he knew all about the dangers to be encountered.

I immediately started for the colliery. On the previous evening, after learing Willman, I had met Reese and conversed with him in regard to the condition of this colliery, the dangerous character of the gas, and my determination to stop its working until satisfactory improvement was made in rentilation, as some of the workmen might be overcome by it, and if not suffocated, would possibly fall under passing ears and be serionsly injured or killed; that the responsibility of loss of life or injury should not rest upon me, if possible to avoid it; therefore, I had perfect confidence that the assurances sent Mrs. Reese were true, never for a moment believing that the three persons with whom I had frequently discussed the deadly and treacherous character and effects of earbonic oxide gas, or as known to miners, "white damp," wonld be its rietims.

Arriving at the head of the slope, I met the night watchman, of whom I made inquiries. He stated that they had not gone down into the mine, but that they had come there about eleven o'clock, and having provided themselves with lamps, went west towards the stable; that they had not sail to him where they were going, nor anything in respect to what they intencled to do. At this time a miner who, in coming to work, had passed along the line of crop falls, west of the stable, stated that he had seen footprints in one of the old care holes, as thongh some persons had gone into it. Proceeding to the place designated, (marked on sketeh, erop fall oppo-
site breast 15 ,) accompanied by several workmen who had arrived at the colliery to go to work, an examination of the foot-prints was made which convinced me that these men had gone into the old workings throngh this breach. As soon as this fact was made known, the men present were ansions to rush down the opening, every man a hero, as all knew it was at the most imminent risk of life to enter these workings. Having arranged with six to follow me down in "Indian file," with a distance of about twentyfive feet between eaeh, so that should I become orercome with the gas they could render assistance in relieving or come to my resene.

Proceeding thus throngh the breach and down into gangway abont one hundred and forty feet from entrance, experiencing no diflienlty in earrying light, at this point the eflects of the gas were felt. Telling those following me to fall back, turning to retrace my steps, I fell and was removed by my brave companions in an unconscious state to the surface, where restoratives were applied which restored conscionsness, but left me very weak and debilitated.

Intelligence of the disaster had by this time rapidly spread not only through Shenandoals. but throughont the county ; the population of the town turned out almost en masse. Superintendents, bosses, and workmen from all the neighboring collieries flocked to the scene of the accident and rendered all the assistance they could to aid in the recovery of the bodies of the three men, as all hope of saving life had been dispelled when I was stricken down. Although gang after gang of men went in and in a short time would either return uns:aceessful and sick, or were brought ont meonscious, yet the main difliculty experienced was to keep too many from entering the deadly gangway, as the medical fraternity, early upon the scene and deserving of all praise, were constantly pressed in their noble work of resuscitating the large number who were being brought back to the surface overeome by the gas.

Impressing upon the most competent of those present the impracticability of exploring the workings unless ventilation was established, and being too ill to take any part, Col. Brown, superintendent Philadelphia Coal Company's collieries, William Hemingray, ex-mine inspector, Edward Reese, P. \& R. C. \& I. Co. superintendent, and brother of John Reese, assumed eharge, with many others to assist them. After great labor, amid much excitement, they suceeeded in clearing the gangway of gas sufficiently to admit, shortly before one o'dock, a party lieaded ly William Hemingray and Col. Brown, to enter it, finding the bodies of the three men cold in death.

The positions in which the borlies were fomed strengthens the theory that they were unaware of their great danger until preeantion was useless, as Reese was fomd with his face pressed tightly against a soft felt hat that he had worn; near his face lay a cigar partly smoked. Willman had evidently been smoking also, as his pipe was pieked up within a few inches of his face. He seemed to have made an effort to crawl forward on his hands and knees, when effects of gas were felt. Wasley appeared to have fallen heavily on his face and never to have moved, heing instantly overeome hy its deadly effects.

As marked on sketch, the bodies were found one hundred and forty-eight feet from point of entrance and two hundred and six feet from battery in tumel, facing entrance, conclusively proving that they were on their return from battery.

The second accident under this head occurred in the same colliery as the preceding one, on September 1st, by which Simon Gregory, assistant inside hoss, lost his life, although the circumstances throngh which it oceurred, and location, were quite different. This aceident took place in the old slope, west gangway, at abont the foot of the traveling way, and was the result of an explosion of gas, (carbonic oxide,) blowing out stoppings that had been but a short time prior erected for the purpose of confining the gases given off by mine fire and to cut off all the avenues whereby the fire might receive a supply of air to support combustion. As under the head of "Kehley Rum Mine Fire," a detailed aceount is given of this explosion and the causes that led to the ignition of the pent np gases, it would be but repeating what is there written, and it will suflice to add that the old workings and traveling way were charged with gases given off by the burning material, that having become rednced in temperature below that of the surface, when the stopping that had retained or held in check in the old workings were destroyed, it escaped into the gangway in large volumes.

This, in connection with the after damp produced by the explosion, vitiated the air column to such an extent as to be highly destructive to life ; fortunately the ventilating fan was comnected direct to the small section of the openings, a volume of air not less than 15,100 feet per minute sweeping through the gangway at the time of the accident, or the result would have been much more serious, as there were five other persons situated in quite as dangerons places as that occupied by the deceased, in fact three persons much more so, as they were two humdred feet further away from a supply of pure air.

Two of the number, before they conld reach a place of safety from the effects of the gases, fell; but in this, as in nearly all eases of accident occurring in the mine, no matter what its character, brave men were at the slope bottom, who, regardiless of the peril to their own lives, went quickly forward to save the lives of their fellow workmen, which they successfully accomplished, with the exception of that of simon Gregory, who, for several hours coukd not be found. When discovered, his body was lying in crosscut, marked on sketch, between the main gangway and slope in the water course, face downwards, and completely covered by the water. In the position in which fomal, if the poisonous gases had not fully destroyed life, the water would have completed the destruction of whatever vitality remained.

Exploslons of Carbureted ${ }^{2 H}$. Gan.
This district has been extremely fortumate in being comparatively exempt from aceidents of this character, only one having oceured involving the loss of one lite.

We feel that it is necessary to call special attention to this class of accidents arising from explosions of gas or steam boilers, as involving greater danger and loss of life than that of any other class of aceidents; and which, with proper rentilation and due precaution, would, in many cases, be prerented.

On morning of September 16, at Kohinoor colliery, five persons were burned b_{y} explosion of gas. Among this nmber the fire boss and inside boss ; three seriously ; two of the latter recovered; the third, aged sixty years, after lingering several days, died.

In my examination into the eauses of this oceurrence, 1 could get none of those present at the time to acknowledge haring ignited the gas.

The fire hoss testified that he made an examination of the working places upon that morning and found them clear of gas. He also stated that he ran a mine car, partly loaded, down and out of the breast worked by the deceased, assigning as his reason for doing so that the top and pillars were on the move, or crushing; that he beliered it would close and that the car would be destroyed if left in breast, and therefore removed it to gangway as being the safest place.

The colliery officials adranced the theory that there had been an outburst of gas, owing to crush. While it is true that outhursts of gas may and possibly do oceur in this region, yet it is hardly probable in this colliery, and I am more than ever convinced that outbursts of gas are charged with causing explosions, when the producing causes should rest elsewhere.

From the evidence and examination made in this case, notwithstanding foregoing statements, it appearel evident that there was an accumulation of gas in the breast of deceased when the fire boss made his morning rounds. hut that in consequence of the thickness or height of coal taken down, and the dangerous condition of the place cansed by the threatening erush, he failed to make his examination as carefully as he had usmally done, and that when the deceased had gone into the breast to fetel out his tools he ignited the gas therein. As he was in the lreast when the explosion took place, and all the other workmen were either ont on gangway or in close proximity to it.

Kehley Run Nine Fire.

This colliery is situated, partly in the borongh of Shenandoah and partly in West Mahanoy township, Schuylkill county, upon the lands of the Girard estate, on the south dip, of the mamooth vein, in the northern Shenameah basin. It was opened in the year 1865, and has been a successful colliery, having shipped up to 1st of January, 1880, one million forty-seren thousand one lumdred and fifty-three tons $(1.047,153)$ of ceal, and during this period has been more than ordinarily exempt from serions accidents.

The openings consist of two slopes, No. 1 or old slope is smmk abont one hundred and thirty yards on an average dip of ahout 33°, the new or west slope is sumk about two humbed sud ten yards from the surface, or one hundred and eighty yards below water-level.

The west gangway on the old or No. I slope level where the fire was dis-

covered and still exists, had been driven to the boundary line, although there yet remained a large amomut of coal to be won from pillars, as also from the top member of the vein, which had not been worked so extensively as the bottom.

This fire had without doubt been burning for some considerable time prior to its diseovery and the loss of three valuable lives whieh occurred on the 27 th of July, 1880 , the result of the gases arising therefrom by suffocation, a detailed account of their death is given under liead of fatal accidents in this report.

It may be pertinently asked whether there were not indieations of the existence of fire prior to its discovery, in answer to which query I wonld state that for some two or three weeks previous to the suffoeation of the three persons spoken of above, the peculiar odor of gas given off by the combustion of eoal had been detected, but was explained or aceounted for by the fact of there being two mine locomotives employed in the colliery for the haulage of coal. Anthracite coal, the product of the mine, was used for the fire in the locomotives, and the gases given off by these fires was necessarily the same as that given off by the combustion of the same material elsewhere in the comnected workings of this mine. Hence the colliery oflicials and others were justified in their firm belief that the gases that were cansing the trouble in the new slope for the two or three weeks prior to the discovery of fire were to be attributed to those generated by the locomotive furnace fires, and therefore could not have had any reasonable canse to suppose that it emanated from a mine fire. That this was the opinion held by the superintendent (J. Wasley) is confirmed by the last letter written by him on the evening of the night he lost his life to the president of the company he represented, in whieh letter he stated "On the 27th the new slope had worked but half a day in consequence of gas given off by the mine locomotives getting into the old water level gangway, passing from thenee into the new slope (which was the intake) and then to the part of the workings where men were employed," completing his letter with the assurance that "the diflienlty would be removed and everything right for work on the following morning."

The eanse or causes throngh which this disastrous fire originated are unknown, and is a mystery that will probably ever remain unsolved.

The mine did not generate explosive gases, nor had there been any furnace near where the fire was discovered, it is therefore very evident that neither of these sources cansed the fire.

It has been and is yet clamed by some persons that the fire was owing to spoutaneous combustion, and accounted for from the fact that some seven years ago two of the breasts had been partly filled in with eoal dirt or eulm, and had been carried down the breast, through the breeches or crop falls, by a stream of water from the surface. This is advaneed and held to be suflicient grounds, by many of our mine oflicials, to base their opinions of the fire being eaused by spontancous combustion. This might possibly be
a correct theory if any elements of substantial proof could be adduced that would be satisfactory to sustain its correctness. In contlict with this theory there is ample evidence existing thronghout the anthracite region to prove its incorrectness. There are hundreds of collieries working and abandoned that have tens of thousands of tons of dirt or culm stowed away in old worked out sections for quite a number of years. I know of collieries where the mammoth rein has been worked, and have seen, in places where the coal was solt and dirty and of no benefit to the miner to attempt to send it ont, as there were screcns arranged at the bottom of each chnte, a little above the platform, the openings of which between the bars, were one and a half inches, so that whatever passed through was their loss, as they received no compensation for it, they therefore stowed it in the gobs, as requiring much less lahor, than to push it down the chute on sheet iron, the pitch or angle was not suflicient to carry it by its own gravity.

In places of this character, I have seen breasts ten yards wide, with exception of chutes filled to the height of from ten to twenty fect with this refuse. Although this came under my notice over twenty years ago, yet no fire has been discovered or known to exist up to the present time.

However, in the cousideration of this suliject of mine fires, claimed to have been caused by spontancous combustion, I do not propose to treat it as leing alone an maderground problem.

The same material and conditions exist upon the surface to a much greater extent than those underground, therefore, having the same causes, the same effects should follow, no matter whether above or below the surface.

The immense banks, or rather momitains of refuse, waste, or culm thromghout the anthracite region, estimated by some authorities as containing over forty millions of tons. Personally, ne know of many of these refuse banks, the production of single eollieries, that contain from one hmdred to fire hundred thousand tons, piled up to a height of from fifty to one humdred feet, containing all the elements or ingredients claimed to be contained in underground workings at Kehley Run colliery or elsewhere. that would proluce fermentation, thereby generating heat and fire, yet there has never been any proof prodnced that the foregoing recited conditions has caused fire in these bunks.

While it is true that there many of these waste banks on fire: although it would be safe to state that they do not exceed five per cent. of the whole, fet in every instance the cause of the fire can be accounted for, heing the result either of dumping hot ashes from the boiler finnaces, dump men and driver boys building fires on the bank, mountain fires, or some equally good reason for its existence, but in no case has it yet heen shown, by any proof whatsoever, that the fire originated from spontaneous combustion.

Another reason advanced as the canse of the fire in Kehley Run colliery was, that the eoal dirt, culn, de., that had been washed into the breasts rontaned more or less timber, that this timber decaying prodneed the requi-
site chemical action necessary for fermentation. Does not the same state of facts exist in all the old collieries that lave been referred to ?

Is it not a well kn=wn fact, to all conversant with the mining region that millions of feet of all kinds of timber are buried in and underneath the waste banks?

Therefore, these abandoned underground workings and culm or waste banks, having had, in the majority of cases, al greater number of years to develop fire than the breasts of Kehley Run colliery, then this theory of timber being the agent in prodncing spontaneous combustion, to be a correct, one, should prove itself by all being now a secthing mass of fire, which not being the fact is indubitable proof of its correctness.

The facts developed in comection with the discovery of the fire at Kehley Run do not support the theory of spontancous combustion, but on the contrary tend to prove its fallacy: All the indications went to prove that the fire started near the battery or about the bottom of the breast, and not in the center of the mass of débris, as evidently should have been the fact, to accord with the natural laws governing combustion from spontaneous canses. Had the fire originated in or about the center of the breast that contained the dirt or waste, it is certain that it would have reachad the old water level, long prior to its reaching the gangway belo w, this also, to accorl with natural laws, as it is an incontrovertible fact that fire burns much more rapidly upwards than in the contrary direction or downwards.

Take, as an example, a heating or other stove having six inches of coal in the bottom or next to the grate, place kindling wood on top of this, and, although there may be six times the height or quantity of coal heaped above the wood, yet upon igniting it, the coal on top or above the wood will be consumed first. Now, this fact is so indisputable and well known that the precantion is almost invariably taken to clean ont or remove all coal or other material and to place the kindling material next the grate or underneath the coal. It may be possibly claimed that the fire in the breast rolled down to the lowest point. which claim we would admit of, if there was space for it to do so ; but if the opening was full of refuse washed down by water as nas been stated, how could it have done so? and would it not be just as possible to roll up as down?

Notwithstanding all the time that has elapsed since the discovery of the fire on the 9th of Angust, up to the time of my latest visit, about the last week of I ecember, a period of almost six months, the tire had not extended upwards to the old water level.

Rumors were rife aboat the time of the discovery of the fire, that hot ashes had been dumped into the breaches or crop falls; that a grate with fire in it had at one time been in the breast, and again, that the mine had been set on fire by some malicions person in revenge for not being employed at the colliery. Althongh these were probable causes, ret upon investigation I could not find any evidence to sustain them.

On the 9th of August, or thirteen days after the death of Wasley, Reese,
and Willman, all doubts as to the eause of the accumulation of gas by which these men were overcome, were removed, by the discovery on that morning by one of the employés coming ont of the gangway seeing fire rush down one of the chutes of No. 8 breast, which breast was loeated about five hundred and forty feet west of old slope, markel "- 1 ," on the accompanying slieteh, or two lmndred and thirty-six feet west of new slope, marked " (t, " on sketch.

Telegrams were immediately sent to the owners and officials connected with or interested in the lands and collieries adjoining that of Kehley Run, which led to a meeting and consultation of those representing the several interests endangered by the fire.

An agreement was effected that the management of introducing ant carrying out such measures as would extinguish the fire, should be given in charge of the mine officials of the Philadelphia and Reading Coal and Iron Company, and which they accepted. The plan determined upon by them was to extinguish the fire with water; that upou the temperature of the buming mass becoming reluced sufficiently low by the flow of water to then commence drawing out and removing to surface all heated and dangerous material.

To earry this plan into effect, connections were made with threc-inch gas pipe to the main steam pump, twelve in diameter, six feet stroke, having a eapacity of about five hundred gallons per minute, under pressure of about one hundred pounds per square inch, the line of pipes to be thence laid to within about one hundred and fifty feet (150) of the fire, this latter distance to be supplied by two and one half inch leather hose.

Before this pipe to conduct the water from the pump to where the fire existed could be laid by the workmen, it was found necessary to establish a system of rentilation, as the gases given off by the fire, which fillet and extended out the gangway to point marked " I " on sketch, would prevent workman from entering there.
'To accomplish this ventilation, a line of brattice was started in and running parallel with the gangway, tlividing it into about two equal clivisions, comecting it with baek gangway or return arway, at point marked " V ," on sketch, and which was connected with the sixteen feet rentilating tim. The progress made in putting in this brattice was very slow, and much more dangerous than had been anticipated by its projectors, as the workmen engaged could but rarely aldance more than from two to three fect ahead of brattice; oceasionally falls wonld oceur, foreing back large volumes of the vitiated and poisonous air, time and again blocking the ventilating current that was hecoming weaker, as the brattice was advanced, from leakages and friction, and thereby cansing the work, which, under far rable circumstances, could have been done in twenty-four hours, to occupy a week in its eompletion. Owing to these dilticulties, much very valuable time was lost, and during which the lire was rapidly increasing in area and intensity, telling rapidly upon the small thin piliars which were being expanded by the toree

A Thexflerng firrited for Batterviay
B Kain for drivery kors og qus pipe
C Bullering Aum
D Gins mpe
E Fatertevol Fumgn"ay
F. Betnquvy

G ग由r zway
II Schute
I. Firmuco for genpratingy yas

I steam Pype
K Gas Pipr

1. Breash worked out and fronf Faltex
of the heat, eausing large bodies of material to fall from top and sides and materially increasing the flames.

- Another source of danger at this time very much to be feared, was a erush, which evidently would result from the destruction of the supports, already weak, and necessarily imperiling the lives of those engaged in that part of the mine.

On the night of the 12 th, No. 6 chute was reached with the brattice and water-pipes, and the timbers found to be on fire, which was extinguished by water from the hose. On 13th the head of the chute was reached at which point the mass of fire conld be scen in breast No. 7 through erossheading, between breasts Nos. 6 and 7 . Arrangements were then made to throw two streams of water upon the fire, one line of hose, with one and one quarter inch nozzle, being placed in the chute and directed throngh the cross-cnt, sutliciently close to the fire as to receive the full foree of stream ; the second line of hose, with same size nozzle, was placed in the gangway. Both lines of hose and nozzles were secured to props, so that when the water was turned on it would play upon the fire without being held, or requiring the presence of the workmen. This precantion being necessary, owing to the steam that would arise from the streams of water coming in contact with the fire, which would drive the workmen from such positions as woukd be required to be occupied by them to have the force of water reach the body of the fire.

While this work was progressing underground, a large force were, at the same time, employed on the surface, working night and day, in filling up and closing the breaches or crop-falls, extending from about No. 18 breast on the west, to No. 7 breast east.

On the morning of the 13th all -the openings were temporarily closed, with the exception of an air shaft, " N," connecting with No. 8 breast, which served as an escape, or rather was a safety valve to that portion of the mine where the men were employed at the fire inside.

This opening I deemed a necessity to seenre the safety of the men employed at the fire, and remonstrated with those in charge against having it closed, although they persisted in closing it, with the following result: Three or four hours after its being closed, the gas began to fill up the old workings in the rear of those employed at the fire, clriving them out of the old traveling road, near the gangway, marked on sketch " F , where they were engaged putting in some stoppings. Another reason for my objecting to its. being closed, was the great danger to be anticipated from falls that were frequently ocouring, should which falls take place during this critical period, the result, in all human probahility, would have been fatal, as evidently the displacement occasioned by the fall would drive large volumes of the ritiated and poisonous air down the old traveling way, at which point it would become mixed with the intake rentilating current in the rear of those employed at the fire, thus cutting ofr their only means of eseape from sutfocation.

3 Mine Rep.

That this impending danger should be removed, I requested the uncorering of No. 8 breast air hole, marked "N," that upon neglect or refusal to comply with this request, I should insist upon haring the men brough; out of the mine, as, in my judgment, their lives were in inminent danger.

Mr. Ormrod assumed the responsibility of opening the air shaft, remarking that it was in opposition to his wishes that it was closed, directing a workman to remove the covering, which consisted of two-inch planks, they being corered with about four inches of clay. While thus engaged remosing the covering, there were indications that the gases pent up were under considerable pressure, as evidenced by the escape of gases from small apertures or leaks, carrying particles of the clay and gravel that covered the planks two or three feet upwards.

This pressure was due to the high temperature the gases were subjected to by the burning mine. It this time an unexpected phenomenon occurred, in the explosion of the escaping gases, by being ignited by a lamp held in my hand. I did not see any flame, nor did I feel any of the effects of fire. Some of the persons present said they had seen the flame, yet I doubted the correctness of their statements, until shortly afterwards, seeing the plank aromed the opening, which had become as dry as tinderifrom the intense heat, burning.

Of all the subsequent events that have taker place in connection with the fire, this was the least expected, from the fact that the mine did not, nor never had; generated carbureted hydrogen gas. Up to this period a safety lamp had never to my knowledge been used in or about the colliery. In an examination of the mine, immediately after the cleaths of the superintendent and companions, a bottle containing the gas was procured and sent to Professor Lesley, of the State Geological Survey, and by him forwarded to Prof. D. F. A. Genth, analytieal chemist of the University of Pennsylvania, who made the following return :
"I have made an analysis of the gas contained in the bottle, and found it to have the following composition :
Sulphmreted hydrogen, trace.
Carbonic acid gas, 9.72
Oxygen, . 16.42
Nitrogen, 73.86
100.00

There was no carbonic oxide or other gas present * * *."
The explosion of gas at air hole caused an immediate change in the plan first adopted to extinguish the fire, that is, hy throwing water upon it.

It was now determined to attempt the sealing $\quad 1 p$ of the mine, and turn steam into the inclosed or sealed up part from the boilers connected with the colliery, twenty in number, thirty feet long and thirty inches in di-
ameter. Batteries were erected, eutting off communieation between that part of the mine on fire and other parts.

On Sunday morning, 16th August, the steam from ten boilers was being forced into the inclosed portion of the mine, and during the following week the steam from the balance of the boilers was tnrned on.

This was continued without any musual oceurrences until the first of September, when between fom and five o'elock in the afternoon another of those inexplicable explosions occurred with serioas results. One of the inside bosses (Simon Gregory) lost his life, the principal inside boss and one of the carpenters were taken ont in an meonscious condition; the general superintendent and pumping engineer, who had accompanied him into battery marked on sketch "I," were severely ent and bruised. The following facts were gleaned at the investigation from the testimony of Mr. Ormrod, superintendent, and Mr. Jones, engineer: Mr. Ormrod went down the slope about four o'clock to see how the men were progressing with work required at lattery" I; "Jones, who was at bottom of slope aecompanying him, having given such orders as he deemed necessary, he and Jones retmrned towards the slope bottom. When opposite the traveling way " F ," it was remarked that there was a strong odor of gas, and knowing from past experience its deadly effects, concluded to try and ascertain where the leak, from which it was eseaping, was located, that they might stop it. Jones in examining the battery in bottom of manway with his light, found a leak on the bottom under the planking and close to the bottom slate, the aperture being about two inches in diameter. His light coming in contact with the eseaping gas ignited it, burning with a flame around the aperture. Ile attempted to knoek it ont with his cap unsuceessfnlly, when suddenly the explosion oceurred, blowing out the battery in bottom manway where Ormrod and Jones where standing, as also several other batteries built of plank and one of brick between main airway and old water level workings. In fact everytling from battery " I " to the bottom of the slope indicated that there had been a heary concussion of air. Yet, strange to say, not a restige or trace of fire or fiame conld be discovered as having come in contact with the planks or timbering, nor had even a hair upon either of the men been singed by it.

During the period that steam was being used for the extingmshing of the fire, powerful influences were being brought to bear by manufacturers of gas machines to induce the operators to enter into a contract to accomplish it by filling the mine with carbonic and nitrogen gases, in the securing of whieh contract A. Campluell \& Co., a Pittsburgh firm, were successful, upon the following terms: Camplell \& Co. to receive the sum of twenty-five thousind dollars $(\$ 25,000)$, upon condition of extinguishing the fire within thịty clays from the signing of the agreement, with a further proviso that they shonld have thirty days additional to operate on the mine, to pay fifty dollars ($\$ 50$) per day for each additional day thus allowed by the owners, Thomas \& Co. The said contractors, Campbell \& Co., to pay all expenses
ineurred for labor and material, and at the expiration of the sixty days agreed upon, they failing to have extinguished the fire, to pay the forfeited per diem sum of fifteen hundred dollars to the owners, Thomas \& Co.

The process proposed by Campbell \& Co. was to pass a volume of air throngh a bed of burning chareoal, whereby the oxygen it contained wonld be remored, forcing the remaining constituent parts down into the inclosed portion of the burning mine.

The luilding of furnaces to generate the gas, as above recited, and snch other arrangements as were deemed necessary by the contractors, were immediately commenced to put the proposed process in operation, as shown in the accompanying sketch. To have the gas reach the fire direct from the generator proved much more diflicult than its projectors anticipated. The first plan adopted was to drive a three-inch gas pipe down the breast throngh the debris that had acemmulated therein from falls or otherwise, consisting of rock, coal, slate, and other material.

The driving of this pipe was commenced at.No. 6 breast, with a battering ram erected for that purpose. After several msuceessfil attempts, each time losing the larger part of the gas pipe that had been prepared with steel points atlixed at the end for piercing rock or coal, it was deemed advisable to change the operation to the breach in No. 7 breast.

Here they met with the same resistance and consequent failure as that in No. 6 breast, and then removed to No. 8 breast, where they sneceeded in driving the pipes some seventy or eighty feet, when similar oustructions were met with, and all hopes of reaching the fire with the gas pipe, as contemplated, was then abandoned.

However, Mr. Campbell had such implicit confidence in the action of the gas, $n o$ matter at what point in the mine it was discharged, eren if near the surface, that it would eventually reach and extinguish the fire, that he had connections made between these pipes in the breast and the generating furnace, and then commenced the forcing of gas into the workings above water level.

A seeond line of pipe was run down throngh a hole that had been drilled by the Diamond Drill Company for that purpose, 140 feet in depth, opening ont in No. 8 breast, abont 80 feet $11 p$ the pitch above the gangway.

A third connection was made with one of the lines of gas pipe that had been used to convey steam into the inclosed section of the mine. The gas was then forced into the mine throngh the three lines of pipes aloove deseribed, and continned mutil within a day or two of the expiration of the time agreed upon in the contract, when the following discovery was made : On the l0th of October some workmen who had descended the slope and gone from the bottom west a short distance, when their attention was attracted ly a body of fire burning in the çangway. This they immediately reported to the oflicials in charge, who at once visited the mine, and upon their arrival at the point where battery "I" had been built, were astounded
to find that it was nearly destroyed by fire, and the whole surroundings fiercely burning. The effect Messrs. Campbell \& Co.'s gas had upon the fire was here fully illustrated, and very conclusively shown to be a complete and disastrous failure. One of the barriers hurnt out, all combustible material in the surromelings inside in flames, the gas jet still discharging into its midst without any more effect than to have blown into it with a blow pipe, was evidently ample proof that the fire, instead of being extinguished, as claimed by Mr. Campbell, had, on the contrary, made rapid progress, and extended its area westward nearly two hundred feet.

Although Mr. Campbell claimed at the time that this was not the original fire that had thus inereased and extended to the point where now seen, but that the fire had been cansed and was attributable to the explosion that oceurred at the time of the examination of the battery by Messrs. Ormrod and Jones.

That this latter clain could not be sustained was fully and conclusively shown by the facts that the explosion occurred on the outside of the battery, that it was now destroyed ly fire from the inside, and that on the oecasion of the explosion as before stated, no indications or evidence whatever existed or could be fomnd that any fire was cansed by it.

Notwithstanding all the confidence felt or expressed by Messrs. Campbell \& Co., and others, in the effective results to be attained or produced by the use of gas, now standing within a few feet of where the battery once stood and there witnessing the fire burning fiereely, two hondred feet east of the place it existed when they commenced operation, some sixty days prior, with their gas apparatus, and even now the supposed gas passing through the supply pipe into the fire having the apparent effect of increasing or fanning the flame were incontestable facts that controverted all claims or theories faroring their undergromd fire extingnisher, and most assmredly destroyed all their fond hopes of world-wide fame in gas.

1 have here given as concise and anthentic description or history of the fire as the circumstances would admit of, with the several methods or plans employed for its extinguishment, and their failure, avoiding as much as possible any eriticisms, or the advancing of reasons for their failure.

I now propose to give my views upon each of the methods or plans employed, commeneing with that of the Philadelphia and Reading Coal and Iron Company's ofticials, the first empioyed.
This, in my opinion, would have been snecessful hat the fire been reached by the appliances for its extinguishment within twenty-four hours from the time of its discovery.

The gangway to be kept free from obstructions, so that the rolling stock of the colliery could have been employed in removing the lurning debris as rapidly as it beeane cooled off by the streams of water playing on it from the liose.

This could have been accomplished by changing the ventilating apparatus
from an exhanst to a forcing power fan, thas aroiding the building of a brattice in gangray, and its consequent delay, the main ayenne to the fire being then clear for all perposes.

The change required in the ventilating machinery, and all other necessary arrangements to conduct the whole volume of air throngh the gangway to the old breaches or crop-falls, west of the fire, which would serve as the upeast for the gases and ritiated air to pass off could, without any doubt, have been completed within ten hours, and operations to cool down and remove the fire commenced. Irad this been done, I contend that the fire would have been got under control and extinguished within a limited period, property, money, and time saved, and the colliery now producing and shipping coal.

STEAM AS A FIRE EXTINGUISHER.

The value placed in steam, particularly by colliery oflicials, as an agent to extinguish underground fires, is given too great an importance, in our opinion, when consideration is had of the component parts of water, which are eight ninths oxygen to one ninth hydrogen, both inflammable, therefore, we fail to see wherein such great importance should be diren to steam so far as it is applied as an extinguishing agent of undergromed fires.

There is also another important element contained in steam that depreciates its value for this purpose, that being its tendency to condense when coming in contact with any surfaces under 212° Fahrenheit. Were it possible to confine underground fires within a fixed space or area, and a sullicient volume of steam forced into this inelosed section so as to raise the internal pressure or density greater than that existing extermally, whereby the air inside would be expelled, and that without debarred, then meder such conditions fire could not exist, as it would be deprived of that element which is necessary to support combustion. Therefore, when the elements that compose stean are taken, in comection with the conditions that necessarily attach to its surroundings in this matter, into consideration, is it not more a surprise than otherwise, that steam should be so favorally accepted as an agent in the extinguishing of mine fires.

We hold that it was impracticable at Kehley lim to comply with the natural laws or governing principles to accomplish a suceessfal termination by the forcing of stam into the mine, owing to the large eavity or area that repuired to be filled ere there could be any possible hope of success.

This area has been estimated as containing ten millions cubic liet, of which at least seventy-five per cent, notwithstanding the heat generated by the fire, ild not exceed a temperature of $80^{\circ} \mathrm{F}$. The evaporating surface employed for generating stem for filling above space was about eighteen hundred square feet, or less than one font of evaporating surface for about every four thousand feet of condensing surface, assuming the above estimate to be correct. Although estimating the condensing surfice much greater, yet I think this sufliciently near for the purposes intended.

In addition to the above large area of condensing surface there was a large area of outside surface that was breached by erop falls, and that had been newly filled up with loose material, throngh which the gases generated and rarefied by the fire escaped at the most elevated points.

The partial vacum produced was supplied by leakages from the lower levels through imperfect stoppings and broken pillars that were impractieable to make secure. During the time the steam was being foreed into the burning portion of the mine, the indications were that the pressure or density was not increasing, but that the steam was being condensed and the gases eseaping through the porous surface. As an evidence of this, whenever the water gange was applied at the lowest points it developed the fact that the intermal density raried from three to five pomds per square foot; below that existing externally. These reasons of positive failure were adranced by me during the inception of the scheme, based upon the foregoing hypothesis, all of which the facts as recited proved to be correct.

On the 29th of August, fifteen days after the steam had been turned on, and a day or two prior to forcing in of gas, having conferred with 'Messrs. Ormorl \& Hemingray, it was determined to open the battery located between breasts Nos. 21 and 22, west of the fire.

This action was taken that all doubts might be solved in respect to claims made by some parties that the steam had, or nearly so, extinguished the fire.

The battery proposed to be opened had been built with a double course or wall of two-inch plank. A space of ten inches between the courses or walls was filled with sand, having bored a two-inch hole through the battery. This for the purpose of ascertaining the difference existing between the internal and external density. The latter was found to be about three and a half pounds greater than the former. An opening was then made through which I entered, accompanied by Mr. Hemingray and, I think, three other persons. We found the water in the gangway at battery about three inches deep, increasing in depth as we proceeded east, or towards the seat of the fire, but at no point any indieations of steam.

Mr. Hemingray and I reached a point about one hundred yards west of the fire, at which point the effect of gas could be felt, and deeming it more prudent to return than to 1 ress our investigations further at the risk of life, we retired, satisfied that the condensing surface was of that extent that all the steam that conld be evaporated by a generating power ten times greater than that employed would be condensed. We also discovered that the barricades or stoppings were sufficiently open to allow the gases to escape as generated.

Gas as a Fire Extinguinher.

That carbonic aeid gas will not support combustion is a fact so well known as to be beyond dispute. The same can be stated in respect to nitrogen gas. Therefore, there can be no possible question as to the effects the injection of these gases into the Kehley Run mine would have had upon the fire, provided, however, that a sulficient quantity, or rather an excess of these gases in a pure and undiluted condition, could hare been forced
into the inclosed section to have increased the internal density above or greater than that existing externally.

This, in itself, could it have been suceessfully accomplished, would have secured the stoppings or barriers against the supply of oxygen to the fire, withont which the fire could not have ex sted.

These conditions were as necessary for Messrs. Camplell \& Co. to attain success as would the closing of the bung-hole of a barrel in order to fill it throngh the spigot-hole, and could they have secured those conditions their success would have been as well assured as though it had been flooded with water.

They falled to secure those important conditions, particularly that of overcoming the waste or loss, which was much greater than the smply, and could not well be otherwise, owing to the many interstices existing through which the gas escaperl.

Freshly filled-in erop falls, broken surface, crushed pillars, and insecure stoppings, presenting a scetion of the mine containing many thousands of feet in area that admitted all the air required to supply the fire, and egress to the gases generated.

The retention in the burning section of the mine of the gas injected was a positive requirement to assure any measure of success. This could only be accomplished by injecting into it a much larger quantity than was iost by leakage, thus increasing the internal density above or greater than that existing externally, which, as heretofore stated, the Messis. Campbell failed to do, and therefore signally failed.

Had it been practicable to have hermetically sealed the mine, or at least that section where the fire existed, it would not have been necessary to have then employed any of the expensive devices to extinguish it, for the fire itself would have generated the elements necessary for its own destruction.

In my connection with and about mines, covering a period of over thirty fears, I can safely assert that during that whole period of time I never came in contact with any person or persons so lamentably deficient in either practical or theoretical knowledge of a business or project they were about to mindertake as were Messrs. Camplell \& Co. of the contract they had agreed to perform, involving..as it did, money and property interests in very large amounts, and difficulties to be overeome of immense magnitude.

To reach the fire by means of gas pipe, driven through the breasts, that were elosed by falls, as proposed by then at the time, was beset with dithiculties which were pointed ont, principal among which was the variation of angle; that the material filling the breasts was principatly rock of the hardest character and of many humdreds of feet in area.

They were also advised of the difliculty of forcing sullicient volmes of gas into the mine to lave any eflect upon the fire, owing to the open character of the surface, and crushed or broken condition of the pillars, through which the gas woukd escape as rapidly as foreed in, and the admission of an ample quantity of oxygen to supply combustion.

All this was met with the statement that it had been done in the Western States-that they would inject gas into the mine in such large volumes as to exceed that escaping.

Having examined the injectors chat the gas was to pass throngh, three in number, the throat of the largest about one and a half inches in area, the other two each about one and a quarter inches in area, I stated to Mr. Campbell that he could not supply a sufficient amount or quantity of extinguishing gas through those openings or throats of the three injectors to fill the partial vacum produced, and that unless this could be done the supply of oxygen through the broken pillars would be suflicient to supply combustion.

These statements raised the ire and roice of Mr. Camploell at the same time to a high pitch, replying "You may as well tell me I lie."

The facts as developed have proved the correctness of his reply as fully as it has the disastrous failure of gas as an agent to extinguish this fire.

Explosions of Carlouic Oxlde Gas.
This is a matter so closely allied with the subject under consideration that I consider it of sufficient importance to receive more than the passing notice already given. I have referred to it as a phenomenon, in consequence of an explosion of gas having occurred under such singalar cireunstances. First. The mine did not generate fire damp, (carbureted hydrogen.) Secondly. The gases given off by the combustion of coal and other material eansed by the fire, as analyzed by Dr. Genth, contained component parts as follows:
Sulphureted hydrogen, trace.
Carbonic acid, . 9.72
Oxygen, . 16.42
Nitrogen, 73.86
This mixture of elements contains nearly ten per cent. of carbonic acid gas. J. J. Atkinson, in his treatise on "Gases met with in coal mines," says, the presence of carbonic acid gas or of free nitrogen gas in mixtures of fire damp and air is found to lessen their explosive force, so that if there be added one seventh part of its volume of carbonic acid gas it will not explode. Therefore, had there not been other gas given off by the combustion of the coal and other materials that were being consumed by the fire, than that given in Dr. Genth's analysis, there could not have been an explosion. However, this we do know : That the bottle sent to him contained curbonic oxide, if other authorities are correct in relation to the peculiar odor given off by that gas. The men in company with me when the bottle was filled, can bear me out when I say the odor was very perceptible. Moreover, prior to the explosions and previous to the deaths of Messrs. Wasler, lieese, and Willman, the very fact of the workmen becoming indisposed in places, where lights burned as brilliantly as though they had been on the surface, shows conelnsively that there was other gas present than that given in the analysis. This may have percolated through the imper-
feet stopper that was intended to seeure the neek of the bottle until it reached the laboratory.

The question now arises and has been frequently asked what caused the explosions. We have already stated that the mine did not generate fire damp, and it is an undeniable fact that the mixture given in the analysis was not explosire. From the very fact that such a compound is not imflammable. Therefore, I do not see any gromds to change the opinion expressed by me prior to the fatal occurrences, which was to the efleet that the air was being fouled by earbonic oxide and it was that which exploded.

There is another feature connected with these explosions that is worthy of notice. That is the remote points at which they occurred one from the other. The first explosion oceurred in the top of an air shaft located on the highest point of elevation, and ignited on the surface, whilst the second occurred at the foot of the old traveling way, in the lowest point on the gangway and was ignited next to the bottom slate. (The angle of these openings averages about 30°.) It was not very surprising that the first of of these oceurred at the top of the air shaft as the gas was escaping therefrom in consequence of it (earbonic oxide) being lighter than common air. Bat when the second oceurred at the bottom of the traveling way, apparently against the natural laws governing these elements, I must confess the whole matter looked very much complicated. Howerer, when the difference in the temperature at the two different pointsunder notice is taken into consideration, the subject is much less perplexing, especially when it is remembered that all avenues of escape on the surface had been eut off at the time of the second ocenrence, or as perfectly secured as was praeticalle. This caused the gases generated by the fire to partially fill the working inclosed within the barriers and their readiest avenue of escape was throngh the old water level gangway to a point where it interseets or is connected with the traveling way in question. From thence the natural eurrent or the eurrent produced lyy the fan carried it downward to the point where it was ignited by the lamp of Mr. Jones.

SAMUEL GAY, Inspector.

The Kchley Run Mine Fire.

At the time I took charge of the district, Messis. Campbell, Comelly \& Co., of P'ittsburgh, were trying to extinguish the Kehley run fire. Their plan was to fill the mine with carbonic acid and nitrogen gases. On the morning of Sunday, Octoher 10, the battery inclosing the fire, near the bottom of the slope, was burned while the process of injecting the gases was in operation. The contractors, finding their experiment a complete failure, gave up the attempt, withdrew their plant, and left.

The eolliery superintendent, Robert Carter, Esquire, to prevent the fire extending in the direction of the hoisting slope, started to play upon it with a hose, attached to the pump column. This was energetically proseented, under the direction of Mr. Thomas Baird, the inside boss, and the fire was, in some degree, kept in check, and prevented from spreading so
rapidly along the gangway. A battery had been built in the new slope and airway, thirty feet below the old slope level, covered with clay to the depth of thirty feet to aroid its being bumed, to prevent the fire from passing down into the lower lift. On top, an attempt was made to open the traveling. way, which was blocked with coal, with the intention to wash down loose earth and clay to fill 1 mp the breasts next the slope, and to prevent the fire spreading in that direction. While this was being done, an accident occurrel in which five lives trere nearly lost.

On the morning of Saturday, October 23 , the men were down some forty feet from the surface, working to clear the traveling way. They were supplied with air from a hand fan. They hal been working but a short time when one of them was overcome with the "fire stink," or the misture of gases generated ly the fire. The others, in trying to get him out, were also orercome, until the whole shift was lying insensible within forty feet of the surface, and in sight of those on top. They were resened with great difficulty. Thomas Baird, the inside boss, was let down with a rope to save the last two.

The attempt to open the traveling way was then abandoned, and an effort made to make an open cut, with a view of getting down to the water level gangway to open the chain pillar. This was also a failure, the gas preventing the men from working even in the open ent.

Meanwhile an injunction was applied for in the court of common pleas of the county by Messrs. R. Heekscher \& Co., of the Kohinoor colliery, to restrain the management from flooding, or partially flooding, the mine. The court appointed a "commission," consisting of Messrs. John R. Hoffman, A. B. Cochran, engineers ; and Inspector Samuel Gay, to examine the mine, and report. These gentlemen visited the colliery on Friday, November 12 , when an other explosion occurred, the particulars of which will be found in Mr. Gay's report. I now came to the conclusion that the men working at the bottom of the slope were not safe. I feared that the noise about the bottom when hoisting would prevent the men from hearing a fall or other indications of danger. I thought the fire was too close to the hoisting slope, and that the risk run in working the colliery was too great. I, therefore, notified the company's representative to stop the colliery, but permitted men to work who were engaged in extinguishthe fire, or keeping it in check. With this order the company complied at once, and the mules, mine cars, locomotives, and other movable plant were taken out. While this was being done on Tuesday, Novemher 23 , Thomas Jones, hottom man at the old slope, was sending up two empty cars, when at coupling broke. One of the wagons ran back, struck the bottom, and was smashed to pieces. Jones was struck by flying pieces, and received injuries which resulted in death a week later.

On Monday, December $15,18 \prec 0$, I received a telegram from Major Treber S. Thompson, engineer of the Girard estate, inviting me to meet him at the colliery the next morning. On Mr. Thompson's arrival, he informed me that he had taken charge of the colliery as the representative of the Girard
estate, aud that he would commence at once to make preparations to extinguish the fire. We visited the mine to examine the location of proposed dams, \&c., and held a consultation. William Booth, Esquire, inspector for the P. \& R. C. \& I. Co., was placed in charge as superintendent, with Mr. Thomas Baird as inside, and Mr. John Darddow as outside boss.

Work was commenced immediately, and is now heing vigorously pushed, upon plans of Mr. Thompson. A detailed acconnt of the plans adopted, with the results, cost of labor, material, de., will be given in my next report.

ROBT. MAUCHLIN,
Inspector.

Legal Proceedings.

On the 15 th of October, R. Heckscher \& Co., owners of the Kohinoor Colliery, filed a hill in equity and praying for an injunction to prevent the flooding of Kehley Run Colliery, setting forth in their bill the following reasons:

That they were operating on the mammoth or big vein, averaging over thirty feet in thickness; that Kehley Run Colliery was operating on the same rein; that the two collieries had open connections by reason of the gangways of the Kehley Run Colliery having been run into and across the upper portion of the breasts previonsly worked ont by Heckseher \& Co.; that the floorling of Kehley Rum will necessarily flood and drom out the Kohinoor; that it was not possible by any skill or devices within the limits of the latter to protect their colliery from the threatened floorling of the former, but that whether it was possible to do so by the erection and construction of any obstructions against the breaking of the pillars in Kchley Rum Colliery and from inflow of the water from that colliery throngh the openings was a question that could only be determined by experts.

On the presentation of this bill a preliminary injunction was granted, and on 10th of November the following order was made loy the court:
"And now, Nov. 10 th, 1880 , A. B. Cochran, Samuel Gay, and John R. ILoffman are herely appointed to make examination and report, under oath, their conclusions and answers to the following questions:
"First. Can Kehley Run Colliery be flooded with water in the upper or first level in such manner as to reach the fire now existing there without danger to the lives of the persons employed in the colliery of IIeckscher \& Company, and without imminent peril of irreparable injury to the colliery of said Heckscher \& Comp'y.
"second. Has the first or upper level of the Fehley Run Colliery already been flooded? If so, to what extent? And what has been the effect upon the colliery of Heckscher \& Comp'y?
"The examincrs are invited to accompany their report with such suggestions as they may deem pertinent and proper.
"The above-named parties, plaintiff and defendant, have permission to send their own engineers with the examiners hereby appointed, if they so desire. The examiners hereby appointed are requested to report to the court as soon as possible and in writing."

The preliminary injunction to restrain the flooding of Kehley Run colliery was continned until further order. On 1 Gth November the examiners filed in court the following report :
"In pursuance of our appointment, we visited Kehley Rum colliery on the 12th day of November, 1880, and made examination of all accessible parts of the mine in our opinion pertinent to the instructions accompanying the same, and beg leave to submit the following report:

The method employed to extinguish the fire in Kehley Run colliery contemplates the erection of strong dams or batteries, two on the west g.angways of the first lift, west of the fire, at the points marked "A" and "B," on the accompanying map, and two in the same gangways, east of the fire, at points marked " D " and " E ," on the map, and flooding the working between "A" " B " and " D " " E " to an indefinite level trusting the dam in the new slope at " C ," which was built some time ago and is now inaccessible, the fire having passed that point.

We therefore collected information bearing upon this and other points not now accessible, without making special openings for the purpose, from men engaged in the work, records at the colliery, and memoranda of the foreman. From these sources we learned that this dam is erected in the new slope, thirty-five feet below the level of the gangway, and consists of rows of eight props of pine timber, about fonrteen inches in cliameter and ten feet in length, extending at top and bottom about six inches in the solid, supported by three other props placed five feet below to correspond with the three center props of the row above, and braced in the middle, covered by three inch planks and the plank covered with floor boards, upon which is laid a coating of cement and then clay to the level of the gangway.

We beliere this dam oto be of sufficient strength to sustain a head of water thirty-five feet vertical, but not sufficient to sustain a pressure occasioned by the flooding of the upper level, so as to extinguish the fire.

In answer to the seeond question: "Has the first or upper level of the Kehley Run colliery already been flooded ; and, if so, to what extent?" we say that as a natural consequence of the construction of the dams at " D, " "E E ," the gangway has been flooded to the depth of four or five feet at these points, extending westward to breast 21, where it is about sixteen inches in depth, but so far as we have been able to ascertain no water from this level has as ret passed into the workings of Heckscher \& Co.
"Owing to the destruction of the new slope of the Kehley Run colliery all means of remoring water from the lower lift has been ent off; hence, the water in that level, acemmulating from natural canses, after raising to a height of about fifty feet vertical, will pass throngh the openings connecting Kohinoor colliery with Kehley Run colliery about one thousand yards
west of the new slope. However, the water already acc::mulated there has not been an injury to the Heekseher colliery, but a protection against the gases generated by the fire in the upper workings.

We believe the fire may be brought under control and confined within certain limits by cutting off the entire section of vein from the surface to old slope gangway at breast 22 , and at air hole or slope, or at other points to be determined, and filling up the excarations with earth, allowing the water to rise alnove the roof of gangway to the first heading or thereabouts, and as a precautionary measure to prevent the water rising higher than level mamed (35 feet) above bottom of gangway. Measured vertically, a three-inch pipe can be comnected to that in battery and leading up the slope, cansing it to orerflow at the height above named, (35 feet.) A similar pipe ean be attached in heading.
" In our judgment, the most effective plan that can be adopted to extinguish the fire at Kehley Run colliery is to flood the mine.
"This can only be done by cutting off all connections between the two collieries, for the reason that the top of the Kohinoor shaft is about one humdred and sixty feet lower than the top of the Kehley Run slope, and the water would not rise to a sufficient height to flood the Kehley Run colliery before it would rom out of the mouth of Kohinoor or Heekscher's shaft.
"We are of the opinion that dams may be built of sufficient strength in the west gangway in the first lift at the points " A " and " B," and another in the second lift gangway at the point marked "G," or thereabouts, to retain the water necessary to flood the colliery to extinguish the fire now existing at Kehley Run colliery, if upon careful examination the pillars, \&c., at these points are of the thickness and character represented.

Submitted and signed by
A. B. Cochran, Samlel Gay, John R. Hofrman.
On the 24th of November the Court made the following order:
Recognizing the necessity of prompt action in the above case, owing to the vast amount of valuable property involved, and the great risk to human life that may be oceasioned by careless or improper action upon the part of the owners or employés of Kehley Run colliery, in an attempt to extinguish the fire now existing in the same, the Court has determined to make the following order, to wit: The preliminary injunction heretofore granted is hereby continned, (except as hereinafter modified, upon the plaintifts giving security in the sum of five thousand dollars, with sureties to be approved of ly the court.

The injunction thus continned is hereby modified so as to permit the defendants to tlood the first lift gangways to the height of thinty-five (35) feet, rertical, and for this purpose they are permitted and directed to ereet two dams or batteries west of the fire, in the first lift gangways at the point marked " $A-B$ " upon the map attached to the report of the speeial exam-
iners, and also two dams or batteries east of the fire, at the point marked "1)-E " upon said map.

These dams to be so constructed, erected, and secured as to be entirely sullicient to confine the water intended to be placed between them in the first lift gangways. For the purpose of preventing the water in the flooded portion from rising to a greater height than thirty-five (35) feet from the bottom of the gangway, it is directed that a three inch pipe be attached to the pipe now in the battery, and conducted 11 , the slope in such a manner as to cause the water to flow out whenever it has risen to the height of thirty-five feet in the flooded portion, and if necessary a similar pipe may be attached at the heading.

Before the first lift gangways shall be flooded to any greater extent than above allowed, there shall be erected and securely constructed, in the second lift gangway (if the pillars and workings on this level are of the character represented,) a dam, at or near the point marked " G " on the map attached to the report of the special examiners. Every precantion shall be taken to secure the lives of the employés, of both collieries, and to this end the superintendent and engineers of Heckscher \& Co. shall be permitted to enter the Kehley Run colliery at any and all times to examine the workings and ascertain the sufficiency of the same.

The Court reserves the right, upon the sworn application of the engineer or engineers of either plaintiffs or defendants, to direct further examination by one or all of the special examiners leretofore appointed, and to make such further order as may be necessary.

By tile Court.
Immediately following this order, or on the 29th of November, one of the firm of Hecksher \& Co. filed an affidavit in the court, that the water accumulations on the Kehley Run old slope gangway could not be confined to said gangway, but found its way throngh cracks or crevices into the new slope gangway, and thence into Kohinoor colliery. That when such leakage or sinking away first took place, the water which had accumulated on the gangway in question could not have exceeded a vertical depthi of ten feet. That while the water was rapidlly receding from Kchly Run gangway, the quantity of water to be pumped or raised from the Kohinoor colliery shaft was more than three times its usual volume and in part lukewarm, and that work at this colliery had been materially interfered with by this water.

The Court, upon the same day, made the following order:
And now, Norember 29, 1880, the Court hereby refer the within aflidavit to the examiners heretofore appointed, and direct them to examine into and report to the Court upon the facts therein stated. And also direct and anthorize them to eximine into and report upon any other facts at the request of either party.

This was attended to by the examiners, who reported as follows:

* * * * "The workings of the Kehley Rim colliery at Shenandoah
are principally on the south dip of the manmoth vein, and consist of an abandoned water level drift and two slopes, the old slope being sunk one humdred and thirty (130) yards on a dip of about 45°, and gangways opened io the eastward and westward.
"A new slope was smbk about seventr-five (75) yards west of the old one, and about eighty (80) yards deeper than the old slope level, and gangways driven east and west.
"The west gangway on this lift is driven upon an ascending grade in order, as we have been given to understand, to keep it within the limits of the lands owned by the city of Philadelphia. It is about fifteen hundred (1500) yards in length, and near its western end is about fifty to sixty (50 to 60) feet higher vertically than at the bottom of the slope. The mammoth rein is here about fifty (50) feet in thickness, and the coal firm and solid.
"The Kohinoor colliery is located about three quarters of a mile southwest of the Kehley Run colliery, and its workings are upon the same vein and dip. A shaft one bundred and thirty (130) yards in depth reaches the mammoth vein at a point cousiderably lower than the Kehley Run workings. East of the shaft an incline plane is opened to a counter level, which has been worked under the Kehley Run mines, and some of the breasts are driven up into the west gangway of the new slope level of that colliery at a point about one thonsand (1000) yards west of the new slope.
"The two collieries being thus connected, and the upper part of the Kehley Run colliery having been destrored by the fire, rendering it impossible to lift the mater to the surface, as a natural consequence all the water which tinds its way into the deep slope workings of the Kehley Run Colliery (after the water has reached the height of about fifty (50) feet rertical abore the bottom of the slope) will How into the workings of the Kohinoor colliery.
" A t the time of our examination some water was flowing from the Kehley Run workings into the Kohinoor colliery, but not in suflicient quantities to be of a serious nature, or to cause any damage.
"This water we believe to be only that which naturally aecumulates in the Kehley Run workings; as no water is now being put into the mines, either to tlood the colliery in any way or to extinguish the fire.
"The water in the first lift, east of the old slope, howerer, is pumped up and thrown on the slope pillars for the purpose of cooling them. We have no means of ascertaining definitely whether or not the water in the old slope level workings finds its way through a leakage in the dim erected in the new slope, or throngh cracks or fissures in the coal of the chain pillar between the first and second lavels, all points being inaccessible. From the fact that the water in the upper level (which had reached a height of about five feet) has become less, and from statements of the engineer cngaged in hoisting the water at the Kohinoor colliery, and others, we believe the musual quantity of water flowing from the Kehley Rum mines at the time alleged
by Mr. Glover, found its way from the upper level into the new slope workings by one of the ways above mentioned, and from thence into the Kohinoor colliery.
" Since our former visit to the Kehley Run colliery, on the 12th day of November last, the fire has made alarming progress.
"The battery (referred to in our former report and marked "D " on the map accompanying it) in the first lift gangway, ninety-five (95) fcet west of the old slope, is now partially burned away and must quicky be entirely destroyed, and is of no service whatever, either for the purpose of retarding the progress of the fire or flooding the colliery in any way, and with its destruction there is no obstacle to prevent the fire from extending rapidly eastward and destroying the airway and old slope, which is inevitable.
"About thirty yards east of this slope in the tunnel, leading to the Buck Mountain rein, preparations are being made to crect a brick dam for the purpose of checking the fire in that direction; the fire may, however, destroy the slope before its completion, and it would then find its way into the workings of the reins back of the mammoth. West of the new slope there is clanger to be anticipated from the giving away or breaking of the chain pillar between the old and new slope workings in consequence of the fire burning out and destroying the pillars in the first lift, which will naturally bring on a squeeze or crush on the chain pillar below ; in this event the fire will extend into the new slope workings, and from thence communicate with the workings of Heckscher \& Co., and its consequences cannot be estimated, as all efforts to extinguish it will then be futile. Under these circumstances, we think it proper at this time, to renew our former suggestion in regard to the fire.
"In our judgment an effort should be made to extinguish it by flooding Kehley Run workings, if the pillars in the lower lift are of sufficient thickness and the coal in the vein strong enough for the purpose. In view of the danger above referred to, this should at once be ascertained and operations in that direction should be commenced without delay.
"If the fire should communicate with the lower lift workings, it rould render thein inaccessible for any purpose, and the dams required could not be erected. An opening should be made at some suitable place, west of breast 22 , from the surface through the breasts, and chain pillar to the new slope gangway, and the water removed, and the dams erected.
"Two pillars in the lower lift may be used instead of one, by erecting two dams in the gangway, one at each pillar, and filling the space between the dams, as well as the breast above, with clay. This would add additional strength, and aid in sustaining the great pressure of water."

This report of the special examiners was followed by an application of the counsel of the city of Philadelphia to the court, and its action therecn as follows:
"The counsel of the city of Philadelphia, one of the above defendents, 4 Mine Rep.
moves the court for permission to make efforts to extinguish the fire now existing in Kehley run colliery."

The counsel of the Thomas Coal Company being present, made no objection to such order.

An examination of the order of court, November 24, 1880, will show that nothing therein contained prevents the city of Philadelphia from making such effort, provided the provisions of said order be observed.

Since, however, there seems to be a misunderstanding as to the meaning of said order. The following order is now hereby made, to wit:
"And now. December 13, 1880, it is now hereby ordered that the city of Philadelphia, one of the above defendants, shall have full permission to make earnest efforts to extinguish the fire in said Kehley run colliery; but it is directed that the provisions of the order filed November 24, 1880, be constantly, carefully, and faithfully observed."

Immediately after the court making the above order, Hebur S. Thompson, engineer in charge of Girard estate, commenced preparations to subdue the fire by flooding, as recommended by the examiners, and approved by the court.

8

1:S

Dates.	Names of l'ersons fatally.	Oecupation.	$\begin{aligned} & \text { Names of the Col- } \\ & \text { lieries. } \end{aligned}$	¢	$\begin{gathered} \text { Married } \\ \text { or Single. } \end{gathered}$	$\frac{\text { 블 }}{\frac{5}{3}}$	Remarks.
Jan. 13	Mehael Henry, Ghrist lemitor,	Miner, Miner,	Glyard, . . . Shenandoab,	27 30	Married, Single,		Fall of coal at face of breast.
Feb. 12	Jamey Collins,	Repairsman,	North Mahanoy,	55	Married,		Caugbt under gangway thmber, that wats knocked ont by fall of slate.
	John Perry, .	Rupatrsman,	Lehigh, No. 3,	40	Marrled,	1	Fall of piece of bone coal, while engaged rejairing gangway where a crush had taken plice.
18	Whllam James,	Miner,	Turkey Run,				Caught by plece of coal he was barring down.
Mar. 5	John U'Leary,	Laborer,	Lehiglı, No. 3,				Caught in flirt elevators, shoveling lu conl ilirt. Shovel slipped in, and while endeavoring to pullit out, was canght by inathinery.
10	Patrlek Lawlor, llanry Argus,	Miner,	West Lehigh,	50	Wife dead	2	Fall of coal, while opening chute,
183	Meter Lubey,	Miner,	St. Nicholas, Girard, .		\cdots		Fall of slate on gangway. Fell down maway in ureast.
Aprll 16	Frank Wrlght,	Door-boy,	Plank Ridge,	14	\cdots		Fell under a ear wheel riding on it. Ifad been warned by foreman day prevlous to deslst from riding on cars: that if he left door he was attending, he would be discharged, which order he disobeyed, with fatal result,
19	Willian Beeker,	Laborer,	Cuyler,	21	Single, .		A piece of coal, falling from pillar, struck him on top of head, causing death.
19	EdwardMcDonald,	Miner,	Conner, .	24	Single,		Plece of roof fell from between two props, eaused by their being two slips. and whlch could scareely have been seen by deceased.
May 4	reter Clcary, .	$\cdots \cdots \cdots$	Ellangowan,		Single,		In attempting to uncouple ears while passing around a curre, his head was eatugh, and jammed between them, inflicting sueh injury as to eause death on 7th inst.
7	James Boyle,	Mlner, Mlner,	Honey Brook, No. 1	45	Married,		\} Fall of coal in breast.
18	Wim. Itenderson,	Driver,	Packer, No. 4 ,	16			Supposed to lave been tramped to death by a mule. A breast closing in, caused the mule to turn suddenly around, passing the ear to which he was hitched, and thas catching the drlver, Henderson.
26	Thomas İurke,	Mlner,	cker, No. 4,	21	Single, .		Fall of coal in breast, inflieting injuries from which death ensued following day.
June $\begin{aligned} & 7 \\ & 9\end{aligned}$	John MeDonough, Harry liyan,	$\begin{aligned} & \text { Mtner, } \\ & \text { Starter, } \end{aligned}$	Turkey lun. Bear Ridge, No. 1 ,	27	Single, stingle,		Fall of top coal. Rush of coal from battery knocked out center props, carrying de-
July 7	Willam licese, .	Miner,	Eureka.	27 46	Single,		Rush of coal from battery kiocked out center props, carrying deceased with it. Fall of coal.
July 13	Puter Wonnelly, George Burchill,	Laborer,	Bear Rldge, No. 1 ,	70			Struck in abdomen by tail-board of dirt wagon, inflicting injurles eausing death. Crushed between ear and chute
27	John lieese. Jonathan Wasley, Frank Wlllman,	Dis. Supt, P. \& İ. C. \& I. Co., superintement, luslde boss,	Kehley Run, Kikhley lín, Kehley Ran,	20	Marrled, Married, Married,	8 7 3	$\left\{\begin{array}{l} \text { suffocated by carbonle oxlde gas in water level gangway, where } \\ \text { they had gone durlng the night to make an examination. } \end{array}\right.$
Aug. 9	James Evers, .	Laborer,	Indian Ridge, .	25	Single,		Fall of top coal in gangway.

Dates	Names of lersons fatally.	Oceupation.	Names of the ColHerles.	4 4	Married or single.	或	ĻEMARKS.
Scpt. $\begin{aligned} & 1 \\ & 8 \\ & 9 \\ & 9 \\ & 9\end{aligned}$	Simon Gregory, Andrew Server, John MeGlmiley, Johm Rudlatt,	Foreman, Lahorer, Miner, Mlner,		45 20 35 35	Marrled, Single, Married, single,	5	Suffocated by gas. Fall of slate. Hed from Injurles on 27th. Fall of top coal la breast. Fall of eoat. Enguged robblng back on turnout, he displaeed collar, coal falling upon htm,
	John Mannell,	Miner,		56		3	
17	John Ilendricks,	Lathorer,	l'amk Ridge, . . .	35	Marriet,	3	Shot in adjolning breast broke through pllatr. Deceased was standIng at huggy thamp in breast.
18	John Dyer,	Drlver,	Indlan IRdge,	22	Marrled,	1	Crushed between wagons and slde of gangway on trip from counter chate to top of plane.
20		Miner,	Kohinoor, . . .		Single,		Fall of coal from tive feet bench.
Niov, ${ }^{28}$	JosephSaeklleskie.	Miner,	Kohinoor, . . .		\cdots...		Fall of coal in breast. Dled on Octoher 18, in hospital In Philadelphia from injuries.
Nov, 8	John Hugo, . . .	Miner,	Kinlckerbocker,	33	Marrled,	5	Flred a shot, and relurned to work, drilling a hole in pllar, without maklig any exuminatlon of execution of shot. Corner of plllar fell on him, causlug injurles from which he ded following day.
23	Thomas Jones, .	Bottom-man,	Kehley lann, ...	24	Single, .		Coupling between wagons broke, letting empty wagon run down slope, eatehing him at bottom, breakhig bothllmbs, and injuring body; from which he died on December 1.
Dee. 1	Whllam Britt,	Miner,	Ellangowan, . .		Marrled,	3	Had eompleted rohbing back a panel chute in West Primiose gangway, but, before learing, tried to recover some tools that hal been covered by a fall of top rock. In removing some loose coal from under fall, a piece of rock from top of loose mass fell, erushing him against top of chute, Intlieting injuries from which he died on 5th Linstint.
7	Danlel Mull, .	Miner,	Cuyler,		Single,		Fall of coal. Fired two shots In top bench over gangway, wheh set top "worklng." it was then decided to leave the plaee until morning. White awalting driver to come lin, so as to ride out, the phace settled off a lltlle, when deceased took a thrill, and struek the eoliar under the loose coal. to canse It to setile more rapidiy, that they might be able to resume work in the morning. The stroke started the mass of coal, swinging oat two sets of timbers, and eovering all the men, klling Dantel, and slightly injurtag John and Lewls Mull and Joseph Fiaherty.

Occupation.

Miner,

Platform man Eliangowan,
Slate pleker,
Diner,
Carpenter
Driver on dirt bank,
Driver on dirt bank, .
Mriver,
Mriver,
Muer
Mliner,
Fireman,
Miner,
Mincr,
Miner,
Driver
Mlatera picker
Slate pie
Miner,
Miner,
Miner,
Driver,
Driver,
Miner,
Miner,
Laborer
Miner.
Miner,
Miner,
Miner,
Milner,
Miner,
Miner,
Laborer,
Driver,
Door boy
Miner,
Driver,
Miner,
Miner,
Miner,
Miner,

Names of the Collierles.

Eliangowan,
Eflangowan,
Homey Brouk,
Eltangowan,
Elmwood
Ellancowan
Ellangowan
Glendon,
Thomas,
Ellangowan
Boston Run,
West Shenandoah
Honey Brook, No.
Turkey Run,
Suffolk,
William Penn,
Ellangowall,
st. Neholas,
Turkey Rut,
Eliangowan,
Kohinoor.
St. Nichola
St. Nichoias,
Turkey Run,
Mahanoy City
Boston Run
Boston Run
Knickerbocker
st. Nicholas,
Lawrence,
Lawrence,
North Mahanoy
Gear Run
Honey Brook, No.
West Shenandoalh
Honey Brook. No.
West Shenandoah
Bear Run
North Mahanoy
North Malanoy,

Remarks.

Premature expiosion of shot; thigh mashed.
 Fell down clute; ribs fractured

Fell off breaker; arm broke.
Struck by piece of slate; side injured
Fell unuer cars; arin broken and head cut,
Foot caught between rails, shoulder broken
Explosion of gas: slightly burned
Hurt on dirt bank.
Struck by plece of slate; head and foot hurt.
Starting battery; hurt about body.
Cylinder fell on foot.
Fall of coal; bark and hip injured.
Fall of coal; injured severely.
Fall of coal; arm broke.
dammed by mine cars
Fall of coal; leg broke and back hurt.
Caught in machinery; rib broken, and otherwise injured.
Struck by ump of coai; boay injured.
Cancht between cars: liand hurt.
Fall of coai; small bone of leg broke.
Burnt by powder.
Burnt by powder.
Burnt by powder.
Explosion of gas; face and liands burned.
Explosion of gas.
Leg broken by airt car on dirt bank.
Coal tlylug from shot; bruised ahout body.
Explosion of gas.
Fall of coal: head and leg injured.
Hand burned by powder.
Explosion of gas.
Run over by ear; arm serlously mashed.
Fall of coal ; foot and leg hart.
Foot mashed by mine car.
Struck by plece ol coal; shouider put out of Joint.
Fuil of coal: leg and back bruised.
Fall of coal; back hurt.
Jammed between cals.

Date.	Names of Persons Injured.	Occupation.	Nam s of the Collterles.	Remamкя.
Aug. 16	Itartmin Beeker,	Miner,	North Mahanoy,	Head and liand ent by plece of coal.
16 16	Patrick Weish,		West Shenamdoah, Stanton,	Fatl of coal; berly injuren.
16	Henry Thamas,	Miner,	Thrkey Run,	Fall of coal : back hurt.
19 23	${ }^{\text {dames }}$ Courlin,	Muner, Laborer,	St. Nicholas,	Struck by piece of coal; head injured. Jammed between cars; ribs fractured.
31	Patrick (iunning,	Miner,	Shenantloah Cily,	Fall of coal; hurt about head.
Sept. 2	Robert Jones, . .	Engineer,	Shenamloah City,	Ilead linjured between wagon and slope whlle asslstlag in putting wagon on track.
${ }_{16}^{9}$	Jacob Denn, Richard Triselas		West Slienandoah, Kohinoor	Struck by coal from shot; back Injured.
16	John Itargreaves,	Firc boss,	Kolitnoor,	Explosion of gas.
${ }^{16}$	John Carns,	Miner, .	Kohlnoor,	Explosion or gas.
17 17	Dennts Howard,	Miner,	Kohlnoor.	
[r $\begin{array}{r}17 \\ 17 \\ 18 \\ 23 \\ 23 \\ 25 \\ 28 \\ \text { Oct. } \\ 7 \\ 11 \\ 12 \\ 12 \\ 12 \\ 13 \\ 19 \\ 19 \\ 19\end{array}$	Mhehat Carles, .	Miner,	I'lank Ridge,	Shot broke through pillar from adjoInlng breast; knee spratined and otherwise injured.
	Frank MeAmirew,	Miner,	Plank Mldge,	Shot broke through pllar from milfoining breast; lojured sllghtly.
	Martln Fahey, Thomas Coyne,	Driver, Miner, Ster	Plank lidge, Mllangowan,	Jammed between cars; heal injured. Fall of coal; head and shoulders Injured.
	John Jones,	Miner,	Kohlnoor,	Wagon ran over his foot, cutting off three toes.
	Jolin stroze,	Mlner,	Kohinoor,	Fall of coal in breast; slyhtly injured.
	Thomas Conners,	Miner,	Indlan Ridge,	Fingers erushed het ween coal and top of wagon.
	John Evans,	Top man,	4. Nicholas, Ellangowan,	Praggeld by empty wagon on top of stope; 1 l broke and body hrulsed. Clothing ranght by shaft of buek wheat eoal sereen; head and back injured
	Jolm Dinney, .	Starter,	Boston Run, .	Fell orr cage comlig up slope; hatal and body lajured.
	lpatrick Martman,	Mlner,	Eilangowan,	Fall of coal; head and back injured.
	dohn Lawlor,	Miner,	Indlan lidge,	Struck by plece of coal; lege broke.
	J-rry Gorman,	Miner,	Conner,	
	Thomas Mansell,	Mlner,	Lchigh, N	Coal rolling off lower stite of gangway whitle loading wagon; body severely Injurea.
$\begin{array}{r}19 \\ 20 \\ \text { Nov. } \\ \hline\end{array}$	John Bryant.	Miner,	Giriard.	Fali of coal in breast; hend and shoulders injured.
	Charles Schwartz,	Loader.	Plank Ridge	Struck by mine ear; leg and foot injured.
	John lzaufickek,	Lathorer,	Kohinoor,	Run over by empty wagons while walking up slope; body lujured.
	Thomas Yarnell, John snedden,	Poor loy, Driver,	Ehlangowan, 1'lank Ridge,	Fell between cars; leg broke.
			l'tank Ridge,	Wagon jumped the track, knocking out prop, causling a plece of slate to fall; arin baidy injured.
11	Marlin Brennan,	Miner,	Ellangowan,	Fall of rock: lieadand leys injured.
	Charles Butear.	Miner,	Ellangowan,	Fall of top slate; briast hurt severely.
11	Llewellyn firlfeth,	Assistant engluce	sit. Nicholas,	Struck by eollar; rib hroke.
	Robert Scholds,	Topman,		Canght by hook of pitel-chatn on dret plane; part of foot cut off.
15 19	Alex. Giarraway,	Miner,	Draper,	Fall of top In gangway white thnterlnaj leg broke and back injured.

James Lally,
Thomas Ellwor
P'eter Ditchan,
George Lambert
George Lambert
Franels Slevin
Johar Mull
Lewls Mull
Josepli Flaherty
Jolm Muldoon

```
Robert Madara,

Girard
Stanton,
Ellangowan,
Turkey Run,
Indian RIdge
Audenried.
Cuyler,

\section*{uyler}

Cuyler,
Kohiuoor
ell down breaker steps; four ribs broken.
Fell under wagon between slope and breaker; body ernshed.
Run over by dirt dutnper; leg broke in two places.
Canglit between wagon and prop; arm broke.
Fall of coal; skull fractured.
Squeezed by mule against side of stable; shoulder blade broken.
\{Fall of coal. Sllghtly Injured; Daniel Mull was killed by the fall.
Fall of top coal; toe mashed and foot hurt
Fall of top coal while robbing back turnout; leg cut off.
Reports of the Inspectors of Mines.
recapitulation of fatal casualties.
Explosions of gas, ..... 1
Suffocation by gas, (carbonic oxide,) ..... 4
Explosions of powder and blasts, ..... 1
Falls of coal, slate, \&c. ..... 24
Mine cars, ..... 5
Miscellaneous, ..... 4
Total, ..... 39
RECAPITULATION OF NON-FATAL CASUALTIES.
Explosions of gas, ..... 11
Explosions of powder and blasts, ..... 10
Falls of coal, slate, \&c., ..... 36
Mine cars, ..... 19
Railroad cars on surface, ..... 4
Miscellaneous, ..... 12
Total, ..... 92

COMPARATIVE STATEMENT OF CASUALTIES，TONNAGE，AND EMPLOYEES FOR SIX YEARS，IN SECOND OR SHENANDOAH DIVISION OF MINING DISTRICT OF SCHUYLKILL．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Years． & 它 &  & \[
\begin{aligned}
& \text { 䔍 } \\
& \text { E } \\
& \text { E }
\end{aligned}
\] & T－tal number em－
ployés． &  &  &  &  &  &  \\
\hline 1875， & 26 & 114 & 140 & 10，403 & \(74_{148}^{43}\) & 2，562，345 & 98，551 & 22，476．14 & 18，302．09 & 247.09 \\
\hline 1876， & 27 & 48 & 75 & 10，218 & 136 \(\frac{1}{7}\) & 2，891，117 & 107，078 & 60，210．15 & 38，548．04 & 282.18 \\
\hline 1877， & 33 & 54 & 87 & 10，537 & \(121 \frac{1}{87}\) & 3，805，467 & 115，317 & 70，471．12 & 43，741．00 & 361.03 \\
\hline 1878， & 26 & 89 & 115 & 10，255 & \(89_{115}^{20}\) & 3，049，275 & 117，279．16 & 34，261．10 & 26，515．08 & 297.06 \\
\hline 1879， & 43 & 111 & 154 & 11，080 & 72 & 4，386，966 & 102，022．10 & 39，522．05 & 28，486．16 & 395.18 \\
\hline 1880， & 39 & 92 & 131 & 11，471 & \(87{ }_{1}^{4800}\) & 3，753，785．14 & 96，250．18 & 40，802．00 & 28，654．17 & 327.04 \\
\hline Total， & 194 & 508 & 702 & －．． & －•• & 20，448，958．15 & & & & \\
\hline Average，． & \(32{ }_{3}^{1}\) & \(84{ }_{3}^{3}\) & 117 & 10，661 & \(98_{1080}^{88}\) & 3，408，159．15 & 102，150．05 & 43，095．05 & 29，886．16 & 318.13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Collieries. & Operators, & &  &  & \begin{tabular}{l}
\%为 \\
 4
\end{tabular} &  &  &  &  \\
\hline Boston Run, & Phlladelphla and Realling Rallroad, & & 50 & 196 & 1,625 & 183 \({ }^{\frac{1}{4}}\) & & 4 & 67,956,03 \\
\hline Conner, . . & do. do. & & 131 & 282 & 2,875 & \(188 \frac{1}{4}\) & & 1 & 107, 9815.09 \\
\hline Ellangowan, & do. do. & & 220 & 551 & 4,575 & \(1855^{\text {d }}\) & 2 & & 187,261.18 \\
\hline Elmweorl, . . & do. do. & . . . . & & 16 & 510 & 274 & & 2 & 7,690.08 \\
\hline Girard, . . & do. \({ }_{\text {do. }}\) & . & 51
65 & \({ }_{220}^{242}\) & 700
1.300 & 195 & 2 & 3 & 81,894.13 \\
\hline Hammond, . & do. do. & . & \({ }^{65}\) & 220
485 & 1,300
2960 & 186 & & & \(70,619.19\)
118388.11 \\
\hline Indlan kidge, . & do. do. & . . . . & 178
71 & 485
251 & 2,960
2,570 & 190 & \({ }_{1}^{2}\) & 3 & 118.338 .11
100
3 \\
\hline Knlekerlocker,
Matanoy
Clty & \(\begin{array}{ll}\text { do } \\ \text { do. } & \text { do. } \\ \text { do. }\end{array}\) &  & \(\begin{array}{r}71 \\ 101 \\ \hline\end{array}\) & 251
289 & \(\underset{2,155}{2,570}\) & \({ }_{19}^{1527}\) & \[
1
\] & \(\stackrel{1}{2}\) & 100,323
\(98,613.17\) \\
\hline Malanoy Clty, & \(\begin{array}{ll}\text { do. } & \text { do. } \\ \text { do. } & \text { do. }\end{array}\) &  & 139 & 294 & 2,880 & 1784 & \[
\ddot{i}
\] & \(\stackrel{2}{5}\) & 93,613.17
\(89,752.00\) \\
\hline Plank Liflige, & do. do. & & 161 & 367 & 3,600 & 178 & 2 & 5 & \(91,740.13\) \\
\hline Sehuyihili, & do. do. & . . . . . . & 2 & 16 & 210 & 55. & & & 9,266.05 \\
\hline West Shenandoah, & do. do. & . & 112 & \({ }_{23} 32\) & 2,600 & 1907 & & 5 & 111,042. 11 \\
\hline Shenandoah Clty, & do. do. & . & 96 & 225 & 1,295 & 155] & & - & 52,689.00 \\
\hline Bear liun, & do. do. & & 67 & 232 & 1,350 & 1178 & & 2 & 30,277. 16 \\
\hline \(\underset{\text { Furbace, }}{\substack{\text { cilherton, }}}\) & \(\begin{array}{ll}\text { do. } \\ \text { do. } & \text { do. } \\ \text { do. }\end{array}\) &  & & 124
140 & 1,090
205 & \({ }_{110}^{1577}\) & & & \(13,229.18\) \\
\hline Gilherton, Mammoth, & \(\begin{array}{ll}\text { do. } & \text { do. } \\ \text { do. } & \text { do. }\end{array}\) &  & \({ }_{36}^{32}\) & 140
102 & 205
250 & 110 & & & \[
\begin{array}{r}
13,229.18 \\
722.14
\end{array}
\] \\
\hline St. Nlcholas, . . & do. do. & . . . . . . & 91 & 258 & 2,350 & 176 \({ }_{4}^{\text {¢ }}\) & & & 69,931.09 \\
\hline Turkey Run, & do. do. & & 144 & 325 & 2,440 & 1869 & 2 & 5 & 88,289. 10 \\
\hline Tunnel Rilge, - & do. do. & & \({ }_{53}^{33}\) & 106 & 142 & 46 & & & 3,4i8.17 \\
\hline Bear Rlige, No. 1 , & Myers, McCreary \& Co., . . & & 52 & 256
260 & 375
425 & \(1{ }_{179}^{193}\) & 2 & 1 & \(61,001.19\)
6.4519 .03 \\
\hline Bear Rldige No. 2, & Myers, McCreary \& Co....
Plalladelphat Coal Company, & & \({ }_{77}^{62}\) & 250
331 & 425
1,281 & \({ }_{122}^{1724}\) & & & \(6.4,519.03\)
\(71,530.14\) \\
\hline  & Pluladelphat Coal Company,
do.
do. & . . . . . & 77 & 331
380 & 1,281
1,732 & \begin{tabular}{|}
182 \\
185
\end{tabular} & & & - \(126,22+14\) \\
\hline Lenikh, No. \(3, \ldots\), & do. do. & & 67 & 335 & 1,832 & \(1877_{\frac{1}{4}}\) & 2 & 1 & 79,661,18 \\
\hline Packer, No. 4, & do. do. & & 107 & 423 & 3,913 & \(1898 \frac{1}{4}\) & 3 & & 178,713.07 \\
\hline Cambridge, . & Cambrilke Coal Company, & & 10 & 20 & 120 & 187 & & & 5, 122.00 \\
\hline Cuyler, . & Heaton liros., . . . . . & & 1146 & 381 & 4,802 & \(212{ }^{2}\) & & 3 & 147, 152.00 \\
\hline Copley, & Lutz \& Bownian, . - & & 110 & 190 & 1,330 & \(167 \%\) & & & \(57,026.14\) \\
\hline Draper. \({ }_{\text {Gjendon, }}\) & Draper Coal Company,
J. e. Harden \& Co., & . . . . . . . & 59
90 & \({ }_{240}^{257}\) & 1,418
1,927 & 208, & & & \(87,982.15\)
\(89,506.19\) \\
\hline Honey Brook, Xo. 1 , & E. B, Leisenrink, general manager, & & 48 & 236 & 1,643 & 182 & & 1 & 80,778.10 \\
\hline Honcy lbrook, No. 4, & do. do. & & 56 & 255 & 1,722 & 183 & 1 & & 110,712, 0.4 \\
\hline Honry lsrook, No. 5, & do. do. & & 42 & 237 & 817 & 1814 & & , & 124, 153.112 \\
\hline Kolilnoar, & Rlehard Heeksecher \& Co., & . & 175 & 405 & 3,200 & 210 & 3 & 10 & 159,813.14 \\
\hline lawreuce, & Lawrence, Merkle\& Co., & & \(\stackrel{54}{65}\) & 286
139 & 1,075 & \({ }_{168}^{2018}\) & & 2 & \(95,331.10\)
\(41,786.06\) \\
\hline Primrose, . & Primrose Coal Company, & & 65 & 139 & 900 & 163 & 1 & & 41,786.06 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Stantoll, & Miller, Hoch \& Co., . & 15 & 2 O & 402 & 19: \({ }^{\text {P }}\) & 1 & 2 & 62,803.10 \\
\hline Sullolk. . . . . . . . . . . . . . . . . . . . . & Sulfolk Coal Company, - & 100 & 272 & 2,373 & 187\% & & 1 & 93,292.03 \\
\hline Statiordshire, . . . . . . . . . . . . . . . & Ward, Jones \& Ollver, . & 13 & 27 & 347 & 145 & & & 8,111.19 \\
\hline Kehley lun, & Thomas Coal Company, & 76 & 401 & 2,200 & 1687 & 5 & 1 & 80,832.02 \\
\hline Whlliam l'enn, & Whllam I'enn Coat Company, . . . . . . & 200 & 450 & 2,500 & 200 & & 1 & 174, 000.00 \\
\hline West Lelligh, . . . . . . . . . . . . . . . & Flsher, ILazzard \& Co., . . . . . . . . . . . . . . & 66 & 220 & 1,190 & 12-7 & 1 & & 40,269. 19 \\
\hline Wehster, . . . . . . . . . . . . . . & L. S. Baldwin, . . . . . . . . . . . . . . . & 16 & 51 & 429 & \(155 \frac{3}{7}\) & & & 15, 167.04 \\
\hline Oakdale, . . . . . . . . . . . . . . . . . . & E. L. Powel, . . . & 9 & 19 & 130 & 131 & . . . & & 3, 898.00 \\
\hline Norih star, & Reynolds, Roberts \& Co., & 25 & 55 & 700 & 204 & . . & & 15,413.15 \\
\hline Laturel khige, & John A. Lutter, & 12 & 45 & 415 & 208 \(\frac{1}{6}\) & . . . & & 19,583.00 \\
\hline Mammoth, & . . . . . . . . . . . . . . . . . . . . . . . . . . & & 1 & . . . . & & & & 156.00 \\
\hline Eureka, & . . . . . . . . . . . . . . . . . . . . . . & 4 & 12 & 120 & 150 & 1 & . . . & 6. 576.00 \\
\hline Hlliside, & . . . . . . . . . . . . . . . . . . . . . & 10 & 24 & 120 & & & & 3, 060.00 \\
\hline Consumed and sold at colliery, & . . . . . . . . . . . . . . . . . . . . . & 8,661 & 11,471 & 77,910 & * 1751 & 39 & 92 & \(3,543,663.04\)
\(210,122.10\) \\
\hline & & & & & & & & 3,753,785.14 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{NLMbers asp Names of the Collieries.} & \multirow{2}{*}{Location of Coliferies.} & \multirow{2}{*}{Names of Operators,} & \multicolumn{6}{|c|}{Coal Produced.} \\
\hline & & & 1875. & 1876. & 1877. & 1878. & 1879. & 1880. \\
\hline Boston Run, & l3oston luna, & Phlladelphia and Reading C. and I. Co., & 39,084 & \(53,15 t\) & 68,598 & 6,000 & 73,489. 16 & 67,956.03 \\
\hline Conner, . . & Glardville, & do. do. & & 53, 151 & 103,639 & 83,000 & 133.472.13 & 107,995, 09 \\
\hline Fllangowan, & Lanigan's, & do. do. & 52,931 & 91,884 & 145, 866 & 2,000 & 17,242.13 & 187, 261.18 \\
\hline Flimwood, . & Mahanoy City, . & do. do. & 25,740 & 41,2it & 65,260 & 56,000 & 78, 333.16 & 7,690.06 \\
\hline Girart, & Girarisville, & do. do. & 39,371 & 5.,290 & 95, 043 & 73,000 & 107, 877. 10 & \(81,891.13\) \\
\hline If:mmond, & Girardsvilie, & do. do. & 88,610 & 104, 652 & 121,416 & 102, 000 & 116,565. 17 & 70,619.19 \\
\hline Indian Ridge, & Shenandoah, & do. do. & 98,569 & 112,213 & 155, 136 & 122, 060 & 173,517.09 & 118,338.11 \\
\hline Knickerbocker, & Yatesville. & do. do. & 64,5 53 & 113,985 & 133, 123 & 105, 000 & 174,645. 10 & \(100,223.05\) \\
\hline Mahanoy City, & Mahanoy Clty, . & do. do. & 51,402 & 73,363 & 117,293 & 86,000 & 126,171.14 & 98,613. 17 \\
\hline Mahanoy, North, . . . . & Mahanoy Cly, . & do. do. & 40,080 & 53,217 & 86, 886 & 70, 000 & 113,878.02 & 89,752.00 \\
\hline Plank lidge, . . . . . . & Shenandoah, . & do. do. & 81,737 & 103, 074 & 118,819 & 80,000 & 122,424. 10 & \(91,740.13\) \\
\hline Schiryikill, & Mahanoy Clty, & do. do. & 13,501 & 58,553 & 21,058 & 35,000 & 49,661.01 & 9,266.06 \\
\hline West Shenandoah, . & Shenandoah, . & do. do. & 30,069 & 66,309 & 101,762 & 69,000 & 122,507, 16 & 111,012, 11 \\
\hline Shenandoah City, & Shenandoah, & do. do. & 67,850 & 53,299 & 47,403 & 35,000 & 69,552. 05 & \(52,689.09\) \\
\hline Bear lirn, & St. Nicholas, & do. do. & 57,411 & 61.631 & 82,409 & 57,671 & \(63,014.03\) & 30,277.16 \\
\hline Furnace, . & Gliberton, & do. do. & 62,421 & 14,296 & 4,458 & 15,000 & 40,821.07 & 35, 336.07 \\
\hline Giiberton, & Gilberton, & do. do. & 50,437 & 91,691 & 87,832 & 58,842 & 59,014. 16 & 13,229.18 \\
\hline Girard Mammoth, & Raven liun, & do. do. & 39,407 & 55,000 & 34,608 & 51,723 & \(35.0 \subset 0.10\) & 722.14 \\
\hline St. Nicholas, . & St. Nleholas, & do. do. & 47,388 & 55,876 & 92,483 & 63, 134 & 78,602.02 & 69,931.09 \\
\hline Turkey Run, . & Shenandoab, & do. do. & 61,359 & 62,000 & 60,529 & 71,497 & \(45,17+.06\) & 88,289. 10 \\
\hline Tunnel Ridge, & Mahanoy Clty, & do. do. & 56.901 & 4t, 132 & 30.310 & 35, 851 & 61,933.09 & 3,453, 17 \\
\hline Bear lidge, No. 1, . & Mahanoy Piane, & Myers \& McCreary \& Co., & 87,876 & 100,000 & 23,517 & 44,520 & 89,333. 08 & \(64,004.19\) \\
\hline Bear Ridge, No. 2, . & Mahanoy Plane, & Myers \& MeCreary \& Co., & & & 84,976 & 51, 144 & 30,036. 18 & \(64,549.03\) \\
\hline Colorato, No. 1 , & West Mahamoy twp., & Phillatelphat Coal Company, & 46,803 & 63,871 & 85, 955 & 62, 181 & 85, 297.03 & 71,580. 14 \\
\hline Shenandoah, No. 2, & West Mahamoy twp., & Philiadelphia Coail Company, & 63.935 & 118.118 & 88,830 & 84,411 & 144, 138.01 & 126,224. 15 \\
\hline Leethgh, No. 3, & West Mahanoy Iwp., & Phhladelphia Coal Company, & 88,581 & 80,747 & 117, 165 & 83,85: & 111, 457.03 & 79,661. 18 \\
\hline Packer, No. 4, & West Mahanoy twp., & l'hitatelphia Coal Company, & . . . . . & & 101,860 & 118,677 & 218,341. 18 & 178,713 07 \\
\hline Cambrldge, & Shenandoali, & Cambridge Coal Company, & & 5.000 & 2,862 & 5,000 & 2,197.00 & 5,122,00 \\
\hline Cuyler, & Raven Run, & 11 caton 3ros., & 52,753 & 65.000 & 55,570 & 78,722 & 126,291.00 & 147,152.00 \\
\hline Copiey, & Mahanoy City, & Lentz \& Bowman, & 66,856 & 48,111 & 28,211 & 46,374 & 42.068.08 & 57,026.14 \\
\hline Draper, & Gliberton, & thinladelphla and leading C. and I, Co., & 57,042 & 4.3, 1170 & 108,341 & 55,813 & 108,000.00 & 87,982. 15 \\
\hline Glendon, & Mahanoy City, & J. C. Haydon \& Co. . . . & 67,979 & 15, 060 & \(41.2{ }^{2}\) & 42, 139 & 52, 122.11 & 89,5016. 19 \\
\hline Honey Brook, No. 1 , & Audenried, & L, ¢HIghand W'likesberry Coal Co., & 55,637 & 99, 171 & 102,781 & 62,431 & 89,053.01 & \(80,778.10\) \\
\hline Honey Brook, No. 4 , & Audenried, & Tehlgh and Wilkesherry Coal Co., & 51,729 & 88,419 & 101.281 & 61,243 & 95,294,08 & 110,712.04 \\
\hline Honcy Brook, N'o. 5, & Audenried, & Lehigh and Wilkesberry Coal Co., & 85,224 & 124,088 & 132,859 & 96,535 & 119,917.09 & 124, 153.02 \\
\hline Kohinoor, & Shenandoah, & IR. Heckshir \& Co., & 95,638 & 90,000 & 162.027 & 110.848 & 161,814, 19 & 159, 813.14 \\
\hline Lawrence, & Gilberton, & Lawrence, Merkel \& Co., & 67, 417 & 85,000 & 99.517 & 70.578 & 102.003. 60 & 95,381. 10 \\
\hline l'simrose, & Mahanoy City, & I'rimrose Coal Company, & 51,776 & 57,350 & 50, 578 & 41,417 & 38,660. 01 & 41,786. 06 \\
\hline Stanton, & Gillberton, . & Mliter, Hech \& Co., . . . & 61,79: & 60, 060 & 78,28:7 & 71,623 & 97, 136. '6 & (62, 203.10 \\
\hline Suffiolk, & St. Nicholas, & Suflolk Coal Company, & 23,245 & 46,680 & 66, 181 & 64,459 & \(85,45 \mathrm{~L} .01\) & 93,292.03 \\
\hline Staforishire, & St, Nieholas, & Ward, Jaines \& Oilver, & & 7,458 & 8,265 & 9,000 & 13,417.06 & 8,111, 19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Thomas, (Kelley & Weest Mahanoy twp. & WVlllam Penn Coal & 66,467 & 94, 862 & 68,905 & 100,358 & 151,266. 11 & 80,832. 02 \\
\hline Whllain Penn, & West Mahanoy & Whllam Penn & 107,640 & 164,000 & 164, 476 & 123,(00 & 178, 445.06 & 174, 600.00 \\
\hline West Lehlgh, & Mahanoy Clty, & Flsher, Mazard \& Co., & 13,551 & 70,140 & ¢3,405 & 33,333 & 18,553. 16 & 40,269. 19 \\
\hline Webster, . . & & L. S. Baldwin, & 1,000 & 6,290 & 553 & . . . . . . & 2,810.12 & 15, 167.04 \\
\hline Oakilale. & & . . . . . . . . . . . . . . . . & & & & & & 3,896.00 \\
\hline Mammoth, & Slic. \({ }^{\circ}\) & . . . . . . & & & & & . . . . . & 156.00 \\
\hline Roanoke, & Shenandoah, & A \({ }^{\text {a }}\), . . . . & & 4,000 & & 5,000 & 5,00 & \\
\hline East Gllberton, & Gllberton, & I'eter Malley & & & & 4,000 & \(5,000.00\) & \\
\hline East Stanton, & Mahanoy Cley & Sohn Dutt & & & & 1, 000 & 13,000.00 & \\
\hline Norlh Star, & Mahanoy Clty, & Reynolds \& Roberts, & & 8,111 & 1,504 & 7,000 & 11,493.11 & 15,413.15 \\
\hline Vulcan, & Mahanoy City, & . . . . . . . & 26,266 & 38,216 & 6,356 & 16,565 & & \\
\hline Morris, & Mahanoy Clty, & Parmley \& Russel & 24,378 & 7,705 & 3,583 & 6,788 & 233.00 & \\
\hline Laurel Ridge, & . . . . . . & John A. Dutter & & & & & & 9,583.00 \\
\hline Eureka, & . . . . . & . . . . . . . . . . . . . . . & & & & & & \[
\begin{aligned}
& 3,000.60 \\
& 6,576.00
\end{aligned}
\] \\
\hline Total shipped to market, & & & 2,562,345 & ,740,117 & ,590, 064 & , 841,774 & 4,188,706.17 & 3,543,663,04 \\
\hline Consumed or sold at collie & & & & 151, 000 & 215,403 & 200,000 & 248,262.03 & 210,122,10 \\
\hline Gross total produced, & - . . . & . . . . . . . . . . . . . . & 2,562,345 & 2,891,117 & 3,805,467 & 3,041,774 & 4,386, 969.00 & 3,753,785.14 \\
\hline
\end{tabular}

\section*{THIRD OR SHAMOKIN DISTRICT.}
Office of Inspector of Mines, Silamofin District,Asilland, March 14, 1881.
To His Excellency Henry M. Hoyt, Governor of Pennsylvania:Dear Sir: - In compliance with an act of Assembly, entitled "an actproviding for the health and safety of persons employed in and about coalmines," approved March 3,1870 , I herewith have the honor of submittingthis, my annual report of proceedings, accidents, fatal and non-fatal, con-dition of workings with tabulated statements of employés, tomnage, etc.,for the year 1880 :
The total quantity shipped to market, ..... 3,285,216.15
The total consumed or sold at colliery, ..... 176,155.03
The total production for year 1880, ..... 3,461,371.18
Decrease from year 1879, ..... 354,749 18
Number of miners, ..... 4,162
Total number of employès, ..... 11,616
Nimber of kegs of powder used, ..... 59,590
Arerage number of days worked, ..... \(174 \frac{1}{2}\)
Number of fatal casualtics, ..... 34
Number of non-fatal casualties, ..... 124
Total, ..... 158
Ratio of fatal accidents to number of miners employed, ..... \(122 \frac{1}{2}\)
Ratio of fital accidents to total number of employés, ..... \(341 \frac{3}{5}\)
Ratio of non-fital accidents of employés, ..... \(93{ }_{1}{ }^{6}{ }_{0}\)
Ratio of total accidents of employés, ..... \(73 \frac{1}{2}\)
Ratio of powder to each miner, ..... \(14_{2}{ }^{8} 5\)
Ratio of fatal aceidents to tons of coal produced, ..... 101,805 01
Ratio of casualties to tons of coal produced, ..... 21,907.08
Ratio of coal produced to each miner, ..... 831.13

One hundred and ninety-one visits were made to collieries to examine their workings and attended to twenty-one inquests. Traveled in performance of those duties, by rail, 4,511 miles ; on foot, outside, 713 miles ; on foot, in mines, 525 miles. Total, 5,749 miles. In addition to tabulated statements of number of miners employed, number of kegs of powder used, and number of tons of coal produced, I have given my views on ventilation, accidents, their eauses, and such other information as I considered of importance to those engaged in the mining of coal.

Respectfully, your obedient servant,
JAMES RYAN, Inspector.

\section*{GENERAL IMPROVEMENTE. ENTERPRISE.}

Tumel driven from No. 8 Twin vein south 33 yards to Skidmore vein ; drift opened on Buck momntain vein; built one double breaker in place of one destroyed by fire, July 15th, 1880, and one office.

\section*{FRANKEIN COLLIERY.}

Erected a new 14 -foot fan to ventilate colliery.
PEERLESS COLLIERY.
Sunk a new slope 90 yards on the north dip of Red Ash vein on angle of \(46 \frac{1}{2}^{\circ}\), and have driven a tumel north from Pink Ash 30 yards to Diamond vein.

\section*{CAMERON COLLIERY.}

Sunk the No. 2 slope, a lift of 125 yards on angle of \(40^{\circ}\) from bottom of old lift, which makes a total depth of 250 yards on an angle of \(40^{\circ}\); slope bottom cutting the No. 10 vein; drove a tunnel south 132 yards from No. 9 .

\section*{LUKE FIDLER COLLIERY.}

Sunk an inside slope from shaft level 113 yards on an angle of \(18^{\circ}\).
SHORT MOUNTAIN AND LYKENS' VALLEY COLLIERY.
Erected a dirt plane outside near breaker.
PENNSYLVANIA COLLIERY.
Put up a new 14 -foot fan to ventilate colliery; have put eight new boilers in place and built a saw-mill.

\section*{MOUNT CARMEL COLLIERY.}

Erected a new breaker in place of one wheh was destroyed by fire sometime previous.

\section*{BIG MINE RUN COLLIERY.}

Erected a new I6-foot fin to ventilate reper drift workings.
"LOGAN COLLIERY,"
Located at Centralia, Columbia county, la., on lands of the Locust Mountain Coal and Iron Company, operated by Lewis A. Riley \& Co.

This is a new colliery opened during 1880. Two slopes, one a single and the other a double track, have been sank on the north dip of the Cen-
tralia basin in the mammoth or " E " vein, from the outcrop to the bottom of the basin, 200 yards. The upper, or first, 100 yards on a pitch of \(30^{\circ}\); the second on \(15^{\circ}\).

The single track, or the No. 1 slope, is intended to work the coal on the upper level of the north dip. The double track, or No. 2 slope, is to work the coal on the lower lift of the north dip and both lifts of the south dip. Gangways are being driven east and west, two from No. 1 slope and four from No. 2 slope.

The mammoth vein is 26 feet thick, and coal of a superior quality.
The drainage at present is by means of a ten-inch Blake pump. \(A\) very large double duplex pump, made by Albright \& Stroh of Mauch Chunk, is being put in. It has a capacity of 1,700 pallons per minute.

The ventilation is produced by a 16 -foot fan, and is ample.
The outside imp.ovements at this colliery are very large and of the best workmanship.

At No. 1 slope the hoisting engine is 20 -inch cylinder, 4 feet stroke. The coal from this slope is landed and run to and from breaker on gravity roads, a distance of 200 feet.

At No. 2 slope a pair of direct acting hoisting engines have been built, 26 -inch cylinder, 4 feet stroke, with an iron conical drum 14 feet long, 7 and 10 feet in diameter.

The coal from this slope is hoisted from the month of the slope over the center of the breaker, and the coal discharged direct from the wagon into the dump shute. Two cars can be hoisted at a time and 1,000 feet per minute.

The breaker has a front of 120 feet, and is 150 feet high from railroad to top of shieve house.

The capacity is estimated from 1,200 to 1,500 tons per day. The first coal was put through the breaker in January, 1881.

\section*{CENTRALIA COLLIERY,}

Located at Centralia, Columbia county, Pennsylvania, on lands of the Locust Mountain Coal and Iron Company, operated by Lewis A. Riley \& Co.

This is a new colliery, partially opened during 1880.
A double track slope lias been sunk on the south dip of the Buck monntain vein, 512 feet from the surface to a point 330 feet below the old water level gangway; the dip on the upper level is \(42^{\circ}\), in the lower, \(50^{\circ}\). The vein is 15 feet thick, and the coal good, with a bright fracture. No gangways have yet been driven, but are now being turned east and west from the foot of the slope, the face of the old water level gangway is some 1.200 feet west of the slope. It is proposed to drive this west and work it as a counter gangway, with a dump sclute into the lower lift gangway. The drainage at present is by means of hoisting water on the slope.

A 12 -foot ventilating fan has been put up, but not yet connected with air-way:


The breaker is to be built in the spring of 1881 ; a pair of hoisting engines, eighteen-meh eylinder, four feet stroke, have been erected, and eight boilers. No coal was shipped during 1880.

CARSON COLLIERY.
Put in a new set of elevators and one large sereen.

\section*{mONTANA NO. 2.}

Built a new breaker and put up a 10 foot fan to ventilate colliery. This is the colliery mentioned in my last year's report under the head of improvements, and called " Monroc."

\section*{GREENBACK.}

Water has been pumped out of the old slope west of slope bottom; a tumnel has been driven north _yards to the No. 9 Twin vein; work progressing; driving gangway eastward.

\section*{HICKORY RIDGE COLLIERY.}

Built a small new breaker to take the place of one which was destroyed by fire on the night of November 4, 1878.

\section*{WILLIAMSTOWN COLLIERY.}

Smk tro slopes, viz: One on Lykens Talley vein 204 yards deep on an angle varying from \(28^{\circ}\) to \(46^{\circ}\); put in an Allison steam pump, cylinder \(20^{\prime \prime}\) diameter, \(8^{\prime \prime}\) pole for drainage of lift. Bear Yalley slope sunk 125 yards on Mammoth vein on an angle of \(60^{\circ}\); put in for drainage of slope an \(8^{\prime \prime}\) Blake pump, \(16^{\prime \prime}\) diameter steam eylinder.

\section*{IMPROVEMENTS IN VENTILATION.}

It is a source of no little gratification to be enabled to report that the improvements in the ventilation of the mines in the district las received more attention durigg the past year than in any preeeding year of my term of office, and that decided and satisfactory advances have been made in this respect in the condition of collieries. Althongh in this, as in other matters of reform or improvement, it is not as general as desired, and some few are delinquent, yet a radical change for the better has taken place.

There were fifteen fans erected during the year as follows :
One at Wadleigh slope, Philadelphia and Reading Coal and Iron Company, 12 feet in diameter.

One at Merriam, Philadelphia and Reading Coal and Iron Company, 18 feet in diameter.

One at Locust Spring, Philadelphia and Reading Coal and Iron Company, 15 feet in diameter.

One at Pennsylvania, Mineral Railroad and Mining Company, 14 feet in diameter.

One at Cameron, No. 2 slope, Mineral Railroad and Mining Company, 12 feet in diameter.

Two at Excelsior, Excelsior Coal Company, each 15 feet in diameter.
One at Williamstown, Summit Branch Coal Company, 18 fect in diameter.

5 Mine Rep.

One at Big Mine Run, J. Taylor, 16 feet in diameter.
One at Frankilin, S. S. Bickel, 14 feet in diameter.
One at II. Clay Shaft, J. Langdou \& Co., 14 feet in diameter.
One at Peerless, Crnikshank \& Enis, 10 feet in diameter.
One at Logan, Reilly, Lilly \& Lentz, 14 feet in diameter.
One at Montana, No. 2, A. II. Chureh, 10 feet in diameter.
One at Centralia, Lehigh Valley Coal Company, 12 feet in diameter.
There is now a total of forty-eight fans in the district, in a total of fiftysix collieries of all classes, nine of which are land sale or small collieries, where coal produced is sold for local consumption. 'The above number of fans furnish ventilation for thirty-eight collieries.

In a few collieries that do not gencrate fire damp, (C. II. gas, the necessary appliances or means of circulating the air current to face of gangways, chutes, headings, or other working places are neglected, that is doors and brattice, or air pipes, and an insufficiency of cross-healings through pillars, thus causing powder and lamp smoke to aceumulate and remain standing in those parts of the workings ; that pure air cannot reach to dispel or render harmless to the health of those employed therein, owing to the absence, or rather neglect of these necessary means of conducting and circulating the air properly and that is positively required and directed in the seventh section of the rentilation act. This complaint exists principally in collieries where the vein is flat or of light pitch, the coal being loaded into wagons in the breasts or run down from face to gang way on sheet iron.

Promises have been made by operators and superintendents to have this speedily remedied and the necessary improvements made without laving recourse to legal measures to compel compliance with the provisions of said seventh section of the rentilation act.

Deeming it preferable to secure the requisite improvements, and a general compliance with the requirements of the rentilation act, amicably and willingly on the part of those in charge or working the mine, and as being more eflectively looked after than through legal means and of greater advantage to all concerned, I liare refraned in the matter thas far from instituting any legal proccerlings, and earnestly hope to be relieved of the necessity of doing so in the future.

With the few exceptions noted, the collieries of the district are generally well ventilated thronghout all the working places, and in this connection desire to specially mention the following:

The I'hiladelphia and Realing Coal and Iron Company's collierics.
Logan and Centralia collieries, operated ly Reilly, Lilly \& Lentz.
Continental colliery, operated by Lehigh Valley Coal Company.
Williamstown colliery, operated ly Summit Branch Coal Company.
And also a number operated by individuals too mumerons to particularize.
The Willianstown eolliery is particularly deserving of special motice. I have never yet seen a colliery as well rentilated, more especially the new slope sumk on the lykens Valley rein.

Compressed air is conducted in pipes down the slope and circulated throngh and to face of all workings by branch pipes, supplying an ample quantity of pure air to the employés in every part of these workings.

In all my connection with mining I have never seen any supply of air equal. or so thoroughly distributed throughout the workings of the mine as is supplied in this mine by compressed air.

\section*{EXPLOSIONS OF GAS.}

There were twenty explosions of carbureted hydrogen gas in this distriet during the year 1840, by which eight persons were fatally injured, and thirty six persons non-fatally, some being but very slightly burned.

This is an increase orer that of 1879 , of four fatal and twenty-one nonfatal injured, a total inerease of twenty-five. This fruitful source of accidents in the mines, its canses, means of prevention, or plans by which their frequent recurrence might be reduced, has been so exhanstively treated in former annual reports by the several mine inspectors, that scarcely anything new can be said upon the subject.

It is not only an unpleasant, but painful task to recall the facts as gleaned in the examination of the several explosions, and to comment and adversely criticise the aets of those who have passed "to that bourue, \&e," yet the duty we owe to the present and future workers in the mines compels us to it, however much it may harrow the feelings of the survivors.

The following extract of the remarks made in my report for 1879 , under this head, is as applieable to the accidents of 1880 , as it was then to those of 1879: " A large percentage of these aceidents were clearly attributable to neglect of the most ordinary dietates of prudence, a very moderate degree of care could have prevented their occurrence."

The justness of this is all the more evident when it is shown that of the forty-four persons fatally and non-fatally injured, thirty-one of this number were the result of carelessness, neglect, and want of prudence, and could have been avoided.

The explosions of gas at Henry Clay shaft, on Jannary 3 , by which four men were burned. On May 3, by which three men were burned; and an additional explosion same day, by which two men were burned, one of whom subsequently died from his injuries; and again on November 4, when four men were hurned, were all, withont exception, the result of reckless carelessuess and ignorance, both on the part of the workmen, and those having supervision of the colliery, as the following statements of the sereral explosions will fully attest:

That on January 3, was caused by two of the men going into a finished breast with naked lights, looking for loose coal to load a wagon, notwithstanding notice from fire boss had been given for none to enter any of the finished breasts, as they contained gas. On May 3, a driver eoming in with a mule for loaded wagon, laving eome to a point in gangway, beyond which the use of naked lights were prohibited, and seeing men ahead with open lights, called to them if all was safe, to which they replied to him, " to
come on." which he did; the men were eating their dinner, and while the driver was engaged hitching his mule to the wagon, the men started turning a fan to remove gas that had accumulated in a chute they were driving while they were at dinnea; this lrought the gas down into gangway, and in contact with naked lights, burning the three.

On same day, a miner having fired a shot, on his retum to breast accompanied by "lutty," found gas present, which they brushed out, and then started to drill a hole for a shot, having hung their open and safety lamps on a prop near face of breast, the safety lamp next to top slate and about two feet above the naked light, on completion of hole they commeneed charging it, but when about half tamped the gas was tired by naked light, burning both the miners so seriously as to cause the death of one of them in eleven days after.

The explosion on November 10, was caused by a large quantity of gas that was freed or given off in consequence of fall of top rock, eansed by six men who were robbing pillars in No. 8 vein, lower west gangway, the gas being carried by air current up to plane west gangway, where men were working with naked lights, igniting and burning four of them.

On May \(3 d\) an explosion oceurred in Short Mountain slope, lower east gangway cansing the death of five persons, two in Short Mountain slope workings by being burned and the other three in east gangway, lower level of Lykens Valley slope, by concussion of air.

This was the most disastrously fatal oceurrence that has taken place in the district, and is directly attributable to the reckless system of mining pursued.

The two men who were burned were engaged skipping pillars.
The chain pillar that was between them and Lykens Valley slope work-ings-there being a cross-heading at face of breast in which they were en-ployed-commenced to rum, a result they shonld have looked formard to or been prepared for, as it had started to run some two weeks prior to this, and at that time the water from Lykens Valley slope workings came down into Short Monntain slope workings.

The ran of ehain pillar lnonght down the accmmulated gas upon the exposed lights of these men, igniting it, and cansing the explosion.

The conenssion of air eaused by the explosion of gas iguited by these two men in Short Monntain slope workings with naked lights, cansed the death of the three others who were working in Lykens Valley slope above. (See accompanying sketch.)

The practice of skipping or robbing pillars under other workings where men are employed, or where drivers and workmen are passing to and tro is of such dangerons character, especially where the angle of dip is more than from \(15^{\circ}\) to \(20^{\circ}\). that it camot be too severely courlemmed, and when discovered or bronght to our attention, we demand that every precantion be taken to prevent aceident.

1n this comection 1 quote from that part of the first section of the ventilation act which appliess to robling of pillars, viz: "When any level or
lift thereof is being finished with a view and for the purpose of heing abandoned, or when any of the pillars therein are to be removed, the owner or agent of such coal mine or eolliery shall have the map or plan thereof furnished as hereinbafore provided, or such portions thereof as the ease may require, carefully verified; and notice shall be given to the inspector of the coal mines and collieries for the district, in writing, of the purpose to abandon or remove the pillars, as the case may be."

No pillars should be skipped or robbed, on a lower level, until the pillars of the level or levels above it are robbed out in advance of those in lower level, thus insuring safety to the workmen in upper levels. The explosion on July 7th at Pecrless colliery was utterly inexcusable; the fire boss, in his morning examination of the mine, had found gas in breasts Nos. 18, 19 , 20 and 21, and had marked, as is the usual eustom, the date, with word "fire," on the chutes, battery door, and the plank in the manways between the batteries and first cross-headings from gangway, and as a further precaution, had requested a contractor to tell the workmen not to go up in these places without safety lamps until his return from his examination of other parts of the mine. Notwithstanding all these warnings, one of the workmen took a safety lamp and went up into breast 21, coming back on gangway and reporting it all right and then returning to it with naked light. A second workman took safety lamp to examine adjoining breast and in which he fomd gas ahove the heading; he then called to miner who had commenced working in breast 21, that there was gas at the heading and not to come through or he would be burned; not seeming to understand what was said, he put his head with naked light in towards heading, when the gas was fired, burning workman who was in breast and another who was at the battery in breast outside, going up into breast. Coniment would be useless, as the facts plainly indicate the utter recklessness of these men.

The explosion at same colliery (Pcerless) on November 4, by which three workmen were bumed was attributable to the incompetency or neglect of the boss iu charge in not having cross-headings driven through the pillars at the face of all finished breasts, thus preventing accumulation of standing gas in them.

Two of the men burned having gone from the breast in which they were working to an adjoining or finished breast, one of them went above upper eross-heading with naked light, firing the standing gas, the brattice from upper cross-heading to face of breast having been removed.

Again, on December 22, in same colliery, three men were burned through reckless earelessness combined with incompeteney of those in charge. These men were placing props at head of finished breast to strengthen chain pillar; the props at bottom were placed against face of breast, and at top were abont two feet from it down the pitch. Having placed the props, they commenced closing this space with slabs upon inside of props, the air current heing thus prevented from circulating in this enclosed space, gas accumulated, and as one of the men in placing an additional slat inside the
props thrast his head in with naked lamp, fired the gas. An oceurrence that could well have been avoided by the exereise of a very limited amount of prudence and forethonght, particularly in a place that largely generated gas. The explosion of gas in Cameron colliery on December 27, by which one man lost his life, oceurred under the following circumstances: The deceased had gone to his breast to work withont any examination having been made by the fire boss or his assistants, or even having taken the precantion of making an examination himself with a safety lamp; but went in with naked light, resulting in ignition and explosion of gas and infliction of such injuries as to cause his cleath two days later, a victim to that spirit of recklessness and contravention of the laws enacted for their safety that seems to govern the actions of very many of the workingmen and bosses in portions of this district, and which unfortunately in my examinations of the several aceidents I was unable in any one case to secure snch legal evidence as would justify an arrest and secure conviction of the guilty parties.

It would appear evident to all endowed by their Creator with common sense and competent to judge between right and wrong that the frequent deaths thus eaused through carelessness or neglect would be sullicient to deter workmen from recklessly risking their lives and entailing all the hardships of an uncharitable world upon their imporerished families ; and that it should not be necessary for the inspector of mines to resort to legal measures, or where neeessary, that any ditliculty should exist in secaring the required legal evidence to convict those who endanger the lives or lealth of others by their illegal acts of omission and commission, and yet I regret to be compelled to state that this is the very greatest difliculty I have to contend with.

As in the many exmminations I have made, and where I have made strennous efforts to secure such evidence as would be admissible in court to convict the parties of their evident violation of the laws enacted for their security, yet, in every instance, have ntterly failed in obtaining such testimony.

\section*{FALLS OF COAL, SLATE, ROOF, \&e.}

The fatal casualties resulting from above eauses number for year tifteen, out of a total of thirty-four fatal ocemrences, or forty-four per cent. The non-fatal casualties, from sume causes, was thirtr-four, out of a total of one hundred and twenty-fom non-fatal casualties, or twenty-seven amd a half per cent., being thirty-one per cent. of entire castalties. This is a decrease of ten fatal and an inerease of fourteen non-fatal, or together a total increase of two in this class of casmalties, over that of same class in 1879.

Of the fifteen fital casualties, six were directly attributable to some one of the following eanses, viz: Recklessness, negligence, or ignorance, and e. uld, with ordinary prudence, have been avoided.

The safety of a breast or working place evidently, to a great extent, devolves upon the workman himself, and the care, attention, and prudence that he exereises.

Careful supervision on the part of those in charge of the mine is of the ntmost importance, yet it does not relieve the miner from responsibility, nor the urgent necessity of constant watchfulness. Admitting that many of these casualties are unaroidable, the result of "slips," or being deceived in the " solid sound " of roof and sides, and which cannot be detected or at all times gmarded against, yet a due regard to the proper, prompt, and efficient setting of timber, a rigilant and careful observation and examination of the working place, with at all times prudence in somding or testing condition of roof and sides, would be an effectire safeguard and tend materially to reduce the list of fatalities and maimed, arising from this prolific source. Although mosh has been written by the several inspectors during the past ten years on this class of accidents ; bosses and workmen being adrised with, and eautioned on each visit to collieries of the positive necessity of greater prudence and eare being exereised, together with the too frequent examples of neglect, as shown in the annual casualty tables; yet it does not appear possible to deter some from rushing recklessly and inexcusably into the very jaws of death.

The loose discipline existing in very many of the mines is the true canse, in a great measure, for this sad condition, and more and more determines the urgent necessity of more effective measures than we now have, being secured throngh additional legislation.

As the mines are daily being inereaspd in depth, and necessarily the danger to life and health of those employed in them increased in a greater ratio, the evident necessity of a higher order of intelligent and competent class of foremen than now generally employed, becomes at once apparent.

No part of the mines act of England has been so effective or been the means of accomplishing such vast improvement in the safety and health of mine-workers, as that requiring all managers, foremen, or overmen to pass an examination and receive certificates of competency from a board of examinets before being employed in these positions at any colliery in the kingdom.

This act has a code of general rules for the government of mines, which make the special rules adopted at each colliery, conforming to the general rules, have a legal status.

Fine, suspension, and imprisomment are the penalties attacher for the violation of rules, and in ease of overseers being the delinquent parties, the further penalty of cancellation of certificate. The inspeetor is clothed with power and required to proceed against any manager or foreman who unjustly prosecutes a workman under the rules, and he is further bound in the same penalties should he exceed or refuse to perform his duties in any manner, or proven to have made an unjust accusation.

Thus legal checks are enacted to prevent injustice either to workingmen, managers, foremen, or inspectors, or by either of them.

From the English reports of mine inspectors we learn that fines prore almost invariably to be ample punishment, the power of imprisonment
being only resorted to in very rare cases where there has been willfulness ; and in cases cited in these reports calling for the latter punishment, it was for not sufficiently spragging or staying the face of their working-places.

There can be no more positive proof advanced of the want of proper discipline in the mine than the number of killed and injured recorded armually under the head of falls, \&c.

The recklessness frequently displayed is in a great measure aceounted for by the great desire to send out the greatest amonnt of coal at the lowest possible cost, regardless of the safety of their working-place. It is not possible that legislation can prevent all accidents in mines, but there cannot at this day be any possible doubt of the great good that has been accomplished by our present ventilation aet.

That it has elevated the standard of men who are given charge of mines, improved the machinery, means of ventilation, and general condition are facts beyond controversy. Yet this improvement has shown the weak points in the act, and the necessity of amendment in many important particulars, but in doing so, great care, prudence, and knowledge of what is required t) benefit the working of mines is an indispensable necessity. It will not do to make it a political or partizan measure, nor yet a measure to add popularity to members who seek to be reëlected through favorahle class legislation.

To draft an amended act that would benefit all connected with the mining of anthracite coal, a board of experts should be appointed for this purpose by the Legislature, to examine into and digest the necessary laws required for adequate protection of life and health of all employed in or abont the mines. In the many aecidents that ocemred during the year, none show more conclusively the necessity of improvement in discipline than the two following :

On September 23, at Bast colliery, a miner was killed by a fall of top coal.
By the evidence adduced at inquest, the deceased had sounded the coal shortly before it fell, and found that it did not sound good, but concluded that there was no immediate danger, and resmmed his work of raking coal into chute, from under it, with above result.

On November 22, at Execlsior colliery, a miner was killed by fill of top coal.

By the evidence in this ease it appeared that deceased, with two others, had fired a shot in breast, and, on their return to face of breast, found the top conl eracking and working, the deceased having warned the others of the danger, commenced to bar dowì a bench of coal which was under the top coal. Ife was not engaged more than a minnte or two, when about twenty to thirty tons of coal fell. One lump weighing about two tons falling on deceased.

\section*{MINE CARS AND MACHINERY.}

Seven lives were lost throngh above canses during the year, or twenty per cent. of fatal casualties, as against ten lives lost from same canses for year 1879 , being a decrease of three.

Eighten persons were injured during year as against thirty injured in 1879 ,or fourteen and one half per cent. of total injured, a decrease of twelve injured, or total decrease of fifteen, as compared with casualties of this class for preceding year.

Three of the above fatal casualties were the result of carelessness, and could have been avoided, thus adding cumulative evidence to the want of good discipline in many of our mines, and further showing the rery great necessity of laws by which an improvement in this respect can be accomplished, attention to which has, to some extent, been set forth in preceding remarks in comection with falls of coal.

The door-boy killed at Bast colliery on February 6, according to eridence taken at inquest, was caused ly jumping on wagons while in motion, to uncouple them, which was no part of his duty, and contrary to orders of mine and loader bosses.

This pernicions and reckless habit of jumping on and off cars while in motion has been the canse of a very large percentage of the deaths or serions injury of persons on surface roads, and no act in connection with accidents on railroads has been more severely censured and condemned both by the press and publie than this.

Yet how rery much greater the risk to life or permanent injury in committing the same act in the dimly lighted, contracted passages of the mine, where the danger is fully one hundred fold greater than on surface roads.

The casnalty September 1st, in Big Momntain colliery, by which a driver was the victim, from the evidence elicited at inquest the cause of accident does not clearly appear.

A contractor having ron down inside plane two loaded cars, heard moaning, and proceeded to where three loaded cars were standing with moles near by ready to be hitched to them, to haul them out, found the driver under the first wagon of the trip lying on his face, his limbs doubled back on body and life extinct; how he thas got under the car is involved in mystery.

On November 23, at Peerless colliery, a driver, aged seventeen years, was killed by being erushed between loaded mine wagon and timber on side of chift. He was coming out with loaded wagon, accompanied by two other young men, and when outside month of drift, being then alhead of wagon, he turned back, going towards approaching car, passing the young men who were with him, supposing, as they stated, to jump on front bumper of wagon.

On side of gangway on which he was caught there was only a space of about six inches between side of wagon and timber, there being on opposite side eighteen inches or more space.

The dancer incident to jumping on or off moving cars is about equaled by drivers frequently jumping between ears, as in the ease of death of driver at Luke Fidler colliery, who having hitehed his mule to two loaded cars to hanl out of mine, having started the mule, he became olstinate and refused to go further.

While the driver was urging him to go on, he turned round and started inwards on opposite side of ears to driver, the latter jumping between the two cars to drive him back, was canght and jammed by the front car to which the mule was hitched, coming back on one next to it.

\section*{MISCELLANEOUS,}

Under this head there were four lives lost, twenty persons injured in the mines, and twelve persons on the surface, or of total fatal casualties, 113 per cent., and of non-fatal, 25.8 per cent., or together, 22.78 per cent. of total easualties. The loss of life and serious injury of above number of persons was almost all purely accidental. With an ever present and prudent care some of these aceidents might possibly have been avoided, yet, when we examine the casualty tathles and take into consideration the large number therein contained, the result of reckless carelessness, it is scarcely to be expected that that prudence which shonld always govern their movements will receive the attention that is necessary to reduce to any great amount this class of accidents.

\section*{MINERS' LAMP OIL.}

The illuminating or lighting of mines is a suljeet that has absorbed the attention of very many efficient experts for a number of years, and much has been written in regard to the importance and necessity of an improved light.

The attentiqn of dealers and manafacturers of illuminating oils, as also manufacturers of lamps, has been directed to the diseovery of an agent or article that would answer the purpose.

Many kinds of coal and other oils and mixtures thereof have been experimented with and introduced, and as many rarious styles of lamps to burn them in, as there were kinds of oil, each guaranteed and represented by those interested in introducing them as a grand improvement on anything that had ever been used heretofore, safe, non-explosive, economical, (particularly the latter,) and sure to be all that was desired or could be attained.

Yet. notwithstanding all these representations and eloquent praise bestowed upon them, all the eoal and patent oils that we have yet scen, used, or experimented with, have been objectionalhe or unfit for use in the mine, prineipally owing to the offensive odor or volume of smoke emitted by them, vitiating the air eurrent to such an extent as to make its use preju dieial or very injurions to the health of those eompelled to respire the air with which it had beeome mixed.

In some collieries we have met with such inferior qualities of oil, ealled by courtesy or for want of other or better name, fish oil, which, when used in miners' lamps, thickens and hardens the lamp wick, eansing a crust to form on the end or huming part, the light from which, to use an explanation once heard, would require amother light to see it. In order to orercome this defect, coal oil is mixed with it, which adds somewhat to its il-
luminating power, bat adds much more to its emission of smoke as it also does to its umhealthiness. its efleetiveness in producing smoke being about the same in proportion as adding fresh fuel to a bituminous coal burning locomotive.

We have also found in use in some collieries by loaders, drivers, spraggers, and door boys a villainons compound called lubricating, or black oil, which for the volume of smoke it is capable of producing, and monealthy vitiation of air can scarcely be excelled, and for these purposes can be highly recommended. We have yet to see an oil that is superior or even equal in merit for miners' use, to that of pure whale oil or good eotton seed oil, that is, any which emit less smoke with equal illuminating power, and in same connection less cleleterions eflects on the air of the mine.

In the perfecting or discovery of an illmminating agent for mines, the requisites that must be attained is the inerease of light, decrease of smoke and odor, and producing the least or minimum effect on the current of air. The oil or compound that shall contain these elements will attain the desired ol,jeet.

The use of inferior oils in miners' lamps, or lamps of those engaged in the mine, is a violation of the true intent of the rentilation act, as set forth in the seventh section, as ther add materially to the noxions and poisonous gases contained in the mine, and necessarily being inhaled by the workingmen, certainly requiring a much larger volume of air to dispel.

I have on several occasions, where these inferior noxions oils were in use, remonstrated against their continuance and demanded that a better article be made use of.

Whenever such testimony can be had as will justify the bringing of an action in court, I propose to test the legality of the nse of these inferior and unhealtly oils for purposes of light in mines.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Dates. & Names of Persons injured fatally: & Occupation. & Names of the Col. lieries. & \[
\begin{aligned}
& 9 \\
& 50 \\
& 4
\end{aligned}
\] & Married or Single. & 告 & REMARKS \\
\hline Jan. 29 & Mchat llines, & Miner, & North Asbland, & 42 & Married, & 7 & Starthing coal that was blocked at head of chote in breast No, 17. It earreal him Into and down the chate about lifteen yards, klling him instathtly. \\
\hline \[
\text { Feb. } \quad \underset{16}{6}
\] & Patrick Tougherty,
Michat Sheboskie, & Woor-tewuer,
Laborer, & Bast, Short Mount & 17
60 & Marrled, & 2 & Struck his head against manway plaform, and thrown under wagons. Fall of toj rock, white engaged timbering ingangway. \\
\hline April 2 & I'eter litzaler, & Laborer, & Sameron, & 27 & Married, & 2 & Fall of coal. Died from Ihjurles following diay. \\
\hline & ('hristopher Conrad & Laborer, & l'reston, No. 2, & 20 & single. & & Explosion of gas. Dled from Lnjuries on 23.1 justant. \\
\hline 9 & Henry Messuer, & Miner, & Whlitmstown, & 3 & Married, & 6 & Fall or slate. Instantly kllted. \\
\hline & Emanuel smlth, & Miner, & Whlitmistown,
Burnside, & 4 & Married, & 3 & Fall of shate. [hend from injuries on 13th. \\
\hline 90 & Jolu Maroose, & Miner, & Burnside, . . & 83 & Married, & 5 & Coal llying from shot. A piece struck him on heal, whleh accelerated has drath, ats at the time he was nervons and weak from Iung disease. \\
\hline 88 & Hxary 11. Lentz, & Laborer, & Whliamstown, & 43 & Married, & 3 & Fall of top slate in gingway. \\
\hline May 3 & (ieorge llest, & Repairsman, & Lykens Val. sl pe, & 63 & Married, & & Explosion of gas. Klllell by concussion of \\
\hline 8 & Slmon Kılley, & Asst. linslde boss, & Likens Val. slope, & 31 & Married, & 6 & Explosion of gas. Killed by eoncussion of air. \\
\hline & Mleh. C. Douklass; & Priver, & Lykeus Val. slope, & 20 & Married, & 1 & Explosion of gas. Killed by coneussion of atr. \\
\hline 3 & Robert Wllianis, & Miner, & Lykens Val, slope, & 53 & Married, & 1 & Explosion of gits. Burned-dled on tith. \\
\hline 3 & Thomas 11. Evans, & Miner. & Lykeus Yal. Slope, & 33 & Married, & 2 & Explosion of gas. Burned-ulled on 9th. \\
\hline , & 1).whl Robhinson. & Miner, & Itenry Clay shatt. & 4 & Married, & 6 & Explosion of gas. Burned-died on 14th. \\
\hline June 3 & Willam Reyuohls, & Miner, & Itemry Clay shalt, & 25 & Single, & & Fall of top slate. \\
\hline 15 & William IL. Price, & Slate picker boss, & Hazell Dell, & 4 & Marrled, & 6 & Canght in breaker rolls. \\
\hline 16 & Richard McNamara & Miner, . & Willamstown, & 52 & Married, & 4 & Fall of top rock. Died on isthinstant. \\
\hline Aug. 20 & Henry Volmer, & Miner, & I'reston, No. \({ }^{\text {a }}\) & 39 & Married, & 1 & Fall of top eoal. \\
\hline 25 & L'atrlek 11, White. & Mlner, & Tunnel, . & 41 & Marrled, . & 4 & Fell into gunboat pit whlle taking out timber uear bottom of slope. Died from Injuries semtember 2ith. \\
\hline \[
\text { Sept. } \frac{1}{9}
\] & Willam II. Wolfe, Juhn shult, & \begin{tabular}{l}
Driver, \\
Miner,
\end{tabular} & \begin{tabular}{l}
Big Mountafu, \\
Ilt. Carmel shaft,
\end{tabular} & 18 & Single, . . & & \begin{tabular}{l}
Run over by loaded mine wagon. \\
l.iting a limp of coal iuto wagon, was Injured Internally, eausing death
\end{tabular} \\
\hline 10 & John Hash, & Mlner, & Cimeron. & 39 & Married, & 4 & Fall of top coal. \\
\hline 13 & John HIggens, "IHf:m H, Evans, & Laborer,
Mluer, & lykens Valley,
last, & \[
\begin{aligned}
& 19 \\
& 38
\end{aligned}
\] & \begin{tabular}{l}
Single,. . \\
Married,
\end{tabular} & & \begin{tabular}{l}
Caught by lump of eoal agalnst coal battery. Dled from injuries followFall of tol coal. \\
fing day.
\end{tabular} \\
\hline Oct. 28 & Istac F.. Morris, & Miner, & Itenry Clay shaft, & 32 & single, & & Fall of top slate. [ing diy. \\
\hline Nov. 12 & Meh. Mc Vamara, & Niner, & liast, & \(3!\) & Married, & 2 & Fall of cosil. \\
\hline 15 & Pitrick Finnegat, & Driver, & 1'reston, No. 2, & \(\stackrel{21}{2}\) & Single, . . & & Kun over by loaded mine cars. Dled following day, \\
\hline 22 & samuel Brodinnus, & M1ner, & Excelsior, & 27 & silugle, & & Fatl of top coal. Went under top enal known at time to be unsafe, and killed through his own recklessness. \\
\hline 23 & I:antel E. Lelbey, & Driver, & Peerless, & 17 & SIngle, . & & Caught between loarled mine ears anil gangway thmber at month of drift, \\
\hline 96 & Wantel Kennaly, - & Driver, & Luke Finler & 15 & Single, & & Catught between loaded mine ears, and crusticl to death. \\
\hline & Jonathan lower, & Laborer, & Big Lick, & \(2)\) & Married, & & Fall of eoal. \\
\hline 6
2
27 & MunryJ, Kuhns,
Whllam 11.1 lott, & lannorer, . . . . . & West lirookside, Cameron, & \[
\begin{aligned}
& 27 \\
& 3 i
\end{aligned}
\] & \begin{tabular}{l}
single, . . \\
Married,
\end{tabular} & & \begin{tabular}{l}
Fall of top slate. \\
Explosion of gas, Severely burned and blown down manway by force of exploston, falliethg suchinjuries as to canse death on \(\mathbf{2} 9 \mathrm{~h}\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline D.te. & Names of lersons Injured. & Occupation. & Name of the Colllerics. & Remarks. \\
\hline Jan. 3 & Able Morrls, . & Mner, & Henry Clay, No. 1, & Exploslon of gas; burned slightly. \\
\hline & Whlliam Morrls, . . . . & \(\mathrm{dlo}_{4} \ldots . . . . .\). & do. & Explosion of gas; burned sllghtiy. \\
\hline 3 & Thomas Deppa, . . . . . . & 10. . . . . . . . . . & do.
\[
\because
\] & Explosion of gas; burned severely. \\
\hline 3 & John Spllt, & do. & Preston \({ }^{\text {do, }}\) & Explosion of gas; hurned severely. \\
\hline 7 & Thomas Horan, & Loader, . . . . . & Preston, No. 2, & Kicked by mule; knee injured. \\
\hline 9 & Daniel Zerbe, & Dump chute-man, & Hest Brookside,
Preston, No. 2, & Caught betweell dirt-dumpers; breast and slde bruised. Explosion of gas: burned slightly. \\
\hline 10 & Jolin Conry, & do. & Bast, & Fall of eoal; leg broken, ankle dislocated. \\
\hline 14 & Whllam Seully, & Laborer, & Preston, No. 1, & Hand canght between door and collar; first finger ent off, second tinger mashed. \\
\hline 20 & Michacl Mc Neary, & Miner, & Locnst Spring, & Piece of slate fell on drill, which striking his hand cut it severely. \\
\hline 21 & John Murphy, & do. & North Franklin, No. 2, & Explosion of gas; face slightiy burned. \\
\hline 23 & Edward Mellugh, & Slable boss, & Locust Spring, & Kicked by mule in stomach. \\
\hline - 29 & John Wagner, & Mlner, & Blg Mine Run, & Fall of coal; leg brokea. \\
\hline Feb. 16 & Thomas Martin,
Ferdnand Rinehart, & Laborer, & West Brookslde, & Fall of coal: leg broken. \\
\hline Mar. \({ }^{16} 5\) & Ferdnand Rinchart, & Miner, & Big Monntain, Bast, & Fell down an air-hole; shoulder and ankle dislocated. Finger canglit between mine buggy and collar, and cut off. \\
\hline Mar. 8 & David Mutr, ... & Driver, . & Henry Clay drlft, & Caught hetween mule and mine wagon; jaw-bone broken and face badly bruised. \\
\hline 19 & James HoskIns, . & Slate-plek er, & Williamstown, & Fell from breaker roof to railrowd at noon-time; leg broken. \\
\hline 19 & James Mcintyre, & Gangwity laborer, & Bast, & Fall of coal; collar-bone brokell, \\
\hline 22 & Willam o. Saltzer,
George llorsewood, & Laborer, . . . . .
do. & West Brookside,
Priston, No. 3, & Fall of siate: leg broken and head cut. Finger cut onl, by being eanght on a co \\
\hline 30 & Evan W'illams, . . & du. & l'ennsylvamla, & Fall of coal in gangway; leg broken. \\
\hline Aprll 7 & Sehastlan Kohl, & Oller and spragger, & Burnsille, & Hand caught betwcen chain and stile hook of wagon; tops of fingers cut off. \\
\hline & Patrick Jefferson,
W'illam Flynn,. & Miner,
do, & Preston, No, 2,
do. & \begin{tabular}{l}
Explosion of gas; face and hands burned. \\
Explosion of gas; nose and forehead burned.
\end{tabular} \\
\hline 8 & Thomas Myers, & do. & do. & Exploslon of gas; face and hatus burned. \\
\hline 8 & Whllam Cranage, & do. & do. & Explosion of gas; ear burned, face badly ent, \\
\hline 13 & Mark Darkln, & do. & Blg Mine Run, & Fall of coal; serlonsly lujuren, \\
\hline 15 & Frederick Killinan, & Laborer, & Merriam, . & Explosion of gas; neek and hands sllghly burned. \\
\hline 19 & Charles Frank, & Driver, . . . . . . . & Reliance, . . . . . . . & Spreader fell on wrist, dislocating it. \\
\hline 20 & Alfred Deer, & do. . . . . . . & Sterling, . . . . . . . & Rum over by londed rock wagon outside; leg broken. \\
\hline 22 & Heury Damm,
George A. Wolf, & Mincr, & Werriam, Brookside, & Fall of petitlon rock, while barring coal after blast; head aud back injured. Canght between buggy and top rock: arm broken. \\
\hline 27 & Michael Gerrity, & Miner, & North Ashliand, . & Preparing cartridge for shot; spark from lamp ignited it, burning face and liands. \\
\hline May 3 & Joseph Parry, . & do. & Continental, . . . . & Rush of coal while starting ehnte; leg broken. \\
\hline 3
5 & Thomas Thomas, & do. & Henry Clay slaft, & Exploslon of gas. \\
\hline 5
5 & Whliam larper, & do. & & Explosion of gas. Explosion of gas. \\
\hline 5 & Jerome Reent, & Driver, . . & & Explosion of cas. \\
\hline 11 & Robert L'hillips, & Timber-man, & Preston, No. 3, & Fout eut by an axe. \\
\hline 12 & August Shatler, & Mlner, & Monltor, & Fiall of coali hip dislocated, \\
\hline , 17 & John E. Brenuan, & Laborer, & North' Ashland, & Fingers caught in cog-wheels of small fan, and severely mashed. \\
\hline
\end{tabular}

DATE, Namesofl"ersons lnjured.

June 1 21 lames Toubey,
 28 Frank lurk, Danlel Kisscnger Wh11am Derr, Thomas tgan, Nlcholat lirokenshire Edward Melsonald,
John stryker. Jesse Wentzel

Patrlek I)nlfy, - ohn Naushton Thomas F.dones laniel l’atul. lehert Badham, Thomas Casey, Jesse labbrifil Johw llenty,
Rernard Fallen John llattey,
Itacoli Umlimf, dolin Strleklein, Frank Perslar Fremerick Zuizou, 1same Reese, Calch (ieorge,
Jimmes Roach. Seorye orines, dr Thomas Medirath W゙1llam MeKinney

Martin Dropeskie, Johal Jonalive, Owen Contry Iolan Mohian. C. 13. Zlmmerman, Louls kurtz,

Oceupation.


Name of the Collleries.

\section*{Tunncl,}

1teury Claty shaft, . . . . . Merriam,
Reliance,
North Frankliu, No. 2,
Merriam,
Poits,
L'eerless,
IJo.
carsou,
do.
Tusinel I'reston, No. 3 ,
Tunnel,
Franklin.
Preston, No. 3, .....
do.
Merrian.
luck Ridge,
B:ast,
North Ashand
Preston, No. 3 ,
Merrlan,
Lameaterer,
du.
Ilemry Clay slaan,
Short Mountiln,
I'reston, No. 3,
North Franklin, No. 2, Bast,
liig Mountain, ......
Refiance,
Bast,
to.
hocust Sprlug,
Mt. Garmel shat
Monitor,

\section*{REMAlKS.}

Wxplosion of gas; sllghtly burned.
Finger cut off, by picee of cual sliding along drill whille barring coall.
Saltting battery; plece of coal struck lis foot, bre thing a bowe.
Fall of coal; jaw-hone brokell.
Exploston of gas.
Explosion of gas; sllyhtly burued.
Fall of coal; shomblers, alm, and side brulsed
Explosfon of gas; hando, ficee, and neek burned,
Explosion of tas; hathds, fater, athd neek burned
Fall of top slatee lody y
Attempting to jump ofl rotk wagons, was eanght between them and budty squereat.
Phere of timber fell upon htin; collar-bone broken
F'all of coal; lack alld antile injured.
Fall of latge timber leg: Ingers mashed.
Making it wedge; cint off finger whithax.
Explosion of gas; lice, hithds, ant breast burned.
Explosion of gas; lited, hands, and breast burned.
Thmber truck rin over foot; tue mashed.
On way to coal plane bell rlse to ring bell he fell, breaking arm ahove the wrist.
struck by piece of coal in the eye.
F'all of plece of enal: head ant torly ent and bruised
falght between timiler and wagons; hips injured.
FA plostorn or
Explosion prematurely of blast, while tamping; burned and otherwise injured.
Fall of coal; collar-bone broken.
Pivee of coal slipped trom fice of breast; rib broken
Premature exploshons of blat; liae and arm burned; will lose sight of one eyc, possibly loth.
Fingers ent off while maklng werlge.
Fall of coasl; back injuret.
struek by plece of coall; ribs fractured.
Fell ofl luaded wagons whille running down inslde plane; atrm broken and head ent.
Fall of coal; head cut ; horly injured
Wagon on which he was riding ln pmop slope got of the arack; fingers misherf; moty monsen.
Fall of top coal; body athl lewil bruised
Frell down a hole; shouleler hlade amd three ribs broken.
 leg, breakingit.
Mt. Carmel, . . . . . . . . Fall of coal; leg hroken.

Hex.

Monitor,
North Frankiln, No. 2, do
do.
Coal ithue, No, …
oal Rtige, No. 2, . .
TVadteigh slope,
Stuartsville,
do.
nke Finter,
Cameron,
Bast.
3jg Mountain,
do.
do.
Peerless,
do.
do.
do
Preston, No. 3 ,
Ilenry Clay shaft, ney
do.
do. do.
Locust Spring,
shore Mountain,
do.
West Brookside,
Short Mountain,
Preston, No, 2,
Honitor,
Short Mountain
Rear Valley,
West isrookside,
do.
Peerless,
Peerle
do.
do.
Locust Gap,
Merriam,

Fitll of coal; shoulder dislocated.
Roek wagon run tirer hls leg.
banght hetwern cars; knce fractured
allof cont: wrot at,
保 Injured
Fall ot'lop cosal; cut about lieal and leg broken.
Clevis in chala broke while wagon was being dumped into chute at breaker; MeGovern hitd hip injured and body broised; Coyle had leg broken.

\section*{Ahang on mine cars; fell under them: jaw bone broken.}
fxplasion of gas: face, neek, and hathis burned
Fall of top coal: hip dislocated.
lassing throngh breaker; fell down a chute; ribs broken.
Fall of coal: body injured.
('atught between mine car and rarpenter shop; body injured.
Fall of slate; head and body injured.
Explusion of ris, hauds and tace hurned
Explusion of gas: hamels and face burned.
Explosion of gas; hands and face burned.
struck by pitce of coal on thigh, breaking it.
Explosion of gas
Exploslon of gas
Explosion of gas.
Explosion of gas.
Fall of coal: beat eut and otherwise injured.
Fall of coal: leg broken.
Ganght between top rock and mine wagon; hip dislocated and baek bruised. Finger cut off ; canght hetween sprag and plece of slate
Canght between railroad cars and trestling of slate chate at breaker; shoulder bone broken and otherwise injured
Fall of slate: leg broken.
Explosion of gas: face, neek, and hands burned,
Loaledmine far ran over his leg.
Fell unler loaded wine cars; ariu broken, had cut, fiuptured by lifting timber.
'luy came out of flue; fice and hands scalded.
Explosioll of gas; face, neck, and hands burned.
Explasion of gas; face, neck, amd hathis burned.
Explosion of yas; lace, neek, and hathds bunned.
siruek by coall from blast; heid and shoulder injured, Fall of coal; collar bone brokeu.

\section*{RECAPITULATION OF FATAL CASUALTIES.}


\section*{recapitulation of non-Fatal casualties.}


COMPARATIVE STATEMENT OF CASUALTIES，TONNAGE，AND EMPLOYEES FOR SIX YEARS，IN THIRD OR SHAMOKIN DIVISION OF MINING DISTRICT OF SCHUYLKILL．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEARS. & 家 & \[
\begin{aligned}
& \text { تं } \\
& \text { Z } \\
& \text { E }
\end{aligned}
\] &  &  &  &  &  &  &  &  \\
\hline 1875， & 38 & 106 & 144 & 9，585 & 66.5 & 3，348，726 & 88，124 & 31，591．15 & 23，225 & 349.07 \\
\hline 1876， & 37 & 61 & 98 & 10，652 & 108.6 & 3，208，306 & 86，711 & 52，595．03 & 32，737．16 & 301.08 \\
\hline 1877，． & 28 & 66 & 94 & 10，857 & 115.5 & 3，471，562 & 123，984 & 52，599．07 & 36，931．10 & 319.15 \\
\hline 1878， & 47 & 128 & 175 & 11，106 & 63.4 & 3，070，218．14 & 65，323．16 & 23，986．10 & 17，544．02 & 276.09 \\
\hline 1879， & 46 & 103 & 149 & 11，094 & 74.6 & 3，816，122．16 & 82，959．04 & 37，049．14 & 25，611．11 & 343.19 \\
\hline 1880，．．．．．．．． & 34 & 124 & 158 & 11，616 & 73.5 & 3，461，371．18 & 101，805．01 & 27，914．06 & 21，907．08 & 211.18 \\
\hline Total，．．．．． & 230 & 588 & 818 & \(\cdots \cdots\) & － & 20，376，307．08 & & & & \\
\hline A verage，．．． & \(38^{1}\) & 98 & \(136 \frac{1}{3}\) & 10，818 \(\frac{1}{3}\) & 83.7 & 3，396，051．04 & 91，484．10 & 37，622．16 & 26，326．04 & 300.08 \\
\hline
\end{tabular}


212
105
349
102
88
34
\(\ldots 97\)
127
68
68
87
61
75
160
148
114
150
122
80
70
150
71
108
6
56
125
191
163
130
209
186
25
21
25
30
110
141

*Average.


Montana,
'ennsyivanla,
rankín, Nu. 2
Greenback,
Brentzill,
Ranseh Gap,
Montana, No. 2,
P'loneer,
Shitmokin
No Nrme,
Centralla,
Tazel Dell, .
Hily R
ilenn Gap,
sline,
Biy Mountaln, No. 2
Vaughn.
Little Mine Run
iensll.
A shland estate,
3ear City,
Germantown
West IIazel Dell
Centralla Outcrop
Sttle Dlamond
Packer
Ilckory Ridge
31 g Lick,
319 Tkun,
Ilekory Swa
Vest Lellgh
North Slde,
Marshall,
Franklln,
Montana, No. 1
Total slipped to marter
Total slipperl to market,
Consumed or sold at collery
Total proluctlon,

Montana, Columbla co Green Ithige, Northum'd co.. Barry township, Schuylkll co. Greenbilck, Northum'd co.,. Rocktown, Schuylkill eo., Falley Vlew, do. Molitana, Columbla co., .....................................

\section*{Centralla,}
do
Whlams Valley, Dauphin co., Centralia,
Montana, Columbla co Mt. Carmel,
Ashland,
Centralla,
do.

\section*{Rocktown, Schuylkil co}

Centralla,
Mt. Carmel.
Illekory Rlige, Northimid co Dayton, Bly liun Gap Shamokin, ilen Clty,
Lykens Valley
Red Ash,
Centralla,

Mner, Rupp \& Weaver S. S. Blekel

Gorman \& Lou
hilip Brentzill
W. II. Yohe,
A. II. Chureli,

David Vanghin \& Co.
Leorge Tibbotts \& Co.
Samuel Meyers,
G. M. Prevost,
George Trontm

George Trontm
James Fennel,
Bryson McBriarty
Northumberland Coal Company,
D. Vaughu \& Co.,

Piffer \& Geraghty
Pulaski Gensll
A. Bancroft

Frank Martz
E. H1. Herb,

Willam Pitfer
James Sykes,
Donahoe \& Curran
Mineral and
Fneral and Mining Company,
do. Branch Rall
Mineral Railroad and Mining Co. F. L. Shuman

Ed. Miller,
George Ronp,
A. A. Heim,

Danlel Beaver
\begin{tabular}{|c|c|c|c|c|c|}
\hline  &  & \[
\begin{aligned}
& 62,976.00 \\
& 45,420.00 \\
& 2,608.05
\end{aligned}
\]
\[
\begin{array}{r}
1,250.05 \\
23,211.04 \\
52,001.12 \\
\\
\\
2,080.12 \\
971.16 \\
3,341.06
\end{array}
\] &  &  & \begin{tabular}{l}
\[
\begin{array}{r}
105,882.13 \\
8,966.00 \\
25,855.003 \\
896.17 \\
11,276.19 \\
2.373 .00 \\
2,197.01 \\
70.00 \\
\\
\\
2,568.00 \\
\\
200.00 \\
2,373.00 \\
\\
24.10 \\
413.00
\end{array}
\] \\
330.07
\end{tabular} \\
\hline \(\cdots\) & \[
\begin{array}{r}
2,583,005.17 \\
151,971.04
\end{array}
\] & \[
\begin{array}{r}
3,229,327.00 \\
242,25.00
\end{array}
\] & \[
\begin{array}{r}
2,816.747 .14 \\
253,471.00
\end{array}
\] & \[
\begin{array}{r}
3,720,603.16 \\
95,519.00
\end{array}
\] & \[
\begin{array}{r}
3,235,216.15 \\
176,155.03
\end{array}
\] \\
\hline 3,248,726,00 & 2,739,977.01 & 3,471, 562.00 & 3,070,218.14 & 3,816,122.16 & 3,461,371.18 \\
\hline
\end{tabular}

\title{
LUZERNE AND CARBON COUNTIES,
}

\section*{MIDDLE DISTRICT.}

\author{
Office of Inspector of Coal Mines, Whlkes-Barre, Pa., April 30, 1880.
}

\section*{To His Excellency Henry M. Hoyt, Governor of Pennsylvania :}

SIR: I have the honor of presenting my first annual report as inspector of coal mines of the middle district of Luzerne and Carbon counties, as required by section twenty-first of the act entitled "An act providing for the health and safety of persons employed in coal mines," approved the third day of Mareh, 1870. In my commission I was directed to assume the duties of the office July 19th, 1880, therefore my report as to accidents covers only that part of the year beginning July 19th and ending December 31st, 1880.

Tables have been compiled enumerating the accidents which proved fatal, and those which did not prove fatal ; also a table showing the present state of the ventilation in all the collieries; the number of days worked by each breaker; the number of persons employed in and around the mines, and amount of coal produced from each colliery, together with other important statistics and useful information.

The number of lives lost during the above stated period were twenty-five, leaving eleven widows and thirty-six orphan children. Some of the latter were old enough and able to care for themselves.

The number of accidents not proving fatal were one hundred and thirtyone. Many of these were of a very slight elaracter, and only caused a loss of few days of work. In my investigations into the canses of aceidents I find that the miners are very frequently injured through having too much confidence in their ability to save themselves when incurring great risks, and very often take these risks to save little time or extra labor.

The most prolific cause of accidents to miners and laborers are falls of roof and coal, and as long as the miners persist to incur munecessary risks this class of injuries will continue to be numerous.

The condition and appearance of the working places in mines changes with the explosion of every blast, therefore the periodical visits of the mine boss cannot be of any practical value to reduce the number of this class of casualties. No man should be employed to mine coal who is not fully
competent to perform his duties independent of the care and watch of the mine boss. The latter cannot be present only occasionally, and the continuous change in the aspect of the working places makes it absolutely necessary that the miner himself should be practically competent to keep his working place safe and free from danger. It is by his own rigilant care can safety be ensured for himself and his laborer ; but nevertheless we are cognizant of the fact that mine bosses have to interefere very frequently, and arbitrarily compel incompetent and negligent miners to secure their places in order to insure their safety while doing their work.

A bout twenty-eight per cent. of the whole number of accidents are cansed by cars in various ways, and the sufferers are mostly boys who are employed in and around the colleries as drivers, runners, and door-tenders. A number of this class of accidents can with much propriety and justice be attributed to the carelessness of mine bosses, who leave dangerous obstructions and narrow places along the gangway roads in the mine, and are no better than traps left to cause injuries to the boys who have to work thereon.

The bosses are responsible for these prevailing man-traps, and it is within their power to remove them by cleaning the side of the main roads and providing enough room for the boys to do their work without incurring unnecessary risks. The boys are also lively, mischievous, and very fond of playing with danger, and a good efficient discipline is needed to effectively stop all useless, dangerous habits. It is within the power of the bosses to establish a system of rigid diseipline, and they shonld deem it their duty to do so at all the colleries.

The canses, number and per centum of fatal accidents are classified as follows :
From falls of roof and coal, . . . . . . . . . . 7 , being 28 per cent
From explosions of powder, . . . . . . . . 2 " 8 per cent
From explosions of gas, . . . . . . . . . . . . . 1 " 4 per cent
By cars in the mines, . . . . . . . . . . . 7 " 28 per cent
By falling down shafts, . . . . . . . . . . . . 3 " 12 per cent
Miscellaneous canses inside, . . . . . . . . . . . l " l per cent
Miscellaneous causes outside, . . . . . . . . . . . 4 " 16 per cent
Total, . . . . . . . . . . . . . . . . 25 " 100
I learned from the officials at the mines that the mumber of fatal accidents for the whole of 1880 were fifty-one, against sixty-five for the year 1879. And the total production of coal during 1880, was \(5,708,813.55\) tons, which shows a production of \(111,937.52\) tons per life lost against an average of 97,080 tons per life lost during 1879.

The total mmber of persons employed during 1880 is 15,987 , and the fatal accidents are equal to a little over 0.31 of one per cent., or one for every 319.74 of the whole number employed.

The result of my investigations into the condition of the eolleries, the improvements manifestly needed, and a descriptive record of fatal accidents are fully set forth in the report, to which you are most respectfully referred.

> Very respectfully submitted, Yomr obedient servant, G. M. WILLIAMS,

Inspector of Coal Mines.
Wilkes-Barre, Pa., February 28th, 1881.

\section*{TOTAL AMOUNT OF COAL MINED DURING 1880.}


NUMBER OF FATAL ACCIDENTS, AND AMOUNT OF COAL PRODUCED PER LIFE LOST.
\begin{tabular}{|c|c|c|}
\hline Names of the Companies. & Killed. & Coal mined per life lost-tons. \\
\hline Lehigh Valler Coal Company, & 4 & 164,317.26 \\
\hline Lehigh and Wilkes-Barre Coal Company, & 12 & 128,553.97 \\
\hline Delaware and Hudson Canal Company, . & 3 & \(344,034.95\) \\
\hline Susquehanna Coal Company, . & 17 & 45,441.72 \\
\hline Miscellaneous coal companies, & 15 & 113,618.52 \\
\hline All coal companies, . & 51 & 111,937.52 \\
\hline
\end{tabular}

\section*{NUMBER OF EMPLOYEES, AND TONS OF COAL MINED PER PERSON EMPLOYED.}
\begin{tabular}{|c|c|c|}
\hline Names of the Comidanies. & Number of persons employed. & Coal minerl per employétons. \\
\hline Leligh Yalley Coal Company, & 1,594 & 413.11 \\
\hline Lehigh and Wilkes-Barre (coal Company, & 4,618 & 331.89 \\
\hline Delaware and Hudson Coal Company, .. . & 2,735 & 375.85 \\
\hline Susquehanna Coal (ompany, . . . . & 2,297 & 336.31 \\
\hline Miscellaneons coal companies, & 4,743 & 368.17 \\
\hline Alt coal companies, . & 15,987 & 357.09 \\
\hline
\end{tabular}

\section*{AVERAGE NUMBER OF DAYS WORKED, AND TONS OF COAL MINED PER DAY FOR EACH PERSON EMPLOYED.}
\begin{tabular}{|c|c|c|}
\hline Names of the Companies. & Days worked. & Tons mined per employe. \\
\hline Lehigh Valley roal Company, & 182.39 & 2.26 \\
\hline Lehigh and Wilkes-Barre Coal Company, & 169.12 & 1.96 \\
\hline Delaware and Hudson Canal Company, & 179.19 & 2.09 \\
\hline Susquehanna Coal Company, . & 233.02 & 1.45 \\
\hline Miscellaneous coal companies, & 173.43 & 2.12 \\
\hline All coal companies, & 187.43 & 1.90 \\
\hline
\end{tabular}

CLASSIFICATION OF FATAL ACCIDENTS WHICH OCCURRED FROM JULY 19 TO DECEMBER 31, 1880, INCLUDED.
\begin{tabular}{|c|c|c|}
\hline Causes of Accidents. & Number. & Per centum. \\
\hline By falls of roof and coal, & 7 & 28.00 \\
\hline By explosions of powder, . . . . . . . . . . . . & 2 & 8.00 \\
\hline By explosion of gas, . . . . . . . . . . . . & 1 & 4.00 \\
\hline By cars underground, . . & 7 & 28.00 \\
\hline By falling down shafts, . . . & 3 & 12.00 \\
\hline Miscellaneous causes-inside, . & 1 & 4.00 \\
\hline Miscellaneous causes-outside, & 4 & 16.00 \\
\hline Total, & 25 & 100.00 \\
\hline
\end{tabular}

INJURIES NOT PROVING FATAL.
\begin{tabular}{|c|c|c|}
\hline Causes of Accidents. & Number. & Per centum. \\
\hline By falls of roof and coal, & 31 & 23.66 \\
\hline By explosion of powder, & 13 & 9.92 \\
\hline By explosion of gas, . . & 20 & 15.27 \\
\hline By cars underground, . . & 37 & 28.24 \\
\hline Miscellaneous causes-inside, . & 20 & 15.27 \\
\hline Miscellaneous causes-outside, & 10 & 7.64 \\
\hline 'Total, & 131 & 100.00 \\
\hline
\end{tabular}

Number of widows, 11 ; orphans, 36.

\section*{GENERAL CONDITION OF THE COLLIERIES.}

I entered upon the duties appertaining to the office of Inspector of Mines July 19, 1880, and immediately entered upon a tour of general inspection thronghout the colleries of my district, with a view of getting acquainted with their situation and general condition, as compared with the requirements of the law. It is due to the officers of the several collieries for me to state here that, withont one exception, their demeanor towards me was conrteons and obliging, and they showed no tendency to conceal anything from my inspection, whether it was in conformity with the law or not. I found that the dangerous parts of the machinery in the breakers
were well guarded with covers and railings as the law requires. In a few instances, the attention of the foremen was called to what might prove dangerous places, and they immediately attended to them and had them surrounded with the necessary protection.

The dangers are more variable and surrounded with much greater difficulties to remove in the underground workings of the collicries. Here it appears to be destined by nature that the vocation of the miner shall be extremely hazardous, and his perilous sitnation, in some collieries, is such as require great skill and long practical experience to cope successfully with them. We have two classes of foremen or mine bosses superintending the collieries. (1) Those who realize the extent of the responsibility of their charge, and are, in all respects, fully qualified to perform their arduons duties satisfactorily. In going throngh the mines under thir charge, they are found in excellent order; the main avenues are kept clean and clear of all dangerons obstructions; an ample supply of pure, fresh air is provided for the men to respire in all parts of the workings ; the facilities for transportation of coal are good, a strict effective discipline is exercised and everywhere manifested; the operators are reaping benefits and are not annoyed by complaints from the men. Here the trine principles of economy in mining are exercised, which are conducive to the health and safety of the men, as well as remmerative to their employers, and of these collieries there is nothing to state that is not commendable and praiseworthy.
(2) Those mine bosses who are not so well versed in the art of their calling or profession, and to whom the ventilation act seems very annoying, and the mine inspector a kind of muisance that must always be tolerated. The condition of the mines muder these gentlemen's charge suggested to the writer the propriety of the following remarks and suggestions:

\section*{FALSE ECONOMY.}

The health and safety of the workingmen in coal mines are frequently much jeopardized through a want of sufficient care and interest in their welfare on the part of the officials having immediate charge of the mine; and the attention of the second class of bosses seems to be wholly absorbed in efforts to get coal out at a minimum cost, regardless of any system or principle upon which the health and safety of the men or even success in future operations depend. It is, evidently, the result of a false idea of economy, arising from inexperience with a more eflicient system of mining. The natural consequence is that when the mine is fully developed and opened into a net-work of intricate passages, it becomes very diflicult to conduct the ventilation properly to the face of the workings, and especially in suflicient quantity to sweep atway the smoke and obnoxious gases prevalent in the mine without an ontlay of extra expense. In some instances it has been found necessary to sink new air-shafts, and re-arrage the system of rentilation hefore it could be done with any degree of success.

When a colliery is thus worked, without regard to a system, upon which successful mining in all its hranches can be carried on, it soon becomes a
difficult task, recurring every day, to bring out the amount of coal required to pay eurrent expenses. A mistaken policy is manifested everywhere thronghout a mine, and is attended with endless losses and delays, from numerous causes. The money that should be applied to improve the condition of the mine, and keep it in good working order, is devoured in vain efforts to eover losses entailed in numerous ways, as the inevitable consequences of a system of mining, the prineiples of which is so graphically described in the ancient English maxim, " a penny wise, pound foolish policy." These remarks are not meant to apply to any particular colliery, and, yet, there are sections of many collieries in this district, to which they are truly applicable. For instance: (1.) Those collieries wherein the gangways have been driven thousands of feet from the shaft or slope, and to save the small expense of removing the refuse material as they advanced, it was allowed to remain all along the gangway roads, and is now a constant source of trouble and tedious delays to the drivers, throwing the cars off the track, eausing injuries to the mules, and what is still more serions, a prolific cause of aceidents to the drivers and rumners, while doing their work thereon.

It is an established fact that the gangways should always be driven wide enough for a mule to pass the cars at all points. They should also be kept clean, so the boys could run along with the cars without danger of being tripped and thrown under them. Then the air current would also have ample room to travel, with a minimum resistance, which is of great importance to the ventilation of every coal mine.
2. Those collieries where the true principles of economy are obvionsly not understood, and the health and safety of the men, to some extent, overlooked. An ample supply of fresh air is as important and vital to snecessful mining, as the sap is to the tree. It breathes life, health, and contentment to the men, and gives them a clear atmosphere and plenty of light to see their work. Supplying an adequate amount of rentilation, is one of the most important questions that can engage the attention of mine officials, and one that should be understood, to some extent, by all who work underground. However, an investigation of the condition of some collieries, would reveal the faet, that much ignorance still prevails on the subject, and a perusal of table \(\mathrm{N} \sigma .8\) would, to some extent, emphasize the remark. All our mining text books are advocating splitting the air current into a number of separate splits or panels. The mine ventilation law demands this in mines where gases are emitted. And the increase of rentilation, claimed to be derived from that system, is daily proven true and beneficial in practice. About three fourths of our foremen undoubtedly understand it, and have tested the beneficial results derived by adopting that system in the mines under their charge. But there are some clinging to the old erude system of conducting the air in one continuons current, from one end of the mine to the other, and by the time it arrives at the last wolking places it is unfit for respiration, and is thickly charged with a fog
of powder smoke, and obnoxious gases, brecding ill-health to all who are compelled to inhale it. It is a condemned system, and those who still practice it, shonld at once discard it and adopt the improved one of splitting the air, through which the resistance by friction is reduced, and much larger quantity is obtained by the same propelling power.
3. The prevailing indifference to the size of air-ways and cross-cuts is an inexcusable error, and invariably results in small, contracted air passages, and inadequate rentilation. The laws affecting the circulation of air through confined passages of mines have been aseertained by eminent seientists, and are quoted in our text-books. We are taught that when air is impelled through a confined passage, the pressure required is proportional to the square of the velocity; so that with donble velocity there must be four times the pressure; to treble it, nine times ; and so on. The same expenditure of power on the air in a forty-foot passage would propel double the quantity it would foree through a twenty-foot passage, or an equal quantity would be propelled by half the power.

The practical lesson taught by natural laws are manifestly the following :
(a) "That, as with the same pressure the quantity of air is directly proportional to the nature and extent of the rubbing surface and the sectional area of the passages, all air-ways should be weil cut, of large size, and free of sudden contractions.
(b) That, as with the same power the quantity of air propelled is directly proportional to the length of the passage, the circulation will be largely inereased by judieionsly splitting the air-current and separately ventilating different sections.
(c) That only by attending to these points can efficient ventilation be produced, and the waste of power prevented that ensues when the currents are propelled at a high speed."

In the coal veins of this district, large air-ways can be maintained without ineurring extra expense ; and in those collieries where small, contracted ones are tolerated, satisfactory reasons for their existence camot be given. We are cognizant of the fact that, where the ventilation is poor and inadequate, fault is found with the fan's eapacity for producing rentilation ; and in some cases larger fans were constructed to supersede smaller ones, with a view of supplying the deficieney, when far better result could be obtained by enlarging the air-ways, and judiciously splitting the air columns. 'To double the quantity of air passing throngh the same air-ways, would require four times the pressure, where, by splitting the air-current and enlarging the cross-cuts, the velocity conld be reduced, so that the same result could be acquired without increasing the power.

A small fan with farorable conditions will produce an excellent current of ventilation; and it certainly costs less to rum it than it does to run a large one. The Betlevue fan, of which so much is spoken, is only twelve by four feet, open periphery and revolving dise, ruming one humdred rev-
olutions per minute, and producing a ventilation of from 140,000 to 160,000 cubic fcet, with a water guage of only 0.2 inch. This excellent production is not to be credited to the fan alone, for there are others of exactly the same size and deseription, ruming at the same speed, but fail to produce anything like that result. The difference is in the conditions upon which they are placed. The water guage indicates the power expended to overcome the resistance to the air by friction, and in the case cited, there is only 0.20 water guage. The air current is divided into eight separate splits, and the air-ways are large. By that, the distance over which the air must travel is shortened and its velocity much reduced, and that accounts for the extraordinary small water guage indication, and the splendid amount of ventilation obtained.

If all the air was compelled to travel the whole length of all the splits in one continuous current, and through contracted air-ways, so that the water guage would indicate 0.60 inch , the fan would not produce more than about 48,000 cubic feet withont increasing its speed. These are unquestionable facts which have been tested and proven correct in practice, and if they were properly understood and acted upon in more of our collieries, there would be less waste of power and a larger improvement in their sanitary condition.

\section*{UTILIZATION OF POWER.}

There are three modes of ventilation in vogue, to some extent, in this district, viz: The furnace, the forcing fan, and the exhausting fan. The latter is most generally adopted. Ventilation, by whichever mede, is cansed by the difference of density and weight of the air in the down-cast and that of air in the up-cast. The more this difference, greater will be the amount of air impelled through the mine.

Every factor that can be employed to contribute to the enhancement of difference in the density of air at the said points should be utilized to that purpose, and the benefits derived from an increased ventilation would be the result. Heat is a power, and the furmace mode of ventilation exemplifies the fact. From it we should learn that whether it is derived from the consumption of fuel, from the consumption of powder, from steam pipes, or from natural causes existing in the earth, it will essentially have the same effect. And, although the resources from which heat is radiated are numerous and wide-spread in a colliery, it can, in most cases, by a judicious arrangement of the plan of rentilation, be marle to contribute to the assistance of the ventilating power.

Steam pipes, steam pumps, and steam engines should invariably bo placed on the return airways, and the same should be done where it would be practical with everything which radiates heat. Otherwise, if they are left in the intake, the power represented by these factors would work adversely to the ventilating power, and a loss would be sustained equal to twice the motive power of the heat so generated. A number of eases could be cited where this principle is overlooked, and the fin has to run a certain
speed in order to equal the adverse power of the heat so radiated in the intake. This is a waste of power that ought not occur, and the true principles of economy are those which utilize this power. They are principles which are conducive to the health and safety of the workmen, and to the remuneration of the employers.

\section*{ascensional ventilation.}

This is a subject closely allied to the one just treated of; and in practice, the ascending principle of ventilation is nccessary in conjunction with the right mode of utilizing natural heat power. The coal seams of this district are lying at an angle of from a minimum to forty-five degrees; but the most general inclination is from fifteen to thirty degrees; they are, therefore, farorable to the ascensional mode of ventilation. By that is meant the practice of conducting air into the mine so that it shall, in the first place, go directly to the lowest part of the workings and afterwards ascend on its course to the outlet.

The air is generally cooler and heavier in the intake than in the outlet airway, and is favorable to a direct descent to the lower part of the workings, and as it becomes warmer and lighter will naturally ascend to the highest workings.

The stightest changes in the temperature of air produce variations in volume, density, and pressure, and the emission of light gases and aqueous vapor produce similar results. When we consider these facts it becomes obvious that the atmosphere of a mine, subject to these changes, cannot be at rest; but will inevitably be in an mending motion. It is essential, therefore, to utilize this restiveness by arranging the rentilation so that that motion be unceasingly towards the outeast opening.

The weight of a given volume of air in the return air-way of most collieries is less than that of an equal volume in the intake air-way, and as long as the coolest air is entering the mine it will, by its own gravity, have a tendency to go directly to the lowest workings, and force the warm, light air upwards from there. Hence, the advantage gained by adopting the ascensional principle of ventilation is apparent; in fact, it should be adopted in all mines working pitching veins, and especially where light gases are emitted.

The exudation of carbureted hydrogen gas, the lightest thing in the world next to hydrogen, would be equal to an additional ventilating pressure, if the ventilation was properly arranged, and it would have the eflect of increasing the amount of air circulating throngh the workings. As stated before, the return air of mines is generally less dense, in consequence of being usually higher in temperature and impregnated with light gases, and will naturally, by its own gravity, ascend to the outlet. It is, generally speaking, wrong in principle to bring return air down the pitch of steep lying seams, even for a small distance, if that can be avoided.

By so doing, the advantage derived from the matural tendency of warm air and light gases to ascend is not only lost, buit an additional pressure,
equivalent to that lost advantage, is required to counter-balance its opposing effect. Hence, it would be profitable to mine officials to arrange the ventilation consistent with the principles of ascensional ventilation, and provide air-ways for the return air, so far as it would be practical, to asceud from the lower lifts in a continuous upward course to the out-let. It is already practiced, to some extent, in many of our collieries; but a little more forethonght on the matter would certainly result in much improvement, even in the best ventilated collieries, and it would be productive of much good to the health and comfort of the men working in those mines. The utility of this principle is not questioned, and I urgently recommend its adoption wherever it can be applicd in the collieries of my district.

\section*{THE DANGEROUS EFFECT OF NATURAL FORCES UPON VENTILATION.}

In mines where explosive gases are freely emitted it is extrem ly dangerous to have the regular flow of the air currents disturbed, or, even decreased. The out-flow of gas is unceasing; nothing can deerease the quantity emitted but an increased pressure in the atmosphere or the reduction of its own pressure by exhaustion. Only a very small percentage is needed to mix with air, to convert the whole into a violent inflammable compound. The marginal quantity of air may be large, but if the current should be stopped for a few minutes, enough gas might be emitted to convert the whole atmosphere of the mine into an explosive mixture. An era is clawning upon us when the possibility of general disaster by explosions of gas is becoming apparent; and while there are yet no reasons to fear such catastrophies occurring, dne precautions should be taken to avert the possibility of such grave calamities.

The mechanical contrivances which affect the regularity of the ventilation are dilligently guarded, but there are hidden inflnences in the atmosphere, which are not within man's ability to control, and which have a very material effect upon the ventilation and exudation of gases in mines. An effort should be made to understand these disturbing elements, and to arert their detrimental effects upon the ventilation before an aceident is precipitated.

We are familiar with the effects of natural ventilation and its fluctuating tendencies, moving now in this, and again in that direction. And thus the same air remains for hours in the mine, striving to attain a state of equilibrinm. During very cold weather a steady flow of air, in one direction, is maintained, and in very warm weather the stream is reversed, and will steadily move in the opposite direction. Such are the effects and vicissitudes of natural ventilation.

The superior force of the fans maintains a constant current as to direction, but the quantity is varied and greatly disturbed by the hidden forces which are ceaselessly at work ; now their power is expended to assist the fan and again to resist it. The natural forces are unabating in their strife the same as if the fans were not in existence. In some cases difference of
about 20,000 cubic feet per minute in the quantity of rentilation is found in warm summer weather, and that of very cold winter.

This is a very important item in a gassy mine, where a steady flow of the maximum amount is relied upon to keep every part of the mine safe, and it is a matter worthy of serious thought to find a remedy for it.

It is evident that where fans are used nothing is gained by natural rentilation, and that much harm prevails through its detrimental effects. Our duty then is plain, that whenerer a fan is constructed to ventilate a mine, and espeeially a gassy mine, it should be erected where these natural forces could not display themselves in a way that the constancy of the air currents would be disturbed.

The phenomena of natural ventilatilation, as is well known, arises from the difference of elevation existing between the top of the two openings which constitute the downeast and upeast. Where there is no difference in the elevation of those two openings, the phenomena of natural rentilation scarcely ever appears, and this, certainly, should be the relative state of the said openings to a mine ventilated by a fan. The vacillating effects of atmospheric changes wonld then be obviated to a great extent, and a regular flow of air obtained.

Hitherto, the fans have been erected with but little thought, and less effort to avoid the disturbing influence of the atmosphere. They were generally erected where an outlet could be easiest obtained. In some cases, to save sinking a few feet in the depth of an air-shaft, they were located in a hollow depression of the ground, and in close proximity to a hill or a cliff; and during every severe storm coming from a certain direction, the foree of the wind would be directed pointedly by those hills or elitfs against the exhanst ducts of the fans, and almost revert the currents of air.

Mr. Thomas D. Davies, superintendent for the Delaware, Lackawama and Western Railroad Company, related a case where they had to remove a fen on account of the disturbing effects of storms. An angular hill on the south side directed the powerful force of the north and west winds right against its exhaust duct, and, at times, it disturhed the ventilation to such an extent that the safety of the men beeame, at last, considered a serions question. Fortunately, the effusion of explosive gas was not large in that mine, or an explosion might have been precipitated. Howerer, they wisely concluded to remove the fan to a place where the winds could not so aflect it, and they have learned a lesson, which they mean to observe hereafter, when a fan is to be erected on any of their collieries.

The conclusions arrived at when these phenomenal effects of natural forees are taken in consideration, are that:
1. 'To obtain a steady, regular current of rentilation in a colliery with a fan, the inlet and outlet should be, as near as it would be practicable, on the same level or horizontal plane.
2. That the fan shoukd be located on a plain clear surface, so that high winds could not be directed against it, and prevent a free exhaustion of the air.

If these points had been at all times observed, the vast difference now apparent in many colleries, between the amount of ventilation in summer and that of the winter season could not ocenr, and the result wonld have been the enjoyment of a much better and safer system of rentilation. Certainly, for the deep mines, which must be opened in the future, every point upon which safety depends, should never be overlooked or forgotten.

RECORD OF IMPROVEMENTS FOR 1880.
Lehigh Valley Coal Company.
At the Mineral Spring slope, three short tumels were driven from the Baltimore into the Ross vein. Their lengths are forty-nine, sixty two, and ninety-two feet, and the thickness of the sam where they have entered is in the upper lift four feet six inches, and in the lower lift six feet.

At the Henry colliery, the Baltimore vein is divided by a very thick rock, and a tunnel was driven from the bottom part of the vein into the npper part. It is two hundred and twenty-four feet in length. Two airshafts were sunk through the same rock, from the npper part of the Baltimore vein to the lower one. They are thirty-four and forty-five feet in deptl.

\section*{Lehigh and Wilkes-Barre Coal Company}

At the Diamond shaft, a tumel was driven from the Baltimore vein to the Hillman. It is fire hundred and treelve feet in length, and a sectional area of one hondred and twelve feet. The grade is about eighteen degrees. A large territory of the Hillman vein is convenient to work from this tmmnel, and they are now driving a second opening in order to bring forward the ventilation for the purpose of working it.

At the Hartford colliery, a new slope was opened from the surface down to the lower lift of the workings, and is to be extended to the bottom of the basin after working the upper lift out. It is now fifteen hundred feet in length, on an average grade of fifteen degrees. Two new tumnels were also driven at this colliery; one from the Baltimore vein to the Ross, and the other to the Red-Ash vein. Both these veins are now being worked from these tumels, and each has a large territory to mine from.

At Sugar Noteh, No. 9, colliery, a new tunnel was driven from the Ross, to work the lied-Ash rein. It is three hundred and sixty feet in length, and eighty-four feet sectional area.

At No. 10 slope, a tumnel was driven from the Kidney to the Hillman rein. It is two hundred and forty feet in length, and the rein at the point entered is ten feet thick, and of a good quality of coal.

\section*{Delaware and Hudson Canal Company.}

At the Mill Creek slope, a tunnel was driven to be used for an air-course. It is one hundred and fifty feet in length, and one hundred and twelve square feet of sectional area.

At the Laurel Run slope, they sank a new air-shaft, twelve by thirty feet sectional area, and erected a new fin, thirty-five feet diameter, upon it,

7 Mine Rep.
which has improved the rentilation of that colliery greatly. For full description of the fan, see Table No. 1.

At the Baltimore tunnel, a new tumnel is now in progress, from the Baltimore to the Red-Ash seam. It is at present about twelve hundred feet in length, and is expected to go about three hundred feet further before striking the coal. It is intended for a mine locomotive to haul the coal out from this tumel when completed, and is driven large enough for that purpose.

At the Conyugham shaft, the second opening is through, and a breaker is now in course of construction at the top of the shaft. By the time they will 1 e ready to ship eoal through the breaker. the gangways will be driven a goodly distance, and will have room to open a number of chambers, and give a good quantity of coal when they start.

\section*{Susquelanna Coal Company.}

The No. 5 breaker, a large structure capable of shipping orer one thousand five hundred tons per day, erected by this company at Nanticoke, was completed ready to ship coal on the first day of A pril, 1880.

A new fan was erected at No. 1 slope, a deseription of which is given in table No. l. The rentilation of this mine was much improved by the erection of this fan, and is now in pretty good order.

At the grand tumel, West Nanticoke, a new underground slepe was driven down to a basin, which was a considerable distance below their workings. The slope is one thousand four bundred feet in length, and has an average grade of seven and a half degrees. It opened a convenient territory of excellent coal.

\section*{Delaware, Lackawanna and Western Company.}

At the A vondale eolliery a new midergromud slope was opened a distance of one thousand eight limdred and forty-five feet, on an average grade of twelve degrees. A large territory of excellent coal can be worked from this slope, and is convenient to the shaft.

They also drove a new plane, extending above their present workings a distance of one thousand four hundred feet, from which a large amonnt of coal is expected to be mined. This makes the fourth plane, one extending above the other, on the same pitch.

\section*{The Kingnton Coal Company.}

This company is sinking a new slaft near their present No. 2 shaft. The sectional area of it is twelve ly thirty-three feet, and it is down at the time of this writing four hundred and seventy-five feet. They contemplate sinking it throngh the lioss and into the Red Ash veins, both of which are to be worked from it.

In the No. 2 shaft an madergromed slope was driven down to a length of one thonsand three hundred and fifty feet, on a grade of one in twelve. They also drove a timnel from the Conper to work the Bennett vein.

The Gaylord Coal Company.
This company is sinking a very large shaft near their present colliery in Plymouth. It is twelve by forty-eight feet, and is to cut all the veins from the surface to the Red-Ash. They are down now a depth of four humired and twelve feet, and have gone through the Cooper, Bemett, and Ross veins.

\section*{J. H. Swoyer.}

At the Forty Fort colliery the shaft was extended down from the Bennett to the Ross vein, a distance of two hundred feet, and is now beginning to open on that rein. At the W yoming colliery an underground slope was driven down one lift.

\section*{W. G. Payne.}

At the East Boston colliery a new tunnel was driven a distance of one hundred and fifty feet, from the Bennett, to work the Cooper vein.

\section*{L'Iymouth Coal Company.}

The Dodson shaft, of this company, was extended down a depth of one hmodred and eighty feet and struck an excellent vein of coal, which is believed to be the Baltimore. This mine is about finishing to work in the Bennett vein, which was thought to be a split of the Baltimore, and the discovery of the vein just struck was a very agreeable surprise. It is sixteen feet thick, and the coal is of excellent quality. The second opening, at this writing, is down ninety feet, and will soon be sunk into the new rein, when communication will immediately be made with the workings from the shaft.

\section*{NEW FANS ERECTED DURING 1880.}

The importance of furnishing the means for supplying good rentilation is more fully realized every year, and it is very gratifying to see the increased efforts made towards improvements in the construction of the ventilators.

Ten new fans have been erected in this distriet during the last year, and they are all giving excellent results, which amply compensate the expenditure made in their construction. Two of them are thirty-five feet in diameter, viz: The one rected at the Hollenback shaft by the Lehigh and Wilkes-Barre Coal Company, and the other at Mill Creek slope by the Delaware and Hudson Canal Company.

A plan of the Hollenback fan is kindly furnished for this report by Mr. Thomas R. Griflitli, one of the company's mining engincers, and it gives a rery full description of it, to which the reader is referred. It is erected upon a massive foundation of mason-work, and has a brick-honse covered with sheet iron roof. It is rumning at a speed of twenty-five revolutions per minute, and is exhausting one hundred and twenty-five thousand eubic feet of air per mimite with a half inch of water-guage. Another fan of the same dimensions was previonsly erected upon this colliery, but was not built on so sulstantial a foundation. Both are kept running at low speed,
and are jointly supplying a current of air equal to two humdred and twentyfive thousand enbic feet per minute. This is, I believe, the largest quantity of air circulating at present in any mine in the United States, and there are but few mines having equal quantity in Europe.

The Delaware and Hudson Canal Company's fan at Mill Creek slope is ruming forty-five revolutions per minute, and producing a current of one hundred and fifty-fire thonsand cubic feet of air per minute, with a waterguage of one and seven tenths inches. As the water-guage is indicating, the friction and resistance to the flow of the air in this mine is very great, and yet the fan is producing a good current. By removing the canse of resistance the result could, without doubt, be yet much increased.

The Susquehanna Coal Company's fan, erected at No. 1 slope, is twentyfive feet diameter, and when running at a speed of sixty-five revolutions per minute, produces a current of one humdred and sixty thousand cubic feet of air per minute, with a water-guage of one and seventy-five one hundredth inches. Here also we have an indication of great resistance by friction of the air in its passage through the mine. If that could be reduced by dividing the current into more separate splits and enlarging the airways, a better result still could certainly be obtained. Yet these results are very good as compared with what we have in many collieries.

For informations concerning the other fans see Table No. 1, which gives a description of them and of the fan engines.


\title{
PLAN \\ OF \\ 35 EAN \\ FOR \\ Hollenback Silaft
}
L.\&.W-B.C.C.?

Tom.R.Ceriffiti, Del Scale 16 Feft tollagh

I

TABLE I．－Giving details relative to New Fans and Fan Engines ereeted during 1880，in the Wilkes－Barre or Niddle District，composed of Curbon and Luzerne counties．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Names of the Collieries．} & \multirow[b]{6}{*}{水} & \multicolumn{2}{|l|}{DIMENSIONS．} & \multicolumn{2}{|l|}{SIDE INLETS．} & \multicolumn{3}{|l|}{SECTIONAL
O．AREA OF} & \multirow[t]{6}{*}{\(\stackrel{\text { L }}{\circ}\)年} & \multirow[t]{6}{*}{} & \multirow[b]{6}{*}{} & Fan Engine． & \multicolumn{2}{|l|}{DIMENSIONS of steam CYLINDER．} & & \multirow[t]{6}{*}{} & \multirow[t]{6}{*}{} \\
\hline & & E & \＃ & & & \[
\begin{aligned}
& \text { E } \\
& \text { 足 }
\end{aligned}
\] & \(\dot{3}\) & E． & & & & & & & & & \\
\hline & & ت & ్ㅒ & \(\stackrel{\square}{ \pm}\) & \[
\underset{0}{\circ}
\] & 品炭 & & 㛡 & & & & \[
\begin{aligned}
& \text { - } \\
& \text { _ }
\end{aligned}
\] & \(\Xi\) & & & & \\
\hline & & 台 & \[
\approx
\] & E & , & \[
\operatorname{com}_{E}^{60}
\] & 江 & なug & & & & 플ํํ & \[
\Phi
\] & \(\Xi_{\text {® }}\) & So & & \\
\hline & & D &  & \[
\stackrel{\circ}{\circ}
\] & \[
\stackrel{\rightharpoonup}{\square}
\] & 象： & -تٌ & E & & & & － & \[
\pm
\] & 如 & E & & \\
\hline & & 릋ㄹ & Hex & \[
\dot{8}
\] & 范 & O & \[
\frac{0}{5}
\] & \[
{ }_{6}^{6}
\] & & & & － & 号三 & ¢． & －¢ & & \\
\hline Hollenback， & Guibal， & 35 & \(11^{\prime} 10^{\prime \prime}\) & 1 & \(17^{\prime} 6^{\prime \prime}\) & 25 & 148 & 250 & 125，560 & 0.60 & 11.86 & Horlzontai， & 20 & 48 & Direct， & 75 & 100 \\
\hline Hartford，． & Gulbal， & 80 & \(10^{\prime} 0^{\prime \prime}\) & 1 & \(12^{\prime} 0^{\prime \prime}\) & 45 & 120 & 140 & 87，000 & & & Horizontal， & 18 & 36 & & 60 & 40 \\
\hline Mill Cruek， & Guibal， & 35 & \(10^{\prime} 0^{\prime \prime}\) & 1 & \(18^{\prime} 0^{\prime \prime}\) & 45 & 126 & 200 & 155， 000 & 1.70 & 41.52 & Ilorizontal， & 28 & 48 & Direct， & 80 & 140 \\
\hline Laturel luan，．． & Gulbal， & 17 & 4＇ \(0^{\prime \prime}\) & 2 & \(8^{\prime} 0^{\prime \prime}\) & 62 & 119 & 119 & 78，360 & & & Horizontal， & 14 & 22 & Belt． & & \\
\hline Nantleoke，Slope No．1， & Guibal， & 25 & \(\begin{array}{ll}7 \prime \\ 7^{\prime} & 0^{\prime \prime}\end{array}\) & 1 & 12＇ \(6^{\prime \prime}\) & 65 & 160 & 410 & 160， 000 & 1.75 & 44.12 ， & Horizontal， & 18 & 36 & Dlrect， & 70 & 100 \\
\hline Kingston，No． 2 ， & Guibal， & 25 & \(8^{\prime} 0^{\prime \prime}\) & 1 & \(1 z^{\prime \prime} 6^{\prime \prime}\) & 35 & 132 & 140 & 80.000 & 0.20 & 2.52 & Horizontal， & 18 & 36 & Direct， & 75 & 71 \\
\hline （iaylord，． & Guibal， & 15 & \(4^{\prime} 6^{\prime \prime}{ }^{\prime \prime}\) & 2 & \(5^{\prime} 0^{\prime \prime}\) & 100 & 100 & 112 & 60， 00 & ．．． & ．．．． & Horizontal， & 12 & 24 & & 50 & 110 \\
\hline East Buston， & Gulbal， & 15 & \(4^{\prime \prime} 0^{\prime \prime}\) & 2 & \(4^{\prime} 0^{\prime \prime}\) & 40 & 80 & 230 & 55， 000 & ．． & ．．．． & Horizontal， & 12 & 24 & Belt， & 40 & 30 \\
\hline Red Asli， & Gulbal， & 15 & \(\begin{array}{ll}5 \\ 5 \\ 5 & 0^{\prime \prime} \\ 5 & 0^{\prime \prime}\end{array}\) & 1 & \(7^{\prime} 6^{\prime \prime}\)
\(6^{\prime} 0^{\prime \prime}\) & 50 & 64 & 100 & 40，000 & ．． & ．．． & Vertical， & 14 & 18 & Direct， & 60 & 30 \\
\hline Ratubvlle， & Guibal， & 16 & \(5^{\prime} 6^{\prime \prime}\) & 2 & \(6^{\prime} 0^{\prime \prime}\) & 60 & 84 & 140 & 50，000 & & & Horizontal， & 10 & 24 & Belt， & 45 & 15 \\
\hline
\end{tabular}

\section*{THE PERILS OF FAST HOISTING IN SHAFTS.}

I shall here call attention to a singular accident which occurred November 1, 1880, at No. 1 shaft, Susquehanna Coal Company, Nanticoke, Penusylvania. Ten men were on the cage descending the shaft in the morning, and evidently were left down at a higher spee. 1 than was intended by the mine rentilation law. When at the upper vein, the fans used for the purpose of sustaining the eage at that landing, were unexpectedly standing closed, and instantly stopped the eage in its descent. The foree of the momentum attained in the rapid descent, precipitated the men in a heap on the bottom of the cage. Three of them, riz: Joseph Turner, the mining boss, Charles Willis, and William Domelly, miners, had each suffered a fracture of one of their knee-joints, and Joseph Seignor his back severely jarred. The other six were terribly jarred, but soon recovered. The eage was rery much shattered, but fortmately kept together. A mule had been sent down on the same cage before that, and the crib nsed to guard it was left on, and this saved the men from falling ont throngh the sides and down the shaft. Those who witnessed the occurrence, say that it was a miraculous escape that they were not all hurled into eternity at onec, and it is, in fact, surprising how they saved themselves. [ shall not attempt a minute description of the accident, for my object in noting it is to call attention to the dangers prevalent in this district, by too fast hoisting of the men through the shafts.

The mine rentilation law, section cleven, provides that "the engineer shall work his engine slowly and with great care when any person is asceuding or descending the shaft or slope. And no one shall interfere with, or in any way intimidate the engineer in the discharge of his duties. And non any person violating the provisions of this section, he shall be held, and be deemed guilty of a misdemeanor, and, upon conviction thereof, he shall be punished by fine and imprisomment at the diseretion of the court trying the same."

The law, on this point. is very plain, and the engineers camnot evade their responsibility, nor throw it on any one else when an aceident oceurs throngh fast hoisting. They must not allow themselves to be hurried when men are ascending or descending the shafts, for they are then directly responsible if an accirlent should oceur.

Generally, throughout this district, the machnery are working on first motion, or in other words, the engines are directly comected to the drums. Every stroke of the engine is causing one revolution of the drum, and where the drom is large, the velocity of the cages in the slaft is rery great when the engines are ruming at a slow rate.

The average cliancter of the drum at No. 1 shaft, where the accident referred to oceurred, is twelve feet. And for every stroke of the engine the cages pass through a distance of thirty-six feet. Less than sixteen revolutions bring them from the bottom to the top, a distance of tive hundred and seventy feet. The average time taken to accomplish that is thirty seconds, which is equivalent to nearly thirteen miles an hour. This is certainly too
high speed to ensure a safe transmit for men. For if the eage should be caught in its ascent, something would instantly have to break. And on the other hand, if it should be caught by descending, even for a fraction of a second, there would be many feet of slack rope which might, if the cage should get loose, be the canse of precipitating the eage and men to the bottom of the shaft. There are many ways by which serious aecilents may happen while disregarding the quoted section of the law, tud the one referred to might serve as an example of one way.

It is evident that the object of this section of the law is to guard against aceidents, and provide a slow, careful transit for the men through the shafts or slopes, so that the engineer could instantly stop, in ease the cage met with an obstruction, and avoid as far possible, the ocenrence of accidents. A glance over the amount of work done in our collieries, the large number of persons employed therein, and the limited amount of time allowed for the conveyance of the men through the shafts, reveals the fact, that too much haste prevails, and too little regard to the provision of the law.

In the collieries where there are from four to six hundred persons employed, a considerable amount of time must be expended in letting the men down in the morning, and boist them again after completing their day's work. Every ten persons must have a cage to go down, and another to come up. The transit of five hundred persons would require fifty cages twice a day, and at the ordinary rate of hoisting coal, this number would consume abont two hours of time. But men shonld never be hoisted at a rate higher than one half that of coal. They generally go to the mine in the morning from six to quarter past six, and no matter how many there are, they must ali be counted, ten at each time, and sent down by seren o'elock, when coal must be hoisted. Where there are over four bundred persons employed, it is evident that they are sent down at a speed much higher than the law specifies, and a great risk is incurred by so cloing.

At the Conyngham shaft, and at No. 4, Plymouth, the Delaware and Hudson Canal Company have provided special places to hoist, and let down the men, which are as convenient as the hoisting shafts, and the muchinery are geared so that they cannot be worked too fast.

The Lehigh and Wilkes-Barre Coal Company could, with litt'e expense, make a similar provision at the Hollenback shaft. Wilkes-Barre.

Where there are more than from three to four hundred persons employed in one mine, a special provision should be made to hoist, and let them down without incurring the necessity of doing it at a dangerous speed. This will be very important for the deep, extensive mines which will inevitably have to be opened in this district in the future, as the shallow seams are now nearly all exhansted.

\section*{DESCRIPTIVE RECORD OF FATAL ACCIDENTS.}

Fatal Accidents ly falls of lioof and Coal.
Accinent Nu. l.-Patrick lBolger, a miner, age sixty years, was seriously injured by a fall of roof at the Hartford colliery, Ashley, July 23 , and died within two hours after he was taken home. He had noticed a dangerous
piece of roof near the face of his chamber, and after some fruitless efforts to har it down concluded to stand two props under it. He then began to clear a place for the props by raking the coal into the chute, and while thus employed the roof fell with the result already stated. He left a widow with cight children.

Accident No. 3.-Isaae Withey, a tracklayer's helper, age thirty-six years, was fatally injured by a fall of roof at No. 2 shaft, Nanticoke, Pa., July 28, and died July 30, at the Wilkes-Barre hospital, leaving three orphan children in Somersetshire, England. The deeeased had been nailing strap-iron on a wooden branch of the track over which a dangerous piece of rocky slate hung, he had just completed his job, and was in the act of picking up his tools to leare when the rock fell. The edge struck him over the hips, causing injuries from which he never recovered. He left no wife.

Accident No. 4.-John Sulkofski, a miner, age thirty-six years, was killed July 31 , at tumel No. 2, Nanticoke, Pa. The deceased was a native of Poland, and had a Hungarian named Jolm Giphie laboring for him. Neither of the two could speak English, nor conld they converse intelligibly with each other. They were working on the night shift, and another party were working in the second chamber from them. About seven, p. M., Sulkofski ment moder the top bench and a slab of rock fell on him, knocking him down under it, the laborer, unexperienced and frightened, ran out withont waiting to look what had happened, nor made he any effort to aequaint any one of the aceident antil he arrived in his boarding-house. He passed the drivers not far from the chamber and others again at the month of the tunnel. At his boarding-house he succeeded to make a Polish woman understand that the miner was under a fall of roof in the chamber, and she hurried to another woman who could understand a little of the Polish langnage and told her. The latter immediately found parties to go and resene the miner who had been so cowardly rleserted by his fellow-workman. The drivers, whom they met on their way, soon led them to the chamber, but too late to save the unfortunate man's life. He was lying under a slab of rock, about four inches thick, which was instantly removed by two boys before the men had quite reached the spot. The stone laid on his body, leaving his arms and legs free, and the appearance of the culn and dirt around him indicated that he had been struggling hard to relieve himself. He undoubtedly was stitled by the continnous pressure of the stone on his body: The rescning party were manimous in their opinion that the laborer could have saved his life if he had tried instead of romning awey. The workmen, and with good reason, were bitterly incensed at the action of the cowardly laborer, and openly censured their employers for allowing men who camot be informed of their duties to work underground, especially as miners or laborers. Sulkofski left a widow and three children.

Accment No. 8.-Howard Geibertson, a laborer, age nineteen years, was instantly killed, at the Washington colliery, Plymouth, August 14. He was working with a man named George W. Alter, and both were working on this day, preparing coal for next clay. The mine was not working.

They were up from the gangway about six hundred feet, on a pitch of eighteen degrees, and were drawing back, or robbing some coal that was left by driving the chamber up. The fire boss, John Walters, passed through their chamber, and called their attention to a suspicions looking part of the roof, and cantioned them to be careful not to go moder it, fearing it would fall. It was about twenty feet high, and difficult to reach, even to sound it; but they did somud it, and thonght there was no danger of its falling. After firing one blast, the miner fixed his ladder against the pillar, and went upon it to drill another hole. The deceased stood close to the rib, about ten feet above him, and in a safe place. While they were there the coal on the pillar cracked a little, and the laborer, thinking the coal was going to fall off the pillar, jumped towards the middle of the ehamber, and simultaneonsly a large slab of rock fell on him, killing him instantly. The ladder was crushed under the miner, and be was precipitated many feet clown the chamber, but he escaped withont receiving any injury.

Accinent No. 13.-Patrick Kelley, a miner, age twenty-six years, killed by barring roof down at the Enterprise colliery, September 20. I passed throngh all the working places in this colliery September 9, and had then noticed the danger at this place, and called Kelley's attention to it. He was then just begiming to open his chamber from the gangway, and the roof was of a very dangerons character. The timbers were supported on one side by a leg or post, and on the other by a hitch in the side; what is known by miners as "post and bar timbering." The roof was of a very dangerous slate, full of seams and slants. Overlying the coal seam there were two tiers of bone coal, called "rider coal," which is taken down only when that is necessary in order to gain height enough to load the cars. The upper tier was twelre inches, and the lower one nine inches thick; and the end of the collars, or timber, rested in holes cut for that purpose, in the top of the rider coal. I cantioned Kelley that he should not trust that the "rider" would sustain the collars, and that he should be sure to put props under them before blasting the coal away. And he did so, under the collars opposite the chamber, but left the one on the right comer as it was, without a prop to sustain it-it probably appeared to have a hold on the solid coal. When the chamber was driven on about ten yards from the gangway, the vein got too thin to give the requisite height, and he concluded to pull down a part of the "rider coal," and went at it by first knocking out two props he had placed moder it, and then went back to the gangway, with the evident intention of pulling it all down from there to the face of the chamber. He stood on the gangway, nearly muler the collar which was supported by the coal, and barred down a piece of the lower tier of the rider coal, and, at the same time, the rollar on his right, and a mass of rock fell ou him, killing him instantly. When I examined the place, after the accident, a smooth parting was exposed, revealing that the fallen collar had had but a very meager support, and it was a sad mistake to bar down the very part which appeared to support the collar, without first putting a prop moder it.

Accident No. 17.-James Tolan, a laborer, age thirty years, was fatally injured by a fall of slate at No. 1 shaft, Kingston, Pennsylvania, November 1 , and died immediately after he was taken home. The miner with whom he was laboring was not in work that day, and Tolan, who had had some experience in mining at other mines, fired a blast to get coal. Immediately after firing the shot, he returned to load his car, without examining the place, and ascertain if there was any loose coal or slate left in danger of falling, as he ought to have done. The roof over the rein was very strong and safe, but on top of the vein there was a tier of slate, which always came down with the coal, and a piece of this was left hanging after the shot. While Tolan was loading his car, that fell on him, with the result already stated.

Accinent No. 20.-William Kitchen, a miner, age thirty years, was fatally injured, November 22, by a fall of fire-clay at the Hartford colliery, and died from the effects of his injuries, November 29.

The chamber in which the deceased worked was driven a distance of about forty feet from the gangway, and, to all appearance, very safe. In most places through this mine, the fire-clay came down with the coal, but here, in Kitchen's chamber, it adhered to the top coal, and had to be separately blasted down. The deceased had fired two holes in the bottom coal, and was drilling a third one, not suspecting any danger, when, withont a moment's warning, a piece of the fire-clay fell on him, injuring him very severely, and finally ended in his death. He was married, but had no children.

\section*{Fatal Accidents by Cars.}

This has been a prolific canse of accidents during the last six months, and most of them are evidently the result of carelessness on the part of the victims themselves. Many accidents of this elass could certainly be arerted if all the foremen should exereise a good, strict discipline in and around the mines. Too much freedom is generally allowed to the boys, who are uaturally inconsiderate, adventurous, and full of mischief, and, muless prevented, will often run a fearful risk altogether unnecessary.

Accment No. 5.-John Jemings, a footman, age fifty-five years, was fatally injured hy cars, at the foot of the underground slope, Nottingham colliery, August 3. Was taken directly to the hospital at Wilkes-Barre, where an amputation of one of his legs was performed, with the hope of saving his life, but he failed to survive the shoek, and died August 5. Until recently, he was employed as a company laborer, and, at his own request, was placed to attend the foot of the slope. He was much gratified ly the change, believing the work of a footman to be easier and more pleasing. The branches at the bottom of the slope are arranged so that the cars can be taken out from two separate gangways, which are diverging from the angle of the slope. The deceased had been sending up some cats from the right or west gangway, and expected to send the next trip from the other or cast qangway, but neglected to turn the switch for that branch. Haring overlooked that, he stood in a contemplative manner on the west track,
expeeting the trip to pass on the other, when suddenly the ears rushed upon him, dragging him along for several yards. He was taken up immediately, by parties who were close by, but his leg was broken and the flesh shockingly lacerated around the knee. What followed is already stated.

This evidently was a case where a human life was lost through absentmindedness. While, apparently, to place a man of his habits and ripe age, at the said work, was an act of kindness, it proved a sad mistake. Old men, and men of contemplative halits, should not be entrusted to do work of this kind, as it requires quick movements, and presence of mind at all times. He was married, hut his children were all fully grown.

Accident No. 6.-William J. Warren, a driver on the culm dump, age fifteen years, was instantly killed at No. 2 shaft, Plymouth, August 4.

He was making one of his usual trips to the dump, with a loaded culm car. John Nesbit was on the hind end, attending to the brake, and Johm Warren, the deceased's brother, was riding on the side of the car. When about half way to the dump, Willie struck the mule with his whip, and started him on faster, then he attempted to step on the front end of ear, and missed his hold, fell under, and was instantly killed.

Aceident No. 11.-Thomas Judge, a miner, age forty-five years, killed by the mine locomotive, at Exeter shaft, West Pittston, Pennsylvania, September 11. The deceased had gone about fifty yards from the foot of the shaft, on bis way into the mine, in the morning, when the mine locomotive started after him in the same direction. He, for some reason, did not turn out of its way, and was almost instantly killed. The locomotive engineer blew the alarm whistle before starting, and there was plenty of room to get out of the way; another track ran along parallel with the one he was on, and he conld have moved ten feet away on that side, but in his confusion, it appears that he attempted to step to the wrong side, and was canght between the engine and side. The engineer felt something under the engine, and instantly stopped to see what was wrong. He found Judge jammed between the engine and the side, with his drill bent across his neek. He lived abont two hours, and expired. He was married, but had no children.

Accident No. 12.-Samuel Parks, a tracklayer helper, age twenty-eight years, was fatally injured at Mineral Spring colliery, September 17, and died within six hours after the accident occurred. A number of the drivers of this mine were gone on an excursion, and the deceased was employed to drive for this day on a run which had a grade of eleven degrees, and a wooden track. He had taken an empty trip in, and was before a car assisting a miner to let it down to a platform. The wheels were all spragged; but they failed to stop it ; and when opposite the second plat form he jumped away from the front of the car, and was instantly caught between it and the platform. If he had stayed where he was, as the other man did, for ten feet further, the grade became much less, and the car would stop itself. It was one of many accidents which occur through a lack of coolness. An
excited person often commits fatal mistakes, and he (Parks) jumped from a comparatively safe situation into a fatal trap. He was a man well respected, of exemplary character, and enjoyed the confidence and good will of all that knew him. His parents resided in Philadelphia, and his remains were taken thither to be interred.

Accident No. 15.-Edward Hurst, age seventeen years, was instantly killed, near the head of No. 2 slaft, Kingston, Pennsylvania, October 211.

The breaker belonging to this shaft is quite a distance away, and the cars are hanled by a small locomotive; the culm cars are hanled by the same power to the dump, which is near the shaft. The deceased was employed to assist the locomotive engineer, by coupling and uncoupling cars, and turning switches, \&e. When the accident occurred, four loaded culm ears were attached to a trip of empty mine cars, and were brought togetier to a point near the shaft, where they had to be separated. Here there was a small grade, barely enongh for the cars to run by their own gravity. The engineer retarded the speed of the locomotive until IIurst uncoupled the culm ears, and gave the signal to go on. He (Hurst) stayed on the front end of the detached enlm cars, which were moving formard slowly, and he made an attempt to step across to the other side, but slipped, and was instantly thrown down on his side across the rail. The front wheel of the first car crossed orer his body, and got off the track. He was at onee taken out by a man who was a witness to it all, but he only breathed two or three times, and expired.

Accident No. 18.-Charles Gallagher, a laborer, age sixty years, was ermshed to death between railroad cars, near the Empire breaker, November 8. This accident is not strictly a mine accident. The deceased, just after quitting his work, was on his way home, near the limp coal chnte of the breaker, and attempted to cross between the railroad cars, where they were apart from three to four feet. The locomotive was then in the act of backing up the cars, and the deceased was canght between the jammers and instantly killed. He was a widower, and left seven children, some of whom were full grown.

Accident No. 19.-A bel Roberts, plane footman, age twenty-one years, was instantly killed at the Hollenback sliaft, November 12.

The plane, where the aceident occurred, was driven for the donble purpose of (1) effecting a second opening, and (2) to open counter-gangways from it to work the upper lifts of that section. It is thirteen hundred odd feet in length, and !as an arerage grade of twelve deçrees. Directly at the top is the air-shaft, three hundred odd feet in depth. The engine is located on top of the air-shaft, and hauls the empty cars up to the several lifts, and lets the loaded ones down. The rope is about two thousand feet long, and is passed over pulley wheels at the top and hottom of the air-shaft.

The mine boss noticed a defective spot in the rope, and, as he stated to me, notified the master mechanie and the splicer of the fact, with a request to have it immediately repaired. However, it was not repaired that day,
and the next day, when a loaded trip was up about three hundred feet, the rope broke. The deceased was in the act of coupling cars at the bottom of the plane, when the cars rushed upon him, with the result stated. His mangled remains were the only legaey left for a poor widowed mother, who had depended on him for her and her children's support.

Mine oflicials, if they can with reasonable propriety, are rery prompt in ascribing accidents to the carelessness of the victims of the accidents, but in many instances the lives of workmen are jeopardized by the indifference of those having charge of the varions appliances non which the lives of the workmen depend.

This is a case where the danger of a defective rope was indifferently looked upon, and a young man's life lost as the result. Comments are umnecessary, for the facts of the case plainly indicate whose carelessness was the cause of it, and it should teach a lesson to indifferent officials hereafter.

Accident No. 21.-Thomas McGlymu, a driver, age sixteen years, was fatally injured at the Diamond shaft, November 29. IIe was tralking out carelessly on the gangway, along with his mule and a loaded trip of cars, and thoughtlessly set his foot between a latels and rail, his foot was caught fast, and he failed to release it until the cars came upon him ; they crushed his leg fearfully, betweeu his foot and innee. Hopes were entertained of saving his life by amputating the limb, but the surgeons had scarcely finished the operation when he expired.

Accident No. 22.-James Danahey, a driver, age sixteen years, was almost instantly killed at shaft No. 2, Nanticoke, December 11. The deceased, against all instrnctions to the contrary, undertook to run a loaded car down from a counter-gangway by a brake. To do this, he was ohliged to stand on the frout end of the car, as the lever of the brake was on that end. The brake proved to be a bad one, and the car ran pretty fast, and when near the bottom of the run it jumped off the track, and threw the driver against a prop with such force as to fracture his skull just above the temple, eausing immediate death.

Joseph Warne, the mine boss, stated that on the day before he had caught him rumning a car, and then charged him not to do so afterwards, for he considered it too dangerons for a boy of his light weight, and had employed a rumuer especially for that work. Danahey, in return, promised not to do so after. But he was an active boy, ambitions, and anxions to earn more wages, and had asked several times for the jol of rumning ears, which was refused to him on the ground stated.

On the fatal morning, when about to start with the car, another boy told him to be careful, and that he feared the brake was not in order, and he replied that he would risk it. He did, and sacrificed his young life in the attempt.

Accident No. 23.-Johm Dunstan, a driver, age fonrteen years, was killed at shaft No. 2, Nanticoke, December 21. He had just pulled an empty car up into a chamber, which was pitching about four degrees; was leading
his mule back, and the trace chain eanght in the corner of the car, jerking it over the block. The same time the mule swung against the boy, and knocked him down on the track. The laborer, who stood by, held the car almost instantly, but as the boy was rising he received a thrust in his side, which cansed his death in a fex minntes.

This was a very unfortumate accident, ocenrring in a very safe place, and which could have been easily avoicled with little care, as there was plenty of room to pass the mule withont touching the car.

\section*{Fatal Accidents by Premature Blasts.}

Accident No. 2.-Jacob Bossard, a miner, age forty-eight years, was fatally injured, July 28, at the Diamond shaft, near Wilkes-Barre, Pemnsylvania, and died July 30. He was working on the cleven, p. m., shift, driving a cross-cut from the airway towards the gangway, and had driven it about six feet from the comer. He and the laborer were both togeiher, and had prepared a bole ready to fire, but before either had moved, the shot went off and injured Bossard very severely about his head, which caused his death at the time stated. I learned that he used patent touch squibs, and was in the habit of cutting the match a little shorter; he might have done that at the time of the accident, but even if he did, it should give him time to retreat.

There must be something wrong with this kind of squibs, for I have heard a number of persons stating that they occasionally go off instantly. And the squib, this time, exploded the blast immediately when it was lighted, and before the men had moved.

The deceased had had a large experience in mining, and was a very careful man. He was marricd, and had eight children.

Ascident No. 9.-John Manson, a miner, age thirty-five years, was killed by a premature blast, at Sugar Notch slope, Angust 18. He was driving a cross-cut from the gangway toward the airway, which was quite a distance away, and there was a pitch of about twenty-five degrees. The crosscut was up thirty-five feet, and the deceased's brother was working with him. They charged a hole ready to blast, and the brother took the tools ont of the way down to the gangway, then the miner shonted " fire "-the usual alarm before blasting-and simultaneously with the shout, the blast exploded. His brother ran back and found him on the platform dying. IIe, too, was using the patent touch squibs, and his death can, with very grool reason, be ascribed to one of those defective squibs. The deceased was a native of Switzerland, and left a widow with two children.

\section*{Fatal Accidenta by falling down whafes.}

Accinent No. 7.-Walter Hawk, leader of shift, age thirty-five years, was instantly killed at Forty Fort shaft, Angust 12. They were sinking this shaft down from the Bennett vein towards the Ress vein, and were below the former abont seventy feet. During the first three chays of each week they were hoisting coal for eight hours of each diay from the bemnett rein, and were sinking the shaft during the other sixteen hours, but for the
last three days of the week no coal was raised, and three shifts were employed sinking the shaft. The deceased was leader of the morning shift, and abont eleven. A. M., they concluded to eat dinner. There were ten men working, and five went up first, and the other five got on the next bueket and signaled to hoist. The engineer usually after suspending the bucket stopped to give the men time to steady it, and he did so now, but they signaled the second time withont taking time to steady the bucket. As they were ascending the bucket was turning and swaying until they reached that part where the shaft was timhered, and here the bucket struck against a bunting and knocked Hawk off down into the shaft; he grabbed one of the other men, but fortunately that one fell into the bucket and escaped with slight injury. Hawk was instantly killed, and it is suprising that all of them did not share the same fate, and probably wonld if the engineer had not noticed the rope shaking and stopped the engine. This accident was the result of a reckless adventure which had not a shadow of reason to justify it. The deceased had a wife and four children.

Accident No. 16.-Andrew Brehue, a laborer, age abont twenty-six years, was killed at No. 5 shaft, Plymonth, Pa., October 20 . This mine was idle that afternoon, had stopped to pay the workman, and nearly all of which were ont around the otlice. A party of men were engaged tarring the shaft ropes, which made it necessary to hoist them out of the shaft slowly. It is supposed that the deceased got on the cage at the bottom without giving the usual signal, and ascended as far as the cooper vein landing, sixty-five feet from the bottom, and during a momentary stop of the eage stepped of there. However when the ropes were tarred the blacksmith went down to repair the signal wire, and as he passed the said landing sas a man wairing lis hand on him to stop. The blacksmith could not make the engineer muderstand where to stop unless he would go up again and tell him. He went up and informed the engineer then descended again, and before he reached the cooper vein he heard something falling down the shaft, he feared at once that it was the man, and got help to go to the bottom, and they found him there dying. The probability is that he attempted to board the ascending cage opposite the one the blacksmith descended on, missed and fell down the shaft. He was a mative of Hungary and could not muderstand a word of English. He had only worked a few days in this mine, and there were none there who conld explain anything to him. On the day before the accident ocemred he attempted to board the cage when it was starting from the bottom, and would then have been killed if the by-standers had not saved him. His remains were taken home to his wife, but no explanation conld then be given to her abont his death as nobody could talk the language she understood. The offecials of the company saw to it that he received a respectable burial and gave material assistance to the bereaved widow.

Accident No. 24.-Samuel McLean, a laborer, age twenty-two years, was killed at the Allright shaft December 31. He was sending an ash ear
from the surface landing to the one on a level with the trestling leading to the breaker. He pushed the car upon the cage, signaled to hoist, and when the cage began to ascend threw the fans back and attempted to jump on with the car, missed, and fell back into the shaft, a depth of one hundred and sixty feet. The footman found him immediately, but he was dead. This was no better than committing suicide, and it is surprising that any man would attempt such a thing, mless he had that in view, but he evidently made the fatal leap to save walking a little distance to reach the top of the trestling, from which the ashes were to be clumped.

\section*{Fatal Accidents from Explosion of Gas.}

Accinent No. 10.-Benjamin Odjers, a miner, age thirty-five years, and John Dagnon, fire-boss, were burned by an explosion of gas at No. 1 slope, Nanticoke, September 2. The former died of his injuries September 10. In my investigation of the accident, September 4, the testimony elieited points directly to the fire-boss as the one responsible for this unfortunate explosion, and that it occurred through his gross carelessness, and almost criminal indifference to danger. Everywhere through this mine indications of careless management were to be scen. The chamber where the explosion oceurred was driven thirty-five yards past the upper eross-cut, on a pitch of nearly twenty degrees. The air, of which there was but a small quantity, was conducted from the cross-cut to the face by board brattice. They were working a double shift in nearly all the chambers in that vicinity, and during the night before the accident an explosion occurred in Fisher's chamber, which broke the brattice nearly all down. Consequently, when the fire-boss made his usual examination next morning, he found the face of that chamber full of gas, and work in it was suspended until the brattice could be rebuilt and the gas removed. The fire-boss, sometime in the forenoon, was there relnilding the brattice, and Odjers was working in the next place on the right of him. A cross-cnt was driven from the latter's chamber during the night before, and was almost throngh into the one where the gas was. In fact, a shot blowed through and exploded some gas when the brattice was broke. To explain how the explosion which calused the accident to the men happened, their own statement shall suflice :

\section*{Statement of John Dagnon.}
"I was employed as a fire-boss in Slope No. 1, Susquehama Coal Company, ur.til September 2, and was burned with another man named Odjers, in Fisher's chamber, on that date. They were driving a cross-cnt from Odjers' chamber into Fisher's, and the Polander had blown throngh during the night before and exploded some gas, which broke the brattice all down. I was there rebulding the battice, and Odjers came over and we went up to see where the cross-ent was coming throngh. I led the way up, and he followed me. When up by the place 1 told him not to go further, that there was gas there. I turned round to come back, and was down about five yards, when the gas went off (exploded.) Camot say from whose lamp it ignited. I carried naked light and a safety-lamp."

\section*{Statement of Odjers.}

My name is Ben Odjers. Was working in No. I slope until September 2. I had fired one shot that morning, when the fire-boss came to my chamber and told me the cross-cut was eracked through into Fisher's chamber. He then asked me to go over with him and see where it was coming throngh. I at first refused to go, saying I would drill another hole and fire it, which would knock it through. But he asked me again, and said, he had been up there twice that morning. 'Then I went with him. He went up first and I followed him. When we were up to where the cross-cnt was coming throngh, we stopped, and he showed me where the last hole had eracked through, and he was telling me to put the next hole in a certain way, when just then the gas went off and lourned us both. He had more clothes on than \(I\), and I am burned worse than him on that account. The brattice was broken down during the previous night, and the fire-boss was there rebuilding it. We both earried naked lights.

Both men were suffering so much from their burns, when I visited them, that talking seemed painful and ditlicult, and I did not deem it prudent to extend my interrogations. Enongh was disclosed to justify my remarks concerning the carclessness of the fire-boss, and to demonstrate his utter unfitness for such an important position. When I investigated this accident, a new fire-boss was engaged, and soon after the mine boss was superseded by another, who was thonght to be more competent, and better qualified to improve things generally. Certainly he had room for improvement.

Odjers was married, but had no children.

\section*{Fatal Accident by Miscellancous Camses.}

Accident No. 14.-Owen Sweeney, a slate-picker, age sixty-six years, was killed at Breaker No. 2, Kingston Coal Co., October 16. At the time the accident occurred, the deceased was helping David Francis, the assistant breaker-boss, to remove the grate-bars from the steamboat coal chute. While this was being done they could not dump coal to the breaker. Francis was a man of very hasty, excitable temperament, and exceedingly so when the work was delayed. He jumped on to the bars himself, and handed them indiscriminately, withont looking by whom they were received, or where they stood who received them from him. He had, naturally, communicated his hasty movements into his assistants. The deceased, to be convenient to receive them out of Francis' hands, had gone over the railings which had been placed there to guard an open space, directly over a pair of revolving cast-iron screens, and from there he fell, a distance of about twelve feet, and upon the revolving sereens. One of the boys saw hin falling, and instantly gave alarm; but before he could be released, he had received injuries which caused his death in a few minntes. The deceased left an aged widow and four ehildren.

TABLE NO. II.-A list of accidents not proving fatal in the Middle District of
\begin{tabular}{|c|c|c|c|c|}
\hline Date. & No. & Names of Persons Injurrd. & 4 & Names of Collieries. \\
\hline July 19 & 1 & James MrcGlynn, & 19 & No. 9, Sugar Notch, \\
\hline & \(\stackrel{2}{3}\) & Nelsou Maptield, Gomer Lewls, & 16
17 & Nill Creek slope, Tunnel No, 1, Vantleoke \\
\hline \(\stackrel{20}{21}\) & 3
4 & Gomer Lewls, Thomas Ifill, & \[
\begin{aligned}
& 17 \\
& 40
\end{aligned}
\] & Tunnel No, 1, Nantleoke
Shaft No. 1, Nianticoke, \\
\hline \(\because\) & 5 & Cornelius McCobe, & 29 & Baltimore tunnel, - \\
\hline 23 & 6 & James Kenney, . . & & Pine Ridge slaft, . \\
\hline 30 & 7 & Patrick Welsh, & 23 & Mdxall coltiery, \\
\hline Aug. \({ }^{31}\) & 8 & Lewis Griftiths, & 40 & Grand tunbel, . \\
\hline Aug. \({ }_{6}^{3}\) & 9
10 & John Duffey, Charles Miller, & 14 & Enterprise, \({ }_{\text {Slope }}\) No. 2 , Nanticoke, \\
\hline - & 11 & Hugh Jones, . & 35 & No. 9, Sugar Noteh, . \\
\hline 9 & 12 & Benjamin R. Jones, & 26 & Shart No. 1, Nanticoke, \\
\hline 9 & 13 & Wiliain Nork, & 28 & Shat No. \({ }^{\text {a }}\), Nanticoke, \\
\hline 9 & 14 & Richard Britt, & 16 & Boston Mises, . . . . . \\
\hline 11 & 15 & Walter Price,
Patrick Davith, & \({ }^{2} 0\) & Enterprise,
l'ine Ridge shaft, \\
\hline 11 & 17 & Patrick Davit, \({ }^{\text {William }}\) E. Lewis, & \(3{ }^{\circ}\) & Pine Ringe shaft, \\
\hline 13 & 18 & Frank Herman, & & Baltimore slope, \\
\hline 13 & 19 & David W. Davies, & 14 & Slope No. 2, Nanticoke, \\
\hline 16 & 20 & Jancs Keating, & 20 & No. t, plymouth, \\
\hline 16
16 & 22 & Daniel If Thomas, & 22 & Haney l'ut, Nanticoke, Slope No. 1, S. Coal Company, \\
\hline 16 & 23 & Wiltiam Howard, & 34 & Enterprise, . . . . . . \\
\hline 18 & 24 & Albert Krolinski, & 50 & No. 3, Nanticoke, \\
\hline \({ }_{21}^{24}\) & 25
26 & John D. Tighe, & 39 & Exeter, \\
\hline 21
25 & \[
\begin{aligned}
& 26 \\
& 27
\end{aligned}
\] & Patrick Heffron, Davit H. Davics, & 13 & \begin{tabular}{l}
Enterprise, \\
Slope No. 2, Nanticoke,
\end{tabular} \\
\hline 27 & 23 & Peter Mylinger, & 30 & Prospect, \({ }^{\text {a }}\), \\
\hline 30 & 29 & John MeCarry, & 35 & Brown slope, F. Coal Company, \\
\hline 31 & 30 & David J. Williams, & 72 & Nottinglam, \\
\hline Sept. \({ }^{31}\) & \[
\begin{aligned}
& 31 \\
& 32
\end{aligned}
\] & Thomas Medonatd, & 35
30 & Breaker No. 5, Nanticoke, Slope No. 1, Nanticoke, \\
\hline Sepl 4 & 33 & Jacob A. Morgan, & 30 & Shat No. 2, Nanticoke, \\
\hline 4 & 3 & Irving Minnick, & 19 & No. 9, Sugar Notel, \\
\hline 4 & \[
\begin{aligned}
& 3 \mathrm{j} \\
& 36
\end{aligned}
\] & James Brislin,
Simon Marazoni, & 27 & Hartford, \({ }^{\text {a }}\), \\
\hline 6 & 37 & Johin Hughes, . & 14 & Old slope, Franklin, . . \\
\hline & \(3{ }_{3}^{3}\) & James llines, & 35 & Shaft No. 2, Kingston, \\
\hline 8 & 39 & Michatel Murply, & 30 & Prospect colliery, . \\
\hline 10
10 & 4 & Joseph Rawling, John Pritchard, & 10
15
15 & l'ine Ritge,
No. \(11, \mathrm{l}\) lymouth, \\
\hline 10
10 & 41 & John Pritchard,
Leo Mutsch, & 15
13 & No. 11, l'lymouth, . . \\
\hline 10 & 43 & Benjamin Davies, & 25 & Shaft No. 2, Kingston, \\
\hline 10 & 4 & Thomas Tanblyn, & & Baltimore slope, . \\
\hline 11 & 45 & Jolin Langdon, & 14 & Shaft No. 2, Kingston, \\
\hline 11
13 & 47 & Richard Lloyd,
William Devin,
a & 17 & Nottlugham shatt, .
Henry collicry, \\
\hline 13 & 48 & Wiltiam Lawlor, & 17 & Laurel lun, \\
\hline 14 & 49 & Michael Dooley, & & Enterırise, \\
\hline 14 & 50 & Michact Sweney, & & Enterprise, \\
\hline 1.5 & 51 & Patrick Finley, & 50 & No. 3. West Nantleoke, \\
\hline 16
16 & \({ }_{53}^{52}\) & Thomats A. Jones, Joseph Welss, & 35
36 & Shaft No. , Nantleoke, shaft \(\mathbf{N o}\) の Vanticoke. \\
\hline \({ }_{18}^{16}\) & 63
54 & Joseph Welss, Wavlil.J. Edwards, & \({ }_{28}^{26}\) & Shaft No. 2, Nanticoke, Empire shaft, \\
\hline 18 & 55 & Thomas L. Jones, & 25 & Emplre shatt, \\
\hline 22 & 56 & Iantel Everctt, & & Laurel lunn, \\
\hline \({ }_{28}^{22}\) & 57
58 & Willian R Powell,
Sohn \(T\), Corcoran, & 14 & Slope No. 2, Nantleoke, \\
\hline 28 & 58
59 & John T. Cotcoran, (1) nite! Evans, & 14 & Shaft No. 2, Namtleoke, \\
\hline 30 & 60 & Michael Leonard, & \({ }_{20}\) & Dlamond shaft, \\
\hline & 61 & Henry Skipper, & 16 & Finterprise colltery, \\
\hline 30 & \({ }_{6}^{62}\) & Thomas llughes, & 49 & Enterprise colltery, \\
\hline 30
30 & 63
64 & nlenry llowells, Wille kecs, & 25
14 & Tunnel No. 2, Nanticoke,
Gaylord shaf, \\
\hline Oct. \(\begin{array}{r}30 \\ 7\end{array}\) & \({ }_{6}^{69}\) & Wime Recs, & 1.4
30 & Gaylord shat,
No. 3, (irand tunil, \\
\hline (c. 8 & 66 & Morris Caffern, & 13 & Ilollen track shaft, \\
\hline 11 & \({ }_{68}^{67}\) & John Lally
Wavid W
didliams, & 1.1
4
4 & Hollenhack shaft,
Dlamond shat, \\
\hline \({ }_{12}^{12}\) & 68
69 & Mavid W. Williams,
Rohert Estelt, & 40
30 & Mamond shat,
Malthy colltery, \\
\hline 13 & 70 & Thomas Brunatto, & 3.5 & Stope No. 1, Nanttcoke, \\
\hline 14 & 71 & Charles Tigue, . . & 25 & Exeter coiliery, \\
\hline
\end{tabular}

Luzerne and Carbon counties, from July 19 to December 31, 1880, iuclusivc.

Nature and Cause of Accidents.


Continued.

\section*{Nature and Causes of Accidents.}

Leg severely crushed by falling under a car. His foot canght in the latch, throwligh him down.
Arm broken by falling while running from a blast,
Thigh bruised by a kick from a mule,
Armi fractured ; clothing caught in a shaft in the breaker, whd him around whith it.
Free and lands slightly burned by explosion of gas,
Sllighty injured by a blast. Cut the mateh short,
Shoulder thone broken, being crushell between car and side of gangway,
Ankle spratined by a fall of rock from side,
Two fingers crushed between the screen anl plank,
Chest injurei; squeered between the cage and leam; caught by attempting to jump out too soon,
Shoulder and hips brilised by a fall of rider coal,
Arm bruised; callght between top of car and chute,
Foot crushed by a runaway ear; brake broke whlle he was on,
Leg broken: loaded trip jumped the track near foot of slope and caught him, .
Ley broken near the ankle by a fall of blacksmith coat,
Leg broken; was lobding a car while the mule was passing; trace
chain caught and pulled the ear upon him,
Severely injurel by a fall of top coal,
Leg broken dear ankle; caught between two pieces of timbers,
Ribs fracturet: biug struck by a culm car,
Leg slightly injurel by coal running from chute,
Leg broken by collision of cars near head of slope,
Hip brulsed; canght hetween car and prop,
Leg broken and sialp lacerated by a fall of roof,
Knee broken. These men, with six others, were on the cage
Knee broken. \{descending the shaft, when the fans ot the up-
Knee broken. \{perlifthappened to be closed, and stopped the
Back injurel. (cage unexpectedly, causing the injuries stated,
Rihs broken and otherwise injured; caught between the car and roof,
Leg broken by a lump of coal rolling on it,
Hip broken and otherwise injured by a fall of roof,
These six men were burned by explosion of gas. They were working together driving a tunnel, and the partles on the previous shift had just blasted a round of holes, which had tapped a blower of gas. When these men eane to relieve the other shift, they went on to the face of the tunnel, and an explosion oceurred, which burned these six men slightly,
Iland severely cut by a lump of coal which broke in his hands,
Leg broken by falling under cars while trying to pass them,
Leg bruised; caught between door post and car,
Arm fratured by fall of roof,
Severely injured; his clothing eanght in the irace of his mule, which was friglitened, rati dragging the boy for some distance, with the result stated,
\{ Burned by an explosion of gas, in an old chamber,
Leg broken in two places by sllding on the breaker roof,
Leg cruslien under cars, had to be amputated,
Sllghtly injured by a fall of roof,
Leg broken.
\{ Both injured by a fall of roof,
Simall bone of arm liroken,
Nose hroken by a premature blast,
Heel cruslecd; foot canglit in it frog and car ran over it,
Leg and arm broken by a fall of coal from rib,
Burned by explosion of gas, whel ignited from the stove in the fan house,
Squcezed between car, and rib severely infured,
Sthgitly lujured by a fall of slate,
Slighty injurel by a premature blast,
Fres amilhamb burned by an explosion of gas,
Sllghtly himened by an exploslon of gas,
Leg terribly mangled by falling under cars,
Serlously linjured by a fatl of coal,
Totals,


TABLE NO. III.-A list of accidents proving fatal in the Middle Disivict of


Luzerne and Carbon counties, from July 19 to December 31, 1880, inclusively. colliery, and number of kegs of powier used for ail purroses, during 1880.

LEHHGHVLLLEV CU.AL CUMFANI,
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of the Collieries. & Class of Colllery. &  &  &  &  & Persons killed. &  &  &  &  \\
\hline 1. Exeter, . . . . . . . . . & Slaft. & 70 & 194.05 & 480 & 9 & 1 & 652. 08 & 213,000 & 213,000 & 6,899 \\
\hline 2. Prospect, ........ & '1'wo shafts, & 6.2 & 185.95 & 499 & & 1 & 420.8 .4 & \(2.0,000\) & 210, 000 & 6,599 \\
\hline 3. Mlneral Spring, & slope, . . & 25 & 173,35 & 221 & 11 & 1 & 334.61 & S5,010.04 & 85, 199.04 & 2, 114 \\
\hline 4. Mluvate, . . . . & slope, & 8 & 157.35 & 141 & & & 305, 55 & Nolifelost, & 44.000 & 1,553 \\
\hline 5. Henry, . & shaft, & 47 & 201.25 & 250 & 22 & 1 & 420.28 & 105,070 & 105.070 & 3,251 \\
\hline Total Lehlgh Valley Coal Company, & & 212 & 182.39 & 1,594 & 42 & 4 & 412.33 & 164, 317.26 & 657, 269.04 & 20,766 \\
\hline \multicolumn{11}{|c|}{LEHIGH AND WHLKEG-BARRE COALCOMPSNY.} \\
\hline 6. Dlamond, . & Shait, & 38 & 190.50 & 440 & . & 4 & 471.17 & 51,829.76 & 207, 319.07 & 3,814 \\
\hline 7. Nollenbrack, & shath, & 19 & 178.75 & 3512 & & 1 & 257.74 & 95, 88.09 & 97,881.09 & 2,505 \\
\hline 8. Emplre, & Shait, & 58 & 176.25 & 711 & 8 & 1 & 319.15 & 243, 250. 13 & \(248,250.13\) & 5,272 \\
\hline 9. Ilartford, & Slopes, & 428 & 184.25 & 580 & . & 3 & 351.16 & 67,891.71 & 203.675.15 & 5,983 \\
\hline 10. Sukitr Notel, No.9, & Shaft, & 48 & 178.50 & 452 & . & & 287.56 & Nollfelost, & 1.9,981.03 & 4,223 \\
\hline 11. Sugar Ninteh, No. 10, & Slope, & 28 & 96.25 & 395 & \(\ldots\) & 1 & 163.57 & 64,612.04 & 64,612.04 & 2,7u8 \\
\hline 12. Lunce, No. 11, . & Shaft, & 36 & 151 & 259 & \(\cdots\) & & 374.65 & Nollie lost, & 97,035. 09 & 2,521 \\
\hline 13. Nottlngham, & Shaft, & 74 & 181.25 & 738 & \(\cdots\) & 1 & 351.12 & 251,271 & 231, 271 & 6,520 \\
\hline 15. Washington, & slope, & 46 & & 331
340 & & 1 & 379.81 & \(125,7.8 .10\)
No 110 & 125,718.10 & 2,755 \\
\hline 15. Wanamle, . & slope, & 29 & 167.50 & 340 & & & 261.48 & Nollte lost, & 88,905.01 & 4,173 \\
\hline Total Lehigh and Whkes-Barre Coal Company, . & - . . . . . . . & 418 & 169.125 & 4,618 & 8 & 12 & 334.05 & \(128,553.97\) & 1,542, 647.71 & 40,484 \\
\hline
\end{tabular}

DELA IVARE AND HUDAON CANAL COMPANY.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{GUSGUEHINNA COAL COMPANY.} \\
\hline 26. Breaker No. 1, . . . . . . . . . . . . . . . . . . . . . . . \({ }_{\text {27, }}\) (3reaker No. 5, . . . . & Tunuel, \(\ldots . .\).
\(\begin{aligned} & \text { Twoslopes, } \\ & \text { Slait, }\end{aligned}\)
\(\left.\begin{array}{l}\text {. }\end{array}\right\}\) & 101 \{ & \[
\begin{aligned}
& 256.25 \\
& 208.50
\end{aligned}
\] & \} 1,282 & & 15 & 264, 15 & 22,576.61 & 338, 649.15 & 18, 434 \\
\hline 28. 13reaker No. \(2, \ldots\), . . . . . . . . . . . . . . . . . . . . .
29. Wrest Nantlcoke, & Tunnel, shaft \& slope,
Tunnel, . . . . & \[
\begin{aligned}
& 81 \\
& 31
\end{aligned}
\] & \[
\begin{aligned}
& 255.75 \\
& 211.60
\end{aligned}
\] & \[
\begin{aligned}
& 727 \\
& 283
\end{aligned}
\] & & 2 & \[
\begin{aligned}
& 452.64 \\
& 329.11
\end{aligned}
\] & 47, 393, 17 & \[
\begin{aligned}
& 339,07.4 \\
& 94,736.35
\end{aligned}
\] & 2,553 \\
\hline Total Susquehinna Coal Company, & & 219 & 233.025 & 2,297 & & 17 & 336.31 & 45,441.72 & 772,509.50 & 20,987 \\
\hline
\end{tabular}

\section*{RECAPITULATION.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Names of the Collieries. &  & \begin{tabular}{l}
B \\

\end{tabular} &  &  &  &  &  &  &  \\
\hline Lehigh Valley Coal Company, & 212 & *182.39 & 1,594 & & 4 & 413.11 & 164,317.28 & 657,269.04 & 20,766 \\
\hline Lehigh and Wilkes-Barre Coal Company, & 418 & *169.12 & 4,618 & \(\cdots\) & 12 & 331.89 & 128,553.97 & 1,542,647.7i & 40,484 \\
\hline Delawareand Hudsou Canal Company, & 307 & *179.19 & 2,735 & 24 & 3 & 375.85 & 344, 034.95 & 1,032, 104. 87 & \\
\hline Susquehanna Coal Company, . & 219 & *233.02 & 2,207 & & 17 & 336.31 & 45,411.72 & 772, 509.50 & 20,987 \\
\hline Miseellaneous Coal Companies, . & 514 & *173.43 & 4,743 & & 15 & 368.17 & 113,618.82 & 1,704,282.43 & 45,916 \\
\hline Grand Total of all Companles, . & 1,670 & *187.43 & 15,987 & & 50 & 357.09 & 111.937 .52 & 5,708,813.55 & 128,153? \\
\hline
\end{tabular}
*Average number of days worked.

TABLE NO. V.-Showing the number of eaeh class of employês at every Colliery in the distriet, for the year 1880.
LEHIGH TALLEY COAL COMPANY.


DELAWARE AND HUDSON GANAL COMPANY.


Thurel Rua,
Baltlmore slope,
\begin{tabular}{l|r|r|}
6 & 9 & 37 \\
3 & 6 & 28 \\
5 & 11 & 25 \\
8 & 8 & 21
\end{tabular}
70
56
55
60
\begin{tabular}{|c|c|}
\hline 128 & 2 \\
96 & 1 \\
100 & 1 \\
106 & 1
\end{tabular}
93
52
80
55
50
4.1
42
30
20
24
16
29
53
30
41
18
233
165
194
139

DELAWARE AND HUDSON GANAL COMPANY-Continued.


\section*{buequeranna coal combant.}

Breakers, Nos. I and
Breaker, No. 2,
Hest Nimich, . . . . . . . . . . . . . .

Total, Susquehanna Coal Company
\begin{tabular}{|c|c|c|c|}
\hline 3 & 44 & 21 & 99 \\
\hline 1 & 30 & 11 & 98 \\
\hline 1 & 11 & 8 & 33 \\
\hline 5 & 85 & 40 & 230 \\
\hline
\end{tabular}
\(\left|\begin{array}{r}11 \\
5 \\
4 \\
\hline 20\end{array}\right|\)\begin{tabular}{r}
169 \\
172 \\
79 \\
\hline
\end{tabular}
\(\square\)
 \begin{tabular}{r|r|r}
61 & \(\begin{array}{r}935 \\
19 \\
9\end{array}\) & \(\begin{array}{r}1,252 \\
410 \\
152\end{array}\) \\
\hline 89 & 1,497 & 288 \\
\hline & 2,297
\end{tabular}

\section*{MIFCELLANEOLA COMPANEES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Arondale, & 1 & 10 & 7 & 19 & 4 & \(\cdot 75\) & 116 & 1 & 82 & 86 & 27 & 24 & 8 & 223 & 344 \\
\hline Boston, & 1 & 10 & 8 & 27 & 7 & 40 & 93 & 1 & 56 & 56 & 16 & 27 & 9 & 16.5 & 258 \\
\hline No. I shaft, Kilngston, & 2 & 12 & 4 & 13 & 2 & 42 & 75 & 2 & 50 & 50 & 12 & 26 & 7 & 147 & 252 \\
\hline No. 2 sbatf, Kılngston, & 3 & 14 & 9 & 47 & 1 & 62 & 136 & 2 & 81 & 81 & 7 & 29 & 9 & 204 & 315 \\
\hline Gitylord, . & 1 & 10 & 5 & 12 & 2 & 51 & 81 & 1 & 53 & 53 & 16 & 28 & 13 & 159 & 241 \\
\hline Framklin, & 1 & 12 & 18 & 93 & 5 & 57 & 185 & 2 & 61 & 63 & 35 & 15 & 17 & 199 & 885 \\
\hline W yotulng, & 1 & 9 & 12 & 19 & 5 & 68 & 11.1 & 1 & 911 & 70 & 47 & 50 & 21 & 279 & \(3: 3\) \\
\hline Forty Fort, . & 1 & 1 & 10 & 31 & J & 30 & ro & 2 & 74 & \(\because 1\) & 15 & 31 & 9 & 155 & 23.5 \\
\hline Enterprise, . & \(\stackrel{2}{2}\) & 6 & 5 & 19 & 1 & 51) & 86 & \(\stackrel{2}{2}\) & 62 & 62 & 40 & 21 & 19 & 200 & 292 \\
\hline East koston, . & 2 & 3 & 6 & 7 & 4 & 40 & 62 & 2 & 63 & 35 & 8 & 30 & 7 & 147 & 209 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 13lack Dlamond, . & 3 & 8 & 4 & 18 & 6 & 61 & 100 & 2 & 62 & 45 & 16 & 30 & 8 & 163 & 268 \\
\hline Maltby, . . . . & 2 & 9 & 5 & 33 & 2 & 51 & 102 & 3 & 62 & 62 & 38 & 28 & 6 & 199 & 301 \\
\hline Dodson, & 1 & 7 & 5 & 25 & 1 & 23 & 62 & 1 & 40 & 25 & 35 & 12 & 7 & 120 & 182 \\
\hline Red Ashi. & 1 & 3 & 7 & 23 & 2 & 4 & 80 & 1 & 52 & 32 & 32 & 12 & 8 & 137 & 217 \\
\hline Raubville, & 1 & 3 & 7 & 6 & 4 & 55 & 76 & 1 & 45 & 35 & 2 & 6 & 4 & 93 & 169 \\
\hline Salem, . & 1 & 2 & 9 & 7 & 4 & 40 & 63 & 1 & 30 & 40 & 6 & 10 & 4 & 91 & 154 \\
\hline ILllman, & 1 & 2 & 3 & 12 & 2 & 14 & 34 & 1 & 34 & 40 & 3 & 10 & 4 & 92 & 126 \\
\hline Warrlor lann, & 1 & 10 & 9 & 27 & 5 & 50 & 14 & 1 & 75 & 55 & 10 & 10 & 14 & 16.5 & 267 \\
\hline Ilollenback, & 1 & 5 & 4 & 4 & 3 & 11 & 28 & 1 & 14 & 14 & 3 & 6 & 1 & 39 & 67 \\
\hline Channcey, . . . . . . . . . . . . . & 1 & 2 & 2 & 6 & 2 & 10 & 23 & 1 & 12 & 12 & 26 & & & 51 & 74 \\
\hline Total iniscellaneous companles, & 23 & 188 & 139 & 451 & 69 & 874 & 1,699 & 29 & 1,103 & 987 & 394 & 406 & 175 & 3,044 & 4,743 \\
\hline \multicolumn{16}{|c|}{REUAPITULATION.} \\
\hline Lehlgh Valley Coal Company, & 5 & 35 & 33 & 148 & 22 & 205 & 4.18 & 6 & 388 & 386 & 116 & 188 & 62 & 1,146 & 1,594 \\
\hline Lehigh and W & 19 & 67 & 15.4 & 337 & 52 & 818 & 1,447 & 2 & 1,170 & 9 J & 457 & 355 & 218 & 3,17t & 4, 618 \\
\hline Delaware and lludson Canal Company, . & 12 & 55 & 73 & 253 & 33 & 531 & 9.7 & 12 & 657 & 409 & 262 & 306 & 122 & 1,778 & 2,735 \\
\hline Susquchanmal Coal Company, . & 5 & 8.5 & 40 & 230 & 29 & \(42)\) & 800 & 9 & 588 & 528 & 135 & 148 & 89 & 1,497 & 2,297 \\
\hline Miscellaneous compantes, . . & 28 & 138 & 139 & 451 & 69 & 874 & 1,699 & 29 & 1,103 & 937 & 394 & 406 & 175 & 3,014 & 4,743 \\
\hline Total of all companles, . & 69 & 380 & 439 & 1,419 & 196 & 2,818 & 5,351 & 83 & 3,906 & 3, 164 & 1,374 & 1,403 & 706 & 10,636 & 15,987 \\
\hline
\end{tabular}


\section*{LEHIGII AND WILKEG.BARIE COAL COMPANY.}


DELAWARE AND HEDSON CANAL COMIANY,
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline M \({ }^{\text {a }}\) Creek, & 18.00 & 14.75 & 14.50 & 17.00 & 12.25 & 13.50 & 11.50 & 13.75 & 21.75 & 16.25 & 18.50 & 15.50 & 187.25 \\
\hline Plne Ridge, & 23.25 & 15.00 & 13.50 & 16.50 & 13.60 & 13.50 & 11.00 & 14.00 & 22.50 & 17.25 & 22.25 & 12.00 & 193.75 \\
\hline Laturel Run, & 19.50 & 12.50 & 14.75 & 17.50 & 13.00 & 14.00 & 12.00 & 14.00 & 20.75 & 16.50 & 19,95 & 16.05 & 190.50 \\
\hline Ballimore siope, & 18.25 & 14.50 & 15.00 & 17.25 & 12.00 & 14.00 & 12.00 & 13.25 & 21.00 & 17.25 & 2:.50 & 16.25 & 192.25 \\
\hline Baltimore Tunnel, & 17.60 & 13.25 & 15.00 & 17.50 & 13.00 & 14.00 & 11.25 & 14.00 & 21.00 & 17.00 & 22.25 & 15. 25 & 190.50 \\
\hline N 3. 2, Plymouth,. & 18.50 & 11.50 & 11.00 & 9.25 & 9.50 & 12.00 & 10.25 & 13.25 & 19.25 & 16.25 & 17.75 & 13.50 & 162.04 \\
\hline No. 3, Plymouth, & 2.00 & 10.00 & 14.00 & 14.00 & 8.00 & 11.75 & 1. 50 & 10.50 & 13.00 & 15.75 & 18.75 & 13.50 & 140.75 \\
\hline No. 4, Plymouth, & 18.25 & 5.75 & 10.85 & 11.25 & 10.00 & 13.00 & 11.50 & 11.50 & 15.50 & 16.00 & 17.50 & 11.75 & 152.25 \\
\hline No. 5, 1'lymouth, & 19.50 & 16.30 & 14.80 & 17.60 & 12.50 & 1.4.00 & 12.00 & 13.60 & 25.00 & 20.25 & 23.20 & 15.75 & 203.50 \\
\hline
\end{tabular}

\section*{GUGUUEHANNA COAL COMPANY.}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Avondate, & 10.40 & 12.50 & 15.80 & 11.45 & 12.80 & 14.80 & 12.00 & 14.80 & 25.70 & 17.75 & 18.85 & 14.85 & 182.00 \\
\hline Boston, & & & & & & & & & & & & & 167.20 \\
\hline No. 1 Shaft, Kingston, & 18.00 & 11.50 & 14.75 & 15.75 & 13.00 & 13.50 & 12.00 & \(14 . C 0\) & 24.50 & 18.75 & 21.50 & 16.50 & 193.25 \\
\hline No. 2 Shaft, Kingston, & 15.75 & 15.00 & 15.75 & 13.50 & 11.60 & 14.00 & 11.00 & 14.25 & 24.50 & 18.00 & 23.00 & 16.25 & 192.00) \\
\hline Gaylord, . . . . . . . . & & & 13.25 & 17.00 & 12.25 & 14.00 & 11.10 & 13.75 & 21.25 & 19.25 & 19,25 & 17.75 & 15875 \\
\hline Franklin, & 1.75 & 5.00 & 9.25 & 11.25 & 11.00 & 10.00 & 10.75 & 11.00 & 14.50 & 17.75 & 21.75 & 17.00 & 141.25 \\
\hline Wyoming, & 13.00 & 15,60 & 11.00 & 14. 30 & 12.20 & 13.40 & 10.60 & 12.50 & 18.60 & 18.50 & 19.80 & 17.50 & 177.00 \\
\hline Forty Furt, & 19.c0 & 10.00 & 12.50 & 11.00 & 11,50 & 13.25 & 11.25 & 13.25 & 20.00 & 17.25 & 20.00 & 17.00 & 176.00 \\
\hline Enterprise, & 15.90 & 5.50 & 13.60 & 13.20 & 12.20 & 12.40 & 10.90 & 13.10 & 19.60 & 16.80 & 18.90 & 15.90 & 168.00 \\
\hline East Boston, & 12.90 & 12.20 & 14.10 & 12.90 & 11.70 & 11.40 & \(\cdots\) & 11.80 & 17.90 & 14.60 & 16.60 & 13.90 & 150.00 \\
\hline Black Dlamoud, & 16.10 & 11.50 & 14.75 & 12.05 & 10.60 & 13.80 & 11.40 & 13.80 & 19.90 & 17.70 & 19.50 & 16.45 & 176.95 \\
\hline Multby, & 18.00 & 14.00 & 8.00 & 15.00 & 12.00 & 12.00 & 11.00 & 13.00 & 18.60 & 15.00 & 17.00 & 18.00 & 171.00 \\
\hline 1)odson, . & 18.60 & 13.80 & 11.20 & 32.80 & 9.70 & 10.50 & 8.90 & 10.40 & 17.40 & Idle. & 18.40 & 16.50 & 148.50 \\
\hline Red Ash, & 16.75 & 8.75 & 13.70 & 15.75 & 13.00 & 14.00 & 11.60 & 14.00 & 21.25 & 20.25 & 21.00 & 16.90 & 186.90 \\
\hline Ranloville, & 17.00 & 13.00 & 14.00 & 14.00 & 11.00 & 14.00 & 12.00 & 13.00 & 18.00 & 17.00 & 19.00 & 16.00 & 178.00 \\
\hline Salem, . & 18.00 & 19.00 & 11.00 & 17.00 & 18.50 & 16.00 & 17.00 & 18.00 & 19.00 & 20.00 & 22.00 & 24.00 & 214.50 \\
\hline Hillman, & 18.00 & 13.00 & 12.75 & 13.00 & 13.00 & 13.60 & 14.60 & 14.25 & 20.75 & 18.00 & 30.25 & 15.50 & 185.50 \\
\hline 11 ollenbeck, & 17.50 & 11.50 & 12,50 & 12.00 & 14.00 & 13.50 & 11.00 & 12.50 & 15.00 & 17.00 & 17.00 & 15.75 & 169.25 \\
\hline Warrior Run, . & 14.00 & 10.50 & 12.75 & 14.00 & 12.50 & 14.00 & 17.00 & 15.00 & 14.50 & 13.00 & 11.00 & 11.00 & 159.25 \\
\hline
\end{tabular}

LEHKII V MLEEX COAL COMHANX.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline NAMES OF THE Collieries. &  &  &  &  &  & L
0
0
\(\vdots\)
\(\vdots\)
0
0
0
\(\vdots\) &  &  & \[
\begin{gathered}
\text { Soyuop } \begin{array}{c}
\text { 'sdurnd } \\
\text { daquinN }
\end{array} \\
\hline
\end{gathered}
\] &  & \[
\begin{aligned}
& \text { Number of mine lo- } \\
& \text { comotives. }
\end{aligned}
\] &  &  & Total horse-power of
engines. &  \\
\hline 1. Exeter, . . . . . & 4 & 310 & 1 & 65 & 2 & 265 & 2 & 120 & & . . \({ }^{\text {a }}\) & 1 & 40 & 10 & 830 & 16 \\
\hline 2. 1'rospeet. . . . . . & 8 & 635 & 1 & 75 & & & 3 & 225 & & & 1 & 25 & 13 & 960 & 28 \\
\hline 3. Mheral sprlng, . . . . . . . . . . . . . . . . . . . . . . . & 4 & 134 & 1 & 50 & 1 & 70 & 1 & 40 & 3 & . . & . . & . . & 10 & 294 & 8 \\
\hline 4. Madvale, . . . & 4 & 95 & 1 & 35 & & . . . & 1 & 30 & 1 & 40 & . . & . . . . & 7 & 200 & 6 \\
\hline 5. Ilenry, . & 6 & 5.0 & 1 & 35 & & . . & 1 & 40 & 6 & 300 & . . & & 14 & 875 & 12 \\
\hline Total Lehigh Valley Coal Company, . & 26 & 1,704 & 5 & 260 & 3 & 335 & 8 & 455 & 10 & 340 & 21 & 65 & 54 & 3,159 & 70 \\
\hline \multicolumn{16}{|c|}{LEIIGH AND WHLKEG-BARRE COAL COMPAXY.} \\
\hline 6. 1)lamond, . & 4 & 400 & 2 & 140 & 1 & 80 & 2 & 140 & 3 & 215 & 1 & 30 & 13 & 1,005 & 42 \\
\hline 7. Hollenback, . . . . . . . . . . & 4 & 400 & 1 & 80 & 1 & 400 & 2 & 180 & . . & . . . & & . & 8 & 1,060 & 15 \\
\hline 8. Emplre, . . . . . . . . . . . . . . . . & 7 & 350 & 2 & 85 & 2 & 450 & 3 & 80 & , & & 3 & 80 & 17 & 1,045 & 36 \\
\hline 9. 11artford, . . . . . . . . . . . . & 7 & 438 & 2 & 80 & \(1 \cdot\) & 50 & 2 & 80 & 4 & 326 & 2 & 70 & 13 & 1, 044 & 25 \\
\hline 10. Sugar Notch Shaft, - & 4 & 200 & 2 & 65 & 1 & 80 & 1 & 20 & 2 & 60 & . . . & . . . & 10 & 425 & 15 \\
\hline 11. Sugar Noteh Slope, . . . . . . . . . . . . . . . . . & 4 & 280 & 2 & 120 & 2 & 240 & 2 & 80 & 3 & & \(\cdots\) & . . . & 10 & 720
395 & 19 \\
\hline 12, Lance, . . . . . . . . . . . . . . . . . . . . & 2 & 160
290 & 1 & 50
60 & 1 & 120
80 & 1 & 20
160 & \begin{tabular}{l}
3 \\
3 \\
\hline
\end{tabular} & 105
90 & & & 8 & 395 & 9
21 \\
\hline 13. Nottughan, . . . . . . . . . . . . . . . . . . . . . & 4
2 & 290
50
50 & 1 & 60
50 & 1 & 80 & 1
1 & 160
20 & 3 & 90 & 2 & 60 & 14
4 & 710
120 & 21 \\
\hline 15. Wranamle, . & 3 & 180 & 1 & 50 & \(\cdots\) & 175 & 1 & 20 & i & 40 & & & 4 & 465 & 10 \\
\hline Tutal Lehigh and Whikes-Earre Coal Company, . & 41 & 2,688 & 15 & 780 & 11 & 1,675 & 18 & 800 & 16 & 836 & 8 & 240 & 109 & 7,019 & 201 \\
\hline
\end{tabular}

DEL IWARE AND HUDSON CANAL COMPANY.
16. M1II Creek,
17. Plue Rlige,
18. Laurel kun,
20. 13allimore Tunnel
21. Conyngham,
22. No. 1 Plymouth
23. No. 2 Plymouth,
\begin{tabular}{r|r|r|r} 
& & & \\
\(\mathbf{6}\) & 300 & 1 & \\
5 & 220 & 1 & \\
2 & 117 & 1 & \\
2 & 154 & 1 & \\
3 & 127 & 1 & \\
3 & 199 & \(\ldots\) &. \\
2 & 75 & \(\ldots\) & \(\ldots\) \\
2 & 120 & 1 &
\end{tabular}
\begin{tabular}{r|r|r|}
36 & \(\ldots\) & \(\ldots\) \\
51 & \(\ldots\) & \(\ldots\) \\
51 & \(\ldots\) & \(\ldots\) \\
61 & \(\ddots\) & \(\ldots\) \\
43 & \(\ddots\) & \(\ddots\) \\
\(\cdots\) & 1 & 140 \\
40 & 1 & 60 \\
4 & 1 & 77
\end{tabular}
\begin{tabular}{r|r|r} 
& & \\
2 & 305 & \\
2 & 100 & \\
2 & 18 & \\
1 & 49 & \\
2 & 117 & \\
1 & 49 & \(\cdots\) \\
1 & 20 & \\
1 & 30 &
\end{tabular}

\begin{tabular}{|r|r||r|}
\hline 13 & 755 & 20 \\
15 & 568 & 15 \\
9 & 322 & 9 \\
8 & 369 & 14 \\
13 & 624 & 21 \\
5 & 383 & 9 \\
7 & 230 & 9 \\
7 & 27.5 & 12 \\
\hline
\end{tabular}


No. 3 Plymouth 26. No. A Plymouth,
\(\infty\)
Totak belaware and Hudson Canal Company \(\qquad\) \(\begin{array}{r}40 \\ 40 \\ 30 \\ \hline 392\end{array}\) \(\qquad\) \(\left\lvert\, \begin{gathered}120 \\
\cdots\)\begin{tabular}{c}
77 \\
\hline 474
\end{tabular}\(|, ~| l\end{gathered}\right.\) \(\qquad\)
\(\left.\begin{array}{r}1 \\ 1 \\ 2 \\ \hline 16\end{array} \right\rvert\,\)
\(\begin{array}{r}40 \\ 49 \\ 74 \\ \hline 931\end{array}\) \(\qquad\)
\(\begin{array}{r}6 \\ 1,073 \\ \hline 95\end{array}\)
\(\cdots\)
\(\cdots\)
2 \(\qquad\) \(|\)\begin{tabular}{r|r}
7 & 326 \\
7 & 309 \\
13 & 540 \\
\hline 104
\end{tabular}
\begin{tabular}{c}
12 \\
12 \\
12 \\
\hline 148
\end{tabular}
gUSQUEHANNA COAL COMPANY.
27. No. 1
27. No. 1,
29. No. 3,

Total Susquchamna Coal Company,

\begin{tabular}{|c|c|c|c|c|}
\hline 160 & 1 & 210 & 1 & 100 \\
\hline 80 & 1 & 55 & 4 & 320 \\
\hline 100 & 1 & 30 & 1 & 15 \\
\hline 340 & 3 & 295 & 6 & 435 \\
\hline
\end{tabular}
\begin{tabular}{|r|r}
2 & 55 \\
3 & 165 \\
1 & 15 \\
\hline 6 & -235
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2 & 80 & 17 & 2,135 & 44 \\
\hline 5 & 220 & 20 & 1,755 & 35 \\
\hline & - . . & 6 & 300 & 15 \\
\hline 7 & 300 & 43 & 4,190 & 94 \\
\hline
\end{tabular}

MISCELIANEOUS COAK COMPANEES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 30. Avondale, & 3 & 170 & 1 & 60 & 1 & 90 & 1 & 40 & 4 & & & & 10 & 360 & 16 \\
\hline 31. Boston, & 2 & 80 & 1 & 40 & & & & & & & \(\because\) & \(\ldots\) & 3 & 120 & 12 \\
\hline 32. No. 1 Klngston, & 2 & 121 & 1 & 31 & 1 & 182 & & & & & & . . & 4 & 334 & 10 \\
\hline 33. No. 2 Rlugston, & 3 & 237 & 1 & 197 & & . & 2 & 70 & 2 & . . . & 2 & 50 & 10 & 554 & 19 \\
\hline 34. Gaylord, . & 10 & 1,690 & 1 & 245 & 1 & 245 & 1 & 110 & 5 & 350 & & . . . & 18 & 2,640 & 13 \\
\hline 35. Franklin, & 4 & 205 & 1 & 30 & 2 & 125 & 3 & 90 & & & 1 & 15 & 11 & 465 & 22 \\
\hline 36. Wyoming, . & 5 & 276 & 1 & 51 & & . . . . & 2 & 60 & 2 & & . . & . . . . & 10 & 394 & 12 \\
\hline 37. Forty Fort, . . . . . . . . . . . . . . . . . . . . . . . . . . . & 3 & 100 & 1 & 50 & & & 2 & 36 & 2 & 14 & \(\cdots\) & . & 8 & 200 & 9 \\
\hline 38. Fitprprise, & 2 & 144 & 1 & 30 & 3 & 40 & 2 & 23 & & & . . . & . . & 8 & 237 & 11 \\
\hline 39. East Boston, . . . . . . . . . . . . . . . . . . . . . . . . . . . & 4 & 720 & 1 & 60 & & - . \({ }^{\circ}\) & 1 & 30 & 5 & 350 & . . . & . & 11 & 1,160 & 12 \\
\hline 40. Black Diamond, . . . . . . . . . . . . . . . . . . . . . . . . & 2 & 80 & 1 & 50 & 2 & 125 & 1 & 30 & & . . & . . . & . . . & 6 & 285 & 13 \\
\hline 41. Maitby, . . . . . . . . . . . . . . . . . . . . . . . . . . & 4 & 150 & 1 & 50 & 1 & - . & 1 & 20 & & \(\cdots\) & . . & . . & 7 & 220 & 22 \\
\hline 42. Dorlson, . . . . . . . . . . . . . . . . . . . . . . . . & 2 & 180 & 1 & 50 & 1 & 750 & 1 & 35 & 2 & 60 & . . . & - & 7 & 1,075 & 9 \\
\hline 43. Ked Ash, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . & 1 & 40 & 1 & 30 & & & & - \({ }^{\circ}\) & & . . . . & . . & . & 2 & 70 & 3 \\
\hline 4. kaubrille, . . . . . . . . . . . . . . . . . . . . . . . & 1 & 20 & 1 & 20 & & & 1 & 15 & & . . . & . . & ... & 3 & 55 & 6 \\
\hline 45. salem, . & & & 1 & 40 & & & & - 15 & 2 & 14 & . . & . . & 3 & 54 & 2 \\
\hline th. IH1lman, . . . . . . . . . . . . . . . . . . . . . . & 3 & 60 & 1 & 20 & & . . . . & & & & \(\cdots\) & . & . . . . & 5 & 95 & 6 \\
\hline 47. Hollenback, & , & 30 & 1 & 25 & & . . . . & 1 & 25 & 1 & & . & . . . . & 4 & 100 & 5 \\
\hline 43. Chatuncey, & 1 & 30 & & & & & & . . . . & & & & & 1 & 30 & \\
\hline Total miscellancous companies, & 53 & 4,333 & 18 & 1,079 & 12 & 1,557 & 20 & 59. & 25 & 815 & 3 & & 131 & 8,448 & 208 \\
\hline & & ECAPI & TULA & TION. & & & & & & & & & & & \(\tau\) \\
\hline Lehigh Valley Coal Company. & 26 & 1,704 & 5 & 260 & 3 & 335 & 8 & 455 & 10 & 370 & 2 & 65 & 54 & 3,159 & 70 \\
\hline Lehigh and Wllkes-Barre Coall Company, & 41 & 2,688 & 15 & 780 & 11 & 1,675 & 18 & 800 & 16 & 836 & 8 & 240 & 109 & 7,019 & \(\bigcirc 01\) \\
\hline Delaware and IIudson Canal Company, . & 34 & 1,786 & 9 & 392 & 5 & 474 & 16 & 931 & 38 & 1,073 & 2 & 55 & 104 & 4,711 & 148 \\
\hline Susquehanna Coal company, - & 16 & 2,585 & 5 & \(341)\) & 3 & 295 & 6 & 435 & 6 & 235 & 7 & 300 & 43 & 4, 190 & 94 \\
\hline Aliscellaneous Companfes, - & 53 & 4,333 & 18 & 1,079 & 121 & 1,557 & 20 & 599 & 25 & 815 & 3 & 65 & 131 & 8,4.43 & 208 \\
\hline Grand total, & 170 & 13,096 & & 2,851 & & 4,336 & & 3,220 & 95 & 3,299 & 22 & 725 & 441 & 27,527 & 711 \\
\hline
\end{tabular}

TABLE NO. 8.-Showing the state of rentilation in all the collieries operated in the Middle Distriet of Iuzerne and Carbon eounties, for the year endrig December 31, 1880.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collieimes. &  &  &  & CUBIC & EET OF & AIR PER
IN
\[
\text { No. } 3 .
\] & \begin{tabular}{l}
minute CACH SP \\
No. 4.
\end{tabular} & \begin{tabular}{l}
PASSING \\
IT. \\
No. 5.
\end{tabular} & \begin{tabular}{l}
NEAR TII \\
No. 6.
\end{tabular} & \begin{tabular}{l}
E FACE \\
No 7.
\end{tabular} &  \\
\hline Exeter shaft, & Two fans, & 60 & 130,380 & 16,660 & 12,400 & 18,230 & 21,770 & 15,510 & & & 84, 570 \\
\hline l'rospeet shaft, & Two faus, & 40 & 126,0.42 & 12, 2123 & 12,420 & 18,270 & 4,290 & 19,310 & 14,50-4 & & 93,024 \\
\hline Oakwood shaft, & Fan, . . & 42 & 95,920 & 14, 130 & 17,810 & 25,000 & 11,280 & 10,310 & 1,501 & \(\cdots\) & 68,220 \\
\hline Minceral Spring slope, & Fan, & 65 & 76,500 & 22, 000 & 15, 0.0 & I6, 500 & 15,500 & . & . . . . & . . . . & 69,000 \\
\hline Mldvale slope, . . .
lienry shaft, & Fan, & 74
65 & 80,600
111,400 & 9,275
15,000 & 7,450
12,780 & 6,650
17,410 &  & . & . . . . & \(\ldots\) & 23,775
\(5+120\)
51,200 \\
\hline Ballimore slope, & Fan, & 85 & 111,400
78,370 & 15,000
7,600 & 12,780
8,600 & 17,410
23,800 & 8,930
25,20 & \(\cdots\) & \(\cdots\) & \(\cdots\) & 54,120
65,200 \\
\hline Mill Creck slope, No. 1, & Fan, & 42 & 144, 600 & 10,000 & 17,200 & 18, 100 & 17,000 & 12,000 & 12, 100 & 9,000 & 95,400 \\
\hline 3111 Creek slope, No. 2, & Fan, & 75 & 74,200 & 10,200 & & & & & 12,100 & 9,000 & 10,24.0 \\
\hline Laurel Kinn stope, & \[
\text { Fans, } \begin{array}{r}
\text { No. } 1, \\
\text { No. } 2, \\
\text { No. } 8,
\end{array}
\] & 80
58
80 & 120, 455 & 6,230 & 7, 455 & 49,835 & 7,680 & 8,740 & 8,600 &  & 87,940 \\
\hline Pine Ritge shaft. . & Fan, No. , & & 115,800 & 14,000 & 7,600 & 17,400 & 13,000 & & & & 52, 000 \\
\hline Battimore tunurl, & Fitu \& lirn., & 70 & 85, 170 & 15,660 & 21,945 & 2,000 & 20,240 & 8,330 & . . . & \(\cdots\) & 68,175 \\
\hline Conyugham shaft. . . & Fan, . . . & 70 & \begin{tabular}{|}
28,100 \\
83,300
\end{tabular} & 15, 400 & 3,900 & . . . . & . . . . & . . . . & . . . & . . . . & 19,300
37,660 \\
\hline No. 2 shaft, Plymouth, & Fan, & & 83,300
49,630 & 18, 160 & 19,200 & \(\cdots\) & . . . . . & . . . . . & . . . . & . . . . & 37,660 \\
\hline No. 3 shaft, l'lymouth,
No. 4 shaft, I'lymouth, & Fain, & 70 & 49,630 & 22, 375 & 24,685 & . . . . & . . . & & . . . . & . . . . & 47,460 \\
\hline No. 4 shaft, Prmouth, . .
No. 5 share, Plymouth, & Fan,
Fan, & 80
112 & 54,470
55,100 & 18,400
10,000 & 19,670
10,000 & 6,000 & 11, 000 & 5,000 & \(\therefore\). & . . . . . & 35,470
42,060 \\
\hline No. 5 shatt, Loeomotlve road, & Fath, & 112 & +6,060 & 33, 000 & & 6,000 & & 5,00 & & & 45,600 \\
\hline Hollentack shaft, . . . . . . & Two fans, & 30 & 2. \(2,4+0\) & *2, 100 & 48,500 & 25, fich & 24, 300 & 21,560 & 18,500 & 17,000 & 177, 660 \\
\hline Dlamond slatit, & Fan, & 45 & 116,500 & 6,300 & 23,640 & 25,123 & 23, 110 & 21,500 & 18,000 & 17,00 & 133, 220 \\
\hline Emplre shatt, . . . & Two fans, & 75 & 90, 640 & 15,100 & 15, 120 & 22, 100 & 8,850 & . . . . & . . . . & . . . . & 61,070 \\
\hline Empire llillman veln, & Fan, . . & & 90, 000 & 10,500 & 8,775 & 38,000 & 30,400 & . . . & . . . & . . . . & 87,675 \\
\hline Harlford new slope, . & Fin, & 56 & 70, 220 & 12,200 & 13, 416 & 13, 800 & 12,600 & . . . . & . . . . & . . . . & 52,000 \\
\hline Harlford Red Ashr veln, . & Fain, & 50 & 27, 100 & 8,160 & 5, 520 & 3,640 & & & . . . . & . . . . & 17,6:0 \\
\hline Sugar Notel, No. 9, & Fan, & 105 & 78, 125 & 17,630 & 9,750 & 9,500 & 12, 560 & 10,560 & . . . . & . . . . & 60,000 \\
\hline Sugar Noteh, No. 10, ... & Two fins, & 100
75 & 77,000 & 14,600 & 21,600 & 27,000 & 12, 660 & 10,80 & . . . & . . . . & 62, 600 \\
\hline Nottingham Siaft, : : & Two fins, & & 118,000 & 22,000 & 169,000 & 15,000 & & & & & 53,900 \\
\hline Washlngton, No. 16, . . & 'Two fans, & . 85 & 87,000 & 23,200 & 26, 100 & 12,300 & 13,500 & . . . & . . . . & . . . . . & 75, 160 \\
\hline Lance, No. 11, & Fun, & 93 & 54,700 & 27, 500 & 36, 100 & & & & & & 63,900 \\
\hline Wanamle slope,
No. 1 slope, Xintleoke, & Fan, & 85
50 & 48,780
\(4.1,900\) & 12,600
9,000 & 27,000
7,360 & & \(\cdots\) & . . . . & . . . . . & . . . . & 39, \({ }^{\text {che }}\) 16, 301 \\
\hline
\end{tabular}

\begin{tabular}{r|r|r|}
65 & 89,000 & 21,500 \\
62 & & \\
75 & 95,390 & 29,400 \\
60 & 51,000 & 21,600 \\
58 & & \\
52 & 58,420 & 20,050 \\
60 & 37,400 & 7,500 \\
60 & 21,685 & 9,910 \\
65 & 26,510 & 14,50 \\
135 & 92,090 & 21,300 \\
& 49,850 & 20,600 \\
80 & 48,600 & 7,770 \\
45 & 82,600 & 21,900 \\
90 & 16,000 & 12,000 \\
75 & 17,400 & 10,300 \\
75 & 21,000 & 16,000 \\
& 27,300 & 13,500 \\
35 & 96,050 & 16,700 \\
60 & & \\
100 & 62,000 & 38,600 \\
75 & 56,375 & 23,800 \\
80 & 23,440 & 14,750 \\
220 & 58,800 & 7,800 \\
70 & 42,200 & 10,050 \\
68 & 30,000 & 20,050 \\
70 & 4,800 & 13,80 \\
70 & 4,100 & 3,500 \\
\(\cdots\) & 19,320 & 10,551 \\
\hline
\end{tabular}.




TABLE N0. 9.-List of collieries, operators, coal seams, thickness of seams, and
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { ¿ } \\
& \frac{0}{E} \\
& \underset{z}{z}
\end{aligned}
\] & Names of the ColLIERIES. & Class of opening. & Names of Operators. & Names of the Coal seams mined. &  \\
\hline & & & & & \\
\hline 1 & Prospect, & do. & do. & Baltimore, & 160 \\
\hline 3 & Dak Wood, & do. & do. do. & & 160 \\
\hline & \{Mjneral Spring, & Slope, & do. do. & \} Baltimo & 120 \\
\hline I & \{ Mineral Spring, & do. & do. do. & \}saltimore and Ross, & 46 \\
\hline 5 & Midvale, . & do. & do. do. & Hillma & 70 \\
\hline 6 & Henry, & Shaft, & do. do. & baltimore, & 11 \\
\hline 7 & Diamond, & do. & Charles Parrish \& Co., & & 16 \\
\hline 8 & Hollenback, & do. & do. 10. & do. & 15 \\
\hline 9 & \{ Empire, . & do. & do. do. & 110. & 160 \\
\hline 9 & \{ Empire, & do. & do. do. & Ilillman, & 7 \\
\hline & \{ Hartford, & Slope, & do. do. & Baltimore, & 160 \\
\hline 10 & \[
\left\{\begin{array}{l}
\text { do. } \\
\text { do. }
\end{array}\right.
\] & \[
\begin{aligned}
& \text { Tunnel, } \\
& \text { do. }
\end{aligned}
\] & \begin{tabular}{ll} 
do. \\
do. & do.
\end{tabular} & \begin{tabular}{l}
Ross, \\
Red Ash, .
\end{tabular} & 160
90 \\
\hline 11 & SSugar Notels, No. 9, & Slope, & do. do. & koss, & 16 \\
\hline 11 & Sugar Notel, No. 9, & Tunnel, & do. do. & İen! A sh, & 10 \\
\hline 12 & \(\left\{\begin{array}{l}\text { Sugar Noteh, No. 10, }\end{array}\right.\) & Shaft, & do. do. & Klinney, & 76 \\
\hline 12 & Sugar Noteh, No.10, & do. & do. do. & lillman, & 100 \\
\hline 13 & Lance, ....... & do. & do. do. & Bennet, & 80 \\
\hline 14 & Nottingiam, & do. & do. do. & lied Ash, & 16 \\
\hline 5 & Washington, & Slope, & do. do. & do. & 16 \\
\hline 16 & Wanamie, . & do. & do. do. & Baitimore, & 14 \\
\hline 17 & Mill Creek, & do. & Delaware \& Hndson Canal Co. & do. & 14 \\
\hline 18 & Pine Ridge, & Slaft, & do. do. & do. & 12 \\
\hline 19 & Laurel Run. & Stope, & do. do. & do. & 14 \\
\hline 20 & Bialtimore Slope, & do, & do. do. & do. & 14 \\
\hline 21 & Baltimore Tunnel, & Tunnel, & do. do. & do. & 16 \\
\hline 22 & Conyngham, & Shaft, & do. do. & do. & 16 \\
\hline 23 & \(\{\) No. 2, 1'lymouth, & do. & do. do. & lillman, & 11 \\
\hline 2 & No.2, do. & do. & do. do. & Cooper, & 5 \\
\hline 24 & No. 3, do. & do. & do. do. & do. & 6 \\
\hline 25 & No. \(\mathrm{H}_{1}\) do. & do. & do. do. & IRed Ash, . & 12 \\
\hline 7 & No. 5, do. & do. & do. do. \({ }_{\text {do. }}^{\text {dor }}\) & Bennett, . . . & \[
\begin{array}{rr}
10 & 0 \\
8 & 0
\end{array}
\] \\
\hline 27 & Tunnel No.1,
Tunnel \(\mathrm{Co.2}\), & Tunnel,
do. & Susquehanua Coal Company,
do.
do. & Buck Mountain, to. & \(\begin{array}{ll}8 & 0 \\ 8 & 0\end{array}\) \\
\hline 29 & Honey Pot, & do. & do. do. & do. & 8 \\
\hline 30 & Tunnel No. 4 , & do. & do. do. & IRoss, & 40 \\
\hline 31 & Slope No. 1 , & Slope, & do. do. & Red Ash, & 8 \\
\hline 32 & do. 2 , & do. & do. do. & Cooper, & 6 \\
\hline 33 & do. 4 , & do. & do. do. & Hillman, & 8 \\
\hline 34 & Shaft No. 1, & Shaft, & do. do. & Bennett, & \(\checkmark 0\) \\
\hline 35 & Shaft No. 2, & do. & do. do. & Red Ash, & 8 \\
\hline 36 & Grand Tunnel, & Tunnel, & do. do. & Buck Mountain, & 160 \\
\hline 37 & Avondale, . & Shaft, & Delaware, Lackawanna and Western Company, & Red Ash, & 210 \\
\hline 38 & \[
\{13 o s t o n,
\] & do. & Delaware, Lackawanna and Western Company, & Baltimore, & 21 \\
\hline & (Boston, & do. & Delaware, Lackawanna and Western Company, & Lance, . . & \\
\hline 39 & No. 1, Klugston, & do. & Kingston Coal Company, & lenuett and Cooper, & \\
\hline 40 & No. 2, do. & do. & do. do. & 1,ance, & \\
\hline 41 & No. 2, to. & Slope, & do. do. & Clooper and Bennett, ... & 176 \\
\hline 42 & Gaylord, & do. & Gaylord Coal Company, . & Cooper, Bennettand Ross, & 2510 \\
\hline 43 & Brown Slope, & do. & Franklin Coal Company, & Ballimore, & 16 \\
\hline 14 & Ohl Slope, & do. & do. do. & do. & 160 \\
\hline 45 & Wroming, & Sluaft, & J. II. Swoyer, . & do. & 220 \\
\hline 46 & Forty Fort, & Tunnel, & tho. & to. split, & 50 \\
\hline 47 & Forty Fort, & Shaft, & to. & do. & 120 \\
\hline 48 & Enterprlse, & & It, C. Rolserts \& Co., & to. & 7 \\
\hline 49 & Fast lioston, & & W. G. Prayne © Co.. & Cooperant bennett, & 150 \\
\hline 50 & Ilutelilnson, & do. & J. C. Iturehtnson, & Bennett, & 68 \\
\hline 51 & Maltby, No. 1, & do. & C. S. Maltby, & Maltoy, & 56 \\
\hline 52 & Malthy, No. 2, & do. & do. & Couper, & 90 \\
\hline 53 & Vorlson, & do. & Plymouth Coal Company, &  & 290 \\
\hline 51 & Redl Ash, . & Slope, & Red Ash Coal ('ompany, & Red Ashand Ross, & 220 \\
\hline 55 & Allorigit, & Shaft, & Albright Coal Company, & Reel Ash, & 110 \\
\hline \(5{ }_{5}\) & Kaubville, & Drifts, & Warldell \& Walters, . & Reel Ashand Ross, & 190 \\
\hline 57 & Warrior litn, & Slope, & A. J. Wavis \& Co., & 13. C, 13, and E, . & \(3 t 0\) \\
\hline 58 & Salem, & Jrifts, & Salem Coal Company, & Iteil Ash, 隹, . . & 8 \\
\hline 59 & 1lllman, & Slopes, & 1i. Baker Hlllman, & Illlman, Ablott, and Bawkloy, & 190 \\
\hline 60 & 1follenback, & slope, & loberts \& Poole, & Ililhuan and trehard, & \\
\hline 61 & Channcey, & Tunnel, & T. l'. MeFarland, & Rend Ash and lenss, & 19 O \\
\hline
\end{tabular}
names of oficers in the Middle District of Luzerne and Curbon counties for 1880.
\begin{tabular}{|c|c|c|c|c|}
\hline  &  &  &  &  \\
\hline A. Rees, & A. 6. Mason, & Fred. Mercur, & Fred. Mercur, & Fred. Mercur. \\
\hline William Samuel, & Willam Patten, & do. & do. . . . & do. \\
\hline Thomats Samuel, . & \({ }^{\text {do }}\) & do. & do. . . & \\
\hline do.
do. & John Colvin,
do. & do. & do. \(\begin{aligned} & \text { do. } \\ & \text { do. }\end{aligned}\) & do. \\
\hline Rleharil Martio, & Willam Patten, & do. & do. \(\quad\) do. & do. \\
\hline Thos. E Lewis, & Willam E. Lines, & do. & do. & \\
\hline David Jonathan, . & Thomas R. Connor, & Wm. T. Smyth, & F. B, Parrlsh, & G. \& F. B. l'arrish. \\
\hline Joseph G. Wrier, . & W'm. L. Stewart, . & & & \\
\hline Lewls S. Jones, do. & Thos. Williamson, do. & do. & do. & do. \\
\hline David R. Roberts, & Merrit Frederjek, & do. & do. & do. \\
\hline do. & & do. & do. & do. \\
\hline 1 l & do. & do. & do & do. \\
\hline Thos. W. Morgan, & Lev1 G. Kintzer, & do. & II. C. Brodhead, & do. \\
\hline Wm. H. Itoskings & o. C. Tiffany, . & do. & do.
do. & do. \\
\hline Wo. do. & do. & do. & do. & do. \\
\hline Daniel Rees, & James Linn, & do. & F. E. Tiffany, & do. \\
\hline James B. Daries, & George R. Conner, & do. & do. & do. \\
\hline Micholas Rapson, & Pobert O. Leas, & do. & W. T. Leas & do. \\
\hline John E. Cook, & W. L. Foote, & C. II. Scharatar, & C. 11. Scharaar, & A. II. Vandling. \\
\hline John T. Moore, & W. A. Gustin, & do. & do. & do. \\
\hline Hugh McDonald, & 1). W. Kimble, & do. & do. & do. \\
\hline Thos. Pimplyn, & doln Rowers, & do. & do. & do. \\
\hline William W. Rees, & Edward Hackin, & do. & do. & do. \\
\hline & W. If. Doyle, & do. & do. & do. \\
\hline William Cobley, & J. W. Vandling,
do. & do. & do. & do. \\
\hline Jos. M1. Steever, & , ames Stevens, & do. & do. & do. \\
\hline Edward Hatm, & Charles Lawson, & do. & do. & do. \\
\hline Calet Shonk, & Elijah Fox, & do. & do. & \\
\hline Samnel Witson,
tlo.
flo. & \[
\begin{aligned}
& \text { J. C. Brader, } \\
& \text { do. } \\
& \text { do. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { D. W Fvans, } \\
& \text { do. } \\
& \text { do. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { George T, Morgan, } \\
& \text { do. } \\
& \text { do. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { J. J. Wistar. } \\
& \text { do. } \\
& \text { do. }
\end{aligned}
\] \\
\hline Frank Micholass, & do. & do. & do. & 110. \\
\hline Michael Corgan, & do. & do. & do. & do. \\
\hline Thos. 18. Williams, & do. & do. & do. & do. \\
\hline David Evans, & d n . & & o. & do. \\
\hline Josepll Turner, & do. & do. & do. & do. \\
\hline Joseph Warne,
Worthy Carver, &  & & do. & do. \\
\hline Worthy Carver, & J. W. MeFarland, & & do. & do. \\
\hline Thos. J. Philhips, & Conrad L & Thomas D. Davies, & B. Hughes, & W. R. Storrs. \\
\hline Henry P. Davies, & Robt. Intehinson, & do. & do & do \\
\hline \begin{tabular}{l}
do. \\
Daniel R. Davies,
\end{tabular} & \begin{tabular}{l}
do. \\
Thos. L. Morgan, .
\end{tabular} & \({ }_{\text {do. }}^{\text {D. }}\). Rosser, & do. uidel Edwar & do. niel \\
\hline Dantel L. Lewis, & Morgan 1). Rosser, & & do. & do. \\
\hline John Elwards, . & & & do. & do. \\
\hline George Picton, Samucl Thomas, & David L. Isaacs,
Charles Farren, & D. L. Isaacs, & \({ }^{\text {mo }}\) & \\
\hline John Hurhes, & do. & do. & di. & 10. \\
\hline Jenkin 13, Jones, & Philip Winterstefn & Wm. McCullock, & F. M. Shomaker, & F. M, Shomaker. \\
\hline John II. Thomas, Phll. Mcrabe, & James D. 1'atton, do. & \[
\begin{aligned}
& \text { do. } \\
& \text { do. }
\end{aligned}
\] & \[
\begin{aligned}
& 10 . \\
& \text { to. }
\end{aligned}
\] & do. \\
\hline Rohert Illslop, & John Eustice, & do. & C. 1). Slmpson, & C. D. Simpso \\
\hline John P'irry, & Phlnny Watt, & E. F. Payne, & & W. G. Payne. \\
\hline Jas. L. Crawford,
George smlth, & Frank P'. Kunkle, & & & J. C. Ifutchinsou. \\
\hline George smith, & & & Thomas Lawther,
do. & Oscar A. Fowler. do. \\
\hline Michatel Shonk, & F. F. Stevens, & & Micheal Shonk, & E. F. Sterens. \\
\hline Anthony Gard, Whlland. Prdee, & Wolf Riester, & M. B. Will:ams, & & M. B. Willams \\
\hline James Wadlell, & George Walten, & James Wauldell, & & Thomas Waddell. \\
\hline Johm C. Jone, & Robert F. Lloyd, & Jas. E. Roderick, & Jas. E. Hoderlck, & A. J. Davtes. J. H. Harman. \\
\hline \begin{tabular}{l}
George Fanrlek, \\
John J, Meighan, \\
B. Alstiach,
\end{tabular} & \begin{tabular}{l}
Grorge Illiman, \\
M. Mlhaels, \\
Thomas Cooper,
\end{tabular} & \begin{tabular}{l}
11. Baker ILIIlman, Kobert S. Poole. \\
'T. P. MeFarland,
\end{tabular} & George Fiturlck, & \begin{tabular}{l}
H. Baker LIIlman, liouerts. I'oole. \\
T. 1'. MeFarland.
\end{tabular} \\
\hline
\end{tabular}
 ,

\title{
LUZERNE AND CARBON COUNTIES. EASTERN DISTRICT.
}

\section*{To IIis Excellency Henry M. Hoyt,}

Governor of the Commonwealth of Pennsylvania:
Sir: The twenty-sceond section of the aet of Assembly, entitled "An aet providing for the health and safety of persons employed in coal mines," approved Marel 3,1870 , provides that, "it shall be the duty of each inspector to make an annual report of his proceedings to the Governor of the Commonwealth at the close of every year, in which he shall fully ennmerate all the accidents in and about the coal mines and collieries of his district, marking in tabular form those aceidents producing death or serions injury to persons, and the state of the workings of said mines, with regard to the saiety of the workmen therein, and to the rentilation thereof, and the result of his labors generally shall be fully set forth."

In accordance with the requirements of this section of the statute, I have the honor to submit to your Excellency my report as inspector of eoal mines and collieries for the eastern district of Luzerne and Carbon comties, for the year ending December 31, 1880. Ignoring all criticism, I have strietly followed the requirements of the act, as above quoted, in making my report. I have carefully compiled tables of accidents and other useful statistics, which give an aceurate statement as to how safely we have passed through the year without suffering serious disaster. The review of the year's work is, on the whole, satisfactory, though it is very easy to perceive where many mistakes have been made, and, as a consequence of such mistakes, where many accidents have oceurred that, with proper care, might have been arerted. If all parties concerned would but learn the lessons tanght by the sad experiences of the year, we might have reasonable hope for great improvement in the future; but I very much fear that the lessons dearly bought by aceidents are soon forgotten, and that men will repeat the reckless blunders over and over again that have proven fatal to so many of their associates. The great necessity to insure greater safety in the business of mining coal is rigid discipline with regard to those engaged in it in the mines and about the breakers.

While far from believing that all is being done that can and ought to be done to rednce aceidents, still it gives me great pleasure that I can make so favorable a report in thi sespect for the year 1880, as compared with former years. The number of lives lost during the year was thirty-seven, against fifty-nine for 1879 , a rednetion of twenty-two ; the number of widows was twentr-five against thirty-one for 1879 , a reduction of six; the number of orphans was eighty-three against one hundred and twenty-fire for 1879 , a reduction of forty-two ; and the number of persons serionsly injured was one hundred and two against one hundred and thirty-four for 1879, a reduction of thirty-two. These figures are very gratifying; but the following are still more so: The whole number of tons of coal mined in the district during the year was \(6,293,457\) tons, which shows a ratio of 170,093 tons mined for each life lost, which is by far the best record ever had for any year in this district in the history of mining coal. The nearest approach to it was in 1878 , when the ratio was 145,396 tons minerl per life lost. The ratio in 1879 was 121,730 tons per life lost. Taking the last four years, the average ratio has been 136,630 toms mined per life lost. In view of these figures, I think I am justified in congratulating all who have contributed towards this improvement.

The deaths are chargeable to the following causes: Falls of roof and coal, twenty-five; falling down shaft, one; premature blasts and blasts hanging fire, three; crushed by mine cars, four ; burned to death hy his elothing taking fire from his lanp, one; miscellaneous eanses on the surface, three. It will be noticed that the deaths from falls of roof and falls of coal reach the fearful proportion of sixty-seven and a half per centum of the whole number of deaths for the year. There was no fatal or serious accident from explosions of gas.

In my tahles, it will be perceived that I have divided the collieries in the district into four classes, the large corporations each constituting a class, and the smaller companies and operators constituting the fourth class. It seems proper for me to call attention here to the recold of each of these classes with regard to their ratio of coal mined per life lost. 'The class composed of small companies and operators has the most tworable record of any for the year, having mined \(\mathbf{1 8 5 , 8 2 1}\) tons per life lost. The Pennsylvania (\%al Company comes next, and is nearly as good, having mined 181,773 tons per life lest. Then comes the Delaware and Hulson Canal Company with 146,069 tons per life lost; and the Delaware, Lackawanna and Western Railroad Company with 136,792 tons per life lost. This order is almost wholly reversed from former years. The Delaware and Hudson Camal Company has always had the most faromble rerom in this respect up, to last year; the Delaware, Lackawanna and Western Railroad Compmy has always had the sceond best record; the Penusylvania Coal Company next; and the smaller companies last; so that the saying is almost literally verified : "The last shall be first and the first shall be last" There is a way to account for this, but I have not time now to explain. All are to be congratulated that their respective records are so farorable.

This being the last year of my present term, I can review the result of my labors for the last four years with pleasurable satisfaction. I have good reason to believe that my strict attention to duty, and rigid enforcement of the law, have resulted in materially reducing accidents, and in saving life; and I know that the sanitary condition of the collieries with regard to rentilation, and their safety in other respects, have vastly improved. I have the conscionsness of having tried to perform my duties with due respect to all with whom I have had to deal in an official capacity ; and I feel very grateful for the courtesy and kinduess generally extended to me by mine officials. There have been some unpleasant incidents in my relations with some of the officials, but they were such as I could not avoid and perform my oath-bound duties, and I ean truly say that I have no other than the most kindly feeling towards them all. Hoping that every future year may show an improvement in every respect on the past, and with very high esteem, this report is most respectfully submitted by

Your most obedient, humble servant,
WILLIAM S. JONES, Inspector of Coal Mines.
Scranton, Pa., February 15, 1881.

\section*{DEATHS FROM FALLS OF ROOF AND FALLS OF COAL.}

There were twenty-five deaths from falls of roof and falls of coal in this district during the year, which is sixty-seven and two-thirds per cent., (nearly), of the whole number of fatal accidents from all causes. As I have stated in each of my annual reports, the remedy for this class of accidents is entirely in the hands of the miners, and the mine bosses should see to it that the remedy is applied. It is utterly impossible for an inspector to do more than point out the duties devolving upon these parties, and to give them such advice as the exigeney of the case seems to require. Both miners and mine bosses, however, refuse to take advice, and feel aggrieved when it is tendered. They apparently prefer to take inwarrantable risks by following the old, eareless, reckless manmer of working which ammally results in the uncalled-for death of so many of their number. Nothing will rednce the number of so-called aceidents from these canses but strict and rigid discipline, enforced by general and special rules such as I have repeatedly recommended in my former reports, and which I again recommend with all the earmestness that 1 am capable of.

Accinent No. 2.-Michael Caser, a miner at the Meadow Brook tumel, William Commell \& Co., Scranton, was instantly killed February 25 th by a fall of roof. Casey was working in this place only for this one shift, in place of Patrick Donohne's laborer, his own working place being in another part of the mine, and when killed he was pitching eoal back to the car. The party were engaged in taking out pillars, and the place was worked with too little timber. Thongh the miners asserted positively that there
were two props standing where the fall occurred, I could not satisfy myself that such was the case. The props could have been seen had such been there, as the fall wonld have discharged them outwardly. The fall was an extensive one, running inward from the point where the man was killed for upwards of ten yards. The roof had been creeping all day, and at eight o'clock, p. M., the crash came, killing Casey, as above stated. Michael Casey was of Irish nationality, and left a widow with four children in poor cireumstances to mourn his untimely death.

Accident No. 3.-Patriek MeHale, a miner at the No. 2 shaft, Pemnsylvania Coal Company, Dunmore borough, was instantly killed March \(2 l\) by a fall of roof immediately after firing a blast. McHale took a pick after the blast was fired and with it sounded the rock, when his partner, John Dolphin, asked him if it was safe, to which he answered that he thought it was. He then commeneed to mine out the stub of the blast just fired, and the rock fell on him, killing him instantly. The rock which fell was of a suapstone nature, and was eight feet long by four feet wide and an average of twelve inches thick. It is not necessary to inform an experienced miner that no reliance ean be placed in the somnd of overhanging rock of this nature, and yet there are but rery few but will reeklessly risk their lives under such rock, trusting alone to the somnd, without attempting to bar it down or to secure it with props. John Dolphin, the surviving miner, readily acknowledged that they had examined the rock before firing the blast, and that they considered it dangerous, and that they nevertheless did nothing to make the place safe. John Moffatt, also, the mine boss, had been in the chamber in the afternoon of the day before, and had then eantioned them to be careful of this rock, as it was surely getting thimmer at the face; and he gave it as his opinion that the rock had not been properly examined by the miners, and he believed that if the miners had tried to har it down before it fell with fatal result to one of their number, they would have found no trouble in doing so, and I agrec with his views entirely. There is no doubt but this unfortunate man lost his life throngh his own nergect and that of his partner. Patrick MeHale was of Irish nationality, and left a widow with six children, in poor circumstanees, to mourn his loss.

Accodent Mo. 4.-Michael Flynn, a laborer, working for Charles Tiemey, at the Jermyn Green Ridge shaft, John Jermyn, Esq., Scranton city, was killed Mareh 16 th ly a fall of roof. The mass that fell in this case consisted of bony, seven inches thick, and the surface area of the fall was thirty-five square yarts. There was but one prop muler this, and that one was twelve feet from the face, and twenty-one from the nearest prop outside of it! This single prop was stood unter the very edge of the bony, and was still standing when I visited the place after the accident, the bony having broken off all around it. The place was being opened from the chamber of James May through a pillar to recover a chamber that had been closed by a fall of roof, and at the point where the fall oceurred, it was thirty-five feet wide.

Joseph D. Lloyd, the mine boss, had been in this working place twice on the day before the accident, and he testified on the investigation that "he thought the place was pretty good at that time; that he stayed there for some time, and helped to stand the prop referred to." He saw the bony hanging there and said, "It was not heary, exactly, but where we stood the prop it was heary, and that was why we stood the prop." The bony was undonltedly heavy, and shonld have been taken down, and no attempt should have been made to timber it.

James May, the miner working in the adjoining chamber, was present when the accident occurred, and the substance of his testimony on the inquiry is as follows: "I was after firing a shot, and Tierney had just fired a blast also. I then went to look at 'Tierney's place, and seeing the overhanging bony, I said, 'Charley, this is coming down.' And he answered, 'Oh, no; its tough. I guess it will stand until we load this car.' But I told his laborer, Michael Flynn, a couple of times, to go back out of danger, but he did not heed me, and I eried out to him at last, saying, 'Get out of that or I will strike you with a piece of coal.' He then asked, ' Is it to me you are talking?' And I told him it was, and again ordered him to get back out of the way, as the roof was coming down, and he then moved away, but did not go far enongh, nor in the right direction. I then took a drill, and Charley also took a drill, to bar the bony down, and just as I put my drill over it the bony began to fall. It came down very easy-did not bear hard on the drill. We could not see Flym from where we were, nor do I think that he could see us. We were close to the face, and he was down the road, with a car standing between us. I had advised Tierney to stand props under this bony before the accident, as I did not consider it safe, and he said he would bar it down after the car was loaded."

Enongh evidence was adduced on the investigation to warrant the conclusion that Charles Tierney, the miner, was very much to blame for allowing lis chamber to be in such a dangerous condition as to make such an accident as this possible. Nor can J. D. Lloyd, the mine boss, escape censure in that he did not see that this overhanging bony was "carefully secured against falling." He should have seen to it that this bony was harred down, as no attempt should have been made to timber it under any circumstance whatever. The unfortunate Flym himself was undoubtedly guilty of contributary negligence in not heeding the repeated warnings of James May by seeking a place of safety. He was of Irish nationality, and left a widow with two children.

Accment No. 6.-John Mort, a laborer, working for Willian Llewellyn, at the Cayuga shaft, Delaware, Lackawanna and Western Railroad Company, Providence, was instantly killed, March 27 , by a fall of roof "immediately after firing a blast." The colliery was not working on the day of the acciclent, but Llewellyn and Mort went "to work to prepare a bit of coal for the following Monday, and to move the track nearer the center of the chamber." They fired a blast which was too heavily charged with
potrder, and thereby discharged a prop. Hearing the prop fall ther rushed back immediately to restand it, and in five minutes after the blast exploded the fall of roof occurred, killing Mort on the spot.

Thomas Watkins, the mine boss; said: "It is my opinion that both men were very reckless, as both must have known that the rock was about to fall. They went back too soon after firing the blast, and I have talked to them about this nearly every day, but it seems to be of no use."

The chamber was in a very bad condition, and on my calling the attention of Mr. Watkins to that fict, he acknowledged that it was not properly timbered, but he promised to put it in a safe condition before any more coal was mined in it. How they succeeded in working so long without an accident is a mystery. John Mort was of Welsh nationality, and left a widow with two children (in Wales) to mourn his loss.

Accident No. 8.-Thomas McLaughlin, a miner, at No. 10 shaft, Pennsylrania Coal Company, Hughestown borough, was instantly killed, April 19, by a fall of coal. The place where this accident occurred was an airway only twelve feet wide, and was as safe a place to work in as could be desired. The coal was only a trifle over six feet high, and the roof was excellent. The coal was mined in three benches, the middle one being the mining bench, and at this time the top bench had been undermined for several feet elear across the face. and an entrance had been driven through the pillar to O'Malia's heading, and in this entrance there was a slip rumning throngh the top bench, and another about the center of the air-way. A blast had leen fired a short time previous in the entrance, and McLatghlin was working out the stub of that blast when he was killed. Neither of the miners had done anything to ascertain whether the top bench was safe or not; they had not examined it in any way, much less had they tried to bar it down. There was no one to blame for this accident but the miners themselves, and on their part there was no excuse. Thomas McLanghlin was of Irish nationality, and left a widow with two children.

Acoment No. 9.-Andrew Singleman, a miner, at the Tompkin's shaft, Alva Tompkins \& Co., Pittston borongh, was killed, \(A\) pril 23 , by a fall of roof. Singleman and 'Thomas Powell were working this chamber in partnership, hence they were both equally responsible for its safe or musafe condition. Powell, the surviving miner, made the following statement: "A prop standing under the roof, which fell, had been discharged by a blast about thirty minutes before the acciclent. During this time Singleman was in the face mining out coal leít by the blast, and 1 was loarling a car. We knew that the prop had been discharged by the blast, but we did nothing to assure ourselves that the roof was safe. The prop harl been put there the day before, and the reason it was put there was, that we thonght it was a bad piece of roof, and we intended to keep it up if we could. It was certainly more necessary to restand the prop when it was discharged than it was to stand it in the first place ; but we neglected it until it was too late. I did not know whether the roof was working or not when we returned to the face after firing the blast; but after I had loaded the
car, and as I was standing between two props near the car, I noticed that it was working, and I then went to examine it and found that it was coming down. I then ran back along the upper rib and called to Singleman to come away quick, and he ran toward me right under the rock, whieh fell on him and erushed him to death. I consider that the blame for Singleman's death lest equally upon me and himself, as we were both equally -responsible for the safe condition of the chamber."

The foregoing admissions on the part of Powell are extremely humiliating, and yet they are only the unvarnished truth in the case, and were made by him withont any attempt at excusing himself. These miners had a bad reputation for neglect in propping and blasting out timber after standing them. The mine loss, D. W. Evans, complained, that he frequently had occasion to censure them for neglecting to stand props when they were needed, and be gave it as his opinion that Powell and Singleman were equally to blame for this accident. Andrew Singleman was of German nationality, and left a widow with five children in extreme poverty, to mourn his mintimely death.

Accident No. 11.-John Sheridan, a laborer working with his father, William Sheridan, at the Twin shaft, Pittston Coal Company, Pittston borough, was instantly killed, May 8th, by a fall of roof "immediately after firing a blast." This accident oceurred in an air-way, twenty-fect wide. The rock that fell was a fearfully large bowlder, twenty-eight feet long, six feet wide and an arerage of two and a half feet thick. There was a well developed slant rumning parallel with the air-way a little to the right of the centre, and another runing on the right hand side to meet it, and at the point of intersection the bowlder was about five feet thick. There had been but one small prop under this, and that single prop had just been discharged by a blast only two or three minutes before the rock fell. The young man rushed in ahead of his father to clear the track of coal that had been thrown there by the blast, and just as he got about half way to the face, the immense bowlder fell on him, crushing him to death on the instant.

William Harrison, the mine boss, lad been in the place about an hour before the accident and he says: "I had noticed the slant running near the middle of the air-way, and I told Sheridan to watch it as the upper end of it was heary, and I cantioned him to be very careful not to knock ont the prop." He did not order him to stand more timber under it, however, as it was plainly his duty to do. I cannot, therefore, do less than attach the responsibility for this aceident on the mine boss. He should have known better than to allow such a bowlder as this to hang over the road with only one prop under it and that one being liable to be knocked out with every blast. The miner also was rery reckless and negligent, but he has been fearfully punished in the untimely death of a fine son. John Eheridan was an American, born of Irish parents, and was serenteen years of age.

Accident Ióo. 12.-Peter Jordan, a laborer, working for David H. Thomas
and John O. Thomas, Pierce colliery, Pierce Coal Company, A rehbald borough, was fatally injured, June lst, by a fall of roof. This accident was at first considered but slight, and was so reported ; but on the 7 th I was notified that Jordan had died of his injuries. At this colliery there is a clod immediately overlying the coal which is generally three to four inches thick, and this is quite treacherous as it sometimes sticks to the roof rock, and at other times parts. The mine boss, David H. Jones, had been in the chamber about half an bour before the accident and noticed that the clod had parted and was heary and had ordered the miners to bar it down and to stand some props. They proceeded at once to carry out his orders, and when barring down the clod near the face it fell down the road for twentyfive feet, and clear across the chamber. David H. Thomas, the miner who was barring down the clod, hearing it working, ordered the laborers and his partner back out of danger, and Jordan was running away when he was caught by the fall. These miners have an excellent reputation for being musually careful, and their chamber was well timbered, and perhaps this may be classed as an accident in the true sense of the term. Peter Jordan was of lrish nationality and left a widow with six children to mourn his loss.

Accident No. 13.-Patrick Barrett, a laborer, working for his brother, William Barrett, at the Caynga shaft, Delaware, Lackawanna and Western Railroad Company, Providence, was killed, June 2, by a fall of top coal. This chamber was well timbered and the roof well secured; but the miner had worked the bottom bench forward too far, leaving a large quantity of the top coal hanging across the chamber, and as this top coal was considerably cut up with slips, it was very dangerous. A blast had been fired on one side of the chamber, breaking this coal throngh to a slip and starting it clear across the chamber to the pillar. The miner had just commenced to drill a hole on the pillar side, in order to bring it all down. In the meantime, Patrick Barrett went under it, for some purpose or another, and the whole mass fell on him, injuring him so that he died before reaching his home. Both men, in this ease, acted very thonghtlessly, and as the surviving brother said-"It was a bad job, altogether." The top coal had not been examined, nor did either of the men pay any attention to what the other was doing. Hal they given a moment's thought to the condition of the overhanging coal, the unfortunate man wonld not have taken the world for going under it, nor would his brother have allowed him to do so. Patrick Barrett was of Irish nationality, and left a widow with two children.

Aconent No. 14.-Eran Jemym, a miner, at the Von Storeh slope, Dclaware and Hudson Canal Company, Providence, was instantly killed, June 7, by a fall of bony coal. The chamber, in which this acecident occurred, was as safe an one as any man ever worked in, and was musually well timbered. Jermyn was drilling a hole on the hack of a slip which his brother had nearly drilled far enongh. He took his brother's place, and as he was getting down on his knees, the bony bench, from between the top and bottom tiers of coal, fell on his head, crushing him to death. This
unfortunate man, though usually very careful, met his death through his own neglect. Had he examined the bony as he shonk hare done, before going under it, he would have barred it down, and thus would have saved his life. Evan Jermyn was of Welsh nationality, and left a widow with three children.

Accident No. 17.-Patrick Dougher, a laborer, working for Peter Munley, at the Elk Hill colliery, Elk Hill Coal and Iron Company, Dickson City borouglh, was instantly killed, August 16, by a fall of bony and coal. The miner asserted that he had examined the bony in the moming, but admitted that he did not examine it after firing a blast that inevitably teuded to weaken it. A large mass of it was still hanging when \(f\) went there to investigate the cause of the accident, and the mine boss, John (r. Wieland, barred down a large quantity of it, at my request, and in my presenceenough to kill a dozen more men, had it fallen on them. The chamber was in a very unsafe condition, and I am sorry to say, that in my opinion, the miner was criminally to blame for the untimely death of his laborer. Patrick Dongher was of Irish nationality, and left a widow with four children, in rery poor cireumstances, to mourn his death.

Accident No. 18.-Michael Reap, a miner, at the Central Shaft, Delaware, Lackawanna and Western Railroad Company, Hyde Park, was fatally injured, August 23, by fall of bony coal " immediately after firing a blast." The accident happened about half past seven, A. m., and Reap died at half past four, P. M., the same day. He had just fired a blast in the bottom bench, in the center of the chanber, pointing toward a slip which was romning parallel with the chamber, there being another slip just seren feet away, rumning in the same direction. Orer the bottom bench there was a tier of bony coal seven inches thick, with a fine smooth over it, and this is what fell on Reap with the resnlt stated. As soon as he fired the blast he rashed into the face of his chamber, and without examining the over-hanging bony, le was in the act of ereeping mader it, when it dropped on him. It was said, that he was in the habit of rushing back into the face of his chamber immediately after firing blasts, which no miner shouid ever do; though many are guilty of the indiscretion every day, and the practice results in several deaths amually. This man lost his life through his own neglect, and no one can be held responsible but himself. Michael Reap was of Irish nationality, and left a widow with five children, all of whom are small and helpless.

Accibent No. 19.-David Davies, a laborer, working with his father. Darid Daries, at the Brisbin shaft, Delaware, Lackawama and Western liailroad Company, Providence, was killed, August 31, by a fall of roof. The roof in this chamber was not extra good, being considerably cut op with slants; but it was well timbered, and the miner, apparently, was usually very careful. In this instance, however, he neglected to exercise his usual care, for, after firing a heary blast in the top coal, he neglected to examine the roof, as he slould have done. Had he done so, he could not 10 Mine Rep.
have failed to detect the dangerous slab of rock, and he would have barred it down, thus saying the life of his boy. David Davies was of Welsh nationality, and was a single man.

Accident No. 21.-Felix Slarin and John Dongherty, miners at the Filer colliery, Messrs. Filer and Livey, Winton horongh, were instantly killed, September 16 , by a fall of roof. The roof proper in this place was excellent, consisting of solid, umbroken, sand rock. The mass that fell, killing these unfortmate men, was a clod immediately overlying the eoal, which was generally taken down, becanse it was not safe to attempt to timber it. The surface area of that which fell was seventy square feet, and it was about eight inches thick. The men had been repeatedly warned during the day and the day before by Thomas Finnerty, the miner in the adjoining eiamber, that the elod was very dangerous, and that they should bar it down; but they disregarded every warning and advice, and went right on working under it until it finally fell on them, killing them instantly.

This accident was a very peculiar and effecting one in many respects. John Dougherty had been severely injured in the mines several times before, and was almost a helpless cripple. He was not a competent man to have charge of a chamber, and it is my candid opinion that he ought not to have been employed in the mines. His wife, as I am informed, is insane and is an inmate of the asylum for the insane, at Danville. Felix Slaven, certainly, sloould not have been employed in the mines, as he was totally blind. It is liad enough when men are employed in the mines who are aflicted with deafness, and I think none such should be employed; but what ean be said to justify the employing of men as miners who are stone blind? The only reason given to justify the employing of these men by George Filer, Esquire, one of the firm, was, that they were so extremely poor, and that they begged so hard to be allowed to work, that he very reluctantly gave them employment. Feeling, however, that it was not right to allow them to work in the mines, Mr. Filer essayed to stop them several times, "but they begged so hard," he said, "that he let them have their own way." It is rery hard to censure men who err, as Mr. Filer undoubtedly did in this instance, through generous sympathy for the poor; and, yet, my respect for the truth compels me to say that these men, in one sense, were killed through indisereet kindness, and I most earnestly protest against the employment of such men in the mines.

John Dongherty was of Irish nationality, aud left an insane widow ; and Felix Slaren was also of Irish nationality, and left a widow with two children in extreme poverty.

Accinent No. 22.-Edward Loughery, a miner at the No. 6 shaft, Pennsylvania Coal Company, Jenkins township, was fatally injured September 27 by a fall of top coal. The first notice received of this accident was that he had suffered a fracture of a leg. below the knee, and that he was "not much injured otherwise; " but he was undoultedly injured internally, as he died the samo day. He was of Irish nationality, and was mmarried.

Accident No. 23.-Lewis T. Williams, a miner at the Diamond shaft, Delaware, Lackawanna and Western Railread Company, Hyde Park, was instantly killed September 27 , by a fall of roof, consisting of a clod overlying the top coal. He was engaged drawing back top coal, and had but just reached his working-place in the morning when he was killed. He went right straight to work without examining the place, which no miner should ever do. The mine boss, Rees T. Evans, said of him, " he was very reckless in his work, and I have had oceasion many times to lecture him severely on account of his working in danger. Only a few days previous to this aceident he and his laborer came very near losing their lives by a fall of about ten tons of top coal which he knew was dangerously hanging over them, and still neglected to make it secure. They were standing alongside of a car which they were loading, and had barely time to turn away when the mass of coal fell, breaking the car in two, and crushing it into a shapeless pile of wood and iron. I gave him a severe lecture at that time for his fearful recklessness, telling him that it was only a question of time when he would lose his life." A few years ago another man, who was laboring for him, was completely buried under a fall of about fifty tons of top coal through his neglect, though strange to say, notwithstanding that he lay under the coal for five hours before he was released, he escaped with comparatively slight injuries, being protected by a loaded car, by the side of which he lay imprisoned. Patrick McAndrews, the laborer who was employed by Williams, warned him on this occasion which proved fatal to him; lut he paid no heed to the warning, and paid the penalty of his recklessness with his life. He was of Welsh nationality and left an aged widow.

Accident No. 25.-John O'Rourke, a miner at the Grassy Island shaft, Delaware and Hudson Canal Company, Olyphant borough, was fatally injured October 9 byy a fall of top coal. He died of his injuries on reaching the top of the shaft. This man again was engaged in taking down top coal. had chopped out two props from under it-one on each side of the road-and was chopping a third when a large quantity of coal fell on him with the result stated. The top coal at this place was thirty-one inches thick, and at the immediate point where the fall occurred there was a slip running aeross the chamber which he had uncovered on the left side, thus making a loose end. In addition to this, the coal was quite brittle and free, so that extraordinary eare was necessary in taking it down. It is very evident, however, that even ordinary care was not exercised by O'Rourke, for he must have known of the danger, and yet he preferred to take risks that no miner should take under any circumstance. He lost his life entirely through his own negligence, and no one can be blaned but himself. John O'Rourke was of Irish nationality, and left a widow with two children.

Accident No. 26.—John Wisce, a laborer, working for William Wethers and Beujamin Armstrong, at the No. 10 shaft, Pennsylvania Coal Company, Ilughestown borough, was instantly killed October 15, by a fall of
roof. The miners hed just fired two blasts, and Wisce returned immediately into the chamber to clear the road of the coal thrown ont by the blasts, when four hundred and forty square feet of the roof, three feet thick, fell on him, killing him instantly. Wethers, one of the miners, had gone into the chamber ahead of Wisce, and Armstrong told the laborers not to go in until the smoke had time to clear away. Wethers, however, on reaching the face, found that the smoke was not as thick as expected, and he resolved to mork out the stub left by his blast. And just as be commenced working, the roof fell on the road back of him, and on looking: back he called to Wisce, who answered only with a groan. In the meantime the roof of the whole chamber commenced working outside and all around Wethers, and he expected every moment that he, also, would be crushed to death. He escaped unharmed, however, and in about a minute after a second fall oceurred, and this was immediately followed by a third fall, and this was the heariest fall of all. The roof at this point consisted of a tier of bony coal, and over this the rock was very friable and broken up with clay seams and slants. Such roof requires liberal timbering, and in my opinion there was not more than half the timber there that should have been. There was but one row of props, and the timber in that row were too far apart. I am willing, charitably, to believe that the mine boss was satisfied that the place was well timbered, but I am positive that he erred in his judgment. John Wisce was an American, and left a midow with four children, in distressing circumstances, to mourn for him.

Accident No. 27.-James Compton, a miner at the Iyde Park shaft, Delaware, Lackawanna and Western Railroad Company, Hyde Park, was fatally injured, November 5th, by a fall of roof. He died of his injuries on the 9th. Compton was driving a gangway, and at the point where the accident occurred there was a vertical downthrow in the rein of eight feet; and, as is nearly always the case in rolls of this nature, the coal and overlying roof was considerably broken up with slants and seams, and it was a slab of this that fell on Compton. The laborer, Henry Thomas, says that "they had examined the place in the moming, and again several times during the day, but had detected no danger there."

It seems passing strange that an accident could occur in such a narrow place as this was, had ordinary care been exereised to aseertain the condition of the roof. It is very evident that danger was suspected there, or they would not have examined that spot so many times during that morning, as testified to by Henry Thomas. The examinations that were made must have been very careless and partial. Compton had the reputation, however, of being a careful and competent miner; but the fict is that old, experienced miners often take risks that an ordinary miner would shrink from, and we are often called upon to record the death of such men through the temporary suspension of their usual care. Compton was of Welsh nationality, and lelt a widow only.

Accident No. 23.-Daniel II. Stevens, a miner at the Green Ridge slope.

Green Ridge Coal Company, Dummore borough, was fatally injured, November 12th, by a fall of roof. He died of his injuries the same day. He was opening a chamber off from another chamber road, and had entered into the solid twenty-two feet. The coal being only four and a half feet thick it was necessary to blast down the roof to make height for a mine car to pass in to the face. St vens and his partner, Clarence Wisce, were engaged blasting down this roof when the accident oceurred. They had just fired a blast ahout five minutes before, and Stevens rushed back immediately under a part of the rock that hatd been loosened by the blast, and persisted in going, nothwithstanding that his partner warned him that it was dangerons, and told him not to go under it. There was a small quantity of coallying under the loose rock which he desired to move back before barring the rock down, and just as he commenced to move the coal the rock fell on him, with the result already stated. He lost his life entirely through his own recklessness, and no blame can be attached to anyone else. D. II. Sterens was an American, and left a widow with two children.

Accident No. 30.-Patriek Keating, a laborer, working for John Moran, at the Sloan shaft, Delaware, Lackawanna and Western Railroad Company, Lackawanna township, was fatally injured, November 23d, by a fall of roof. He died of his injuries December 1st. The chamber where this accident occurred was thirty feet wide, and the coal was eleven and at half feet thick. The extent of the fall was three hundred and twenty-three square feet, and consisted of the clod that overlies the big vein in many collieries, which at this place was three inches thick. I found this clod heary back for many yards from the outer edge of that which fell, and in some places extending over the road. There were but few props under it, but, in my opinion, no attempt shonld ever be made to hold this clod with timber, as it will break all around props and fall between them, unless the props are stood very close together. The nearest prop to the face was twenty-two feet away at the time of the accident. The miner was undoubtedly to blame for allowing so large an area of rock hanging loose over the head of his laborer. It is a very poor exense to say that it was not well known that the clod was dangerous, when no examination was made to ascertain whether it was or not. Keating did not appear to be serionsly injured at the time, and I am informed that lie was suffering from a disease which was aggravated by the shock of the aceident, and that this was the main canse of his death. Patrick Keating was of Irish nationality, and left a widow with two children.

Accident No. 32.-Anthony Bradley, a laborer, working for John A. Andrews, at the Yon Storeh slope, Delaware and Hudson Canal Company, Providence, was fatally injured, November 26, by a fall of roof. The roof in this chamber was not good, and I am sorry to say it was poorly timbered. Bradley had a leg badly shattered at the knee and above it, had an arm fractured, and was injured also in the back. Nothing was done to stop the hemorrhage of the shattered limb until he was brought to his home, and he must have been feartully weakened through loss of blood be-
fore anything was done for him. I have no doubt but many lives are lost for the want of proper care immediately following aceidents, and I think that all parties haring charge of men and boys in and around the mines should be instructed as to the proper treatment of persons imjured, so that no more precious lives may be sacrificed throngh this general ignorance. Doctors O'Brien, Sullivan, and Hollister attended this case, and were about to amputate the shattered limb, but on amouneing their intention to that effect in the hearing of the mjured man, he was so shocked that lie lost all heart and died. Anthony Bradley was of Irish nationality, and left a widow with two children.

Accident No. 34.-Peter Wilson, a miner at the No. 12 shaft, Pemsylvania Coal Company Pleasant Valley borough, was instantly killed, December 13 , by a fall of rock. The cireumstances leading to this aceident are described by Thomas Hailstone, the surviring miner, as follows: "We were taking down top coal in Ford's heading, and taking a skip back from the pillar. Had just fired two blasts in the top coal. After firing these two blasts, I went to prepare a place to drill a hole in the pillar, and Wilson was near by clearing rock and rubbish away to give my blast a chance to work. Just before going under the rock that fell, Wilson put his hand in the crack over it and said, 'This rock is sprung,' and I answered that I thought the bench of 'checker' would give warning before it would fall. The rock fell in about five minutes after we had this conversation. Neither of us examined it further than that Wilson put his hand over it as stated, nor did either of us try to bar it down. We relied on the 'checker' bench being strong enough to hold it up. There is no doubt but it could have been barred down very easily had we tried to do so, and it was a fatal mistake that we did not."

Two minutes' work would have prevented this sad aceident, and this is true of the majority of them; and yet the miners continue to run the risk of losing their lives rather than do what they know would save them. This poor man was the vietim of his own foollardy negligence, and his partner was equally responsible. Peter Wilson was of Scoteh nationality, and left a widow with six children in very destitnte cireumstances. The family was so extremely poor that they had no means to bury their dead.

Accident No. 35.-Patrick Dearing, a miner at the Brennan colliery, Messrs. Breman and Bridgett, Carbondale City, was fatally injured December 24 , by a fall of roof. He sulfered a compound fractme of a leg, and received internal injuries, from the effects of which he died the following day. He was engaged in taking out a pillar, but he was not an experienced miner enough for such dangerous work; he was too young a miner, and had only a boy working with him who was still younger and more inexperienced than himself. In one sense there was no one responsible for his deat! but himself, as it was his busimess to see that the roof was safe, and as he was there continually he ought to have been the best julge of its combition. The mine boss, John Killian, had been there only a few minntes hefore the
accident, as had Patrick Flannery also, Dearing's stepfather, but neither of them had noticed any danger there. But I cannot believe but that a proper examination would have revealed the dangerous condition of the roof. The surface area of that whick fell was seventy-seven square feet, and it was about a foot thick. There was a large mass still hanging when I was there to investigate the cause of the accident which was barred down by the mine boss, in my presence, and by my order. I must prononnce it wrong to employ so young a miner to rob pillars; it is very dangerous work at best, and none but the most careful and most experienced miners should be employed at it. This is the first fatal accident that has occurred at this colliery, though it has been rmming on a small scale for six years. Patrick Dearing was of Irish nationality, unmarried, and was a young man of excellent character, highly respected by all who knew him.

\section*{DEATHS FROM FALLING DOWN SHAFTS.}

There was but one fatal accident from falling down shafts that can be charged to mining coal. An insurance agent, F. W. Rice, Esq., fell down the Leggett Creek shaft, Providence, on the 14th of April, and was instantly killed, but I have not classed this as a mine accident, chargeable to the business of mining coal and preparing it for market. There was one other, howerer, which is two and seven tenth per cent. of the whole number of fatal accidents for the year.

Accident No. 5.-Isaac Daries, a miner at the No. 1 Barnom sliaft, Pennsylvania Coal Company, Pittston borough, was killed March 17, by falling from the bucket as he was being hoisted up the shaft. He was engaged, just before the accident, in pumping water from a sump which was being sumk, and he was soaked throngh with ice cold water falling down the shaft. He complained to the men working with him of being so cold that he must ascend the shaft to warm himself. On being told to go, he signalled for the bucket and got on, standing on the edge, and when up about seventy feet, through some mishap, he fell to the bottom and was so severely ermshed that he only lived for about thirty minutes after he was brought to the surface. I think he became so numb with the cold when being hoisted on the bucket, that he lost his hold of the rope and fell. He was a fine old gentleman, fifty-eight years of age, and was very highly esteemed by all who knew him. He was of Welsh nationality, and left a widow with seven children to mourn his death. The chiklren, however, are mostly all grown up-two of them married.

\section*{DEATHS FROM BEING CRUSHED BY MINE CARS.}

There were four deaths from being ermshed by mine cars during the year, being ten and eight tenth per cent. of the whole number from all causes. The number of fatal accidents from this cause is eonsiderably reduced as compared to the record of 1879 ; but they can be reduced still further if drivers, rumers, door-boys, and even men will but use their senses to avoid them.

Accident No. 1.-David MeGovern, a door-tender, at the Marvine shaft, Delaware and Hudson Canal Company, Providence, was instantly killed, February 16, by heing erushed between a car and pillar. This unfortunate boy was away from his post of duty with one of the drivers, James McCartney, who asked him to go with him for the water car. MeCartney put him on the mule's back to ride in, and when they reached the car he ordered the boy to hitch on the mule; then McGovern went on ont ahead of the ear, leading the mule for a short distance, lut be finally stopped in a very narrow place with the intention of jumping on the forward bumper of the ear to ride, and in attempting to do so, his foot missed the bumper, and the top rail of the car canght his head erushing it against the pillar and tearing the top of his skull clear off. The boy was in the habit of running around the chambers and away from his door with the drivers, and especially with McCartney, who enticed him away on this fatal occasion, and seemed to make a practice of ordering the little fellow around at his pleasure. If boys would attend strictly to their own work, and do it themselves instead of ordering one another to do that which does not belong to them, there would never be an accident of this kind. The mine bosses are not blameless in this matter. J. V. Birtley, the mine boss, in charge of this colliery, says: "I have repeatedly ordered the door-tenders never to leare their doors for any one." And yet he sends them away on errands himself whenever he finds it convenient. He did this the day following this accident, when I was present, and I ealled his attention, then, to his inconsisteney. If mine bosses would but practice what they preach they would be more successfnl in averting accidents.

Accident No. 7.-Edward Watkins, a driver at the Brisbin shaft, Delaware, Lackawanna and Western Railroad Company, Providence, was fatally injured, March 29, by being erushed under a trip of empty mine ears. He died in a few minutes after he was conveyed to his home. Ie was driving a team of mules and had them hitehed to a trip of eleven cars, when the m:les started and ran away down a steep grade that required two sprags in each car. The mules ran until they reached the chambers, Watkins hanging on to the harness of the hind mule all the way ; but he finally lost his light and fell before the trip, and the two forward ears ran over him, and when he was found he was lying under the third ear. The forward cars jumped the track and discharged a prop on the road-side which made the place extremely dangerous to go to his resene. The men who were present, however, made all haste to get him from under the car, notwithstanding the roof was eracking fearfully over their heads; and they had only just moved him away a few yards when a large quantity of the roof fell just where the loy was lying. These mules, or rather one of them, was in the habit of rumning away; they would batk, and when they started they woukd run as hard as they could. As far as possible, all such fractions mules should be banished out of the mines, and if I could I would do this at once. I am happy to state that some of our most eflicient superin-
tendents do not keep an unruly, fractious mule in their mines for an hour after they find they are dangerous and unsafe for boys to handle. 'This is as it should be, and is a credit to the men who act thus humanely.

Accident No. 29.-William Mason, a driver at the Eddy Creek shaft, Delaware and Hudson Canal Company, Olyphant borough, was fatally injured, November 20, by being crushed by a trip of loaded mine cars, and died the same evening. This boy was employed ruming cars from a branch to the foot of the shaft. Just outside of the branch latches there was a sharp down grade, causing the cars to rim about as fast as a mule can trot, and the boy was forced to run alongside of his mule before the trip down this run. There was a strap attached to the hames of the harness for the boy to hang to; but if he should happen to stumble and lose his hold on that strap, he would be very liable to fall under the cars. How he lost his hold of the strap in this instance is not known, but it is known that he did no \({ }^{2}\) have hold of it, and that he fell and lost his life. He was dragged by the cars for thirty-eight feet from the spot where he fell, which indicates that the trip was ruming at a high rate of speed, and the trip stopped only when the boy's body threw the forward car off the track. I have no hesitation in saying that some safer way should be devised to bring out the coal, and that boys should not be compelled to risk their lives by rumning at a break-neek pace down runs in front of heavy trips of loaded cars.

An inquest was held on this accident, William Williamson, J. P., aeting as coroner; and from the evidence adduced, the jury, which was an me usually intelligent one, returned a verdict in accordance with the above facts, and severely censured the oflicials of the colliery for putting boys to work in such a dangerous place, where they musi be continually in jeopardy of their lives.

Accident No. 36.-Michael Murphy, a culm-man at the White Oak colliery, Delaware and Hudson Canal Company, Archbakl borough, was instantly killed, December 29, by being erushed between a car and pillar. A ear of coal had been dumped by the side of the road belonging to some one of the miners, and as this was the last working day for the month it was desirable to load this coal so that it could be credited to the miner in his month's account. Murphy, therefore, instead of waiting for the noon hour, in company with Thomas Kelley, the driver boss, got an empty car and attempted to load the coal between two trips. The car was standing on the empty track at the end of a long passing branch; it was standing near the frog, and while they were loading the car a trip of five loaded ears was lowered to the foot of a self-acting plane, thirty-eight yards inside of where the car stood, and the footman called to them, inguiring if they were out of the way, and he was answered that it was all right. He then unhitched the rope from the trip and let it run downgrade towards them. When the trip came near, Thomas Kelley saw that it would surely strike the car they were loading, and he called to Murphy, telling him to get back out of the way; but Muphy, instead of heeding Kelley's warning, jumped between
the ear and the pillar, and when the loaded trip struck the car it was knocked off the track and against Murphy, crushing him to death between it and the pillar. Murphy and Kelley were both equally to blame for not making sure that there was room enough for the loaded trip to pass the car. They were both experienced men with handling cars, and no excuse can be advanced for their heedlessness. Michael Murphy was of Irish nationality, and left a widow with six children-five girls, and two of them are said to be invalids.

\section*{DEATH FROM EXPLOSIONS OF BLASTS AND POWDER.}

There were three fatal aceidents from explosions of blasts and powder, which is eight and one-tenth per centum of the whole number for the year from all causes. Each of these deaths resulted from inexeusable recklessness on the part of the victims themselves.

Accident No. 10.-James Howarth, a miner at the Taylor shaft, Delaware, Lackawanna and Western Railroad Company, Lackawanna township, was fatally injured, May 4th, by an explosion of a cartridge as he was charging a hole. The hole was not round, and as he tried to insert the cartridge he found that it refused to go to the far cud of the hole and he then used the butt end of a drill to drive it home ; the drill striking fire exploded the cartridge, burning him in the face and about the body, and injuring him very seriously otherwise, from which he suffered fearfully until the 21 st, when death released him from his sufferings. He committed one of the most foolhardy, reckless, and inexcusable acts that a miner can be guilty of, and such as the common sense of every man ought to teach him is an act of inexcusable madness. Every miner knows this practice of ramming cartridges with the butt end of a drill to be extremely dangerous, and all will admit it, and yet, otherwise careful and intelligent men lose their lives every year by elinging to the dangerous practice. Why is it that men will not abandon dangerous practices which they know to be so fatal? James Howarth was of Welsh nationality and left a widow with four children to mourn his untimely end.

Accident No. 24.-Patrick H. Kelley, a miner, at Tripp's slope, Delaware, Lackawanna and Western Railroad Company, Hyde Park, was instantly killed, September 29th, by an explosion of a blast. On his first attempt to fire the blast it missed ; he tried it the second time when it hung fire so that he evidently thought it had missed again, and under this impression he started to apply a match the third time, but when within about ten feet of the fice the blast exploded, throwing about two car loads of coal right in his face. The blast knocked out a prop also, and that fell on him. Ile was of Irish nationality, ummarried.

Accident No. 33.-John C. Nealon, a miner at the Edly Creek shaft, Delaware and Hudson Canal Company, Olyphant borongh, was almost instantly killed, November 29th, bỵ a premature blast. He lived only for abont two hours, but never uttered a word to explain the accident. His partner, Anthony Gannon, was present when he was killed, and gave the
following statement: "Nealon had drilled a three feet hole before I got in to my work that morning, and he was coming down the road for powder to charge the hole when I got in ; he returned with the powder and asked me to help him tamp the hole, and as the hole was wet, he told me to throw in the tamping as fast as I could. A fter tamping the hole I went down the road some distance and stopped to hold a light for him to run away from the blast; seeing him rather long in coming away, I said, 'Jack, what are you dong?' and just as I spoke the blast went off, blowing out my light. I then called to John Dunnigan, requesting him to bring me a light, and I told him I thought Nealon was killed with the blast. Thomas Monaghan then came and he and Dunnigan and I went up the chamber road to Nealon, whom we found back about two yards from where the blast went off, leaning up against the rib. His skull was fractured, and he was otherwise badly cut and bruised; he never spoke a word and died very soon after he was taken home.
"We do not use any patent squibs to fire blasts with; we fill straw squibs ourselves and make our own matches; the oil that we use in making matches is that which we burn, and is known as "black strap " or " green oil." That was what Nealon used to fire the blast which killed him. There was no smoke there before that blast was fired, as that was the first blast fired that morning; did not find any gas in the chamber that morning ; do not know whether there was any gas in the hole or not ; did not try it and do not know as Nealon did; we sometimes find a little gas in the holes, but not enough to hurt; have no safety squibs ; we always fire the blasts with common paper matches."

Now, it is barely possible that the blast was exploded by gas, bint the indications are that the mateh, being saturated with the "green oil" referred to by Ganuon, was made in such a hurry, as the hole was wet, that when it was ignited it flashed instantly to the straw and explocled the blast. I repeatedly have called the attention of the miners to the danger of using any of the inferior oils lately introduced into the mines to make matehes with; but they persist in doing it in spite of every warning, and it is a great wonder that more of them are not killed and maimed therely. These inferior oils of all grades are becomong insutferable nuisances in the mines in many respects, and I anticipate that the use of them must be prohibited.

Hugh Jones, the mine boss, gave these miners a very bad reputation for being eareless and reckless in their work, and said: "I have had great trouble with them trying to induce them to keep their working place safe. They were very reckless in relation to propping. Only a short time before this accident I found them both working under an immense slab of rock on entering their chamber, and I ordered them out from under it instantly. On putting a bar over the slab, it fell over a large portion of the chamber, covering the spot where they were located, each drilling a hole. I an sure that they would both have been killed on that occasion had I not gone into their chamber just when I did. I was in great doubt as to the propriety and safety of allowing them to work a chamber."

John C. Nealon was of Irish nationality, and left a widow with eight chidren in very destitute circumstances. The fanily consisted of four boys and four girls. The oldest boy, about twenty years of age, had always been a helpless cripple, and I am informed that he died in a few days after the death of his father.

\section*{DEATHS FROM MISCELLANEOUS CAUSES UNDERGROUND.}

There was but one fatal accident under the above head during the year, being two and seven tenths per centum of the whole number.

Accident No. 15.-Patrick Flynn, a prmpman at the Leggitt's creek shaft, Delaware and Hudson Canal Company, Providence, was burned to death July 11 by his clothing taking fire from his lamp. This aceident oeeurred on Sunclay, and I was apprised of it about four o'clock by two men from Providence, who desired me to go to the scene of the accident at once to investigate its canse; but learning from them that the remains of Flyne had beon bronght out, and that no danger was apprehended to anyone else, there seemed to be no necessity for my immediate presence at the mines, hence I made an appointment to meet the parties at the colliery the following morning. In the mean time some meddlesome parties had been very busy spreading a report that an explosion of gas had oceurred, and that this asserted explosion was the canse of Flynn's death. On learning of this report I advised the man's friends, amongst them his brother, to see coroner N. Y. Leet and request him to hold an inquisition in the ease, so as to investigate the matter thoroughly as to whether there had been an explosion or not. I was desirons to give the unfortunate man's friends the fullest opportunity to inquire into the ease to their entire satisfaction. An inquisition was finally held by Coroner Leet, and the investigation was about the most thorongh and exhaustive of any held during my term of service; but there was not a particle of evidence adduced to sustain the theory of an explosion of gas having occurred there, and I positively know that there was 1:0 explosion of gas, as there was not the least sign of anything of the kind anywhere in the vicinity of the location where the man was lurned to death. By referring to the accompanying plan of the workings, it will be seen that he was burned to death at the point " \(\Lambda\)," which is on the main road, and between the two doors in the intake current of fresh air. Had there been an explosion it would have been utterly impossible for these doors to eseape destruction; but the doors were wholly undisturbed. Nor were there any other indieation of an explosion, such as luattice or stoppings disturbed, or even so mueh as any dust raised, as is always the case where explosions occur. Then again, George Archhald, the fire boss for that section, had passed the point where Flymn was burned only about two mintes ahead of him, and when Flym's clothing took fire Archibald was just passing throngh the imer door, and was, therefore, nearer the only point in the vicinty where the least color of gas had been found at any time. Had there been an explosion he conld not have escaped

unhurt; but he was not injured, and positively swears that there was no explosion. Now, before presenting any theory as to the manner in which Flym's clothing took fire, I deem it proper to put on record the testimony given by the most important witnesses on my examination.

George Arcubald, sworn:-My name is George Arehbald; reside in Providence; am fire boss by occupation, and am employed as such at the Leggitt's Creek shaft; was at work yesterday (Sunday) moruing; entered the mine to the foot of the shaft in company with Patrick Flynn, George Green, Michael Cannon, William Kelley, James McManina, and his son, James. When we reached the bottom of the shaft. I first went to the barn, which I examined, finding it all safe ; thence I went into William Campbell's heading to examine that place, to ascertain whether it was free from gas or not, so that Patrick Flymn could go in there to work. Found no gas anywhere near the main road, and found none anywhere, excepting a little in the face of the nearest chamber but one to where Flym was burned. Had not been in that chamber that morning until after the accident. It was after the accident that I found gas there. Did not find more than three or four inches there, extending across the face of the chamber and tailing out about four yards from the face. This chamber was dipping all along until a short time ago, but it is now rising, which accounts for the gas lodging there. Never found any gas there until the chamber struck the rise. The return air does not come out through the heading where Flyun was burned. Do not think it possible for the gas to be clislodged from that chamber and then re-lodge on the main road. The gas, if dislodged, would go across the outside chambers, and would pass the point where the accident oceurred, a long distance away. I examined the place where Flym was bumed as I went in ahead of him, and there was no sign of gas there. Flynn and I went in together from the foot of the shaft. I had a safety-lamp and Flynn carried a common miner's lamp. He was following, perhaps, thirty or forty yards behind me. He was sometimes all of fifty yards behind, as he was lame and could not get along as fast as I could. I was forty or fifty yards from him when his clothing took fire. The first I knew of it was hearing him call, "George! George!" and then I looked back and saw him enveloped in flame. I then rinn down to the sump to look for a bucket or a keg to carry water to throw on him, to extinguish the fire, but I failed to find anything, and I then tried to get near him but could not get near him becanse of the intense heat. His elothing were all on fire. Then I ran back and forth for some time, and I was so excited that I could not take particular notice of anything. He did not say anything, except calling my name twice, as I have alrcady stated. When I found that I could do nothing for him, I got my lamp, which I had dropped, extinguishing the light, and went out in the dark to where 1 had left George Green, on the main road, about seven hundred feet from where the accident oceurred. I told him that Flym was burned to death. Green and I then returned together, along amother route to try to approach Flynn; but
when we got to the door, just outside of where he lay, and on opening the door, we found the stench so great from his burning flesh that we could not possibly approach him, and by this time I was sure that he was dead. I then went to the foot of the shaft with Green, whom I sent out to inform the mine boss, Finlay Ross, of the accident.

I have no idea as to how Flynn's elothing got on fire. Did not see his clothing taking fire. He was enveloped in tlame when I first saw him. He usually had on considerable clothing. Had a linen water-proof coat on yesterday morning, and I am very sure he had another coat on under that. His clothing was fearfully soaked with oil. Think there must have been as much as two gallons of oil in his clothing, and he usually carried a large quantity of oily cotton waste on his person, which he used to gather up in the engine-rooms ontside, and which he would cram into his pockets and into his breast. Have seen him have large lumps of tallow hid away in his breast. Do not know whether he had any oily waste or tallow stuffed in his breast yesterday morning or not, but he did have his pockets full of waste. On my asking him for some to wipe my safety lamp, he pulled a large quantity out of his pockets in search of a bunch that was comparatively clean, which he handed to me, and he then crammed the balance back into his pockets again. He also had a pint bottle full of kerosene oil in his pocket, and I think he had two bottles. He had no need to carry oil in to his work in that manner, as oil was furnished to him by the company by the gallon

George Green, sworn: My name is George Green. Live in Providence. Am water-hailer by occupation, and work in Leggitt's Creek shaft. started in to my work yesterday morning with Archbald, the fire-boss, and Patrick Flymn. On the way in I stopped at the " Y," by order of the fire-boss. Stayed there, and heard nothing of Archbald and Flynn, only the slamming of the doors as they passed through them. There was no indication of an explosion-no concussion in the air. The slamming of the doors that I hard was not cansed by concussion of an explosion, but was eaused simply by passing through them, as I have heard them often. Archibald, the fire-boss, came back to me after a while, and as he approached we he called for a light; he then told me that Flynu's clothing had taken fire in some way, and that he was burned to death. Arehbald and I then went back together and tried to approach the place where Flymn lay, bat we could not get near him for the suffocating stench of his burning borly and clothing. We then returned to the foot of the shaft, and Archbald sent me up the shaft to inform Mr. Finlay Ross of the accident. I have heard the testimony of George Archbald, the fire-hoss, and can only confirm all that he has said concerning the oily condition of Flynn's clothing, and in relation to his carrying oily cotton-waste to work in his pockets and on his person.

Finlay lioss, sworn: My name is Finlay Ross; reside in Provitlence; an mine boss ly occupation, and have char ge of the inside workings of

Leggitt's Creek shaft. I have heard all the testimony of George A rehbald, and, from my own knowledge of the filthy, oily condition of Patrick Flynn's elothing, I know his testimony to be strictly true. A bout two weeks ago, Mr. Atherton, the outside foreman, and I spoke to Flymn of his elothing, telling him that he would get on fire some day, and make a bonfire of himself. I do not know how his elothing canght fire, but I do know that there was no explosion of gas ; there could be no gas there to explode."

Joun Holleren, sworn: My name is John Holleren; reside in Providence; am stationary engineer at second opening to Leggitt's Creek shaft; knew Patrick Flymn ; he was in the habit of coming in here and gathering all the oily cotton waste that he could find around the engine-room and carry it away with him into the mines; he also carried oil away; would take any oil he could find; would take this white oil which we burn, and what we call " hlack strap."

Mr. Holleren then showed me a sample of the oil which he had in a lamp. It was intensely inflammable, and should never be used in the mines. Now, notwithstanding the critical and exhanstive examination made by me into this case, there were parties who persisted in asserting that an explosion did oceur, and I was very glad that an inquest was held. The jury found that Patrick Flymn came to his death by his clothing taking fire in some manner to the jury unknown.

My theory as to how his clothing canght fire is as follows: Before he and the fire boss started from the foot of the shaft he drew a large quantity of oily cotton waste out of his pocket in search of a clean bunch to hand to A rechbald to wipe his safety lamp with. In returning the old waste back into his pocket he left some of it hanging ont by his side, and in going in this caught fire from his lamp which he carried in his hand, and when he passed through the door just outside of where he was burned, and when opposite the entrance just inside of said door, (see plan,) the strong current of air coming in throngh that entrance fanned the fire into a flame and he was enveloped with a sheet of flame before he was aware of it. I have no doubt but that this was how he caught fire. He must have cangit fire from his lamp, as there was no other fire near him. A portion of his pants was unconsmmed, and a match was set to this by the coroner at the inquest to demonstrate how inflammable the oils were with which Flynn's clothing were saturated.
- The only sense in which the law was violated in the case was, in permitting Flym to enter the colliery before the workings had been examined by "the mine boss or his assistant." The eighth section of the act of March 3, 1870, provides for and requires such an examination to be made, and says: "And the workmen shall not enter the mine milil such examination has been made and reported, and the canse of danger, if any exist, be removed." George Archbald, though an intelligent man, and a man of fine disposition, in my humble opinion, is not self-possessed enongh for a safe fire hoss. He evidently became so excited in this emergency that he was
utterly ineapable to render any assistance to the unfortumate man, eren if that was possible. This, howerer, is undonbtedly a constitutional weakness in him, and he is to be pitied for it rather than to be eensured. Patrick Flym was of Irish nationality, unmarried.

\section*{DEATHS FROM MISCELLANEOUS CAUSES ON THE SURFACE.}

There were three fatal accidents on the surface during the rear, being eight and one tenth per centum of the whole number. All of these were boys; two of them were killed by sereens in the breakers, and the third was crushefl to death between big cars and chutes. Each of them was away from his proper place.

Accident No. 16.-David Powell, a slate picker, at the Pyne shaft breaker, Delaware. Lackawanna and Westem Railroad Company, Old Forge township, was instantly killed, July 13 , by falling on one of the main screens. Notwithstanding that the screens were fenced ofl this boy managed to fall on it and lose his life; he fell while sliding down a railing put to protect a stairway leading by the screen, and had no one to blame fur his untimely fate but himself. It is next to impossible to keep the boys ont of danger when they are employed about the machinery in breakers. They will go where they hare no business in spite of all that can be done to keep them out of danger. David Powell was of Welsh nationality, and was thirteen years of age.

Accident No. 20.-Charles E. White, a slate picker, at the Elk Hill colliery breaker, Elk Hill Coal and Iron Company, Dickson City borongh, was fatally injured, September 1, by being eaught in the cog-wheels of a pony sereen; he lived only an hour and a half after receiving his injuries. From the testimony of the boys who were elose by when the accident occurred, the little fellow was leaning on the fencing surrounding the cogwheels, and was poking his hand at the wheel, apparently to see how near he conld come to the eogs, and finally his fingers were canght and drawn in, then his hand and arm elear up to the shoulder, and even his side was drawn in until his body choked the wheels, thas stopping the sereen. The slate pieker boss on that side of the sereen room, Charles Healey; saw the boy get caught and ran to the door of the screen room and eried to the engineer, Charles Cmmingham, to stop the screens; but he says the screens were stopped by the belt slipping before he received any lind of a signal to stop the machinery. The boy's arm was literally ground into a pumice.

It is true that the little fellow had no business near the cog-wheels; but I must say that it is equally true that he onght not to be out of his mother's sight, and should never have been sent to work at his temer age in a breaker, his exact age being only seven years, four months, and eleven days! Il is parents, notwithstanding their terrible sorrow, cannot escape the just censure of an indignant and outraged public for sending a babe like this amongst the dangerons machinery of a coal hreaker. I was informed that the boy's father was at work, and that he hatd three or four other hoys working and earning wages, and, if this is true, as I have every
reason to believe it is, then it cannot be said that this small child was put to work from necessity. Had he been the child of a poor widow, with star. vation staring her and her little ones in the face, there might be some excuse for this, but as it is there is nothing to justify it.

The parties in charge of the breaker who employed the child are deserving of severe censure for allowing him to come around the breaker at all. I admit that there is no provision in the mine law prohiliting the employment of boys at any age at the collicries outside of the mines; but I hold that the common instinct of humanity onght to be more than suflicient to prevent the outrage; but, sad to say, it is not enough, and it is to be hoped that the Legislature will take the matter in hand at an early day.

Accident No. 31-James Merrigan, a slate picker at the Eaton colliery, Messrs. Jones, Simpson \& Co., Archbald borough, was fatally injured November 25 by being crushed between the big cars and the bottom of the chutes at the breaker. This unfortmate boy was away from his work and had no business under the chutes where he was injured, and he bore the character of being such a wild boy that it was impossible to keep him out of danger. George W. Eaton, the breaker boss, had repeatedly warned him that he would surely get killed through his recklessness around the cars and machinery. It is next to impossible to suggest a remedy to prevent accidents to boys of this character, and perhaps the only effective remedy is to refuse to employ them either in the minas or about the breakers. Lack of discipline, however, has much to do with the wildness of boys, and with the heedlessness and recklessness of all classes in and about the mines, and until rigid discipline is wisely enforced we cannot hope to prevent accidents of this class. James Merrigan was of Irish nationality, died of his injuries on the 27th, in the fourteenth year of his age.

\section*{ACCIDENTS FROM EXPLOSIONS OF GAS.}

It gives me great pleasure to say that I have no fatal or scrious accidents to report from explosions of carbureted hydrogen gas during the whole of last year. The only casualties of any kind from this cause was entirely the result of inexcusable carclessness, and every one of them could have been avoided by the exercise of the most ordinary care. Fonr men were slightly burned by slight flashes; but none of them were disabled for more than a few days. This is very gratifying to me, and it is also very creditable to the superintendents and mine bosses who have charge of fiery coltieries. In my former reports I have contended that accidents from explosions of gas can be and ought to be arerted, and the record of last year in this district, in some measure at least, proves that I am correct; and I desire again to urge the necessity of sweeping ventilation as a sure preventive of gas explosions. Enough has been said in my reports for 1878 and 1879 to convince erery umprejudiced mind of this fact, and I trust that no interested party will either ignore or forget what has been said. The time is rapidly approaching when the practicability of providing sufficient rentalation to 11 Mine Rep.
prevent explosions in the mines will be conceded throughout the word, and when this is universally admitted these terrible explosions will cease.

\section*{PRESENT CONDITION OF THE COLLIERIES.}

I am happy to be able to report that the condition of the collieries in the district, so far as rentilation is concerned, is on the whole satisfactory. There are but few poorly ventilated mines, and the number is being rednced each year.

The Delaware, Lackawanna and Western Railroad Company's mines are kept well in hend, there being only one or two that cannot be rated as first class. There is never any trouble with the mines of this company, for the gentlemen in charge of them have always shown a cheerful readiness to comply with the requirements of the ventilation act. 'They have one colliery at present, the Central shaft, where the volume of gas evolved is increasing to such an extent as to require an early addition to the quantity of air now provided for the workings. Gas stands in small quantity in several of the working places, and the workmen are in continual danger from explosions on a small scale. But they are driving to make a connection with the Oxford air-shaft, where, I am informed, they intend to erect a fan as soon as possible. This will provide all the ventilation they will need. The other collieries of this company are well provided with a liberal quantity of air, with the exception of Tripp's slope; and there is no cause for complaint, only occasionally, when the mine bosses neglect to conduct the air to the face of the workings.

The Delaware and Hudson Canal Companys mines have been greatly improved. They have only two collieries now in my district which are not well provided with rentilation, and neither of these is very bad, and I have been assured by A. H. Vandling, Esquire, that one of the collieries referred to will be provided with two fans as soon as they can be put in blace this coming spring. These fans are intended for the Grassy Island shaft, Olyphant borongh, and when they are crected, they cannot fail to produce ample ventilation for the colliery, if it will be properly utilized by the inside bosses. The other colliery referred to is the White Oak colliery, Archbald borough. This is an old colliery and nearly exhausted; and as the rentilation is not very bad, it would be unjust, perhaps, to require costly improvements to be made in it. The air now provided can be better utilized by attending to the inside air-courses. A shaft will soon be sunk, to take the place of this colliery, which, I am assured, will be provided with a fan from the start.
A. H. Vandling, Esquire, is entitled to great eredit for doing so much to improve the ventilation of the collieries under his charge during the last four years, and it gives me great pleasure to award him the credit due him. I am free to adinit, that I was impatient to have improvements inaugurated, especially in the collieries at Carbondale, for I found them in very bad condition; and, perhaps, I was too impatient under all the circmustances. I am awsre that a great part of the expense incurred should have been
charged to the account of years in the past, long before Mr. Tandling assumed the control of the mines, and this fact should be credited to him. He has always been found ready to admit the necessity of improving the mines, and has shown a desire to do cverything possible for the health and safety of the workmen.

The Pennsylvania Coal Company's collieries stand about as they did one year ago. No material improvement has been effected in any of their old collieries. The new No. 1 Barnum shaft, however, is provided with a fan which will produce ample ventilation for this new colliery, and another fan will be provided for the No. 2 shaft. I am very sorry that I eannot report all the collieries of this company in as good condition as could be wished. John B. Smith, Esquire, the general agent of the company, has always treated me with uniform kindness, and has always professed a desire to improve the condition of the mines under his charge; but the mine superintendents have not seemed so ready to do what is needed. My remarks on the condition of these collieries in my report for 1879 , will apply to them still.

The collieries of the smaller companies and operators in the district are in excellent condition as to rentilation, excepting the following : Everhart colliery, Jenkins' township; Beaver colliery, Pittston borongh; Columbia mines, Pittston township; Hillside colliery, Pleasant Valley horongh; Greenwood colliery, Lackamanna tomnship; Elk Hill colliery, Dickson City borongh; Filer colliery, Winton borough; Jermyn's shaft and slope, Jermyn borongh ; Brennan colliery, Fell township ; and Forest City colliery, Forest City. Some of these have been improved during the year, but none of them will ever have good rentilation until they are provided with a fan in place of the miserable furnaces now in use in them. The workings are so shallow in these collieries that furnaces cannot ventilate them. None of these can be classed as very bad, excepting the Jermyn shaft and slope and the Bremnan colliery.

An air shaft has been sunk for the Hillside colliery, Pleasant Valley, and as soon as connection is made with the workings a fan will be placed on this shaft, which will remove all cause for complaint in this case.

A new fan has been erected by Messrs. Jones, Simpson id Co., at the Eaton colliery, A rehbald borough, which was sorely needed. This improvement will place the Eaton colliery in the first class as soon as the air courses are put in proper shape inside.

The main roads and traveling ways have been improved in many of the eallieries, but there is a great deal yet to be done before they are all satisfactory in this respect. The importance of having clean and unobstracted roads is not realized by many of the mine bosses, but I am more convinced of it every day, and I am positively certain that many accidents to drivers and rumers would be averted if the roads were kept reasonably clear of obstructions. All places where drivers are obliged to hitch and unhiteh their mules from cars in motion, such as passing branches, the approaches to the foot of shafts or slopes, and inside at the chambers, should le ciearcd
of all obstructions along the roadside over which the boys are liable to stumble and fall under the cars.

There has not been a single instance during the year of an operator failing to keep a good supply of timber on hand for propping, but I cannot say as much for the miners as regards using the timber. The large number of accidents reported from falls of roof go to show conclusively that propping is more neglected than anything else connected with the safety of the workmen. As I have noticed in each one of my reports, the miners themselves, under the direction of the mine bosses, are the parties who must assume the responsibility for every neglect in this respect. They can apply the remedy if they will, and no one else can. I cannot help it that mine bosses and miners take offense when they are told this truth, for so long as it is the undoubted truth it is my imperative duty to enunciate it, and they most submit to its cnunciation until they receive it as truth and act accordingly. I do not believe in covering up inexcusable neglect through cowardly silence.

\section*{THE OBJECT OF SPLITTING THE AIR-CURRENTS.}

In collieries where no explosive gas is generated, rery little is ever done to insure the benefit arising from a judicious system of separate air-currents, and this is neglected in a great measure undoubtedly becanse it is not considered necessary. The general impression seems to preiail that air-splitting is only necessary where large and dangerous volumes of gas are evolved, and that the only object in doing it is to reduce the power of an explosion when it occurs. The fact that dividing the air into distinct and separate currents very materially increases the aggregate quantity of it for the workings of a colliery is either lost sight of or seems to be considered of such slight importance as not to demand any attention. All who understand the subject know that by enlarging the area through which the air is conducted an increase in the quantity is attained, and that it passes at a reduced velocity, thus immensely reducing the friction or drag, and consequently the power required to move it ; and it is also known that the same result is obtained by judiciously multiplying the air courses for the air to travel. Formulas are given by experts in the science-by J. J. Atkinson, Fairley, and others-to demonstrate mathematically the utility of splitting the air into distinct and separate currents with a view of increasing its aggregate quantity, but I do not propose entering into an elaborate treatment of the subject at this time, as I only desire to call the attention of the proper parties to the matter, because I find it does not receive the attention that I think the importarce of the subject demands.

Another object in splitting the air is to reduce the power of explosions when they occur, and to confine the explosion to the split in which it occurs. This is certainly a rery important olject, and it is intended to be the main object. In the 9 th section of the act of March 3,1870 , we have the following provision: "And every mine having explosive gas in each and every part of such mine or mines shall be divided into two, four, or more panels or districts, each ventilated by a separate split or current of air, and fifty
persons shall be the greatest nmmber that shall work in any one panel or district at the same time." Now, this provision is very indefinite in many respects, and, in my opinion, the size of the district to be ventilated by each split shonld never be governed by the number of persons to be employed in it, but always by the quantity of gas generated therein, and other sanitary eonsiderations. Where a colliery, or any part of a colliery, is very fiery, if it is intended to divide the power of an explosion, or if it is intended to confine it to the district or current of air in which it oceurs, the number of persons employed there is certainly not the criterion to follow. There may be instances where a section of a colliery should be paneled off and ventilated separately in which not one person is employed, and I contend that no mine is safe where there are abandoned workings continually evolving large quantities of gas, and where this gas is allowed to aceumulate for want of ventilation to dilute it and sweep it out of the mines. Such a mine is not " free from standing gas," and yet it is certain that many such mines are to be found, and that many of the most disastrous explosions on record have resulted from this very thing. Oceans of gas are walled in in old workings systematically, and so long as this is permitted explosions will never cease.

But does splitting the air really lessen the power of an explosion? In so far as it insures an increase in the ventilation for a given quantity of gas it certainly does, but where each split is allowed to reach as near the explosive point as the single current was before splitting, then decidedly not; and as tending to confine or localize an explosion in one section of the mine it is a complete failure. The doors, air crossings, and stoppings, as they are universally built, are far from being firm and strong enough to withstand the foree even of a local explosion in any of the splits, and as long as collieries are operated with all the air currents so near the explosive point as to necessitate the universal use of safety lamps, it is very doubtful whether it is possible to build doors and stoppings strong enough to withstand an explosion. Air erossings, by driving them through the solid strata over or under the rein of coal, might possibly be made strong enough, and it may be possible to build stoppings even strong enough, but what about the doors? It is said that the strength of a chain is only equal to that of its weakest link, and the same prineiple is true in the matter under discussion. I am free to admit that I have never yet seen either doors, stoppings, or air bridges but would be easily blown away by an ordinary local explosion. The crossings, at best, are constructed partly of timber-frequently with timber floorings, and either timber or slight briek walls for sides-and the stoppings are of all kinds, from a common brattice of hemlock boards to a dry wall pointed with mortar, while the doors are all made of eanvas or wood. In ease of an explosion they are always blown away, and I doubt there being a single instance in the history of coal mining where they have answered the purpose of confining an explosion to one section of a fiery mine. Hence, the only way to insire the safety of the workmen in fiery
c lllieries is by providing a sufficient quantity of pure air in numerous eurrents coursing through the workings to keep the atmosphere far above the explosive point, so that explosions cannot occur. Let the ventilation be divided into as many eurrents as circumstances will permit, but we should never rely on this to prevent explosions.

\section*{dRags on cars in slopes.}

Considerable discussion has been had throughout this district during last year, on this drag question. Some very readily acknowledge that drags ought to be attached to all cars in slopes, and admit that they would act as safety-catches for the protection of the employés at the bottom, and that they would pay for themselves many times over in a short time, in preventing cars being destroyed by runaways. Others acknowledge the need of them, but contend that one drag attached to the coupling of the last or hind car of a trip will answer the purpose; and a respectable num ber have adopted this kind of a drag, and have them now in use. These drags are double prongued, and must be put on by the footman as every trip is hoisted. These answer the purpose very well on slopes of slight grades, say from eight to ten degrees; but where the inclination is more than ten degrees there ought to be a drag on every ear in order to do the work efliectually. Still another class contend that they cannot be attached to mine ears, as they would interfere with the running of the cars so that they could not be used; that they would not answer the purpose intended if they were used; and that there are instances where they would be utterly worthless. It is asserted, for instanee, that the drags will not hold cars on slopes inclining at an angle of forty to forty-five degrees; that the most they would do in such a case would be to throw the cars from the track; and that on such steep slopes the cars would pitch and tumble to the bottom about as rapidly as if they remained on the track. But this can be true only where the head-room is so high that the ears would go over the drags. Where the height from the thill to the roof is only a trifle greater than the height of a car, the drag would lift the car against the roof and hold it there, no matter what the angle of the slope may be. The drag has been in constant use in the Mount Pleasant slope, Hyde Park, for the last twenty-three years, and they have proved to be a grand success. This slope dips at an angle of thirty degrees, and I have seen a trip of three cars pinned against the roof, and held there by the drags, as shown on the accompanying plan. The rope parted with a trip of four loarled cars there only a few days ago, and the drags held the ears secure, and have never failed to do the work. And there are no slopes in this district where they would not work equally as well.

There are a few who oppose their introduction because they cannot be used on self-acting planes, or that they will not stop empty ears running away; but they are not intended for that, and every intelligent man knows that the danger of a rope parting with an empty trip, or even with a loaded trip, when being lowered down an incline, is nothing compared to that from

hoisting. It is true that ropes sometimes do umaccountably break when an empty trip is being lowered, or when a loaled trip is being lowered on a self-acting plane; but such cases are very rare, while ropes breaking from hoisting are of frequent occurrence. It is assertecl, also by this class, that in lowering trips the drags sometimes drop from their fastenings and throw the cars off, or stop, them on the slope. Now, there may be isolated instances where this has occurred, but the only damage done in such a case, at the worst, would be a few minutes' delay. Evidently those who advance such arguments as these must be extremely hard pressed for tenable ground to stand on. Their theory seems to be that becanse we cannot prevent every accident, then no attempt should be maile to prevent any. But I am positive that there is no necessity for this; last thing to happen. If the hooks are properly made, and if the drag is properly hung on the hook, it will not become detached as asserted.

The only cases in which these drags will not act effectually as safetyeatches, is where the head-room, from thill to roof, on steep slopes, is too high for the length of the drag to reach, and perhaps where carriages are used. This objection has force, so far as such slopes are concerned, but it is not valid against their introduction where it is known they will serve the purpose intended. Let some of our mechanical geniuses devise some other means to provide for these steep, high-roofed slopes, and for slope earriages, and let us have drags where they will answer the purpose, or let some one suggest something better than the drag.

Another objection advanced against them, is their cost. Now this is a very small item, and camot amount to more than about two dollars per car for the iron, and work in making and putting them on, and I will repeat that they will pay for themselves in a very short time in saving cars from destruction. The assumption that they interfere with the running of the cars, or that they are in any manner in the way, or dangerous, is so absurd on its face that none but the ignorant will make the assertion. I would finally recommend all to visit the Mt. Pleasant slope, where these drags can be seen in operation, and I have no doubt the superintendents there will be glad to explain away every objection to their use.

\section*{The Butler Mine Fire.}

The Butler mine fire, I am happy to state, is the only mine fire in my district, and it is safe to say, I think, that this fire is under perfect control, and must exhaust itself within its present houndary. So far as surface indications show, it remains much as it was one year ago, except, perhaps, the location where it began and north of that point, where it is grown cooler. In the open cut the snow lies without melting, showing that it has exhausted itself at that point also. Owing to the tunnel caving in about a year ago, it is accessible only in part. Here there are signs of combustion-heat and gas-but the superintendent feels very confident that the tumel is a suceess, and that the further spread of the fire i checked. This is the only point where there can be any doubt about the check of the fire, and this s!ıould be diligently watchect.

The situation in the workings beneath the fire in the Marcy vein is also improved. In my last report I mentioned the sinking of air-shafts near the face of the workings in the lower vein. These have since been enlarged, and two additional air-shafts have been sunk above the ont-crop of the Pittston vein, which is on fire; and the aggregate area of the in-take for air now equals three hundred and twenty square feet, and the outlet or upcasts equal two hundred and eighty-five square feet, and the displacement of air in Norember last was three hundred and ten thousand cubie feet per minute. During the warm weather in summer, the air-currents were not so strong, and it was deemed adrisable to move the fan from the main shaft to one of the air-shafts, to which steam was conducted through pipes for two thonsand feet. This was a material improvement, and S. B. Bennett, esquire, the efficient superintendent, is entitled to great credit for his untiring energy and cheerful readiness to do all in his power to make the workings of the Marey vein comfortable for his men to work in. The displacement of so large a volume of air has had very good effect in reducing the temperature of the workings in the Marcy vein, and no inconvenience is now felt, except that some of the men complain of the cold! At one time in the summer, the upper lift, although above the fire, become so heated on account of not air, that ten chambers were temporarily stopped. Having coal accessible elsewhere, this, however, was no inconvenience.

On account of irregular grades of the inside mine roads, and consequent delays in moving the coal to the shaft, it is purposed to drive a tunnel from a point at the face of the present workings out to the surface, and next spring to lay a surface track for mine cars from the tumel to the breaker. The tunnel will be about two hundred feet long, six and a half feet high by seven wide, and this, when finished, will form another inlet for air.

\section*{Collleries Worked Into One Another.}

In riew of the many fires that are raging in the coal mines of the anthracite coal field, I think it is high time to stop the practice of working collieries indiscriminately through into each other. A good, strong, continious, and umbroken pillar of coal should be left on the dividing lines between all collieries, so that in case of a fire, a mine may be flooded at once without interfering with the working of adjoining mines. As it is now, there are collieries that cannot be flooded without inundating as many as a half dozen others, and all because there is no barrier left between them to hold the water. And it must be aduitted that this is the rule and not an exceptional ease. Instead of continning to work on this system, not only should the line between collieries be left intact, but the successire lifts in the same colliery ought to be kept distinct and separate as far as possible. The coal thas left can be all won when the colliery is being finally abandoned. I am firmly convinced that a change is very much needed in this respect all through the coal region, and perhaps it is more necessary as a safeguard against fire in the pitch veins than in the flat or horizontal. But there is another danger threatening the flat veins that is not so eommon to
the other class. Take our collieries in the Lackawanna and Wyoming valleys; there are many of them that are now working under the beds of the Lackawanna and Susquehanna rivers, and in the near future the number will undoubtedly be greatly multiplied; and there is every reason to fear that, sooner or later, caves will ocenr, which will cause the bottom of these divers to drop out and inundate the workings beneath their beds, and all workings adjoining them. In such a case, under the present system of working collieries through indiscriminately into one another, there is no possibility of preventing all of them being inundated.

About the only objections that are made against the change recommended is, that it would rednce the number of modes of egress in case of an accident requiring the use of such, and that it would prevent the passage of air from one colliery to the other, and that the coal thus left would be lost. But, as I have already intimated, the coal need not be lost, nor is it necessary to work down so fine as to close all connection between the collieries. Narrow openings can be driven throngh at the most convenient points, but have them in such shape that they can be firmly closed, if necessary, in a few minutes' time. 'This can be easily done, and the opening made strong enough to withstand an ocean of water in case of sudden flooding, or where flooding becomes necessary in order to extinguish fires. But, it is said that such a system of working would interfere with the passage of air from one colliery to another. Yes, it would effectually put an end to the objectionable practice of ventilating collieries consecutively with one continuous current of air, for there would be no openings to admit its passage ; but instead of being an evil, this would be an improvement that is greatly needed. Every colliery would then have to be provided with pure air in place of the noxious and poisonons return air of its neighbor, and the sooner the change is made the better will it be for the health of the workmen.

There are collieries in this district that are in danger of being inundated as above stated, and my object in referring to the matter is to sound the alarm in time. If I had time I could name the collieries which are now exposed to this danger and explain their connections with other collieries adjoining, but I must be satisfied with simply calling attention to the matter in this hurried manner, trusting that no more is necessary.

\section*{New Colliery Improvements.}

A number of new shafts have been sunk and other shafts and slopes extended to lower veins, and new breakers built during the year. Some of these were commenced in 1879 and were completed in 1880, while others were only commenced last year and are not yet finished. It will be seen from these improvements that the companies and operators are prepared for any increase that may come in the demand for coal.

No. 1, Barnux's Shaft.-This shaft was briefly noticed in my report for 1879 , and no description of the shaft is at present needed. The first vein of coal worked is the "Checker rein," which is one hundred and twentyseven feet from the surface to the hottom of the coal. The marketable coal
in the rein is from six to eight feet in thickness, the coal being short-grained but of good quality. One heading has been driven east and another running west from the shaft, with air-ways running parallel to each, and each heading is driven a distance of seven hundred feet. The general course of the headings is about south seventy degrees west and north serenty degrees east. There are also two parallel headings or air-ways rurming from the east side of the shaft to connect with the No. 2 shaft, which is the second opening, a distance of seven hundred feet away. The inclination of the strata is irregular, running from dead level to an angle of thirteen degrees, and the course of the inclination is about sonth twenty degrees east. The shaft is down in a basin and the coal will therefore rise also in going northwest. The rein as yet makes but little water and but little earbureted hydrogen gas.

The second vein now being worked in this shaft is the Big vein, which is at this point from seven to nine feet thick. This coal is long-grained, clear, and of excellent quality. Two headings have been driven in this vein, also in the same gencral direction as those in the rein above, for about five hundred feet each way, with parallel air-ways, and a connection has also been made with the second opening, and the inclination of the strata is in every respect about the same as in the rein above. A heading and air-way have been driven north from the heading on the east side of the shaft in this vein for about two hundred and fifty feet for the purpose of testing the inclination of the strata in that direction which was found to range from dead level to four degrees. There is but little water as yet, but there is considerable carbureted hydrogen gas evolved. The ventilation is produced by an exhaust fan, 17.5 feet diameter and five feet face, and is run by a twenty-five horse-power horizontal engine. The pumping is done by a forty horse-power engine and two fifteen inch Plunger pumps.

The coal is hoisted by two forty horse-power engines, one of which is used to hoist from the upper and the other to hoist from the lower vein There are five boilers, thirty-six feet in length and thirty inches diameter to provide steam, and a place ready for five more in the boiler-room when they shall be found necessary. The breaker engine is forty horse-power, and the machinery in the breaker consists of one set of large breaker rolls, two sets of pony rolls, and twenty revolving screens for the preparation of all sizes of coal from grate to buckwheat. The breaker is excellently arranged for the cleaning of coal, having ample room for picking the coal near the top of the breaker before it enters the sereens. The breaker is eighty feet high from the level of railroad track under the chates to the mine track on top, and the distance from the shaft to the angle at the head of the breaker is about one hundred and eighty fect. The eapacity of the breaker is from one thousand to one thousand two hmudred tons per day. Everything alrout the breaker is now nearly finished, but it is not intended to run it until next spring.

No. 2, Barnum's Shaft.-This shaft is eight humdred feet away from No. I shaft, and is the second opening for the latter. It is twenty-one feet in
length and ten feet wide, and is divided into spaces as follows: Two earriage ways, six feet each, and an upeast air space, eight by ten feet. The depth to the bottom of the seven feet vein is one hundred and fifty-one feet. The marketable coal at this point is seven feet thick, of good quality, and but little slate or bony coal in the vein. But little work has been done here as yet. The headings and air-ways are driven only about fifty yards from the foot of the shaft in either direction. It is connected with No. 1 shaft by the heading and air-way driven from the latter, as already stated.

The Big vein, or that known as the "Fourteen Feet" vein, is the lowest yet reached in this shaft also. The headings have heen driven about fifty yards as in the upper vein. The shaft is down in a small basin or swamp, and is abont nine feet lower than the highest point between it and No. 1. They have also encountered a seeond sinall basin on the sontheast side, but they have driven through it to the rise on the opposite side, and by ripping some roof will have a good level road.

The coal is hoisted here by a forty horse-power engine, with three boilers of the usual dimensiens to provide steam. The water is disposed of by a small donkey pump, which shows that the water is not heary. There is some gas here also ; and the ventilation is produced, as yet, by the fan at No. 1 shaft. I am assured, however, that a fan will be immediately provided for this shaft similar in all respects to the one at the other shaft, which will enable them to reutilate the workings of each separately, as they should be.

The surface landing at this shaft is about eighty-five feet higher than the top of No. 1, and the coal will be taken to the top of the breaker over high trestling, as the breaker is intended to dispose of the coal mined in both shafts. Nothing but headings and air-ways have yet been driven in either shaft, but there are ninety-three men and bors employed there already, and the coal mined last year amomnted to 30,316 tons.

Mosier Colliery.-This is a new shaft sunk by the Butler Colliery Company, under the supervision of S. B. Bennett, Esquire, the efficient superintendent of the Butler colliery. It is located on fifty-six acres of land owned by D. D. Mosier, Esquire, Hughestown borough, and lies north of No. 8 and No. 10 shafts of the Pemsylvania Coal Company, into whose workings a second opening will be made. Shaft is sunk throngh the Big rein to the bottom of the Marcy vein, a total depth of one hundred and seventy feet. The size is ten and a half by seventeen feet, which is divided into two hoisting ways and an upeast for air, the latter having an area of about sixty square feet-just about half what it should be. The pumping is to be done by a large Knowles' pattern plunger pump, the column pipe to be put in one corner of the upeast, which is another objectionable feature as regards the provision for ventilation, which is to be produced by a fan not yet constructed.

Ground was broken in sinking on \(\Lambda\) pril 29 , and the sinking was completed September 25, 1830. There was first forty feet of fine sand, and then good rock to the Fourteen Feet vein, and from thence sixty-five feet of very hard
rock to the Marcy vein. The sinking below the Big vein was done with In gersoll's rock drills, and giant powder fired by electric battery. No headings have yet been driven except about the foot of the shaft, and what coal has been mined was hoisted to the surface with the bncket used in sinking. The Marcy vein at this point is eight feet thick, and the quality of the coal is good.

The hoisting engine is forty-horse power ; diameter of drum cight feet, geared, four to one. The breaker engine is also forty-horse power, and the machinery consists of a set of large rolls, one main screen, and pony and pea coal screen, and pony rolls and screens. All the machinery was furnished by Messis. Wisner and Strung, Pittston, excepting the pump, and is of good workmanship. The pump is on hand but is not set, nor will it be before spring; the one now in use, a No. 6 Knowles, clisposes of the water without any trouble.

The sinking of the shaft and building of the breaker was successfully completed withont any accident, under the direction of Mr. Bennett. The colliery is delayed in its operation, waiting for the building of an extension of the Heidelberg branch of the Lehigh Valley road to take away its coal. The capacity of the breaker will be about three hundred and fifty tons per day.

Heidelberg Shaft.-This is a new shaft, sunk by the Lehigh Talley Railroad Company, on a large tract of land owned by them, adjoining the Butier colliery, in Pittston township. The shaft is forty-two and a half feet long, by twelve and a half feet wide, and is three hundred and fifty feet in depth, reaching the lowest vein of coal in the Wyoming basin. At the depth of seventy-five feet, the Big rein was struck, fifteen feet in thickness; and at a depth of one hundred and twenty-five feet, the Marcy or Clark vein was penetrated, ten feet in thickness-both of these veins are said to be in fine condition, and the coal of an excellent quality. At the depth of one hundred and seventy-five feet, and two hundred and fifty feet, they cut two small veins, unpromising at the shaft, but proving better at other points, indicating that they may be workable. The shaft is intended for two pairs of carriages to the lower of these two small veins, (two hundred and fifty feet, ) thence to the bottom, one pair. There is an upeast apartment extending the whole depth of the shaft having an area of one hundred square feet, and upon this it is purposed to erect a good large fan to provide ventilation for the workings in all the veins. With such an upeast and with a firstclass fan, the ventilation of the mines is amply assured. No explosive gas has been developed yet, nor is there very much water, though it is expected that considerable water will be met as the workings extend, and circumstances will determine whether steam or Bull pumps will be used.

The second opening is a slope driven across the measures at an angle of twenty-five degrees, and to be connected through each rein with the shaft. The total length of the slope will be over four hundred feet; it will be used also for a traveling way, and it is of such width, (being fourteen feet,) that
if needed at any time, they can, by building a strong partition, eut off a hoisting way in the slope withont interfering with its safety as a traveling way.

The plans for hoisting and breaker engines and other necessary machinery are not yet fully completed, but I am assured by Fred. Mercur, Esq., the general superintendent of the Lehigh Valley company, that this new colliery shall not bring discredit on my district., From the reputation of the company and that of Mr. Mercur, I have no fear but the colliery will be first class in all its parts when completed. My present understanding is, that the old Heidelberg breaker will be fitted up with improved machinery, and that the coal will be rum on the surface from the shaft to this breaker for preparation for market. The shifft and slope have been sunk without a single accident, which is very gratifying.

Greenwood Sifaft.-In my report for 1879 I mentioned that the Pennsylvania Anthracite Coal Company proposed sinking a shaft at the Greenwood colliery, in Lackawanna township. They commenced sinking the shaft in January and suspended work on it in July, 1880, after sinking it one hundred feet deep, leaving thirty-five fect yet to go to strike what is known as the No. 4 vein. The shaft is eleven by twenty-eight feet, and the cause of its abandonment is not known outside of the parties in charge. It is my humble opinion that it was a great mistake to put a shaft down where this is located, for the great body of the coal lays to the dip from the shaft. Two shafts should have been sunk at the lowest practicable point on the property, near the breakers, which would open up the whole property at once and put it in good shape. But it is to be presumed that those in charge have reasons which are satisfactory to them for locating the shaft where it is, and it may not be justifiable to doubt their wisdom. I eertainly do not desire to interfere with their affairs in any manner, but I would like to see the company prosper. It is not known when the sinking of the shaft will be resumed.

New Twin Shaft.-This new shaft is located close to the junction of the Lackawanna and Bloomsburg and Lehigh Valley railroads at Pittston, and sunk by the Pittston Coal Company. It has an area of one hundred and forty (140) square feet which is to be divided into two equal sized hoisting ways, and the shaft is two hundred and nineteen (219) feet deep to the loottom of the "Marcy" or "Clark" vein. This will he hereafter thíe main shaft and the downeast for ventilation. the old shaft being the upeast upon which it is proposed to erect a good sized fan in place of the small one now in use. The old shaft will also be the second opening and is already in communication with the new shaft. The coal at this point is from four and a half to five feet thick and of excellent quality, free from slate and bone. There are one hundred and forty-five acres to be worked, and a large part of the land, judging from adjacent collicries, is underlaid with coal of an average thickness of ten feet. The fourteen feet and seren feet veins have been exhausted through the old shaft. From a point near the foot of the
new shaft a slope has been driven two hundred and ten (210) feet through the coal into the bottom of a basin, and at the foot of this slope there is a splendid passing branch one hundred yards long. A fourteen by twentyfour inch engine will be used to hoist the coal up the slope. The present superintendent, George W. Cooper, Esq., does not apprehend any trouble from water or gas, but I am of opinion that considerable gas will be displaced in the working of this vein, and that it will require good rentilation to dilute and dispose of it so as to avert explosions.

On the surface a complete new breaker has been built, with a capacity of four hundred tons per day. The machinery consists of a hoisting engine, \(18 \times 36\) inch cylinder, a \(14 \times 24\) inch breaker engine, a No. 8 Guild \& Garrison steam pump, set of rolls, a twenty feet main screen, and a ten feet comnter screen. For a breaker of its size and capacity, it is fitted up with all the modern conveniences for preparing and cleaning coal.

The work of sinking was commenced, under the superintendence of Charles Hiscock, Esq., March 28, 1880, and the coal was reached on July 12, same year, and I am glad to say, that no accident of any lind oceurred during the sinking, which is creditable to the workmen and to the superintendents. The aggregate cost of the sinking of the shaft and the new breaker is estimated at \(\$ 20,000\).

Jermyn's No. 4 Sifaft.-John Jermyn, Esq., on the 22d of November. effected a perpetual lease of nine hundred and seventy (970) acres of coal land from Messrs. Pancoast \& Price, Philadelphia. The land is located in Diekson borongh, and the surface, as well as the coal, is included in the lease. In accordance with the usual enterprise of Mr. Jermyn, he at once entered upon the land, and on the fourth day after the lease was signed, November 26, he commenced sinking, and at this writing, his shaft, which is twenty-six feet long and of the usual width, is down thirty-six feet through the worst kind of quicksand. There is five feet more of quicksand, ancl aboat seven feet of gravel to go through to the rock. It is purposed to sink this shaft to the Big rein, which is about three hondred and sixty (360) feet from the surface, that being the coal which will be first worked.

Another shaft, \(10 \times 18\) feet, will be immediately sunk, one hundred and twenty-five (125) yards away from the main shaft, for a second opening.

As the lease calls for two breakers on the property, coal will be hoisted through hoth shafts, and the two breakers will be erected, containing all the modern improvements in machinery, to clean the coal and prepare it for market. There will be a pair of \(24 \times 48\) direct acting engines for hoisting at the main shaft, and one \(16 \times 36\) breaker engine, witlo nine boilers thirty-six feet long by thirty-four inches diameter. The boiler-house will be large enough for twelve boilers, in ease that number is required. There will also be a pair of \(16 \times 30\) hoisting engines for the second opening, and an \(18 \times 22\) fan engine, to run a twenty feet diameter fin. There will be six boilers for generating steam at this shaft also. The pumping will be done in two lifts with four of Guild and Garrison's \(14 \times 24\) pmmps, two pumps in
each lift. A building thirty feet wide ly minety feet long is to contain the blacksmith, carpenter, and machine shops, and a \(9 \times 12\) engine will run the shops.

The above, of course, is only a rough outline of this new enterprise, which, before the close of another year, will be fully developed, and will be in full operation.

Storr's Shaft.-The Delaware, Lackawanna and Western Railroad Company having broken ground for a shaft at Dickson borough, which is to be ten by forty feet, and about three hundred feet deep to the Big or "G " rein. The company has a large territory to be developed here, which will require other shafts in the near future. The reason given by B. Inghes, Esq., for the large size of the shaft, is an excellent one, and it is recommended to the consideration of others who contemplates sinking. He says : "The reason of its being so long is, I want more area for our upeast. We find, generally, more friction in the upeast alone than in all the workings of the mine"

This company have alzo extended the Continental shaft and its air-shaft to the Clark vein, a distance of sixty-three feet below the Big or "G " rein. In sinking, another vein was penetrated, but it is not large enough to be workable at this point, but at other points it is workable. The Clark vein here is eleven feet thick, eight feet being clean coal of an excellent quality, better than any of the veins above it that have been developed at this shaft.

\section*{Prosecutions for Violation of Law.}

There were but tro eases prosecuted for violations of law in my district during the year, and both eases were pending at the close of 1870. As I hare always stated, this is the most unpleasant duty that devolves upon an inspector, and one that I would be glad to shirk, if I were not bound by a solemin oath to perform it. These cases were very effecting ones, for one of the parties was an unfortmate old gentleman, who has been fearfully burned by an explosion of gas, though that misfortune overtook him throngh his own heedlessness, to use the mildest term possible. He held the important position of mining boss in the No. 6 shaft, Jenkins township, under the Penusylvania Coal Company: The charges entered against him were for neglecting to "provide that all doors used in assisting, or in sny way affecting the rentilation of the mine, were so hung and adjusied as that they would close of their own accord, and could not stand open," and for neglecting to provide an attendant at a door. Because of this neglect a certain door was left open, and remained open throngly the night of October 29,1879 , whereby a large quantity of gas accumulated in a heading that the door was put to turn the air into, which was found by the fire boss on making his rombls the next morning. Considerable excitement was caused at the time ly finding of the gas there, and hecause of the door being left open, and search was made for the person who left the door open, and the guilt(?) was attached to a young man named Timothy Ford, who was laboring in one of the cross-headings. Ford was suspended from work as a pun-
ishment for leaving the door open, and he was informed that he would not be allowed to go to work until he got permission from the inspector. November 6, Ford called on me for my permission, saying that he was sent by William Reynolds, the mine boss of No. 6 shaft. After learning his rersion of the affair, I informed him that I had nothing to do with the matter of permitting or of prohibiting his working, as the inspector had no right to interfere with the hiring or discharging of men. However, under the circumstances, I deemed it to he my duty to visit the colliery and to enter into a thorongh investigation of the whole matter, and the following day, November 7 , I did so. On examining the door, I found that it was not so hung and adjusted as that it would close of its orm accord, and I also found that it was not " provided with an attendant, whose constant duty it is to guard " such doors, " and prevent their being left open."

The investigation disclosed, further, that John MeCartney, the fire boss, or assistant mine boss, had neglected to "go over the mine" on the evening of October 29th, after the workmen left the mine or colliery, and see that the doors of the passageways were all properly elosed, \&c. After due consideration, under a painful knowledge that neglect of this kind was becoming of common occurrence, I very reluctantly cansed the arrest of William Reynolds, the mine boss, and John McCartney, the fire boss, which was done December 13, 1879, and both were bound in \(\$ 500\) each to appear at comrt.

The cases came י for trial in the September term of last year, but owing, no doubt, to the compassion of the jury for Mr. Reynolds' bodily condition, through fearful burns he had suffered, as before stated, they rendered a ver. dict of not guilty, but the defendant to pay the costs. Being satisfied that Reynolds was unquestionably the most guilty of the two, I then cansed a nol. pros. to be entered in the case of John McCartney. The suits answered the purpose intended in a great measure, though no conviction was had. They cansed the mine bosses and fire bosses to exercise more care in obeying the law, and the result has therefore been satisfactory.

Several mine bosses held that because no accident oceurred through the accumulated neglect of these men they should not have been prosecuted, and I am under the impression that this idea had considerable influence in the jury box, but I cannot accept the idea as a safe one to practice. It has been my whole effort to prevent accidents by checking the reckless and criminal negligence that, sooner or later, inevitably lead to them. The object in all prosecutions is to warn others, and there is no desire on my part to have any person punished for any other purpose. How heartrending it would have been lad these prosecutions, been instituted in consequence of an explosion that might have resulted in the loss of a half dozen or more lives, or even one life. It would have been poor satisfaction, indeed, to prosecute muder such circumstances, and I pray that I may never have occasion to do so.

I was very much pleased at the excellent and lucid charge of his Honor. Charles E. Rice, I'. J., to the jury in the case, as he construed the law in
exact conformity with the riews I have always held. This is especially true in relation to the discretion claimed by mine bosses and others. I have always held that where the law provides that certain things shall be done that neither the mine boss nor the inspector nor anyone else has any diseretion in the matter, and Judge Rice has very forcibly explained the law in this respect, so that all controversy on the subject hereafter must cease. The charge is such good law that I deem it proper to insert it here for the bencfit of all parties concerned.

\section*{Ruarter Seanions of Luzarde County.}

\section*{Commonwealtil vs. Reynolds.}
1. "A mining boss has no discretion in the performance of the duties imposed on him by sections 8 and 9 of the mine ventilation law.
2. "He cannot say, in answer to an indictment for neglect of duty under section 9 , in not providing that a door was so hung as not to stand open, that the door was not necessary.
3. "The duty imposed on a mining boss cannot be delegated by him to another.
4. "But if the company took from his charge a particular portion of the mine and placed it in eharge of another, he would not be responsible for neglect of duty in that portion of the mine, although the company might be responsible in case of an accident.
5. "If the door was one affecting the ventilation, it is no answer to say that it was not necessary to the ventilation, or that no gas had accumulated in that part of the mine.
6. 'Whether a door is a 'main door' or 'check door' held to be a question of fact, but if tound to be a 'main' door the defendant could be convicted for not providing for it a constant attendant."

Charge by C. E. Rice, P. J:
"The defendant here is indicted for a violation of what is known as the mine rentilation law, passed in 1870, the history of which has been commented on by eounsel. As you all know, this important legislation was brought about by a great calamity, and was intended to work a raclical ehauge in the method of ventilating coal mines, and to secure safety to the men employed therein.
"By the seventh section of the act it is made the duty of the owners or agents of every coal mine or colliery to provide for every such coal mine or colliery an adequate amount of ventilation and sufficient apparatus to secure it throughout the mines. But in order to secure this ventilation and to insure against accidents, in addition to providing the best apparatus that can be secured, it is made the further duty of the agent or owner of the mine or colliery to employ an inside foreman, or person who is commonly called a mining boss, upon whom are imposed certain peremptory duties by the statute. These duties are to some extent recited in the section of the act which we have just read to you. (Sec. 8, act of March 3, 1870, P. L., 6; P. D., 1069.pl.8.) We say to you, with regard to these duties, because we 12 Mine Rep.
onght, as a court, to so express ourselves in construing this act of Assembly. that there can be no doubt as to what the duties of the mining boss are, and as to what discretion he has in performing them, that the statute makes these duties peremptory on the mining boss, and there is no discretion rested in him in the performance of them. By this we mean that he cannot say that the necessities of the particular mine or of the particular oceasion do not require him to perform things required of him by the statute. This statute is supposed to express the legislative wisdom of the State-to express what was mecessary and best to secure the proper rentilation of the mines and the security of the men who work under the ground, and we repeat, as a matter of law, that the mining boss must perform the duties imposed on him by the statute, and he has no right to set up his private judgment against that of the Legislatmre and to say that it is not necessary for him to perform them, or that he has power to perform them in som: other way. If he fails to perform them he is guilty of negligence, even though no accident occurs.
"Now, in the next section of the act it is provided that the mining boss shall provide 'that all doors used in assisting or in any way aftecting the ventilation of the mine shall be so bung and adjusted that they will close of their own accorl, and cannot stand lopen.' We say to you, gentlemen, that this is a positive duty imposed on the mining boss-one which the statute expressly ealls upon him to perform. He need go no further than the words of the act of Assembly. He need only inquire "What has the statute provided as to my duties in this regard?' The language is, 'He shall provide that all doors used in assisting or in any way affeeting the ventilation of the mine shall be so lung and adjusted that they will close of their own accord, and camot stand open.' As to this duty, we say to you, as we have said with regard to the duties prescribed in the preceding section, that if there is a door which is provided for such a purpose by the owners or operators of a mine, in carrying out his general duties, to which we have referred, the mining boss has no discretion as to what he shall do under this section.
"Again, gentlemen of the jury, it is a duty which is to be personally performed. He is to provide. He is to see that it is done. The statute does not necessarily imply that he shall make the door, or that he shall hang the door, but that the person upon whom this responsibility rests shall see that the door is so lhng that it will close of its own aceord. It is a duty which he cannot delegate to another.
" \(A\) gain, in this offense, of course, as in all others, the negleet of the duty must be a neglect of duty which the person knows to be mperformed. For example: If he has seen and provided that the dore has been properly lung, and through some mishap or other it gets out of orter in the interim while he is away from this portion of the mine engaged in his duties, and the fact does not come to his knowledge, then he conld not be held responsible for a criminal offense if he did not, during that interim, see that it was immediately repaired. But as soon as the knowledge does come to him
that the door is out of repair, then, gentlemen, it beeomes his immediate duty to provide that the door is plaecd in such a situation 'that it shall,' in the language of the act, ' close of its own accord.'
"Various other duties are imposed upon the mining boss, and upon other persons who are comnected with the mine. It is plainly provided, 'that the neglect or refusal of any person or party to perform the duties provided for and required to be performed by sections six, seven, eight, nine, and ten of this act, by the parties therein required to perform them, shall be taken and be deemed a misdemeanor by them, or either of them, \&ce. Now, it is meder that section that this indictment is bronght to your attention. The first inquiry which yon will make is: Was the door in question a door affecting the ventilation of the mine? I do not purpose to recite in detail the testimony of the witnesses upon this point. You will remember it as to why this door was placed there. It is alleged, on the part of the Commonwealth, that it was placed there after a report had been made by the fire boss, that gas had aceumulated or had been fonnd in this cross-heading, which has been spoken of by the witnesses; that the next morning a door was provided for that place in order to drive the air up into that crossheading. You will remember the testimony of the other witnesses as to what the purpose of the door was. Now we say to you, as matter of law upon this point, that if the Pemsylvania Coal Company had provided at that point a door for the purpose of sending the air up to this cross-heading and back again, for the purpose of atfecting or changing the rentilation of that portion of the mine, then the mining boss, in the performance of his duty, would not be anthorized or justified in neglecting the performance of the duty to which we have called your attention, under section ninth of the statute, upon the ground that, in his opinion, it was not necessary to have a door there. In other words, there being a door there, and it affecting the ventilation of the mine, it became then the imperative duty of the mining boss, under the statute, to see that that door was so hung that it would close of its own accord. If this were not so, if these duties, which are imposed upon the mining boss, upon the fire boss, upon the company, and the varions employés of the mine, can be considered discretionary in any case on their part, the statute would be a dead letter, becanse it could not be enforeed. We say to you, then, that if this door affeeted the rentilation, the mining boss would not be justified in saying that no accident had occurred, or that no gas had been foum there. The very oljeect of the statute, and the rery object of the system of rentilation which was provided by the statute, and which it was intended the law might enforce, was to present the accmmulation of gas.
"We come now to the main question of fact which is involved in this ease, namely : Was the defendent the mining boss of that portion of the mine where this door is said to have been located? 'This is a question of fact for you. It is alleged, on the part of the Commonwealth, that he was. It is alleged, on the part of the defendant, that he was not; that the charge
of that portion of the mine had been delegated by the company to Mr. Joplin, who was the mining boss of No. 2. You will remember the testimony of the witnesses for the Commonwealth and for the defense upon this point. It is apparently conflicting to some extent. It is your duty, however, to reconeile, if you can, the testimony of all the witnesses, so that it shall be consistent with their truthfulness. If you cannot thus reconcile it, you will pass upon the eredibility of the witnesses. In judging of the credibility of the wituesses, you can take into consideration the interest which the witness has in the case; any motive which he may have for varying from the truth; any bias for or against the Commonwealth or the defendant ; his conduct upon the witness stand; his frankness and his intelligence, and his opportunities of observation or knowledge. There are various methods by which juries can almost invariably arrive at the truthfulness of witnesses who give their testimony under the solemnity of an oath. We can only give you some general hints as to this point, as to whether or not the defendant had the responsible charge of this portion of the mine where the door was. Did he have charge of the working of the men at that point-the employment of the men, the paying of them? Did he have charge of the ventilation? Did he have charge of this door? That is, was he authorized, was it within the scope of his duties, or of his functions, according as his relations were with the company, to give directions in reference to this door? Did he have charge of the employment of those who were understood to have charge of the door? Did he have authority given him from the company to discharge those who should be gulty of negligence with regard to the door? You may take these circumstances into consideration in inquiring whether or not he was the man who, by express authority from the Pemssylvania Coal Company, had charge of that particular portion of the mines in the capacity of mining boss.
" Is to another feature of the case, we repeat what we have said in another connection : That if he bad these duties to perform, if he was so authorized by the company, he could not delegate them to another, even though the other was the mining boss of another mine of the same company. If, however, you shall find, from all the testimony in the case, that though Mr. Reynolds was the mining boss of slaft No. 6, and that this portion of the mine where this door was, belonged properly to shaft No. 6 , but that the company had taken the eare and responsibility and management of that portion of the mine from him, then he eould not be convieted, though the company might, in case of aceident, have been responsible. In other words, if you find that though he was nominally the mining hoss of shaft No. 6, though you find that this portion belonged to that partieular mine, yet if the care and management of that particular portion of tlee mine had been taken away from him by the company, then he could not be held responsible in this case.
"The sceond comnt in the indictment, charges the defendant with having neglected to comply with this provision of the statute: "He shall see that
all main doors shall be provided with an attendant, whose constant duty shall be to guard them, and prevent them being left open.' Whether or not this was a main door or a check door, is almost purely a question of fact, about which there is conflict of testimony. If youn conclude that it was a main door, then you will inquire whether or not there was provided for it a person whose constant duty it should be to guard it, and prevent it being left open. If you should find that it was a main door, and if you should find, under the instruetions we have given you, that the duty of seeing that the door was properly humg and properly taken eare of under the mine ventilation aet, devolved upon this defendant. And if you find further, that he had not provided a person whose constant duty it was to see that it was kept shut, he may be convieted as he stands charged in the seoond eount of the indietment. If, however, this was not a main door, then lie cannot be convieted as he stands charged in the second count of the indietment.
"In case you find the defendant guilty, you will have nothing to say about the costs. In ease you find him not guilty, you may say whether the defendant, the prosecutor, or the county shall pay the costs, or you may divide the eosts hetween the prosecutor and defendant in such proportions as you deem proper. In this connection, however, it is proper for me to say that the prosecutor is a person acting in an official eapacity: He is the mine inspector of the Eastern district, whose duty it is to see that the rentilation law is earried out. If in good faith he has brought this prosecution, and there was probable canse for bringing it here, he is to be commended, and it wonld be very unjust to impose any portion of the costs upon him, even though the prosecution should fail."
I will only add that Reynolds did assume the eharge of that portion of the mine on every visit I ever made there. His fire boss went there to examine the place mornings and evenings. His carpenter, assisted by his fire boss, by his order hung the door there on a morning following the finding of gas in the cross-heading. He claimed to have ordered a driver, John Gannon, to see that the door was kept shut, and he elaimed that he allowed Gannon extra pay for attending to the door. He suspended Timothy Ford for the alleged negligence of leaving the door open. He went with me when I entered the place to investigate the trouble, and there elaimed that he had charge of the place, and never intimated that any one else had anything to do with it. And even on the trial, all the charge in detail said to have been delegated to Henry Joplin, the mining boss of No. 2 slope, was that he was to give the miners driving the cross-headings the point of the compass in which they were to drive. And yet the jury could not understand that he was the mining loss who had charge of that cloor:

The question raised as to whether the door was a main or check door was so absurd, that it is strange that intelligent men should raise it. No expert in the whole anthracite coal field would hesitate for a moment to pronounce the door a main door. If it was not, then there are no main doors to be found anywhere in our coal mines. As to the importance of
this particular door, the fact that William Reynolds, the mining boss, suspended Timothy Ford for the alleged offense of leaving it open, demonstrates very foreibly that Reynolds, at least, thonght the door important up to the time the prosecution was instituted against him. I am of the same opinion still, and I am very positive in the opinion that many accidents from explosions of gas oceur just through such eriminal negligence as this ease arose from. I have the satisfaction of having done my duty in the premises, without any but the kindest consideration for the defendant.

\section*{Treatment of Injured Persons at the Mines.}

There is no doubt bat many persons after receiving serious injuries have been pitifnlly neglected and misused at the mines and in being removed to their homes. This is not done, certainly, intentionally, but through ignorance and inexperience. I therefore submit that every mine official, inside and on the surface, should inform himself as to how a person injured should be treated and handled. And the mine oflicials, so qualified, should take the entire charge of the sufferer until he is put under the care of a surgeon or physician. They should never leave an injured person in charge of friends or relatives at the mines, for the latter in most cases are too excited to act disereetly, and do more harm than good. There are many cases where, if the right thing was done immediately, serious consequences would be arerted. Being so firmly convinced of this, I have deemed it proper to lay down a few simple directions how to proceed in the matter under considerstion, and it is proper for me to say that I am advised as to the following rules by W. E. Allen, M. D., Hyde Park, one of our most successful surgeons in the treatment of wounds and fractures receiverl in the mines.
1. There should always be kept in readiness at the nost eonvenient place a stretcher, a quantity of limewater and linseed oil, a number of cotton batts, a quantity of bandages, rolled, ready to be applied, a pound of Monsell's salt or subsulphate of iron, a bottle of brandy, and some surgeon's sponges.
2. In case of hemorrhage from a wound, if the blood flows in a continuous strean, and is dark or not very bright in color, it proceeds from a vein, and a ligature made by a knotted handkerehief must be applied tightly below the wound or between the wound and the extremity. If, on the other hand, the llood comes by jerks, and it is bright red, it proceeds from an artery, and the ligature must be applied above, or between the wound and the heartIn either ease, after the ligature has been applied, the wound should be filled with the "Monsell's salt," eovered with cotton, and bandaged.
3. In case of fracture of leg or arm, the limb should be put as nearly as possible in position and supported by eotton batts.
4. In injuries of the head, the womed should he carefully sponged with cold water, and, if there is much bleeding, the "Monsell's salt" should be applied with cotton. In all these eases the sufferer should be carried home on the stretcher, if the distance is not too great, while a messenger las gone for a surgeon.
4. In case of burns from explosions of fire-damp or powder, the linseed
oil and lime water should be applied at once with a sufficient quantity of cotton batting to exclude the air. If the man is weak, suffering from the shock, an ounce of whiskey should be given.

In case of suffocation from " Black damp," the person should be brought to the air immediately and cold water applied by dashing in the face and slapping the chest with a wet towel. If the person be apparently breathless the attempt to restore respiration must be made by pressing with both hands, first on the chest, then on the belly, alternately, thus forcing the air into the lungs. This should be continued until the arrival of the physician, who should be sent for as soon as the accident is discovered. In these cases the persons should not be sent home, but must be treated on the spot And in any case of accident where serious results are feared, the sufferer should be taken into a warm room at the mines and a physician should be provided as soon as possible to attend him and to direct his removal to his home. This is especially necessary where the distance is great to the home of the sufferer and the weather unpropitious. If such a building was had at each colliery as is required by the sixth section of the mine law, and if such building was kept in the condition that the law requires. it could be used to receive serionsly injured persons at the mines until they had recovered from the shock and until they had become in a proper condition to be removed under the direction of a physician.

By observing these brief and simple rules much suffering may be avoided and in many instances life may be sayed.

TABLE NO. I.- A list of accidents resulting in death in the Eastern District of the Pennsylvania, with remarks on the cause of each accident, as shown by
\begin{tabular}{l|l|l|l|l|l|l|l|l|l}
\hline \hline
\end{tabular}

Wyoming Coal Ficld lying east of and including Jenkins township, Luzcrne county, the investigation of the inspector, for the year ending December 31, 1880.

Remarks on the causes of the Accidents.

Killed by being erushed between a mine car and close pillar; door boy away from hls door,
Killed instantly by a fall of roof, cansed by robbing pllars and swant of care,

Killed instantly by a fall of roof "immediately after firlng a blast," killed instantly by fall of roof
Killed by falling from the bucket, a distance of about seventy feet as he was ascemling the shaft,
Killed instantly by a fall of roof "immedlately after firing a blast, ,
Killed by being crashed by mine cars, caused by a mule team running away down a run,

Killed instantly hy a fall of top coal nnder which he was working out a stub of a blast,
Killed almost instantly by a fall of roof, caused by neglect to restand a prop discharged by blast,

Fatally Injured by an explosion of a cartridge of powder which he was ramming into a hole with the butt end of a drill; dled from his injuries May 21,
Killed instantly by a fall of roof throngh the neglect of his father with whom he was worklng,

Fatally injured by a fall of roof; died on Jnne 7,
Filled by a fall of top coal,
Killed instantly, skull fractured, bỳ a fall of bony coal,

Burned to death hy his clothing, which was saturated with a mixture of inflammable oils, taking fire from hls lamp,
Killed Instantly by being crushed by a large screen upon which he had fallen,

Killed instantly by a fall of bony coal through the neglect of the mlner, Perer Munley,
Fatally injured by a fall of bong coal "lmmediately after firing a blast; tled the same day
Killed instantly by a fall of roof,

Fatally injured by belng erushed in cog wheels of pony screen in the breaker
\{Both of these men were lustantly killed by fall of roof. Slaven \} was stone bilnd and should not have been employed in the mines, nor should Dongherty, as he was a helpless eripple, .
Fatally injured by a fall of top coal; dled on the 30th,
Killed lustautly by a fall of roof, entirely through his own reeklessness,
Killed instantly by a blast to which he returned too soon, .... .

Killed almost instantly by a fall of top coal from under which he was chopping out a prop,


TABLE NO. I.-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DATE. &  & Names of Persous kllled. & - & 家 & \(\stackrel{\text { ¢ }}{\stackrel{\circ}{z}}\) & Names of the Collieries. & L ocation of the collieries. \\
\hline Oct. 15 & 26 & Johu Wisce, . & 49 & 1 & 4 & No. 10 shaft, . . . & Hughestown borough, . \\
\hline Nov. 5 & 27
28 & James Compton, D. 11. Stevens, . . & \[
\begin{aligned}
& 37 \\
& 32
\end{aligned}
\] & 1 & \(\cdots\) & Hycle Park shaft, Green Ridge slope, . & Hyde l'ark, Scranton city Dunmore borough, \\
\hline 22 & 29 & Whllam Mason, & 15 & . & \(\cdots\) & Eddy Creek shaft, . & Olyphant borough, ... \\
\hline 23 & 30 & Patrick Keating, . & 38 & 1 & 2 & Sloau shaft, & Lackawanna townslılp, . \\
\hline 25 & 31 & Jannes Merrigan, - & 14 & . . & . . & Eaton collitery, & Archbald borough, ... \\
\hline 26 & 32 & Anthony Bradley, . & 43 & 1 & 2 & Vou Storeh slope, . & Provideuce, Scranton city \\
\hline 29 & 33 & Johu C. Nealou, . . & 56 & 1 & 7 & Eddy Creek shaft, . & Olyphant borough, ... \\
\hline \[
\text { Dec. } \begin{array}{r}
13 \\
25 \\
29
\end{array}
\] & \[
\begin{aligned}
& 34 \\
& 35 \\
& 36
\end{aligned}
\] & Peter Wilson, Patrick Dearlng, Mlehael Murphy, & \[
\begin{aligned}
& 58 \\
& 22 \\
& 53
\end{aligned}
\] & \(\cdots\) & \({ }_{6}^{6}\) & No. 12 shaft. Brennan colliery, . . White Oak colllery, & Pleasant Valley borough, Fell townsbip. Archibald borough, .... \\
\hline \multicolumn{4}{|r|}{Total widows aud orphans, . . . .} & 25 & 83 & & \\
\hline
\end{tabular}

Continued.

Remarks on the causes of the Accldents.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline &  &  &  &  & & &  & & \\
\hline Killed instantly by a fall of roof "immediately after firing a blast," returned to the face too soon, & & 1 & & & & & & & 1 \\
\hline & & 2 & & & & & & & 2 \\
\hline & & 1 & & & & & & & 1 \\
\hline Fatally injured by a fall of roof, immediately after firlng a blast; died same day, & & 1 & & & & & & & 1 \\
\hline Killed by falling under a trip of loaded mine cars at the foot of a run whiteh crushed him to death, & & & & 1 & & & & & 1 \\
\hline Fatally injured liy a fall of root: died on the 30th, . . . . & & 1 & & & & & & & 1 \\
\hline Skull fractured by being crusked between big cars and bottom of the chute at the breaker; died on the 27 th, & & & & & & & 1 & & \\
\hline Killed almost instantly by a fall of roof, . . . . . . . . . . . . & & 1 & & & & & & & \\
\hline Killed instanty by a premature explosion of a blast, & & & & & 1 & & & & 1 \\
\hline & & 4 & & 1 & 1 & & 1 & & 7 \\
\hline Killed instantly by a fall of roof throngh his own earelessness, & & 1 & & & & & & & 1 \\
\hline Fatally injured by a fall of roof; died the following day, \({ }_{\text {Killed }}\) instantly by being crushed between a mine car and a pillar, & & 1 & & 1 & & & & & 1 \\
\hline & & 2 & & 1 & & & & & 3 \\
\hline Total fatal acefleuts, & & 25 & 1 & 4 & 3 & 1 & 3 & & 37 \\
\hline
\end{tabular}

TABLE NO. II.- A list of serious, but non-fatal accidents in the Eustern District of county, Pu., with remarks on the cause of each acciclent, as shown by the
\begin{tabular}{l|l|l|l|l|l|l|l|l}
\hline \hline
\end{tabular}
the Wyoming Coal Field, lying east of and including Jenkins township, Luzerne investigations of the Inspector, for the year ending December 31, 1880.

Remarks on Extent of Iujury and Cause of Accidents.

Foot mashed by being erushed In pinlon wheels to the main sereen in the breaker
Arm fractured by falling off a scaftold or wooden horse whlle miulng
Arm badly fractured by falling under a mine car, having lost his light,
Two tingers cut off by falling along side of a mine car, his hand getting under the wheels,
A rin fraetured by falling while running away from a blast,
Severely injured in the loins by being erushed between a mine car and door-frame,
Small bone of his leg fractnred above the ankle by a fall of roof,

Finger taken off under wheels of a mine ear,
Leg fractured above the knee by being crushed by a culm car at foot of plane, outsile,
Four tecth kleked ont by a mule,
Stomaeb seriously injured by a klek from a mule,
Chest and sides severely injured by a fall of rool,
Ley and two rins fractured and back injured by a fall of coal,
Leg fractured above the knee and back Injured by being crushed by mine cars,
Head anl shoullers severely injured by being erushed between a mine ear and a prop
Shoulders and body badly injured by being erushed by mine cars under which be fell, .

Serlously injured by being kicked lin the abdomen by a mule, . .
Collar-bone fractured by being erushed by mine car,
Back badly lujured by being croshed between the carriage and buntons in the shait-narrow escape from death,
Leg iractured by big cars under the chutes at the breaker. IIad no busituess around the ears

Arm fractured by being crusined between a mine car and pillar,
Head and arm badly cut and bruised by coal flying from a premature blast,
Leg fracilled by a fall of roof,
Hand severely crushed between a mine car and a prop-one finger ent oft,
Back and side severely injured by being ernshed by mine cars, under which he fell.
Shoulder, side, and arm eut and bruised by a fall of top coal, . . .
Leg iractured by a fall of top coal. Thomas MeLaughin was killed by the same fall,
Leg fractured above the knee by being crusised by a minc car, under which he lell.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  & Falling down shafts. &  &  & Miscellaneous. & \[
\begin{aligned}
& \dot{8} \\
& \text { © } \\
& \text { E } \\
& \text { E } \\
& \text { n } \\
& \text { g } \\
& 0
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { n } \\
& \stackrel{y}{3} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \dot{4}
\end{aligned}
\] \\
\hline . & . & & & & . & 1 & 1 & 1 \\
\hline & . & & . & & 1 & . & 1 & 2 \\
\hline & - . & & 1 & & & . & 1 & 3 \\
\hline \(\cdots\) & \(\because\) & & 1 & & i & & 1 & \[
\begin{aligned}
& 4 \\
& 5
\end{aligned}
\] \\
\hline - & - & & 1 & & - & & 1 & 6 \\
\hline . & 1 & - & . & & . & & 1 & 7 \\
\hline & 1 & & 3 & . & 2 & 1 & 7 & \\
\hline . . & . . & & 1 & . & & & 1 & 8 \\
\hline & . & & & & & 1 & 1 & 9 \\
\hline & \(\cdots\) & & . . & \(\cdots\) & 1 & & 1 & 10 \\
\hline & 1 & & . & . & . & . & 1 & 12 \\
\hline . . & 1 & . & . & . & . . & . & 1 & 13 \\
\hline & , & & 1 & & & & 1 & 14 \\
\hline & & & 1 & & & & 1 & 15 \\
\hline & & & 1 & & & & 1 & 16 \\
\hline & 2 & \(\cdots\) & 4 & & 2 & 1 & 9 & \\
\hline & & & & & 1 & & 1 & 17 \\
\hline - & \(\cdots\) & . & 1 & . & . . & - & 1 & 18 \\
\hline . & & . & & - & 1 & - & 1 & 19 \\
\hline . & & & & & & 1 & 1 & 20 \\
\hline \(\cdots\) & & & 1 & . & -2 & 1 & 4 & \\
\hline . & & . & 1 & & & & 1 & 2 \\
\hline & & - & & 1 & & & 1 & 22 \\
\hline . & 1 & & & . . & - & . . & 1 & 23 \\
\hline . & & . & 1 & . & & & 1 & 2. \\
\hline & & & 1 & & & & 1 & 25 \\
\hline . & 1 & . & . . & - . & \(\cdots\) & . & 1 & 36 \\
\hline . & 1 & & - & - & - & & 1 & 2 \\
\hline & & & 1 & & & & 1 & 28 \\
\hline . . & 1 & & & & & & 1 & 23 \\
\hline . & 4 & & 4 & 1 & & \(\cdots\) & 9 & \\
\hline & & & & & & & 1 & 30 \\
\hline . . & 1 & & - & 1- & & & 1 & \\
\hline . & & & & 1 & . & . & 1 & 31 \\
\hline & , & & & & & . & 1 & 32 \\
\hline . & 1 & & . & - & - & - & 1 & \\
\hline & 1 & & & & & & 1 & 33 \\
\hline & & & & & 1 & & 1 & 3 \\
\hline & & & 1 & & & & 1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. &  & Names of Persons Injured. & \[
\stackrel{\otimes}{c}
\] & \[
\begin{aligned}
& \dot{0} \\
& 3
\end{aligned}
\] & 这 & Names of Collleries. & Location of the Collieries, \\
\hline June 15 & 36 & John Qulnn, . & 38 & 1 & . & Greenwood shaft, . & Lackawanna township, \\
\hline & 36 & William Feally, . & \[
19
\] & & & Greenwood shaft, . . & \\
\hline \[
29
\] & 37 & August Becker, . . & \[
16
\] & & & Contiuental shaft, . & Hyde Park, Seranton city, \\
\hline July 1 & 38 & W'illiam Probst, & 14 & \(\cdots\) & & Pierce colliery, & Archbald borough, \\
\hline 7 & 39 & John Mctlate, & 23 & & & Coal Brook colliery, & Carbondale city, \\
\hline 10 & 40 & Michael Shea, . & 50 & 1 & 6 & Fairlawn slope, . & Scrantoncity, \\
\hline 14 & 41 & Willam Price, & 35 & 1 & 4 & Dodge shaft, & \\
\hline 17 & 42 & William Barth, & 38 & 1 & 7 & Capouse shart, & Hyde Park, Scranton city, . \\
\hline 19 & 43 & William Mahon, & 15 & \(\cdots\) & - & Eddy Creek shaft, & Olyphant borongh, \\
\hline 20 & 44 & Thomas Gleason, & 60 & 1 & & Coutinental shaft, & Hyde Park, Scranton clty, \\
\hline 21 & 45 & Thomas IIaley, . & 40 & 1 & 1 & Meadow Brook shaft, & \\
\hline 23 & 46 & Patrick Berry, - & 58 & - & & Capouse shaft, . & Hyde Park, Serantun city, \\
\hline \[
26
\] & 47 & Martın Dlaluney, . & 45 & 1 & 2 & Pine Brook shaft, & Scranton city, \\
\hline 26 & 48 & John Becker, . & 39 & 1 & 3 & Eddy Creek shaft, . & Olyphant borouglt, \\
\hline Aug. 2 & & Hichat Agren, & 50 & 1 & & Central Shaft, . & Hyde Park, Scranton city, \\
\hline & \[
50
\] & Juhn Killbride, & 45 & 1 & 6 & Bellevue slope, & Lackawanma township, . . . \\
\hline & 51 & John Master, . & 52 & 1 & 7 & Pyue shaft, . & Old Forge lownship, . . . . \\
\hline 10 & 52 & Thomas Reap, . & 50 & 1 & 6 & Green Radge slope, . & Punmore borough, \\
\hline 11 & 53 & Jantes Coolican, . & 24 & & \(\cdots\) & Forest City colliery, & Forest City, \\
\hline 20 & 54 & James Thumas, . . & 17 & & - & Dudge shaft, . & Lachawanna township, . . \\
\hline 24 & 55 & Frederick Nioyle, . & 45 & 1 & 1 & Brisbin shaft, [Grove, & lrovidence, Scranton city, \\
\hline 25 & 56 & Patrick Lynch, . . & 38 & 1 & 2 & No. 4 shaft, Gipsey & Dunmoreborough, \\
\hline 31 & 57 & Abthony Flannery, . & 50 & 1 & 7 & A rchbald shaft, . . . & Lackawanna townshilp, \\
\hline 31 & 58 & Watkln Price, & 13 & . & . & Von Storch slope, . & Providence, Scranton clty, \\
\hline \[
\text { Sept. } \frac{6}{7}
\] & \[
\begin{aligned}
& 59 \\
& 60
\end{aligned}
\] & Michael Kelly, ... William Dunner, . & \[
\begin{aligned}
& 15 \\
& 21
\end{aligned}
\] & & & White Oak colltery, Capouse shaft, & Archinald borongli, Hyde l'ark, Seranton city, \\
\hline 10 & 61 & James Falr, . & 4.3 & 1 & 4 & No. Il shaft, . & Jenklas township, \\
\hline 13 & 62 & Henry lliller, & 55 & 1 & 5 & Bellevue slope, & Lackawanna townshtp, \\
\hline 13 & 63 & John Young, & 18 & . & . & Green Rildgeshaft, & Scranton city, \\
\hline 14 & 6 H & Vavid Morgans, & 14 & . & - & Bellevue slope, & Lackawanna township \\
\hline 14 & 65 & Domluick Kearney, & 55 & 1 & 6 & No. 4 shaft, . . & Jenkins township, \\
\hline 15 & 66 & Thumas Jenklns, & 14 & . & & No. 5 slaaft, . & Jenkins townshlp, \\
\hline 15 & 67 & John Fern, & & . & \(\cdots\) & Archbald shaft, & Lackawanna townshlp \\
\hline 15 & 68 & John Welsh, . & 40 & 1 & 9 & Dodgeshaft, & Lackawanna township, \\
\hline 20 & 69 & Patrlck Gillan, & 16 & & & Von Storch slope, . & Provtlence, Scranton city, . \\
\hline 21 & 70 & John Lloyd, . . & 19 & & & Yon storch slope, & \\
\hline 21 & 71 & George W'tlliams, . & 16 & . & . & Cayuga shaft, ... & Providevee, seranton city, . \\
\hline 22 & 72 & John Llopkins, & 15 & . & & Sloan shaft, & Lackawanna township, \\
\hline 27 & 73 & James Gannon, . & 16 & & & Marrine shaft, . & Providence, Scranton elty, . \\
\hline 28 & 74 & Martln Commons, . & 45 & 1 & 5 & White Uak colllery, & Archbald borough, \\
\hline 28 & 75 & Dankel Morgan, . . & 13 & . & & Mt. l'leasant slope, . & \\
\hline
\end{tabular}

Remarks on Extent of Injury and Cause of Accidents.

Eyes seriously injured by a blast exploding, which was supposed to have blown the tamping,
Hand blown off and the other hand injured by the same blast,
Body severely squeezed between a culm car and the chute at the breaker,

Head severely injured by being squeezed between inlne cars, . . .
Face and ueck severely cut and leg bruised by a tahl of roof,
Leg fractured by barring coal down upon himself at the face of als chamber,
Leg fractured and badly cut by a large lump of coal rolling on lim
Body injured by being crushed betweeu big cars at the breaker, ou the surface,
Hips, back, and arm lnjured by being erushed bet ween a mine car and prop,
Collar-bone fractured by belng thrown by a lever used in lifting a car on the track, on the surface,
Head severely cut by a fall of roof,
Leg fractured by being crushed between mine cars
Leg fractured by falling on the trick as he was golug to his work,
Leg riactured by a fall of coal which he was barrlig down, . . .

Two ribs fractured and rtherwise lnjured by a fall of roof,
Ley fractured by a fall of root,
Leg severely cut by a fall of coal from the face which he was working out,
Head severely injured by a fall of roof which he was barring down,
Leg fractured below the knee by a fall of roof
Head severely injured by the door of a mine car falling on him,
Arm fractured by falling off a woodell "horse" whilc barring down roek,
Leg fractured by being crushed by mine cars,
Ankle dislucated by a stone rolling agalnst him from the side in the slope,


Leg fractured by being crushed between mine cars,
Body seriously shocked by fallug from a scaffold, a distance of twenty-five leet, at breaker,
Arm fractured near the wrist by it fall of roof,
Back and chest lajured by being erushed beqween loaded mine cars, on the surfice,
Ley fractured, and oqherwiseinjured by falling from the carriage in the shaft,
Body and limbs scverely injured by belng crushed by mine cars at the foot of an inslde slope,
Len fractured by a prop rolling on him at the prop pile, on the surface.
Back and chest severely injured by belng crushed by amine car under whleh he fell,
Lee fractured at the thigh by tumber rolling on hlm from a car whlch he was unluatling,
Shoulders abd lifs lnjured by a premature blast, Jgnited by a gas blower in the hole,
Hand badly mashed under a car wheel-fiager cut off,
Leg fractured it the knee by belag erushed by mise cars,
Leg fractured between the thigh and knee by a blast through a pllar,
Illp lnjured by belng erushed by a mine car, hls foot belng eaught between rall and switeh,
Hands hatly injured by being crushed by mine cars,
laack and ankle lujured by it fall of roof, ...
Arm fractured by falling under a mine car while attempting, to pass it lu the dark,

\begin{tabular}{l|l|l|l|l|l|l|l|l}
\hline \hline
\end{tabular}

\section*{Continued.}

\section*{Lemarks on Extent of Injury and Cause of Accident.}

Arm fratured by hls clothes being caught in a set-screw on the screen bhafting, while he was oilligg the machinery. His clothlng were all torn off, and hise escape from death is wonderfin, . Spine ingured by being erushed between a mbe ear and a pron, lland smabhed by beng ernshed between bumpers of mine ears, . Serionsly injured by falling between a mine car and head-block,
Hip distoeated and back injured by a fall of roof, .
Injured severely by a pick llylng, which was strick by a passing ear, and enterlug his body,
Collar-bone fractured, and ankle sprained by falling mader a mine car.
Compound fractured leg by falling under a car at the breaker, on the surface,
Ankle dislocated, and back and head mjured by falling from back of a mule, on the surface.
Ankle dislucated by a fall of roof,

Face and arins severely barned by an explosion of powder, while tying a curtidse, with lamp on edge of low,
Collar-bone fractured by belng crushed between a mine car and a pillar,
Leg fractured and cut, and otherwise injured by returning too soon to a blast,
Collar-bone fractured by being crnshed between a mine car and door,
Anhle dislocated and hip injured by fall of roof,
Jaw-bone fractured, and head bady injured by a "fall of roof, immediately after firing blast, \({ }^{\circ}\)
hands and face severely bnrned by an explosion of powder, . .

Leg fractured below the knee, and face injured by a fall of roof,
Ley fractured below the knee by lalling-under a mine car.
Jaw-bone fractured and some teeth knocked out by a lall of roof,
Leg fractured near the ankle by a tie used in lifting a car on the track strikiny him,
Compound fracture of an arm and hand, and face severely injured by an explosion of a blast from which he was withdrawing the charge,
Arm fractured hy falling under mine cars while trying to stop a rumaway mule,
Two ribs I'ractured, and otherwlse injured by a fall of roof, through hils uwn carelessmess,
llipsseverely cut by a fall of roof; thesh wounds, but no bones fractured,

Whole numbers from all causes for the year,

\begin{tabular}{|c|c|c|}
\hline & & \\
\hline 2 & Patrlek Atkinson, & E \\
\hline & Efward llogan, & L. Kg \\
\hline & Thomas Le-wl & l'iue Brook sha \\
\hline 5 & Andrew McGuire, & Vonstorch slop \\
\hline 6 & Thomas llarrls, & Mit. Pleasant slope, \\
\hline 7 & Thomas Mcilale, & White Oak colliery \\
\hline & Thomas Conroy & Green Rifige slap \\
\hline & dohn Howard, & No. I shaft, \\
\hline 10 & Thomas Tigh & No. 12 shaft, \\
\hline 10 & W Illiam Lyo & No. 12 shaft, \\
\hline 11 & Sammel McLa & Twin shaft, \\
\hline 12 & David Carter. & Taylor shatt, \\
\hline \[
13
\] & Whliam J. Stephens, & Mampton shaft, \\
\hline \[
14
\] & Whllam lbowen, & llamptou shaft, \\
\hline 15 & Patrlek (1re, & Tripp's slope, \\
\hline 16 & Elward Narry, & Yon Storch slope, \\
\hline 17 & James Mecue, & Pheenlx shaft, \\
\hline & John Murpliy & Marvine shaft, \\
\hline 19 & Patrlek Connell, & 'ryue shalt, \\
\hline 20 & Thomas Clark, & Sfbley shatt, \\
\hline \[
21
\] & George Almulch, & Conthuental shaft, \\
\hline & Mlehat Laven & Ethly Creek shart, \\
\hline & dohn Cooney, & Roaring Brook \\
\hline 4 & Frerlerlek Weber & Falrlatwn slope \\
\hline & dohn siddons. & Jermyn's shaf \\
\hline 26 & Thanothy Bu & White Oitk eoll \\
\hline 27 & denry bulchur, & Phowix shatf, \\
\hline 28 & Charles Sartin, & Nu. 5 shalt, \\
\hline 29 & 1'atrlek Dumgherty, & No, 12 shatit, \\
\hline & Thomas i)nlly, & White dak \\
\hline 31 & Willam Thomas, & Marvine shaft, \\
\hline \[
32
\] & Mtehael Mebonald, & bodge shatit, \\
\hline 83 & Johin Grady, & No. 1 shalt, \\
\hline 3.4 & Francis Margan, & Capouse sha \\
\hline \[
33
\] & Mathew Mangan, & Schoul Fund slope, \\
\hline 35 & ladll A. Illllams, & School Fund slope, \\
\hline 37 & R'chard Murph & Brishla shaft. \\
\hline & Thomas linlwel & Marvine shaft, \\
\hline
\end{tabular}

Names of Persoms

Nimes of Collicries.

Location of the Collteries
Remarks on Extent of Lufury and Cause of Accidents

Carbondale township
Carbondale township, Providence, Scranton city, scranton city.
i'rovidence. Scranton elty, Hyde l'ark, Scranton city, Archhald borougli,
Dimmore borongh,
Carbondale city,
Pleasant Valley borough I'leasant Valley borough, Pittston borougit,
Hyde Park, Scranton cit Hyale Park, sarantol cily Hyde Park, scranton ciry Provilence, seranton eity Dittston township. Providence, scranton city, Oll Forge township,
Oln Forge townshl?,
Tlyde lark, Nerintou city, Olyphant botough,
Dunmare horongh,
Seranton city,
Archbald boroule
Pittston township,
Jenklas township,
Pleasant Valley borougis Archbald borehigh,
Providence, Scranton elty, Lackawanna township,
Carbondate city,
Hyde Park, seranton city
Hyde Park, Seranton elty, llyde P'ark, Seranton elty, Providence, Scranton city providence, Scrantou elty
Hyde Park, Seranton elty

Head ent and face injured by being eanght ty sereen in the hreaker
Arm cut by coal from a blast; was returning to it thinking it had missed. Slifhly injuresl by a fall of roof
Sllght flesh wound on the back by a fall of roof.
llips slightly brulsed by a fall of roof.
Face slightl: cut by eoal from a blast, to which he returned too soon.
Face trillsen by jomping off cars against a prop: han lost mis fight.
body brilsed and ham slighty cut; canght between ears and rib.
Foot lijured hy a slight fall of roof.
Thigh bruiserl by a tall of roof.
Baek and side bruised by the same fall of roof.
Slightly injured by a hast exploding after langing fire. sightiy injuren by a ratl of coal.
解
fands and face slightly burned by an explosion of Cll gas.
Body slighty squeezerl between ears while unhitehing his mute
Baek sllghitly eut by a fall of coal.
Face and hands slightiy burned by an explosion of CH4 gas.
Face injured by a kick from a mule.
injured hy a kick from a male.
Leg sllghtly infured by helag squeczal hetween mine catrs.
sightly injurai by a klek from a muse white sioelog it.
slighty linjured by being squeczed between minecar and pllar
lujured by has mute squeezlog him against a plllar.
Face cut by barring down coal upon himself.
injureal by being squeezed hetween mine cars.
injured sliohtly by a fall of roof
Injured sliphily by a plece of roek sliding against hlm.
Face and hand injured by a fall of top coal.
Slightly hijured by a runaway on a self-acting plane. Back slifhtly Injured by belng kieked by atmule.
slightly injured by heing sincezed between mine ears.
Contusion of athe hetivet⿻ mane car and a prop.
Sllghtly lojured hy a fail of top coal.
Thumb mashed between bumpers of mine cars.
Side and leg bralsed by a fall of top coal
Head sllghtly injured by a fall of root.
slightiy Injured between a mine car and the bost.
        gorge sievens,
llenry Thomas,
        Menry Thoma
Martin Bell.
        Marth Bell.
        Phllip lsurbank,
        Thomas Wat
        John Murphy,
        Johin J. Morgans
        Johm Givin,
        John Néalon,
        Thomas Judge,
        James Armsirong,
        Willian Carson,
        Henry Rose,
        dames Catagher,
liatrich Machan,

Hampton shaft，
Tripy＇s slope
Sbley shatt， Meadow brook shaft， Taylor shatt， boifre shait， Meadow Brook shaft， Meathow brook shatt， Filer colliery
Taylor shat，
Vun storels slope，．．． No． 11 slatit， 1＇lie Brook shaft， Sprling Brook colliery No． 1 tunnel， Holge shat Eric shaft， H1llside colller No．I tunnel， Gou Storch slope
No． 4 sliait．
No． 4 sham， Brispina shaft， Brisholn shitlt Meadow Brouk shatit， Von stureh slope，
No． 13 shat it，
Contlnental shaft， No．\＃̈ shatit， No． 4 shatt， No． 11 shaft， No． 2 slope， Plue Brook shaft， Twin shaft，
Myde tark sha Ao． L githt＇s Cre Leggase creek shaft， No． 1 tunnel． Marvlue shatit， Sloan shalt， No． 7 shatt， Edily Creek shaft， Phenix shatit， Senec：t slope， Cabouse shat Butler slaf1 Beadow broo
Meadow brook shaft，

Hyde Park，Seranton chy， hyde lark，scranton cily， Od Forke township，
Scranton city，
Likekawanna township Lackawanna township， Scranton city，
Scr：nton city，

\section*{Wiaton borongh，}

Laekawanna townshlp， Lackawamia townshlp， Provldence，Seranton city Jenkins township， Seranton eity，
Lackawamnat township Pittston townshlp． Litckawanna township， Carbondale township， Pleasant Valley borough， Pittston township，
rovillence，Scranton elty， Scranton eity Jenkhs township，
Provilence，scranton cily Provilence，seranton eiay ＇rovhlenee，seranton eity serantone clly，．．．．．．． l＇rovidence，Scranton eit
Lackawannat township， Lackawannat township，
llyele lark，Scrabton city， llye l＇ark，scranto
bummore horongh， bummore horongh， Jenklus township，
Jenklns township， Jenkins township， Jenkius township， Pitst ou borur
 Pleasant Yalley burough， Providence，Scranton eity， Ilyde I＇iark，Scranton city， P＇ittston township． krovilence，scranton city， Larkawanna township． Jenkins township， otyblant boroneh Ranson township， littston horough，
lyme lark，scrinton city， lyde l＇ark，scranton city， ＇ittoton townshly． scranton elty，

Slight cuts and hruises by a fall of roos．
Slightly injured by belng squeeqed between a mine car and pillar．
Shathy injured by being stueezen hatween mine cars．
Heall and lace bruised by a blast through a pllar．
slightly bruised liy a fall of roof．
Hips injured by being squcezed between a mine car and rib．
Bothmen were sllghtly hurned in faee，arms，and hands by an exploslon of nee slightly eut by a sllght tall of roof．
Both men were slightly stnged by an explosion of gas，into whieh Jones en－ \} tered, thonghtlessly, with a naked light. IIe was tire-boss. llips slightly injured；squeczed between a mine ear and rib．
Heal and shoulder slightly injured by a fall of roof．
Face eut and shoulder slightly injured between mine car and rib．
Back slightly brused by a fall of roof．
Leg injured by a fall of top coal whith he was barring down．
Ankle injured slightly by a fall of roof，
Fate slightly injured by a klek from a inule，
back slightly injured by a fall of roof．
Body brused by a sall of coal
A1
Face ent by being thrown by a mule against the rib while foollng with it．
houlder slighty impured by a fall of roof．
body urvised and hiand hurned roof immediately after firing a blast．
bodel face ut and body slimluly burned on neek and breast by the same．
Hand cat with a lump of coal while by a fall of top eoal．
Back slightly injured by a tall of roof．
Head and hack slightly injured by a tall of coal．
Slightly injured by a premature blast．A narrow eseape．
Arm jammed between the railing of a car and the roof． Hand injured by a fall of roof．
Leg bruised between a mine car and a prop
Arm and face slightly burned by an explosion of CHisgas．
Back and foot slightly hinjured by fall of ruof．J．Compton was killed by same． Head slighly eut by a fall ol roof．Not reported until the ilith．
Slightly injured；squeezed between a mine ear and pllar．
Hip and thigh injured by being squeezed between mine cars，
Ilead and hands slightly burned by an explosion of eight inches of powder． Leg slightly cut by falling in frout of a mine car．
Head and body injured hy a fall of eoal wheh he was barring down． Hip and side sliflity injured by a fall of top coal．
lack and side sllghtly injured by a fall of roof．
Knte，hamd，and fuce sllghtly injured by a fall of top coal． Kip injured by a kick from a mule．
deg bruised by runaway on a culm plane at the breaker，
Lat ent by eoal fulling bralnst lumay
hel he was barring down．
Face and hands burned by exploslon of cartridge of powder．

TABIE NO. IV.-Shouing the number of persons litled and injured, causes of accidents, and widows and orphans for seven years, 1874-1880.

CALSES OF THE ACCIDENTE.

Explosion of carbureted bydrogen gas,
Falls of roof,
Falls of eoal,
Falling down shafts,
Exploston of blasting nowder,
Premature blasts and blasts hanging fire, se.,
Crushed by mine ears,
Miscellaneous eauses-underground,

Whole numbers,
Whole number of widows,
Whole number of orphans,

TABLE NO, V.-Showing the production of coal, the number of persons employed, ratio of coal mined for cach person employed, for each person killed, and for each person killed and injured, in the Eastern District, for seven ycars ending December 81 , 1880.


ABLE NO. VI.-Showing the number of persons killed, and number of persons seriously and slightly injured, cend number of days worked; with number of persons employed, and number of kegs of powder used, together with number of tons mined per employé, per life lost, and total tomnage for each colliery for the year 1880.

UELAWAIBE, LACKAWINNA AND WFSTERN RAILROAD COMDANY.

\section*{Names of the Colleites.}

\section*{l'yne slaft,}

Taylor shat and drift
Archilhald shaft,
Sloan shaif.
Doilge shaft,
Scranlon Coal Company's slope,
Bellevestope,
Bellevae shaft.
llampton shaft,
Continental shatt,
llyde l'ark shaft,
Central shart
Dlamond shaft.
Niamond No 2 slope,
Tripp's slope,
brlshn shafl,
Cayuga shal't,
Total, Delaware, Lackawanna and Western Rallroad Company,
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  & Kegs of powder used &  \\
\hline 1 & 1 & 1 & 170.80 & 373 & 397,40 & 148,222 & 3,294 & 148,222 \\
\hline 1 & 1 & 4 & 170 & 379 & 30830 & 116,845 & 2,596 & 116,845 \\
\hline 1 & 2 & 1 & 180.30 & 293 & 369 & 108.091 & 2, 472 & 108, 994 \\
\hline . . . & 4 & 3 & 173 & 333 & 323.80 & No death, & 2,306 & 107, \(83{ }^{\circ}\) \\
\hline & 5 & & 175.50 & 273 & 243.20 & No death, & 1,475 & 66,412 \\
\hline & 1 & & 175.50 & 123 & 551.20 & No death, & 1,506 & 67,797 \\
\hline . . . & . & 3 & 181.10 & 382 & 353.70 & No death, & 3.145 & 137,043 \\
\hline , & 4 & 2 & 137 & 72 & & No death, & 1,727 & 77, 713 \\
\hline 1 & . . & 2 & 152.30 & 324 & 262.20 & 81, 452 & 1,885 & 84,952 \\
\hline 1 & 5 & . . . . & 179 & 3.5 & 365.70 & 129, 457 & 2,577 & 129,407 \\
\hline 1 & & - . . & 179 & 418 & 32\%. 50 & 136, 593 & 3, 635 & 136,593 \\
\hline , & & - & 179 & 184 & 317.30 & No lleath, & 1,297 & 58.45 \\
\hline 1 & & & 179 & 179 & 310 & 5.),531 & 1,234 & 55, 533 \\
\hline 2 & 1 & 3 & 174 & 243 & 388.50 & 56,917.50 & 2, 533 & 113.835 \\
\hline 2 & 1 & 1 & 177.30 & 280 & \(3+2.50\) & 47,959 & 2,131 & 95,918 \\
\hline 11 & 29 & 22 & . . . & 4,260 & 338.20 & 186,792.40 & 33,433 & 1,501,716 \\
\hline
\end{tabular}

PENNSYLVANIA COAL COMPANY.


PENNEXLVANIA COAL COMPANY－Continued．

Names of Collieries．

O． 10 shaft－ 14 feet rein，
No． 10 shaft－1A feet rein，
No． 10 shatt－Marey veln，
No． 11 shatf，
No． 12 shaft，
No． 2 shaft，（Iort Grimiti，）
No． 4 slope，
No． 6 slope，
Stark＇s shaft
Law＇s shaft，
Barnum＂，No． 1 sliaft，
No． 1 tumnel，
No． 1 tuminel，
Glpsey Grove，（Dunmore，）
Gipsey Grove，No． 4 shaft，
Total Pennsylvania Coal Company，
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  & Kegs of powder used. &  \\
\hline ．．． & & & 219 & 44 & 598.0 & No death， & 752 & 26，310 \\
\hline ．． & & ． & 219 & 149 & 290.0 & No death， & 1，935 & 43，213 \\
\hline ．．．． & & 2 & 216 & 104 & 351.5 & No death， & 1，044 & 36，56\％ \\
\hline 1 & 1 & 4 & 2.7 & 156 & 403．4 & 62， 928 & 1，798 & 62.98 \\
\hline ．．． & ．．． & 1 & 216 & 55 & 379.5 & No death， & 594 & 20．776 \\
\hline ．．． & & 1 & 215 & 97 & 441.0 & No death， & 1，221 & 42，74 \\
\hline ．．． & ．．． & 1 & 218 & 144 & \(43+.8\) & No death， & 1，787 & 62.589 \\
\hline ．．． & ．．．． & & 217 & 63 & \(36+.6\) & No death， & 656 & 22.970 \\
\hline ． & ．．． & & 217 & 200 & 335.4 & Noterth， & 1，916 & 67，073 \\
\hline ． & 1 & & 217 & 152 & 339.7 & No thath， & 1， 475 & 51，644 \\
\hline 1 & ．．．． & & 154 & 78 & 368.3 & 28，729 & 978 & 28.729 \\
\hline ． & － & － & 117 & 15 & & & 53 & 1，587 \\
\hline ． & 1 & 3 & 217 & \(10 t\) & 382.3 & No death， & 1，173 & 38，619 \\
\hline 1 & & 1 & \[
200
\] & 118 & 317.0 & 37，413 & 1，336 & 37，413 \\
\hline & 1 & ．．． & \[
\begin{aligned}
& 196.50 \\
& 196.50
\end{aligned}
\] & \} 273 & 3：6．7 & No death， & 3，186 & 89，195 \\
\hline 6 & 13 & 17 & & 2，907 & 375.2 & 181，773．06 & 82， 209 & 690， 640 \\
\hline
\end{tabular}

DELA IVARE AND HUDSON CANAL GOMPANY．


Everhart colliery,
'Tompklns' shalt,
Seneea slope,
Ravine shaft, (Idie all the year.)
Twlu slaatt,
lieaver colllery
Butler shait,
Morrls of Co. 's colliery,
phonix shaft,
Columbla colllery
Sinsine collery,
Sprink lirook eolllery
Gireenwoon
sibley sliaft,
Meralow Brook colliery
National colllery,
School Fund Association siope,
Mt. l'leasant slope,
Capouseshaft.
Phe brook slaft
Falrlawnslope
termyn's fircea mhge shaft,
Gireen Ridge slope,
koarlng lsrook colltery
Fher's colliery,
l'lerce's colliery,
Fatou colllery.
Hermarn's slop,
derinyn's shatt,
Erle shaft,
Jreman's colliery,
('lark colllery,
Forest Clty colliery,
Total miscellancous companies

hecapitulation
Belaware, Lacknwanua and Western Ratroad Company, f'ennsylvania Coal Compary
belaware abd Itulson Canal Company
Ilome consumpton-estimated at ive per cemtum,
Framd totals,

\begin{tabular}{|c|c|c|c|}
\hline 353.2 & 136,792.40 & 33,433 & 1,504,716 \\
\hline 375.2 & 181,773.60 & 32, 209 & 1, 090,610 \\
\hline 369 & 146,069. 60 & 24, 300 & 1,168, 557.08 \\
\hline 331.7 & 185, 821.40 & 79,086 & \[
\begin{gathered}
2,229,456.04 \\
299,638
\end{gathered}
\] \\
\hline 367.4 & 170,093.40 & 174,028 & 6, 273,45\%.16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Names of the Collieiries,} & \multicolumn{7}{|c|}{NUMBER OF PERSONS EMPLOYED INSIDE.} & \multicolumn{7}{|r|}{NUMBE1: OF PEILSONS RMPLOYKD OUTSIDE.} & \multirow[t]{2}{*}{} \\
\hline &  & \[
\begin{aligned}
& \dot{\infty} \\
& \stackrel{y}{\leftrightarrows} \\
& \stackrel{y}{z}
\end{aligned}
\] & \[
\begin{aligned}
& \dot{D} \\
& \stackrel{y}{4} \\
& 0 \\
& 0 \\
& 0 \\
& \tilde{y y y}
\end{aligned}
\] &  &  & 0
0
0
0
0
0
0
0 &  & \[
\begin{aligned}
& \dot{\infty} \\
& \dot{0} \\
& \infty \\
& 0 \\
& \dot{\theta}
\end{aligned}
\] &  &  &  &  &  & \[
\begin{aligned}
& \stackrel{\oplus}{\pi} \\
& \frac{\pi}{3} \\
& 0 \\
& \frac{n}{3} \\
& 0 \\
& 0
\end{aligned}
\] & \\
\hline Prue shaft, & 1 & 90 & 83 & 14 & 41 & 7 & 236 & 1 & 8 & 7 & 41 & 7 & 73 & 137 & 373 \\
\hline Taylur shaft and drift, & 1 & 99 & 86 & 29 & 34 & 14 & 254 & 1 & 11 & 10 & 24 & 7 & 72 & 125 & 379 \\
\hline Arehbald start, . & & 79 & - 6 & \(\cdots\) & \(\cdots 3\) & & & \(i\) & - 7 & \(\cdots\) & 20 & 5 & - 55 & - 01 & - . . \({ }^{93}\) \\
\hline Doilge shait, . & 1 & 76 & 76 & 19 & 25 & 6 & 203 & 1 & 8 & 14 & 24 & 11 & 72 & 130 & 333 \\
\hline Scrantou Coal Company 's slope, . & & - & . & - . & \(\cdots\) & . . . & & - & & - & \(\cdots\) & . & - & . & . . \\
\hline liellevue slope, . . . . . & 1 & 46 & 42 & 15 & 13 & 2 & 119 & 2 & 12 & 13 & 19 & 10 & 93 & 154 & 273 \\
\hline liellevue shath, & 1 & 49 & 45 & 10 & 14 & 3 & 123 & & & - & . & . & . & & 123 \\
\hline Ilampton shaft, . & 1 & 93 & 83 & 25 & 34 & 8 & 244 & 1 & 10 & 14 & 26 & 7 & 80 & 138 & 352 \\
\hline Contlinental slaft, & 1 & 30 & - & 16 & 5 & \(\cdots\) & 53 & 1 & 7 & . & 12 & \(\cdots\) & A & 20 & 72 \\
\hline lyde l'ark shaft, & 1 & 75 & 76 & 19 & 26 & 8 & 205 & 1 & 5 & 6 & 33 & 6 & 68 & 119 & 324 \\
\hline Central shaft, . & 1 & 90 & 90 & 22 & 29 & 9 & 241 & 1 & 7 & 7 & 31 & 5 & 62 & 113 & 354 \\
\hline Oxford shaft,
Dlamoud shaft, & & 91 & - 91 & - 28 & 52 & \(\cdots{ }^{\text {c }}\) & 277 & - 2 & 10 & 17 & - 14 & - 16 & - 82 & 141 & 418 \\
\hline Dlamond, No. 2 slope, & 1 & 41 & 94
41 & 16 & 19 & 7
9 & 130 & 1 & 10
6 & 17 & 14 & \(\begin{array}{r}16 \\ 3 \\ \hline\end{array}\) & 12
31 & 141
54 & 418
184
184 \\
\hline 'Tripp's slope, . . . . & 1 & 39 & 39 & 20 & 24 & 4 & 127 & 1 & 5 & 5 & 6 & 4 & 31 & 52 & 179 \\
\hline Mrisbin shaft, & 1 & 84 & 70 & 17 & 28 & 9 & 209 & 1 & 7 & 10 & 19 & 4 & 43 & 84 & 293 \\
\hline Cilyuga shaft, & 1 & 69 & 64 & 25 & 29 & 4 & 193 & 1 & 7 & 7 & 20 & 4 & 43 & 87 & 280 \\
\hline Totals, Dela., Lackawanna \& Western Rallroad Co., . & 16 & 1,045 & 958 & 294 & 403 & 96 & 2,812 & 16 & 110 & 121 & 297 & 89 & 81.5 & 1,418 & 4,260 \\
\hline
\end{tabular}

PENNSYLVANIA COAL COMPANY.


No. 10 shaft, fourteen feet veln,
No. 10 shatt, Marey veln
No. 12 shait,
No. 13 shatit,
Vo. 2 stope, (port Grimin,)
No. 4 slope,
No, 6 slope,
Stark's shati,
aitw's shatt.
Baruum's No. 1 shal't
Bitnum's No. 2 shaft
©. I tuminel
Vo. 2 slaift, (Dunmore,)
Gipsey dirove, No. 3 shaft
insey dirove. No. tshafl
Totals, Peunsylvania Cual Company
\begin{tabular}{|c|c|c|c|c|c|}
\hline 12 & 12 & 2 & 3 & & ¢9 \\
\hline 41 & 40 & 7 & 12 & 6 & 107 \\
\hline 26 & 23 & 6 & 10 & 3 & 71 \\
\hline 40 & 40 & 7 & 13 & 3 & 104 \\
\hline 16 & 14 & 6 & 4 & 1 & 42 \\
\hline 28 & 28 & 19 & 11 & 1 & 79 \\
\hline 4 & 41 & 9 & 17 & 1 & 119 \\
\hline 18 & 18 & 3 & 7 & \(\cdots\) & 46 \\
\hline 51 & 45 & 12 & 13 & 6 & 131 \\
\hline 34 & 38 & 12 & 13 & 5 & 103 \\
\hline 36 & 18 & 6 & 4 & \(\cdots\) & 65 \\
\hline 6 & 4 & & & & 10 \\
\hline 35 & 33 & 6 & 6 & 3 & 84 \\
\hline 33 & 40 & 14 & 9 & 7 & 104 \\
\hline 77 & 76 & 13 & 24 & 11 & 202 \\
\hline 810 & 789 & 169 & 259 & 84 & 2,149 \\
\hline
\end{tabular}

delaware and hedoson canal company.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Von Storeh slope, & 1 & 128 & 103 & 59 & 81 & 23 & 393 & 1 & 8 & 15 & 47 & 6 & 62 & 139 & 534 \\
\hline Lekgitt's Urcek slaft, . . . . . . . . . . . . . . . . . . . . & 1 & 97 & 49 & 27 & 50 & 20 & 241 & 1 & 8 & 4 & 35 & 4 & 50 & 102 & 346 \\
\hline Marvine shaft, . & 1 & 96 & 52 & 21 & 58 & 18 & 241 & 1 & 9 & 12 & 24 & 4 & 49 & 99 & 340 \\
\hline Ehdy 's Creck shaft, & 1 & 112 & 50 & 20 & 30 & 8 & 221 & 1 & 8 & 11 & 26 & 8 & 56 & 110 & 331 \\
\hline Grissy Island slaft, & 1 & 114 & 53 & 21 & 39 & 14 & 242 & 1 & 7 & 10 & 26 & 7 & 60 & 111 & 353 \\
\hline Whilte Gak colllery, & 1 & 102 & 60 & 12 & 38 & 10 & 2.3 & 1 & 6 & 5 & 13 & 9 & 53 & 87 & 310 \\
\hline No. I shaft and White Brldge Tunnel, & 2 & 134 & 81 & 14 & 35 & 11 & 2.7 & 1 & 12 & 8 & 21 & 2 & 5 & 49 & 3:6 \\
\hline Nu. 3 shaft, \(\quad . . . . . . . . .\). & 1 & 60 & 12 & 12 & 24 & 7 & 1.6 & 1 & 5 & 7 & 12 & . . & 2 & 27 & 143 \\
\hline Conl brook colliery, . & 1 & 185 & 68 & 20 & 50 & 22 & 3.46 & 1 & 9 & 8 & 45 & 10 & 75 & 148 & 494 \\
\hline Rateketl Brook breaker, & & & . . . & . . . & & . . . . & & 1 & 1 & 5 & 13 & 7 & 38 & 63 & 65 \\
\hline Tutals, Delaware and Hudson Canal Company, & 10 & 1,028 & 528 & 206 & 400 & 133 & 2,305 & 10 & 73 & 85 & 2 6 2 & 57 & 450 & 937 & 3,242 \\
\hline
\end{tabular}

\section*{MSUELLANEOUS COMPANIES.}

Everhart callery
ompkin's shar
liavine blatft
(Ide all the year,
Twin shalt,
suaver callery
Morrls \&: Co
Phemix shaft,
Columblat colllery
Hillside colllery,
\begin{tabular}{|c|c|}
\hline 1 & 30 \\
\hline 1 & 16 \\
\hline 2 & 39 \\
\hline 2 & 26 \\
\hline 1 & 8 \\
\hline 2 & 44 \\
\hline 1 & -. \\
\hline 2 & 40 \\
\hline 1 & 11 \\
\hline 2 & 40 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 30 & 5 & 11 & . \\
\hline 15 & 3 & 8 & 1 \\
\hline 39 & 12 & 31 & 6 \\
\hline 13 & 1.4 & 3 & 4 \\
\hline 8 & 3 & 4 & 1 \\
\hline 4 & 6 & 22 & 3 \\
\hline 30 & 5 & - & . . \\
\hline 30 & 13 & 15 & 4 \\
\hline 11 & 1 & 4 & 1 \\
\hline 40 & 45 & 25 & 15 \\
\hline
\end{tabular}
77
41
129
6
62
25
121
6
104
29
167
1
2
2
\(\cdots\)
1
1
2
1
2
1
1
1 \(|.\)
4
4
3
\(\cdots\)
2
2
8
2
6
3
8
\begin{tabular}{l|l}
\(\mathbf{4}\) & \\
4 & \\
3 & \\
2 & \(\ldots\) \\
2 & \(\ldots\) \\
8 & \(\cdots\) \\
2 & \(\ldots\) \\
6 & \\
3 & \\
8 & \\
&
\end{tabular}
\begin{tabular}{c|c}
7 \\
3 \\
6 \\
\\
4 \\
7 \\
7 &. \\
5 &. \\
2 & \\
10
\end{tabular}
\begin{tabular}{|c|c|}
\hline - 0 &  \\
\hline
\end{tabular}





Spring Brook colllery
Gireenwood collery，
Sibley shaft
Meadow lrook collle
Natlonal colltery，
School Fund Association slope
Mount lleasant slope
Capouse sliaft，
Pine lrook slaft，
Fairlawn slope，
Jermyn＇s Green Ridge shaft
Green Ridge slope，
Roarhing larook colllery
Fller＇s collters，
Pierce＇s colllery
Faton＇s colllery，
Jermyn＇s slope＂，
dermyn＇s shaft
Erle shaft
freumans sollery，．
Forest City colllery
Clark eollfery，
Totals，miscellatneous companles，．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{NUMBER OF PERSONS EMPLOYED INSIDE} & \multicolumn{7}{|l|}{NUMBER OF PERSONS EMPLOYED OUTSIDE．} & \\
\hline  & \[
\begin{aligned}
& \text { m } \\
& \text { a } \\
& \text { a } \\
& \hline
\end{aligned}
\] &  & Ali company
men． &  & \[
\begin{aligned}
& 0 . \\
& 0 \\
& 0 \\
& 0 \\
& 2 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  & \[
\begin{aligned}
& \dot{m} \\
& \dot{0} \\
& \text { in } \\
& 0 \\
& \text { © }
\end{aligned}
\] &  &  &  &  &  &  &  \\
\hline 2 & 60 & 60 & 20 & 36 & 10 & 188 & 1 & 10 & 6 & 3） & 8 & 4） & 9.5 & 283 \\
\hline 1 & 103 & 90 & 23 & 54 & 19 & 290 & 1 & 8 & 8 & 29 & 10 & 65 & 121 & 411 \\
\hline 1 & 75 & 27 & 11 & 26 & 6 & 146 & 1 & 6 & 7 & 20 & 2 & 6） & 93 & 242 \\
\hline 1 & 85 & 40 & 13 & 22 & 10 & 171 & 1 & 13 & 5 & 10 & 10 & 61 & 100 & 271 \\
\hline 2 & 70 & 37 & 14 & 29 & 12 & 164 & 1 & 5 & 5 & 12 & 7 & 65 & 9\％ & 239 \\
\hline 2 & 34 & 34 & 10 & 14 & 6 & 100 & 1 & 3 & 7 & 19 & ．． & 60 & 90 & 190 \\
\hline 1 & 54 & 54 & 10 & 25 & 9 & 153 & 1 & 5 & 8 & 13 & 5 & 70 & 102 & 255 \\
\hline 1 & 125 & 119 & 41 & 39 & 24 & 349 & 1 & 16 & 9 & 31 & 3 & 102 & 162 & 511 \\
\hline 1 & 54 & 38 & 12 & 18 & 15 & 133 & 1 & 5 & 5 & 12 & 1 & 20 & 4.4 & 182 \\
\hline 1 & 25 & 28 & 11 & 10 & 4 & 79 & 1 & 5 & 5 & 12 & 7 & 45 & 75 & 15. \\
\hline 1 & 89 & 80 & 14 & 35 & 12 & 222 & 1 & 2 & 9 & 22 & 4 & 53 & 96 & 318 \\
\hline 1 & 60 & 55 & 13 & 41 & 11 & 183 & 1 & 5 & 6 & 40 & 4 & 65 & 121 & 301 \\
\hline 1 & 48 & 53 & 21 & 47 & 15 & 18.5 & 1 & 15 & 9 & 9 & 11 & 39 & 87 & 272 \\
\hline 2 & 43 & 35 & 2 & 10 & 6 & 98 & ， & 6 & 4 & 2 & 3 & 2） & 36 & 134 \\
\hline 1 & 150 & 50 & 20 & 52 & 10 & 283 & 2 & 4 & 18 & 32 & 6 & 47 & 109 & 392 \\
\hline 2 & 92 & 52 & 10 & 20 & 5 & 181 & 2 & 6 & 5 & 26 & 8 & 70 & 117 & 293 \\
\hline 1 & 100 & 19 & 10 & 26 & 4 & 160 & 1 & 5 & 6 & 18 & 3 & 55 & 83 & 243 \\
\hline 1 & 23 & 23 & 6 & 10 & 3 & 68 & 1 & 3 & 4 & 6 & 3 & 20 & 37 & 103 \\
\hline 1 & 110 & ． & 14 & 24 & 8 & 157 & 1 & 5 & 7 & 30 & ， & 39 & 85 & 243 \\
\hline 2 & 56 & 65 & 18 & 30 & 14 & 185 & 1 & 6 & 8 & 20 & 2 & 33 & 70 & 255 \\
\hline 1 & 14 & 14 & ．．． & 5 & 2 & 36 & 1 & 1 & 4 & ． & 2 & 12 & 2） & 56 \\
\hline 1 & 12 & 12 & 3 & 6 & 1 & 35 & & 2 & 1 & 4 & 1 & 4 & 12 & 47 \\
\hline 1 & 14 & 15 & 2 & 5 & & 37 & 1 & 1 & 3 & 1 & 2 & 3 & 11 & 48 \\
\hline 44 & 1，7＋1 & 1，230 & 405 & 706 & 24.4 & 4，370 & 38 & 179 & 193 & 488 & 137 & 1，319 & 2，352 & 6，723 \\
\hline
\end{tabular}

\section*{RECAPITULATION．}

7
0
0
0

\title{
LUZERNE AND CARBON COUNTIES,
}

\section*{SOUTH DISTRICT.}

\author{
To His Excellency Henry M. Hoyt, \\ Governor of the Commonwealth of Pennsylvania:
}

Sir: I have the honor to present herewith my sixth annual report of the inspection of coal mines, for the year ending December 31, 1880.

The number of fatal colliery accidents were twenty-six, and non-fatal ninety-three, an increase of one in the former, and a decrease of seven in the latter, over the previons year. Of the twenty-six deaths, ten were instantly killed, and sisteen subsequently died of their injuries. Many of whom, at the time, were not considered to be of a serious nature, especially two driver boys, who were slightly cut on the legs by mine cars, died in about two weeks afterwards, from lock-jaw.

The coal production of the district was \(4,298,764\) tons, including that used at the mines and sold to the employés, which amounts to eight per cent. of the coal shipped, compared with. \(4,156,486\) tons the preceding year, showing an increase of 142,278 tons. The death ratio of coal mined for each life lost was 165,337 tons, against 166,260 tons in 1879.

While the number of tons of coal mined for each life lost last year is not as great as that of 1879 , yet it is quite favorable, to say the least, as it is the true means of comparison.

The condition of the district, as regards ventilation, will be found elsewhere in the descriptive portion of the report.

Accompanying this report will also be found a map and cross-sections of a colliery, operated by A. Pardee \& Co., showing the plan of working and the method of ventilation.

Very respectfully submitted,
T. D. JONES, Inspector of Mines.
Hazleton, February, 1881.

\section*{Colliery Improvements.}

Under this head will be found a brief description of the collieries where improvements and changes worthy of note have been made during the year just ended. Collieries that are not reported, under the head of improvements, in this report will be considered as not having anything new to note, or else they were reported in preceding reports, hence I thiuk it umeeessary to make a repetition.

The improvements abont the mines are steadily progressing, as will be noticed by reading the detailed account of each colliery, given under the above head. The district, during the past year, has been inereased by five additioual collieries, making, in all, fifty-fonr, composed of about one hundred mines, including slopes, shafts, tumels, and drifts, all of which are surface openings.

Three new breakers have been built, and two more are likely to be erected during the ensuing year. Six ventilating fans were put up in the distriet this year, and several others are in course of construction, an amelioration much neederl.

The shipments of coal for the past year were \(3,930,337\) tons, an inerease of 131,739 tons over the previous year, or that of 1879 ; and an increase of 663,302 tons more than the average coal tomnage marketed during the past six years.

The whole tonnage of coal marketed from the Lehigh region, as per returns from the operators' books, for the six years ending December 31, 1880, was \(19,902,209\) tons, making a yearly arerage of \(3,317,035\) tons, equivalent to about half the capacity of the district when in full operation.

\section*{Sentilation of Coal Mines.}

While the ventilation at some mines is not perfect, yet it has been greatly improved at many of them during the past year by the ereetion of ventilating fans, (an account of which can be seen in table No. 8 in this report,) and the enlarging of old air-ways, driving of nem ones, \&e. However, to take the conditions of the mines, on the whole they are satisfactorily ventilated with very few exceptions. There may be some persons working, in local places, in every mine making an opening towards getting air one way or another that are suffering for the time being, but eventually will be well aired. I refer to those driving eross-cuts, ide. The only serious reasons for complaints is the vitiating agency, (bad lamp oil,) vide article in this report headed "Miner's Lamp Oil."

\section*{Mluer's Lamp OII.}

During the past year the question of miner's lamp oil has become of no small importance, owing to the introduction into our mines of an inferior and injurious quality of oil, the so-called "New Era" coal oil, "Electric Miner's Oil," Wildfire dack, and many other such names giren to oils that it has become my imperative duty to exact on it being disused.

There is no good reason why that underground workinen should not be
supplied with the best oil in the market so long as they pay for the same, such as whale oil, lard oil, and cotton seed oil, which invariably gives satisfaction, and there is no reasonable argument why their use should be discontinued or superseded by trashy stuff which is enough to destroy in course of time the health of all the men in the best ventilated mines. There is as much trouble in fighting this muisance with many of the men as there is with the companies.

The regulations governing the oil questions differ at every other colliery; at some the men are allowed about five cents per day for oil and lamp wiek, whilst at others it is furmished by the company, and the allowance kept off.
In the first ease the men endeavor to economize by using the vitiating stuff; for instance they will buy a gallon of coal oil, costing them from fifteen to twenty cents, while the whale oil will cost about eighty cents per gallon, thereby saving sixty cents by the operation, as it is stated that a gallon of coal oil will last as long as a gallon of whale oil, which appears rery good, so far as it goes; but they pay dear for it in the long run when their constitution begins to break down through the contaminating influcnce of this bad oil and the noxious gases given off in consequence of the various causes underground.

Some persons have been burned by the lamp exploding on their head, but, luckily, not doing much damage. It is well understood there are, in all mines, at times, a few persons who are working in places where the air is perhaps weak, making eonnection for the air current, driving cross-cuts, de. They are the persons that have to suffer the most by using this bad oil through the indifference of others. The men that are working in the main air current along the gangway, it is true, are but slightly inconvenienced (except a " bad headache ") by burning it, but as they are few in number, compared with the whole, it is but right that they should desist from the bad practice of using it. In a word, it is almost useless to insist upon the erection of rentilating appliances, at great expense in some cases, if we are going to allow this nuisance to be continued, for I do say that the sanitary condition of the mines is nearly as good without them, when not using the bad oil, as it is with them, when using the contemned sturi:. In regard to this complaint, the following notice was published in the "Hazleton Sentinel," which is the substance of the whole matter. Aud since its publication I am told that many of the operators have requested their employés not to use the oil complained of, and that these firms have greatly improved the quality of their oil:

Notice is hereby given to operators, mine superintendents, mine bosses, miners, laborers, drivers, and all persons employed in the mines in the South district of Luzerne and Carbon counties, better known as the Lehigh region, that I protest against the using in the mines of any inferior quality of miners' lamp oil. And any person foumd so doing will be prosecuted to the full extent of the law. The practice, for the sake of saving a few cents at the expense of health, has become so prevalent of using coal oil, New Era, Wild Fire Jack, and many other such names given to the oils, that I
must insist upon its disuse, as the same vitiates the ventilative current to such an extent that it proves injurious to the health and safety of persons employed in coal mines. The fumes produced from this bad oil seriously affect the sanitary condition of the best ventilated mines. Hence I urge upon superintendents, or persons in charge, to give this matter their immediate attention. It is true that no oil is fumeless, but we certainly can improve immensely upon the contemptible stuff now in use at many of the mines.
T. D. Jones, Inspector of Mines.
Hazleton, November 27, 1880.

\section*{Explanations to the Accompanying Map of the Hazelton No. 6 Colllery.}

In order to describe the workings and the mode of ventilation in this colliery, I have prepared the accompanying map to illustrate the plan of opening breasts, driving gangways, air-ways, \&c.

The slope is down to the local basin, south of the main basin, in the Mammoth vein, a distance of four hundred feet, varying in inclination from \(27 \frac{12^{\circ}}{}{ }^{\circ}\) at top of slope to \(3^{\circ}\) near the bottom. It will be seen, by referring to the map, that the synclinal axis dips to the east and west of the slope, thongh a little more rapidly in the latter direction, requiring four gangways to be driven, one on each dip of the vein, which affords a very conrenient and effective way of conducting the ventilation, an adrantage which many of the coal beds do not have, owing to the irregularity and contraction of the veins.

Description of Ventilation,-l'ersons familiar with melerground workings will readily comprehend the method of rentilation, by glancing over the map, without giving a detailed account of the manner by which it is conducted. However, there are others who have but a slight idea how our mines are rentilated, and to those it is intended to describe, in brief, the most important points in connection therewith. There are three inletsthe slope, the traveling-way, and the air-hole-in the west gangway; the former being the main inlet, others are regulated to suit the requirements of the mines. It will be observed, on the map, that at the bottom of the slope, when the gangways are turned off, the air is split, as indicated by the arrows, one current going to the east gangway, the other to the west. A little further on another gangway branches off to the south from the main gangways, where each of those currents are again split, giving to each district an independent air current; from thence the air, including the split in the traveling-way, is eirculated through the breastings to the return air-ways, and again unite at the bottom of the outlet leading to the fan.

The ventilation is produced by a 16 -foot diameter fan, capable of exhansting sixty thousand cubic feet a minute, if run up to its maximum speed. December 18,1880 , I measured the air, and found it to be as follows:

Measurements in ontlet, 43,500 cubic feet a minute, fan rumning eightysix revolutions; measurements near face of east gangway " \(\Lambda\), " 13,500 cubic feet per minnte; near face of east gangway " \(\mathbf{C}\), " 8,875 cubic feet a minute ;
near face of west gangway " A, , 8,900 cubic feet; near face of west gangway "C," 5,200 cubic feet a minute; in the two back gangways, 2,500 cubic feet per minute. Number of men working in those places were thirtyseven, ten, thirty-three, nine, eight, respectively. Temperature in the mines fifty degrees, outside thirty-five degrees, increase in consequence of the combustion of lamps, respiration of men and animals, \&c., fifteen degrees. To afford a better knowledge of the ventilation, I annex to this report the air measurements, returned to this oflice for the month of December, 1880 , by the mine boss, in compliance with the requirements of the "ventilation act," which shows the number of cubic feet of air, and the number of men in each split separately.

Hazleton, December 4, 1880.

\section*{T. D. Jones, Esq., Inspector of coal mines for the South District of Luzerne and Carbon counties :}

Sir: 'The following is a true report of air measurements for the month of December, 1880 :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Local Name of Each Split. &  & \[
\begin{aligned}
& \text { Revolutions of } \\
& \text { fan perminute. }
\end{aligned}
\] &  & \[
\begin{aligned}
& \vec{y} \\
& 3-1 \\
& 0 \\
& 0 \\
& 3 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \vdots \\
& \vdots
\end{aligned}
\] &  &  &  &  &  &  \\
\hline Slope No. 6, East gangway, "A," & Fan & 60 & 4 & 30,000 & 9, 600 & 33,900 & 37 & 4 & \(35^{\circ}\) & \(10^{\circ}\) \\
\hline Do. West gangway, "A," & . . & & & & 5,600 & . . & 30 & 3 & & \(54^{\circ}\) \\
\hline 1). East gangway, "C, & & & & & 8,000 & . . & 12 & 2 & & \(53{ }^{\circ}\) \\
\hline Do. West gangway, "C," & & & & & 4,000 & & 11 & 2 & & \(52^{\circ}\) \\
\hline \begin{tabular}{l}
Totalmeasurements for week ending \\
Deeember 4, 1880,
\end{tabular} & Fan & 60 & 4 & 30, 000 & 27,200 & 30,900 & 90 & 11 & & \\
\hline Slope No. 6, East gangray, "A,'", & Fan & 56 & 4 & 27,800 & 9,000 & 28,800 & 37 & 4 & \(33^{\circ}\) & \(55^{5}{ }^{\circ}\) \\
\hline Do. West gangway, "A,", & . . & . . & . . & & 5,200 & . . . & 30 & 3 & & \(53^{\circ}\) \\
\hline Do. East gangway, "C, ", & & . . & . . & . . . . & 7,500 & . . . & 12 & 2 & & 5.9 \\
\hline Do. West gangway, "C, ', & & & . . & . . . . & 3,700 & . . & 11 & 2 & & \\
\hline Total measurements for week ending yecember 11, 1850, & Fan & 56 & 4 & 27,800 & 25,400 & 28,800 & 90 & 11 & & \\
\hline Slope No. 6, East gangway, "A,", & Fan & 50 & 4 & 25,060 & 8,000 & 26,100 & 37 & 4 & \(30^{\circ}\) & 50 \\
\hline Do. West gangway, "A," & , . & . . & & . . & 4,700 & & 33 & 3 & & \(54^{\circ}\) \\
\hline Do. East gangway, "C,", & . & & & & 6,600 & . . & 10 & 2 & & \(55^{\circ}\) \\
\hline Do. West gangway, "C," & & & & & 3,330 & & & 2 & & \(51^{\circ}\) \\
\hline Total measurements for week ending Deeember 17, 1880, & Fan & 50 & 4 & 25,000 & 22,630 & 26, 100 & 97 & 11 & & \\
\hline Slope No. 6, East gangway, "A," & Fan & 50 & 4 & 25,000 & 8,080 & 26,100 & 37 & 4 & \(30^{\circ}\) & \\
\hline Do. West rangway, "A,", & & & & & 4,6:0 & & 30 & 3 & & \(55^{\circ}\) \\
\hline 1)o. Fast gangway, "C,", & & & & & 6, 660 & \(\cdots\) & 12 & 2 & \(\ldots\) & \(52^{\circ}\) \\
\hline Do. West gankway, "C, " & & & . & - & 3, 300 & & 11 & 2 & & \(53{ }^{\circ}\) \\
\hline Total measuriments for week ending IDecember 24, 1 iss 0 , & Fan & 50 & 4 & 25,000 & 22,640 & 26,100 & 90 & 11 & & \\
\hline
\end{tabular}

August Yafer, Inside foreman, at Hazleton No. 6 Colliery, for A. Pardee \& Co.

The airways of late years, which are decidedly preferable, are generally driven, where conditions are suitable, towards the top or roof sulliciently elevated so that the coal, when dumped from the small airway car into the cross-hole, driven from the gangway to the airway, will run into the main car on the gangway, thereby saving the labor of shoveling the coal into the car, as the case would be if the airways were driven on a level with the gangway. And further, it is the means, if the overlying measures contain a surplus of water, which is often the case, cansing heary erushing on the gangways, it will drain that water and ease the crush or "squecze" on the workings. The cross-holes from the gangway to the airways are intended to be driven every sixty feet, and the eross-cuts, through the pillars, for airing the breasts, driven as often as eireumstances repuire, but the first should not exceed from thirty to forty-five feet, and as the suceeeding erosscut is driven the first should be closed to course the air to the face of the working places. By looking at the cross section on the map, the location of the airway, gangway, and the inclination of the vein can be seen.

Opening breasts.-The plan of opening breasts depends a great deal upon the pitch and character of the rein. Where the same is horizontal, and likely to continue so, the car is taken into the breast or chamber, as it is called at some collieries in the Wyoming region, but when the seam has pitch enough, say twenty-five degrees, the coal is run on sheet iron to the gangway and shoveled into the ear. If the vein is pitching thirty-five degrees and upwards, a chute eighteen feet long by ten feet wide by six and a salf feet high is driven up the pitch when a battery is erested against the pitch (see plan of opening breast at Hazleton mines accompanying this report) to prevent the coal from rushing too rapidly into the chute, and to afford the laborer a convenient place to select the refuse from the coal. Two manways are earried up these breasts by placing props about six feet long, four and a half feet apart, and eight inches in diameter, against the rib or pillar, and afterwards planked over. The most ineonvenient pitch for driving up the breast or rather for getting the coal to the gangway, is when the inclination of the rein is too much for the car to follow the miner as he advances on the face, and not suflicient to carry the coal, as is the case in some parts of the mine of which the map herewith illustrates. The section taken through breast B, (see map,) shows how the coal is conveyed to the gangway in such breasts. It will be observed that during the driving of the first ten or fifteen yards, the coal is buggied to the gangway and re-loaded into the car. After the above distance is attained, a trestling is himit to a level of the first dotted line on the section, elevating the buggy road to the height of the car, so that the coal biggied can be dumped directly into it. When the buggy road can no longer be continued towards the face, owing to the pitch, the trestling is again raised sufliciently high to allow of putting in a chnte large enough to hold a car of eoal, into which the coal, buggied on the second trestling, is dumped and then loaded in the car. In course of time the trestling is again raised and the chnte continned to the point elevated, and the same operation is repeated from time to time as the miner

\section*{ic Breast. Mines.}

का of Etcines.
 H.V.ETON MINE心.
```

\& Arramy
% follay
if rhed
i) yowruje
If Ahwedel
%/ Aroblar
% T-MrkmiChod
y nusidmot tomerto
i fonerl

```

```

1% Drualmy tleff

```

\section*{Arumy}
``` fintiay
```



```
ancridel
Pras
if tolluk miclod
y nuoldmet tromertay
if Arviline tlefe
```










$$
\|
$$


drives up his breast. In some cases, whereby the chute is raised to the roof, a second chute and buggy road is startel, but as this entails an extra expense of about fifteen cents per ton, it is generally aroided and is only done where eoal cannot be advantageously and profitably mined otherwise.

The miner is paid forty-two and a half cents per ton, on the basis, for mining, and an additional five eents per ton when the coal has to be buggied for the first forty yards from the gangway, and ten cents per ton for a greater distance, de. The cross section was taken throngh the slope and terminates in one of the breasts driven up from Laurel Hill colliery. The coal on the antielinal (see map) will be mined by stripping, i.e., the coal mearthed and mined on the surface, and will amonnt to about 200,000 tons.

The coal from No. 6 slope is hoisted direct into the breaker by a pair of engines located back of the breaker. They ship about six hundred and fifty tons per day. The mine is drained by a "Thatcher pump," placed at the bottom of the slope. The dimensions are, water eylinder, twelve inches; steam eylinder, twenty-four inches; length of stroke, thirty-six inches.

## Mine Firea.

Dinages to Properties, \&e.-Under this head comes the burning down of breakers, mine fires, \&e. We have been very fortunate, considering the number of breakers in the district, from fires. Only three breakers have been burned down during the past six years, an aceount of which will be fonnd in the reports of 1876 and 1879 . We have been comparatively free from mine fires this year, except one at Comncil Ridge No. 2 colliery, located at Eekley, which occurred about the close of the year in the outlet from the boilers that are placed in the mines, but was extinguished without doing much damage. The mine fire that took place in East Sugar Loaf No. 2 colliery, (Stockton.) also that of colliery No. 1 , of the same place, in 1875 , I am happy to state have been put out by partially drowning and putting in stoppings to exclude the air. (See an account of improvements at these collieries in another part of this report.)

## Coal mined by "stripping."

A great deal of coal is now mined in this clistrict by what is termed stripping; that is, the coal is unearthed, or the surface is taken off, and the coal mined in daylight. The amual production from this source, at present, is about 200,000 tons, and the total estimated acceage to be stripped, so far as we can ascertain at the present time, is abont 45 . The rein, which is the mammoth, will arerage about 20 feet thick of coal; lience, we have about $1,451,970$ tons of coal, reckoning a cenbic yard to the ton, to le mined by stripping. It is said by reliable authority that it pays to strip coal where the earth docs not exceed a foot of clay for a foot of coal. Ordinarily, we have three feet of coal for every foot of earth stripped, proving rery remunerative, as it is about twenty cents per ton cheaper to mine coal by stripping than otherwise. Of course, there is a limit to this mode of mining, and it cannot he done profitably when the rein carres its overlying measures.

14 Mine Rep.

## Improvements at Upper Lehlgh collieries.

A new slope is being sunk in the Green Mountain basin, belonging to the Upper Lehigh Coal Company. The slope is down 300 feet from the surface, dipping at an angle of twenty-one degrees at the outcrop, and varying in pitch to abont twelve degrees at the above distance. They are sinking the slope in the bottom bench of eoal which is from four to five feet thick. The thickness of the upper portion of the vein ("nine foot") has not yet been ascertained in the slope, but it is found to be, by shafting, about seven feet, making in all a vein about twelve feet thick. The dividing slate, it is said, is considerably thicker at this locality than at their other collieries, but as it varies so much in thickness at different places it cannot be determined till the rein is properly opened out. The coal is of a very fair quality, characteristic of the Buck Mountain vein.

It is intended to drive the slope to the basin at once, and then drive a hole to the surface on the opposite pitch for a second outlet. There is nothing new to note about their No. 4 colliery, except the connection made with No. 2 and the change made in the hoisting machmery, which has greatly increased their capacity.

In colliery No. 2 they have sunk an underground slope in a local basin located in the southeastern portion of the workings. A letting down plane is made at a short distance to the southwest of the bottom of slope No. 2 to let the coal down from the several counter gangways to a level with the main west gangway driven from foot of slope.

This letting down plane is somewhat different in its modus operandi to the ordinary balance plane, inasmuch as the cars are let down from the various counter gangways to a level with the main gangway by a stationary engine placed at the bottom of the plane. A horizontal sheave is put at the head of the plane, around which the rope goes, and baek to the hoisting drum at the bottom. The plane is divided into as many connter gangways as circumstances, from time to time, require. The tracks in the counters are laid in a switchback form. The empty road is elevated about three feet higher than the loaded one, so that when the trip of empty cars are hoisted up the plane and dropped back into the counter the cars will run by gravity to the counter gangway turnout. The loaded tracks are also laid in each counter, with a descending grade to admit of the cars feeding themselves.

In brief the manner of letting the coal down from the counters is as follows : 1. The engine hauls two or three empty cars, as the case may be, up the plane past comiter No. 1, then the engineer reverses his engine (after the switch is turned by the " hitch on,") and the cars are let back into said comnter, the hitcher on mhooks the rope and hitches on to the loaded ears which are then hoisted out of the counter, past the switeh, and are then let down to the bottom lift. The plane is nine hundred and ninety-one feet long, pitching about tweuty degrees at a point of eight hundred and eight feet; on the same a counter is turned ofl to the west and connects on a level with the east gangway driven from slope No. 3, now abandoned as the coal
can be taken via of the plane which is quite a saving to the company. I had intended making a sketch of the plane to accompany this report, but as my time is occupied at other work, I hope the description given will be explicit and satisfactory.

There are a number of collieries in the district where this manner of operation could be used to an adrantage and a great deal of money saved anmually.

The condition of the mines on the whole is commendable. Facilities for hoisting the coal, men employed, \&c., vide table No. 3 of this report.

## Improvements at West Cross Creek Colliery, (Gowen.) Operated by Coxe Bros. © Co.

This colliery has not been shipping coal since my last report, and not likely to do so until next spring, as it will take them until that time to complete their improvements, which have been carried on very extensively during the whole year, such as driving tunnels, sinking slope, re-timbering and widening out old abandoned gangways, building new railroad tracks, remodeling the breaker, \&e. A new slope has been sunk on a pitch of about fifteen degrees, across the pitch of the vein, to take the place of the trial slope, and to facilitate the hoisting of the coal. They have driven about six hundred feet of a gangway, including east and west of the slope, which affords sufficient room for the opening of fifteen breasts, with a range of about eighty yards on a pitch of forty-five degrees.

The following is a vertical section of the vein taken in the face of the gangway, December 14, 1880: Top clod-mining, nine inches; sulphur, eleven inches; slate, three inches ; good coal, three feet ten inches; slate, two inches ; coal, three inches ; slate, four inches ; coal, one foot three inches ; slate, one inch ; bottom bench, good coal, three feet eight inches; mining, four inches; total thickness, eleren feet ten inches; refuse, two feet ten inches; total coal, nine feet. This vein which is the Buck Mountain, is subject to many sudden changes, and varies in character very frequently, particularly in this locality. The section shows that the vein contains about twentyfour per cent. of refuse, at the place where it was measured; however, it is likely to vary considerable from this; in some places it may prove to be better, and at other points it will turn out worse.

The ventilation for sinking the slope, and driving the gangways was produced by a four and one half feet diameter fan, producing about five thousand cubic feet of air a minute. The fan was placed on top of the slope, and the air foreed down through a fourteen inch by fourteen inch air pipes. This method of rentilating a new opening, is much preferable, in my opinion, to any other. The old practice of prorlucing a enrrent of air by inserting the exhaust steam from the donkey pump into the air pipes, or by bratticing or partitioning a portion of the slope off, is done away with, as it deserves to be, except in temporary cases. When the colliery is properly opened out, donbtless, a large fan will be erected, if needed. At a point if two thousand four hundred feet east of the slope, a tunnel three hundred and thirty-nine feet long has been driven, eutting the same vein that the slope is on. The west gangway, unless it should be ent out by a fault, will con-
neet with the east gangway driven from the slope. The coal from the tumnel and surrounding drifts, will be hauled to the breaker by a locomotive. It is difficult to estimate the capacity of production for 1881, but we can renture to say, that it will not be less than four hundred to five hundred tons of coal per day. This company have spent a large sum of money in developing this property, which has given employment to great many persons, and it is sincerely hoped that they will be reimbursed for their investnients, which they richly deserve.

## Improvements at Middle Cross Creek (Derringer) Colltery. Operated by same Company.

This colliery is located about two miles east of Gowen, in the Black Creek basin, and from present appearances promises to become a very productive colliery. They are still continuing the sinking of the trial slope, which is now down three hondred and fifty feet from the surface, dipping north, at the outcrop, $15^{\circ}$, and increases, at a distance of about one hundred and fifty feet, to $60^{\circ}$, and at three hmodred and fifty feet from the surface it is $75^{\circ}$. They are now sinking a rock slope through the overlying measures, from the knoll over the slope mouth, and a little way to the east of it, to comect, in the rein, where the inclination beeomes rery steep, so as to hare a miformity of pitch, together with the riew of affording a better location for the breaker, which will likely be built during the coming summer.

They have erected a very large steam saw-mill, and a number of very substantial and comfortable mine-houses for their employés, which is certainly a eredit to the firm.

The veatilation for the opening of this mine is produced similar to that at West Cross Creek colliery. A small fan is placed outside, driven by a small engine, and the air is condneted throngh wooden boxes down the slope to the men.

Thes have also built a wash-house for the men to wash themselves when returning from work.

A rertical section of the rein is as follows: Top clod-coal, one foot; slate, eight inches ; coal, one foot six inches; dividing slate, one foot two inches; coal, one foot two inches; slate, one inch; coal, two inches; slate, one and a half inches; coal, three feet six inches. Total thickness, nine feet four and a half' inches, of which two feet one half inch is refuse, and seven feet four inches coal.

## Improvementsat Eant Crosa Creek (Tonhickeu) Colliery. Operated by the mame Company.

This colliery is located in the Black Creck lasin, abont five miles east of Gowen, or seven miles west of Hazleton. A slope has been sunk on the north dip of the 13 vein, at an angle of about fifteen degrees, to the basin, a distance of three hundred and ninetr-nine feet.

A seetion of the rein, in the basin, is as follows: Top slate-mixture of coal and slate-two feet nine inches; slate, three inches; coal, nine inches; dividing slate, two feet ; eoal, eight inches ; slate, tive inches; bottom coal, three feet eight inches. Total thickness, ten feet six inches.

Overlying this vein, with an intervening slate of about seren feet, is another rein of excellent coal, on which a slope, two hundred and ten feet long, was previously sunk, dipping south at an angle of forty-two degrees on top, and thirty-three degrees near the bottom.

A section of this rein is hereto amexed: Top bench of coal, three feet; second bench of coal, one foot eight inches; good coal, two feet seven inches; slate, five inches; good coal, three feet; dirt and slate, two inches ; coal, one foot eight inches. Total thickness, twelve feet six inches, and only seven inches of refuse in the whole vein. They intend sinking a shaft at the lowest point in the basin, to penetrate both veins. It is probable that the breaker will be built as soon as the vein is suffieiently and satisfactorily developed.

## Improvementa at Black Ridge Culliery.

This is a new eolliery, located about four miles west of Hazleton, at Conyngham station, in the Black Creek basin. The veins so far proven are said to be three in number. and the persons in charge are of the opinion that they are splits of the Mammoth vein. Whether this is so or not time alone can tell, and we must wait for the future development, as they vary much in formation to anything we have in this locality. The slope is down to the basin, a distance of two hundred and serenty feet, dipping at an angle of forty-two degrees at the top of slope, serenty degrees half way down, and thirty-eight degrees near the bottom of the slope. It is said that there are two reins orerlying the one the slope is sumk on, one of which was lately cut by driving throngh an intervening slate of seven feet thick, and proven to be about fifteen feet in thickness, and of superior quality of coal. The following is a vertical section of the slope vein : Top elod, rongh bird-eye coal, one foot; slate, seven inches; coal, nine inches; dividing slate, seven inches; coal, two inches; slate, five inches: coal, five feet-total, eight feet six inches.

The overlying vein is very pure, contains scarcely any refuse, and is similar in character and quality to the overlying vein at Tomhicken, continuation of the same basin. In geological order, I would term the rein on which the slope is sunk in the D, or Wharton, and the one above it the $\mathbf{E}$, or Mammoth. Having located either of these two veins, the others can readily be named in their proper order. The present prospect is farorable for a large rield of coal, and the company are using every effort to push things right along, in order to commence shipping coal by the first of A pril next. They have in course of tonstruction a large breaker, with the latest improvements for the preparation of coal. The hoisting engines, (fourteen inches hy thirty inches, are loeated on the knoll hack of the breaker, and the steam-boilers, six in number, are situated near the slope entrance. The second outlet is now being made, and will contain fifty square feet area, and soon as completed a fan sisteen feet in diameter will be erected to rentilate this mine. The colliery will be operated by the Black Ridge Coal Company.

## Improvements at Mount Pleasant Colllery. Operated by Pardee sons.

The improvements at this colliery have been very extensively carried on during the year just ended. They have sunk an underground slope on the north dip of the Wharton vein, a distance of two hundred and twenty-five feet to the basin. The piteh of the slope varies. At the top it is twentyfive degrees ; half-way down it is seventy-five degrees ; near the bottom, or basin, it is ten degrees. The vein is in very good condition, and bids fair to yield a large amount of coal. To hoist this coal to the level of the main workings, they have erected a pair of engines, the dimensions of which are twelve inches by twenty-four inches. The steam will be conveyed to them by means of a ten-inch diameter bore-hole, put down from the surface, the length of which is one hundred and eighty feet. The ventilation, at present, is all that can be desired.

The average air-measurements for December is hereby annexed: Inlet, thirty-six thonsand three hundred and fifty-tluree cubie feet a minute; ontlet, thirty-six thousand five hundred and fifty cubic feet a minute; in face of gangway " $A$," four thousand eight hnudred cubic feet a minute; number of men, forty-one. In face of gangway "B," eighteen thousand four humdred eubie feet a minute; number of men, eleven. In No. 2 plane gangway, eleven thousand nine hundred and fifty enbic feet per minute; number of men, thirty-four. The eurrent in gangway " 13 " also ventilates twenty-nine men in the Wharton vein, in the adjoining colliery.

## Monnt Pleasant Elope, No 1.

This slope, which is located about three thousand three hundred feet east of No. 2, was drowned, abandoned, and the coal considered, by the parties then operating, to be worked unt. During the latter part of 1879 , the present lessees pumped the water out and have since fomd that the slope contained a great deal of unworked coal. The slope is sunk on the south dip of the mammoth rein, a distance of three hundred and seventy-two feet to the basin, at an angle of thirty-eight degrees. The basin of this vein terminates or "spoons out" at a point of about fifteen hundred feet west of the slope. The total thickness of the vein is about twenty-three feet, but only eighteen feet of it is being worked, owing to the excessive thickness of the dividing slate, (eight and a half feet,) and the four foot or bottom bench being unusnally thin. I am of the opinion, from present indieations, that they will get from this old slope not less than five humbed thousand tons of marketable coal, which was supposed by many to be lost. A letting plane is now being driven, in the axis of the synclinal, to let the coal down to a level with the first lift, west gangway, as the basin rises too rapidly to follow it with the gangways. The turnouts, gangways, and the slope have been well re-timbered where it was considered necessary.

The ventilation, thus fir, is produced by natural canses, and has met the requirements of the mines, but, if needed, the company will readily put up a fan during the coming summer. The following are the measurements of he air sent to this oflice for week ending November 29: N umber of cubic
feet in inlet, thirteen thousand four hundred and thirty ; in outlet, thirteen thousand five hundred cubie feet; in face of gangway " C ," six thousand one hundred and twenty cubic feet; in face of gangway " $A$," six thousand two hundred cubie feet a minute. The number of persons working in each split or current of air were thirty and twenty-five, respectively. The coal from this slope is hauled to the breaker, located at slope No. 2, by a mine locomotive. The breaker has been overhanled in machinery and in carpenter work, by which its eapacity will be inereased from about four hundred to a thousand tons of coal per day, which they intend to ship during the coming season.

The colliery has been free from fatal accidents during the year. In slope No. 2, four persons were injured; three by falls of roof and sides, and one by a premature blast.

## Colltery Improvements at Lansford Slope No. 4. Operated and owned by the Lehigh Coal and Navigation Company.

This slope took fire January 3, 1878, and was extinguished January 17, 1879, by means of closing up the mine, injecting steam into the same, and by inundating the two lower lifts with water. For information pertaining to the origin of the fire, \&c., vide report of 1878 . They commenced to hoist the water out June, 1879, and the mine was drained September, 1880. Since which time they have been repairing the slope, gangways, air-ways, railroad tracks, \&e.

The gangways were not as much damaged as was expected, but the airways were very badly crushed which had to be re-timbered and enlarged for a distance of about six hundred yards east and west of the slope, from a four to a six feet collar and an eight feet leg. The slope is down six hundred and seventy-nine feet from the surface, at an angle of sixty-nine degrees.

The mine generates a large quantity of carbureted hydrogen gas, hence the necessity of enlarging the air-ways to about fifty-six square feet area. A new "second outlet" has been made the size of which is: collar, twelve feet; leg, ten feet; spread sixteen feet. The timbers are set about four feet from center to center with the pitch of the vein, which is about forty feet thick.

A twenty-one feet diameter fan is being built to be placed on top of the new outlet.

The timbering and the workmanship in the "new outlet" deserves special mention, and I must say, withont fear of contradiction, that it cannot be excelled anywhere in the anthracite coal mines of the State of Pennsylvania, and doubtless many of our mine bosses would be profited by an inspection of the same.

Tunnel No. 6, on the north side of the valley, but in the same basin, still continues to produce its regular quota of coal and likely to do so for at least another year without making any improvements in sinking another lift, \&c. The re-opening of the red ash vein gangway, overlying the mam-
moth vein, has greatly assisted in keeping up their production from the tunnel while the big vein gangway is being robbed back.

The ventilation is about the same as previously reported.
The east mountain tunnel, (a lift above No. 6 tunnel workings.) contracted to William II. Thomas is in good condition. The tumel was driven to tap and work the outerop of the rein, and has yielded a large quantity of coal.

The west mountain tunnel workings, contracted to Josiah Williams and John Davis, is becoming exhausted of coal which has necessitated the sinking of a slope through the old workings to point of about thirty feet below the level of tunnel No. 6 west gangway; this will give them access to a great deal of coal that was left in the abandoned portion of the colliery which was considered by many to be forever lost. The rentilation for the two mountain tumnels is produced by natural causes, and so far has met the requirements of the mines.

No. 8 Mountain tunnel was driven for the same purpose as those of No. 6. This tunnel is about two hundred feet long, eutting the rein about sisty feet below the croppings. The gangways cross quite a number of the old breasts worked up from tunnel No. 8, making it very difficult at some points to timber. The coal is let down to the breaker, or to a level of tumnel No. 8 , by a letting down plane. Ther employ about thirty men and boys. Being so close to the outerop of the vein the mine is easily rentilated.

Tunnel No. 9 colliery. The east gangway in the slope has been driven to the boundary line, while the west gangway is being worked around the point of the anticlinal into No. 2 slope basin, where a great deal of coal was left in the old slope workings. The condition of this mine is satisfactory. except the heat from the steam pipes in the tmmel, which I am told will be remedied by re-covering the pipes and putting up a new fan to cause a greater quantity of air to circulate through the tumel.

Tunnel No 5 and Slope No. 7 are in abont the same condition as was previonsly reported, except a letting down plane which was driven in the axis of the synclinal to let the coal down from a higher point in the basin to a level with the gangway.

1mprovements at the Treschow No. 7. Operated by E. H. Lelsenring.
This is a new slope sunk on the north dip of the Wharton vein, a distance of about five hundred feet at an angle of forty-five degrees. A timnel ahout one hundred and twenty-five feet long will be driven from this slope to cut the mammoth vein on the same dip as the slope. The territory to the east of the slope to be worked is about fifteen hundred fect long, which aflords two lifts-exclusive of about two hundred and eighty feet of a lift-on the opposite piteh up to Vorktown No. 5, Wharton gangway: There is considerable lig vein coal and a large quantity of Wharton vein coal to he mined west of the slope. The coal mined at this slope will be hauled to the Tresckow breaker by a mine locomotire. For hoisting the coal they
have ereeted a single engine and six boilers to generate steam. For ventilation, a 16 -foot diameter fan will be put up.

The coal in No. 6 slope is getting pretty well worked out, and myy last another year and a half. Accidents to persons have been very frequent during the past year at this eolliery. Four deaths oceurred by falls of roof and coal; four others were injured through the same eause. Owing to the roof being so brittle, breaking around the heads of the props, I requested the mine boss to have the breastings, when the roof is bad, donble timbered.

## Colliery Lmprovements at Stont Colllery, (Nilensville.) Operated ly the Stout Coal Company.

This company has sunk a new single traek slope through the old working of No. 5 in order to mine some coal that was left in the basin of the old slope. whieh will give them about sixty feet of a lift on each side of the synclinal, and will yield, together with what they will get by re-working the abandoned portion of the mine, about 50,000 tous of coal. The scarcity of coal at other collieries, as well as this has necessitated the re-laying of railroad track into old abandoned portion of the workings and the re-timbering of erushed-in gangways.

At No. 7 slope the company has put up a 16 -foot diameter fan driven by a thirteen by trenty-four horizontal engine, with a capacity of abont 40,000 cubic feet of air per minute. The condition of the colliery, on the whole, is very satisfactory. The company are also mining about one hundred tons per day of stripped eoal, which is hanled with that mined at their new No. 5 slope, by a mine locomotive, to No. 6 breaker, where it is prepared for market.

## Colliery Improvements at IIazleton No. 3. Operated by Pardee \& Co.

This slope which was temporarily abandoned July 1, 1878, is now being re-opened, and will be ready to slip coal next spring. The gangways of the third lift, which were partly elosed, are being re-timbered, and will doubtless produce a great deal of coal. A new breaker is in course of construction, and will be completed by the time the mine is properly re-opened.

The fifth lift of Sugar Loaf No. 1, is also being re-opened. This lift was drowned abont ten years ago, for reasons liest known to the company. The slope is down one thousund six hundred and fifteen feet to the lasin. Vertical depth, seven hundred and forty-nine feet.

Crystal Ridge Slope, operated by the same company, has sunk another lift, which mades the third; the other two lifts being worked out, except some robling, which is now being done.

Improvementa at Lanrel Hill Colllery. Operated by A Pardee d Co.
This eolliery has heen thoroughly overhanled within the past two years. An addition has been luilt to the breaker, and about half a dozen jigs or slate separators, together with some new machinery put in, thereby facilitating the labor, and greatly increasing the capacity of the breaker. A pair of thirty-two inch hy seventy-two inch hoisting engines, with a sixteen foot diameter drum have been erected, to hoist the coal from the lower
lifts direct into the breaker. The slope is down eight hundred and fortytwo feet from the ontcrop, at an angle about thirty-five degrees, including the new lift, newly sunk, and opens out quite a large field of coal. Through some local disturbances in the geological formation at the point of turning off the gangway, the vein was found to be dislocated, or split into several sections as it were, causing the vein to be thrown to the south, where it was discovered by a bore-hole, to be in good condition. A tunnel is now being driven, to cut the vein in the place found.

When the new lift is sufficiently opened out, and the connection properly made, the coal unmined in the old or the present levels will be taken out by means of a new slope, which is intended to be sunk at a place to be selected farther to the west, and hoisted to the second-lift gangway, throngh which it will be hauled, by a mine locomotive, to the bottom of the " third track slope," and hoisted directly on to the breaker. To the enst of the slope, the company are driving two tumnels, about twelve hundred feet apart, to cut the Wharton rein, which underlies the Mammoth vein by an intervening strata at this point of about thirty feet thick, which will nnquestionably give t'e company an access to a great deal of coal, a field of which covers all of the Hazleton basin, and is comparatively untouched. The condition of this mine is all that can be desired. The rentilation at present is very good, and meets the requirements of the mines. During next summer this colliery will be able, if necessary, to ship at least one thousand tons of coal per day.

Improvements at Epring Mountain Collierles, (Jeanesville.) Operated by J C. Hayden de.
This company have drained one of the old abandoned slopes, situated one thousand and fifty feet west, and on the same dip of Slope No. 1, which will give them an accession to quite a territory of coal left in the old workings. When this slope was working, it appears that they only worked the two lower benches of coal-the four foot and seven foot, propping up the three benches and the six foot, which is equivalent to nearly one half of the thickness of the rein left in by working up the breastings, although not of so good a quality, yet it is marketable.

The drift workings are nearly finished. The sonth side of the local basin, and to the west of the slope, proving very faulty. A connection has been made hetween Slopes Nos. 4 and 5 , which has greatly increased the rentilation, and if properly made to circulate to the face of the breastings, as the law requires, it will be satisfactory.

Slope No. 4 has been idle during the past year, waiting for the completion of driving about eighteen hundred and thirty feet of a gangway, mearly all in rock, from No. 4 to No. 7 slopes, an acconnt of which was given in my last year's report.

## Improvements at the Buck Mountain Colllery. Operated by the Iuck Mountain Coal Company.

The improvements are such as sinking slopes, draining abandoned slopes, \&c., for the purpose of re-working them. Slope No. 3 , which was abandoned many years ago, has been pumped ont, with the intention of mining
the 6 -foot bench of coal, and whatever they can get of the 9 -foot bench, which was left in or ummined by the old mode of mining. Doubtless, from the appearance of the place, they will get a great deal of coal from this old slope, and the company will be amply paid for their trouble. A new slope has been sunk in the ahandoned portion of No. 1 basin, to re-work whatever coal was left from old No. 1 slope workings.

An underground slope is being sunk in No. 7 to the basin, to work a portion of the coal that cannot be reached by the main slope. The coal from the inside slope, and from places in proximity thereto, will be hauled to the bottom of the main slope, by the endless rope system; a stationary engine being placed at the bottom of the slope for that purpose. A 16 -foot diameter fan will be ereeted to ventilate the workings of No. 7, which, I think, will make things satisfactory.

## Improvemente at East sugar Loaf Collieries. Operated by Linderman, Skeer do.

The fire in slope No. 2, which was reported in my last year's report, I am happy to state, has been extinguished by drowning and sealing up the mine. The water was pumped out, and they commenced to work about the middle part of November, that is to draw some loose coal from about a dozen breasts, and to re-timber the gangway and air-way. This mine generates a great deal of carbureted hydrogen gas, and has been very difficult to ventilate, owing to the old rorkings having been crushed, eausing the air to leak through the loose coal, \&c. However, a hole is now being driven from No. 2 to No. 1, which will eventually be the means of increasing the quantity of air, and to afford a traveling-way for the men, instead of the old second outlet.

The fire in No. 1, I believe, is also extinguished. At anyrate, after a careful inspection, for the purpose of ascertaining, I have failed to see any signs of fire in any part of the old works, but there was suflicient evidence that fire had been very strong at one time. No. 1 was flooded with water the same time as No. 2, which unquestionably was the primary cause of quenching the fire.

The water in No. 1 was left to rise about thirty-two feet vertical, and the communications between the workings being elosely cut off by stoppings, \&c., excluding all the air possible from the region of the fire. The persons in charge deserve credit for the manner in which they fought this fire, and I am sure that it is a source of satisfaction to every body to know for certain that it is out.

At slope No. 7 they have put up a 16 -foot diameter fan, eapable of produeing forty-five thousand cubic feet of air a minute. The fan is driven by a $16^{\prime \prime} \times 24^{\prime \prime}$ horizontal engine, direct acting, and is compiete in every respect.

Description in detall of the Deathe enumerated fo the tabulated statement, Table No. 1.
Deaths from Falis of Coal, and. Fall of Roof.
Accident No. 1.-Albert Tobaski was fatally injured by a fall of coal in Cross Creek No. 1, January 14, 1880. He went to his brother-in-law's
breast, who was working another breast close by, to see how he was getting along, and when he got there, they were ready to fire a "shot" or blast, and they all retreated from the flying missiles to a place of safety. After the blast went off, they were about to return to the breast, when the mine boss who was standing near, remonstrated with them about going back to their place too soon, as they should wait, and give ample time for the place to settle. Regardless of the adrice, they proceeded immediately to the face of the breast, and the brother-in-law began to bar the loose coal from the face of the workings, while the deceased sat down under some top eoal which projected over the bottom bench, when it fell, resulting as stated.

Accident No. 4.-Benjamin John, a miner, driving gangway at Buck Mountain No. 4, was killed by a fall of clod in the gangway, Mareh 24, 1881 . Benjamin was diriving the counter gangway in the western portion of the colliery, and when moving back from the face, a large flag of slate covering the width of the gangway, fell on him. The mine boss told me that he had been with him in the morning, and requested him to start to timber the gangway, as the top was getting bad, and shortly afterwards the accident took place.

Accident No. 6.-Bermard Dugan, miner, aged __, was instantly killed by a fall of coal in Laurel Hill colliery, March 23, 1880. The deceased was about to commence to blast up the four foot bench of coal, which was left by the primitive mode of mining, and before doing so, he was ordered to blast down some of the bench which projected over the head of the chute, as they looked rather dangerons, as stated by Mr. James Durkin, mine boss. A fter finishing, and making the top coal secured, he re-started to work on the bottom coal, when some of the top benches tell on him, with the above result. A hout half an hour previons to the occurrence, the mine hoss had been with him, giving him instructions what to do, and had scareely reached the bottom of the slope, when word came that Duęan was killed.

Accubent No. 7.-William Markins, miner, aged forty-five, was fatally injured by a fall of coal in slope No. 7 , Lansford, $A$ pril 8 , from the effects of which he died, in the hospital in I'hiladelphia, May l. He was working a breast in the Mammoth vein, and a fall of coal from the face of the breast fell on him, breaking his leg and seven ribs. Died in twenty-three days after the aceident.

Acoment No. 9.-Daniel Me'Tague, laborer, aged twenty-one, working at Council Ridge, No. 2, was fatally injured. May 6, 1880, and died the following day. Me'Tague was laboring for his mele in the gangway in the underground slope, and was in the act of walking back from the face when a large flag of the dividing slate fell on his hip, knocking him down. Little was thought of the happening at the time, as he appeared to be seareely the worse.

Accobant No. ll. -bames Rateliff, aged sixty, was instantly killed by a fall of coal at Tresckow, No. 6, May 21. 'This man's death happened, umfortumately, by his leaving his own work and going to assist his son, who
was working a breast near the furnace, which the deceased was tending at the time. The son had just fired a shot, when the father arrived and went in to see the result of the blast, when the son remonstrated with him that it was unsafe. Heedlessly the old man commencel to pick, and no sooner had he done so, when the top bench of the Wharton vein fell, erushing him to death.

Accident No. 12.-Condy Daugherty miner, aged, forty, was instantly killed at Oak Dale, No. 2, by a fall of coal, June 1, 1880. Daugherty was one of two men working a breast in the big vein, and when ascending his breast, which was up forty yards from the gangway, a lump of coal of the two-foot above the four-foot bench fell on him. The two-foot projected abont three feet over the four-foot, or bottom bench, from the face. His partner, who was working in the face of the breast at the time, said that he requested him to stay down, and not go tip the breast, but not having anything to do at the time, as he had loaded his car, doubtless his intentions were to go up the lreast to help his partner, and was eaught in the attempt. I had every reason to find much fault with his partner at the time, for I considered there was negligence on his part, in not barring down the enal after he had sounded it, for it evidently was loose, as it fell shortly afterwards.

Accident No. 15.-Condy O'Donnell, miner, aged thilty-five, was instantly killed at Lansford slope No. 7, June 30, 1880. O'Donnell and his partner were putting in a length of manway and donbtless were anxious to aceomplish their job before the boss came as it was measuring day. When the mine boss and fire boss came they called to the miners to stop putting down stuff as they wanted to go up to measure; after they reached the face the two miners stepped inside the manway to give room to the bosses when some coal slid out of the face, killing $O^{\prime}$ Donnell and injuring his partner. It is proballe that the deceased came to his death throngh his eagerness to get in the length of manway as the same was in adrance of the face of the breast at the time, and further it is evident from the conversation that ensned betreen them while the bosses were going up, that the boss would scold him for doing it.

Accident No. 19.-itmes Boyle was fatally injured by a fall of coal at Spring Brook, October 8, and died the same evening. Boyle was at work robbing back a gangway in the Wharton vein, and at noon he went home for dimer and after returning he fired a hole in the pillar which cansed the coal orer the platform to erush. The company men, who were putting in a platform in the adjoining breast, requested him to keep away and allow the place time to settle. After remaining a little while he attempted to do some work, but was compelled to retreat, and in course of time the driver brought them a ear and they commenced to load it, the place still crushing. At last it became so bad that they had to get out of the way, but fearing the coal would break the handle of his sledge he rushed back for it and was eaught in the attempt. This man eame to his death through sheer recklessness, for they could not be a safer place to work underground.

Accinent No. 21.-Cornelins Mulligan, road man, working at Tresckow No. 6, was instantly killed by a fall of roof October 19, 1980. The deceased and his partner were ordered by the mine boss to go to a miner's breast and put in a length of track and to shift the road to the upper side, finding that a center prop was in the way they concluded to knock it ont, the miner whose work it was to remove the prop being engaged at the time filling a car asked Mulligan to do it, after making several ineffectual attempts in knocking it out with the sledge, without sounding the top to ascertain its condition, they did a little picking around the foot of the prop and gave it a few more blows when it was dislodged, and the weight it carried fell on top of Mulligan, resulting as above and slightly injuring his butty who was standing alongside of him at the time. These men might have known that it was dangerous to knock it out from the fact that it was hard to do it, being made so by the weight that was on top of it, for a prop that has but little weight to carry or support can very easily be knocked out.

Accident No. 22-Hugh Gallagher, miner, aged sixty-five, working at Tresckow, No. 6, was slightly injured November 11, by a fall of roof, and died November 15, 1880. Little was thought of his injuries at the time, and the parties in charge thought the matter was too trivial to report, (that is, the ease was not serious enough to report.) The injuries received may have had something to do with this death, but I am of the opinion that it was not the primary canse. At any rate he was very old, and the hurt may have something to do with his death.

Accident No. 24.-Anthony MeNelis was fatally injured by a fall of coal at Oak Dale, No. 2, November 15, and died on the 17th, 1880. MeNelis was one of two working a " buggy breast," and had driven it up about twenty yards from the gangway. When they went to work Monday morning, they noticed that a fall of coal had taken place, and without looking if there was more likely to fall, the deceased commenced to work in the face, while his partner went to work in the cross-cut, when another fall took place, injuring McNelis, from the effects of which he died. The place, it is true, was very dangerous, as the coal was full of slips, and when I made some suggestions to the miner what to do to make it safe, he said that it was " too dangerous to do it," and yet he would work right under the danger rather than secure the place.

## Deathe from Explowions of IBlasting 1'owder and Premature Blants.

Accinent No. 23.-Benjamin Warren, miner, age fifty-four, working at Colerain, No. 2, was instantly killed by an explosion of a premature blast. The deceased and his laborer were working a breast in the Mammoth vein, and had fired that day about half a dozen holes, but the last one, by whieh he was killed, was drilled too small for the cartridge of powder ( $23^{\prime \prime}$ long) to go to the back end of the hole, and he took the butt end of the drill to force it in, after giving it a few tamps with the drill the powder exploded, killing Warner and seriously injuring the laborer. The laborer told me that he begged of him not to force or drive it in, but he said that he had
"often done it before, there was no danger." Warner was a man, to my knowledge, who had worked in extremely dangerous places, and yet he was killed throngh his own reekless aet. This practice of driving the cartridge home, as it is called, is too eommon among miners, and it is miraculous how many of them escape being killed. The miner who was working the adjoining breast did the same thing the very day of the oceurrence, but fortunately the powder did not explode.

Accident No. 3.-Thomas Berbeek, miner, was fatally injured by a blast at Cross Creek No. 2, February 17. The deceased and his brother were working a breast, and when about to fire a blast they retreated to the gangway for safety. After waiting about four minntes for the hole to go off, Berbeck returned to retouch the match, thinking it had " missed fire." When he had advanced within thirty-three feet of the hole it went off, throwing a lump of eoal weighing about ten pounds, hitting him in the abdomen, inflicting such internal injuries as to canse death shortly afterwards. This is the first death that has taken place in this distriet from defective squibs, although I believe many miners have had very narrow escapes. The sulphur match squib is very deceiving, as it burns so dimly that the light cannot be seen a great way off, and mivers very often return, as was this case, to re-light the match, when, to their surprise, they find the sulphur mateh still burning, and have to seud for life.

## In Slopes.

Accident No. 5.-William Dando, miner, was fatally injured February 4, at Spring Mountain No. 4, operated by J. C. Hayden \& Co. The deceased, with others, was at work timbering the slope, preparatory to turning off a counter-gangway from the slope to the west side. A seaffold had been erected across the slope, on which Dando and a carpenter were standing to trim the top coal, to give room for the collar, at which time a truck, with the pump-man on, was being hoisted up the slope, and they got off the scaffold and removed a portion of the plank back on each side of the track, which afforded ample room for the truck to go under, while they held one plank up, instead of throwing it lack with the others. When the truck was near to where the scaffold was, the pump-man thought there was not sufficient room for the truck to go under the scaffold, and he jumped from the truck to rum around to the seaffold and eatch it on the upper side. This sudden action on the part of the pump-man cansed the men to suppose that he fell under the truck, hence they forgot about the plank they were holding up, and left one end down too low, in consequence of which the truck caught it, and crushed Dando between the prop and the plank. ITe walked home after the accident and conversed quite fluently, out when reaction took place he died unexpectedly.

Accident No. 16.-Beruard O'Donnell, hiteher-on at bottom of slope at Comeil Ridge No. 5, was struck by a lump of coal that rolled down the slope, fracturing his scull. The aceident happened July 9 , and he died July 13, 1880.

## Deaths by Mine Cara.

Accident No. 2.-Joe Kenney, car rumner, was fatally injured at Tresckow No. 6, January 23d, by being run over by mine cars. He was bringing a trip of loaded cars down the grade, and it was supposed that he stumbled and was dragged under the cars, terribly lacerating his leg. He was taken to the hospital, where he died a few days afterwards.

Accident No. 17.-Charles Gillespie, hitcher at bottom of slope was fatally injured at Beaver Brook No. 4, September 1st. When the car was just being hitehed, (was up perhaps fifteen feet from the bottom, the swivel of the chain broke, letting the car back, which canght Gillespie while he was muning away from the ear up the turnont, jamming him between the cars and cutting his leg rery badly. He was taken to the Pemsylvania IIospital, where he died in a few days.

Accident No. 8.-George Zierdt, aged 14, cut on the knee by being canght by mine cars at Highland No. 1, April 5, 1880, from the effects of which he died May 26th, following, from lock jaw.

Accident No. 11.-A be Williams, driver, aged 20, at Ebervale No. 3, had a cut on the heel of the foot by the car jumping the track, resulting in death from lock jaw in two weeks after the occurrence. Here we have two accidents within nine days of each other which were considered, when they occurred, to be very trivial in their nature. Indeed, they were so slight that the superintendents did not think them important or serious enough to report until their deaths, which resulted quite mexpectedly.

Accident No. 18.-John Wolfskill, a lad 14 years of age, was fatally injured at the bottom of the new lift of Laurel Hill slope, September 2d, and died of his iujuries September 16,1880 . The boy was employed at rumning a donkey pump which was situated at the bottom of the slope, and, while playing around, jumped on a loaded car which the gangway men were prishing into the bottom of the slope, and was jammed between the car and center prop.

Accinent No. 20.-Patrick Gildea, driver, was iustantly killed by mine cars at Cross Creek No. 1, October 15. The deceased and another driver were hringing a trip of loaded cars to the bottom of the slope from the inside turnont. The second car, which was loaded too high, eanght in the chute platform, which threw it off the road, and in the atteapt of pulling it on the track with the mules, Gildea, who was sitting on the front bumper of the car, fell and was run over.

Acobent No. 25 .-Abraham Stewart, driver, was fatally injured by mine ear at Lattimer No. 2, from the effects of which he died in about two hours afterwarls. The boy had a few leisure moments, and after eating a lumel he strolled up the west tumout, abont the same time that the empty car was being hanled from the bottom to the turnout or siding, passing the car opposite the loaded cars when it was stopped for changing the doors, which prevents the coal from falling off on the slope, from the empty ear on to the loaded onf, and when the driver started up the deceased got in between the timbers whon the car was thrown from the track, cansed hy a sprag be-
ing on the rail, slewing the car across the road, the hind end of which struck him against the leg of the set of timbers, erushing his head and body very badly. This is one of those mavoidable accidents, a recurrence of which can only be prevented by the persons themselves in remaining at their work.

## Deatha from Mismellancous Causes, above ground.

Accident No. 14.-David Reese, slate picker at Spring Mountain (Yorktown) No. 6 breaker, was suffocated in the Pea Coal pocket, June 29, 1880. The boy complained to the sereen boss that his fingers were sore, picking slate, and asked to be changed to shoveling the coal in the pockets, to which the boss consented. After dimmer, he exchanged places-with the boy that was shoveling, and in about twenty minutes afterwards he was discovered by the loader, who was drawing the coal into the transportation cars, coming throngh the gate. He gave the alarm, and the coal was left to rum on the road, but not in time to save him alive. Had he not become entangled in the chute at the gate, it is likely that he might have been rescued alive. It is a practice too frequent among breaker bosses, in putting boys to do men's work, and very wrong indeed in placing them in dangerous positions where they are not capable of renlizing the danger, as doubtless was this casc. The boy was innocently shoveling in the poeket, the same being full of eoal, when the loader opened the gate to let the coal out, the boy was sucked through as thongh it was in a whirlpool.

Acoident No. 13.-Patrick McLaughlin, aged forty-five, engineer at the saw-mill at Latimer, was fatally injured June 9, and died June 11, 1880. The accident happened about 8 , A. m. Shortly after starting to work, through the governor belt falling off the governor pulley, eansing the engine to rum at fearful velocity as to break the cylinder head, fly-wheel, the engine bed plate, and smashing things in general, as it was impossible to stop the engine, owing to the thread on the screw valve being stripped. The engineer hastened to the serew valve, as doubtless he had done before under like cireumstances, to screw off the steam, but when he foumd the thread on the stem of the serew ralve stripped, he hastened to the safety valie to let the stean escape, and was in the act of holding up the safety valve lever, when the whole thing collapsed. The rest of the men escaped minjured, fortunately, but were terribly frightened when they realized the sitnation. Since the accident, things have been fixed up, and a throttle valre placed between the engine an 1 screw ralve to aroid a repetition.

Accident No. 26.-John Bach, Iungarian. working at the stripping of the coal at Hollywood colliery, was so severely hurt by a fall of elay, December 22 , that he died on the way to the hospital the same erening. This is the second deatl that has occurred at "strippings" in this district, although it is the first at the above named colliery. One man was fatally in jured at Colerain stripping in 1878, by renturing too far in the under cut to draw a fall of surface, and was cuught in a similar manner as that of Bach.

TABLE I.-List of accidents proving fatal in the South District of

Killed, . . . . . . . . . . . . . . . . . . . . . . . .
Fatally injured,

Luzerne and Carbon counties, during the year ending December 31, 1880.

## Nature and Causes of Accidents.

Fatally injured in another person's breast, by a fall of coal,
Fatally linjured, by belng run orer by mine cars,
Fatally injured by a blast; thinking the match had quenched, he went back to relishit it, when it expluded,
Killed in the gangway, by a fill of slate,
Fatally injured, by being crushed between a plank and center-prop, on the slope.
Killed by a fall of eoal, two foot bench, while in the act of blasting up the four foot.
Fatally injured by a fall of coal; leg broken and ribs tractured; died is the herpital May 1 , foso,
Cut on the knce, by venng canght by the cars; lock-jaw set in, and he died May 26, 1850 ,
Fatally, by a fall of the diviling slate, while laboring in the gangway,
Cut in the heel by a ear jumping the track, which brought on lock-jaw; died in two weeks afterwards,
Killed by a fall of coal while assisting his son, after firing a slot,
Killet] by a fall of coall lu the breast; two foot bench, above the bottom four toot, fell on lifin,
Fatally injured by the breaking of the machinery; the screw valve was out of oriler. See explanatory notes,
Suffucated in the pea cual pocket at the breaker.
Kllted by a fill of coal in the breast
Fatally injured, by being strnek by a lump of coal which rolled down the slope; died or the 13th, following,
Fatally fujured by hoistiug-chain breaking, ear eaught him on turn-out; died in course of a week atterwards,
Fatally injured; jammed between car and center-prop; died on the 16th of the same montls,
Fatally injured by a fall of eoal, whlle robbing back the gangway in the Wharton vein; died same evening.
Killed by talling under the cars in the gangway; ear got off the road,
Killed by tall of roof while knockiag out a prop, which was set too near to the road,
Fatally injured by a fall of roof; died on the $i 5 t h$, following,
Killed by an explosion of a premature blast In the breast,
Fatally finjured by a fall of coal, from the effects of which he dien on the 17 th , following,
Killled by being caught between car and gangway timbers
Fatally injured by a fall of clay at the stripping; he died on the way to the hospital, same day,

NUMBER OF DEATHS.


## Recapitulaion.



TABLE NO. II.-List of Non-fatal colliery accidents in the South District


## Nature and Causes of Accidents.

Severely hurned by an exploston of blasting powder, ignited by spark from his lamp,
Leg troken; his cloties canght in a revolving shaft, and he was whirled around against a post.
Three fingers ent off while in the act of sawing a plank at saw-mili,
Shomder dislocated, canglt between the car and prop, by leaning too far on the side of the ear,
Thigh considerably hurt by belng canght under the car while it was bejng dumper at the tip.
Leg broken and dangerously hurt by a fall of coal, while barring down the s tme.
Injured on the arm, jammed between the car and boller-honse,
Arm broken and injured otherwlse by a fall of clod in the Wharton vein.
Leg broken and severely hurt about the body by a lump of coal rolling down the chate,
Cut in the head ty a fall of clod. Not serlons, . . . . . . . . . . . . $^{\circ}$
Serinnsly cut on the back of the hean,
Injured by a fall of coal in the Wharton vein gangway,

Cut on the leg by a plece of coal falling on the drill while he was soundiag the roof.
Slightly injured while attemping to cross the hoisting rope,
Cut about head and hody by a fall of coal. Not considered serions,
Leg brokeu by mine cars,

Arm eanght between two cog wheels while olling machinery, necessitatlug ampitation.
Injured on thr leg by a rush of conl ln the ehute,
Arin broken by bejng run over by slate car whille playing with same,

Arm hart by falling under the ear.
Severely injured ty premature blast, eaused by squib inlssing fire,
Arm broken by falling down a ilstance of mighteen feet, caused bv a plank, wh wheh he was standing, breaking,
Badly ent on the head by a fall of enat,
Severely injureil by a fall of co, whlle in the act of drilling a hole,
Arm broken ly a lump of coal fallluy on it,
Dangerously hurt by being jammed between the and slate chute, .

Leg broken by a lump of coal falling on th in the Wharton veln,
Severely jammed between the ear and door. The boy left the door and it closed when golng through.
Arin fractured in assisting tu put a car on the track, . . . . . . .
Arin broken by unhooking the chain,

Injured by a fall of elod, returned too soon after firing a shot,
Leg broken hy belng eaught between stretcher stlek and the car; causell ly mule ronning away.
Font amputated. Claitn broke on letting down plane, and the car canght him at the bottom.
Severty turnel by an exploslon of blastlag powter, cansed by a spark from hils lamp.
Back hurt and foot erushed by a falt of clod. He was sent to the hospital
Badly brulsed about the leg. eanght between the tool-hox and ear. Both lefs broken near the thigh, by a piece of the first beneli of coal fatilng on him,

NUMBER OF ACCIDENTS.


nature and Cause of Accidents.

Explosions of $\mathrm{CH}+$ gas.   Falls of enal roof and sides.	
Exploslons of blastlng powder.	
Prematnre blasts.	
Mine cars.	
In slopes.	
M:cellaneous - nnderground.	
A boveground.	
Total.	

Severely cut on the head by a fall of coal,
Leg broken by a fall of coal,
(These two men were injured by a fall of coal whlle retimbering $\rangle$
the slope. NeGee had three ribs broken and Thomas was
(slightly hurt
Badly burt by a fall of coal in the breast,

Leg broken and head eut by falling from cheek battery to bottom of breast.
Injured on the leg; run over by slate car,
Leg injured; eanght betwerngulle rall and the rail,
Injured; struck by a car while crossing the slope at connter ${ }^{\prime} \mathrm{J}$,

Severely cut about the hearl by a fall of coal,
Severely cut on the hean by a picee of coal flying from the drill, \&e., Leg hroten by a fall ot elord.
Leg fractured by falling under the ear; he attempted to jump on the car in the slope while in motion,
Leg broken hy mine car at bottom of slope,
Severely injured by falling from the transportation ear at lump coal chute,

Dangerously injured by being thrown off the truck and tramped upon by a tean of mules,
Sererely cut in the bead by coal rushing out of the battery upon lim.
Thigh bone broken by falling under mine car,
Amputation of a few toes ty a fall of eoal,
11 eat fammed between the cars,
Leg fractured: caught between plank and the side of the chite,
sererely hurt by a fall of coal; he hatlelt the top coal hang back two fir,
Foot jammed between car and chate,
Severely bruised on back and leg by a fall of coal while barring down the same,
Injured in the Wharton vein by a fall of coal,

Injured by falling under the slate car by attempling to jump on it while in motion,
Severely hurned by an explosion of a premature blast while tamping the hole
Severtly injured by a fall of coal at the stripping,
Fracture of the ankle joint by some eoat.
Rum orer while plathg at noon home with the ach car; necesstatfing amputation of one leg and lacerathg the other,
Cut on the arm white harrtag down coal,
Severely injured by a fall of elod,
Ankle injured by a fall of top enall whlle drillag a bole,
Injured on armand leg by falling unter the car, on top of letting down plane white mhooking the ehaths,
Arm hadly eut hy fallong whlle ramolng away from a blast, . . . . Injured by some coal rushtug upon him from the battery,

Severely hurt: jammed hetween two ears on the gangway: recklessmess of the bottom drever in teaving the ear on the roat,
Severyly burned about the hands and fare hy an exploston of gas; negllgence of the tire boss ln not examintigg the phace,
Injured by falling under mine car whlle in motion,


Date.		Colltertes.	Persons injured.
Nov. 9	77	East Sugar Loaf, No. 2,	Mathew W'yll, . . .
11	78	Tresckow, No. 6, ...	Anthony O'Llonnell, . . . . . . . . .
11	79	Sugar Loaf, No. 2, . . . . . . . . . . . . .	John Ripple,
11	80	Coleraine, No, 2, . . . . . . . . . . . . . . .	Daniel Glllesple, . . . . . . . . . . . . .
11	81	Ebervale, No. 3,	Hugh Boyle. . . . . . . . . . . .
11	82	Room kın Tunnel, No. 2, . . . . . . . .	James Marktey, fireman on mine locomo.
17	83	Stonte, No. 7, (Milnesville,) . . . . . . . .	Brook Anlreis, . . .
23	84	Panther Creek, No. 9,	Frank IIeffelfinger,
30	85	Cross Creek, No. 1, . . . . . . . . . .	Thomas Williams,
Dec. $\frac{1}{7}$	888	Tresckow, No. 6, Cross Creek, No. 2,	Evan Owens, . Alex. Joiss,
8	88	Ilighland, No. 1,	James Burns,
9 17	89 90	Cranberry, Tresckow, No, 6,	Georre Brost, (boy Milion Sigficht,
20	91	Panther Creek, No. 5,	- oseph Elliott.
21	92	Humboldt.	John Patterson,
30	93	East Sugar Loaf, No. 2,	John Fox, . .

## Continued.



## Recapleulation.



Name and Number of Colliery．

Green Mountain Basin ：
1 Upper Lehigh，No．2，
2 Upper Lehigh，No． 4 ，
3 Poud Creek，
Total in Green Moutain Basin，

## Little Black Creek Basin ：

4 Sandy Run，N゙o． 1 ，
5 Highland，No． 1 ，
6 Highland．No．2，
7 Cross Creek，No． 1
8 Cross Creek，No．a
9 Cross Creek，No．3，
10 Lalimer，No． 1,
11 Latimer．No． 2.
12 Minnesville，No． 6.
13 Mlluesvills，No．7，
14 Hollywood，No．1，
Total in Blaek Creek Basin，

Big Black Crpek Brsin：
15 Buck Monntain，No．I，
16 Council Ridge，No．2，
17 Council Rirge，No．5，
18 Oakrlale．No．1，
19 Oakiale，N゙七，ュ，
2n Ebervale，No 2，
21 Ebervale，No．3，
22 ilarlelgh，No． 1 ，
23 RIack Ridge，（Conynghain，）No，1，＊
24 Lower Cross Creek，（1）erringer，）＊
25 Middle（＇ross Creek，（Tomhickon，）＊
2 W West Cross Creek，（Gowen，）＊
Total In 13ig Black Creek Basin，

## Hazleton Basin ：

27 Eatsl Sugar thaif，No． 2,
24 Gast sumar Lomaf，No． 5 ，
29 Fatal Sukar Loaf，No． 7.
30 South sugar lamaf，No． 3 ，
31 Sugir Loaf，No． 2.
32 Laurel llill，No． 5.
3311 az elon wines，No． 1 ，
34 IFazleton，Xo． 6,
${ }_{35}$ 1f：ztelon，No．3，t
36 Cryslal Ridye，No．
37 （＇ramberry，No． 1.
38 Mount Pleasant，No． 2,
39 Itumboldt，．．
Total ln 11a\％leton Basin，

ployes，tons of eoul marketed，number of kegs of powder used，dec．，during
December 31， 1880.

NUMBER OF EMPLOYEES OUTSIDE．												-pp̧suị sapntu jo גaquunn	＊วpsino sajum jo daqion N			
			$\begin{aligned} & \text { 岦 } \\ & \text { ㄹ } \\ & \text { 至 } \end{aligned}$	Carpenters and blacksmiths.			$\frac{\dot{2}}{3}$									
4 4 2	3 1	$\begin{array}{r}3 \\ 4 \\ 1 \\ \hline\end{array}$	5 3 2	7 4 3	29 29 10	10 2	2 3 1	33 35 15	96 82 37	279 225 100	2,769 3,037 709	$\begin{array}{r}43 \\ 20 \\ 5 \\ \hline\end{array}$	3   5   4	$\begin{array}{r}168,761 \\ 135,268 \\ 23,412 \\ \hline\end{array}$	B， 1， B，	1 2 3
10	4	8	10	14	68	12	6	83	215	604	6，514	68	12	330，414		
3	1	2	2	6	4	11	1	25	95	298	2.571	30	14	117，920	B，．	$t$
2		1	2	3	29		2	36	75	211	1， $8 \times 2$	37	2	S2， 518	B，	5
2		1	2	3	22	，．	2	45	77	204	2， 178	30	2	83， 144	13,	6
3	7	2	3	18	37		2	98	168	389	3．75）	21	10	161，056	13，．	7
2	41	4	3	10	13	35	1	74	183	392	3，3．8	21	2	190， 8.51	13，．	8
2		6	2	2	2		1	90	105	15	799	9	1	＋4．22，	13.	9
2	$\cdots$	1	2	3	13	4	$\ldots$	61	¢6	184	3，110	22	8	118，716	$\mathrm{F}_{4}$	10
2		1	2	3	13	．		68	89	177	1，788	13	8	160，0：2	E，	11
2	1	1	1	3	97	2	2	6	45	63	32	1	2	15，610	E，	12
2	1	1	2	7	22	$\ddagger \begin{array}{r}+30 \\ 3\end{array}$	3	21	9.4	238	839	10	5	80，333	E，	13
3		4	2	4	15	$\pm 72$	4	46	72   83	72 160	1，054	14	22	97,500	E，	14
25	51	24	33	62	237	162	23	568	1，172	2，451	21，058	208	66	1，089，5：8		
2	1	11	3	11	4.5	7	5	23	108	299	2，500	27	39	114． 193	P，	15
3	1	1	2	7	20	2	2	40	7 s	220	3，267	36	8	123，095	B，	16
2		1	2	5	12			33	55	150	1，254	7	$\stackrel{3}{2}$	58.932	13．．．	17
2		1	2	4	17		2	38	67	210	1， 204	19	3	87.751	E．．	18
2	1	1	3	5	25		2	32	71	112	1，646	33	2	83，145	$\mathrm{F}_{6}$,	19
4	2	3	7	9	5	3	3	21	116	252	1，359	32	6	123，727	F．，	20
4		3	2	5	51	$\because$	4	17	88	212	1，290	20	6	89， 198		21
3		2	4	5	20	5	3	40	83	181	1，6u3	8	12	54，286	1）and E，	$\cdots$
．．	1	3	－	21	8	4			37	71	－	．	．	．．．	．．．．．	23
－		2	2	1				．	5	27	．．	．	．	．．．	．．．．．	24
$\cdots$		$\stackrel{2}{2}$	2	15		18	3		3 40	111		2	10	．．．．	E，．．．．	25 26
22	6	32	23	¢9	255	41	24	245	713	1，976	14，535	184	87	730，657		
2		2	4	2	21	2	2	25	60	143		8	4	6.000	F，．	27
3		2	5	4	3 s	．	2	35	89	$2: 7$	1，5399	29	7	83，790	E，	28
2		2	4	3	15		$\because$	17	15	$14 \times$	1．373	15	2	82，210	Fi，	29
2		3	2	3	1.1		1	16	41	75	498	8	2	66，996	\} 1): 1 and E ，	30
2		7	3	3	16	1	－	$2)$	53	133	1，1＋2	11	4	－．	\｛ 1）and F，	31
3	6	11	3	6	34		7	62	129	273	1.558	40	10		人 I：and だ，	32
3		2	3	3	23	$\cdots$	5	3.5	71	163	995	20	6	308，257	1）and E．．	33
3		1	4	4	20		1	29	59	169	2，4．3	14	2	．．．．	） E ．	34
1		3	2	3	6		2		17	47	5		4	，	E，	35
2		6	2	3	13			18	14	89	33.3	11	1	127，969	） FH	36
3		4	2	4	19	2	$\cdots$	31	6 6i	209	2.141	22	3		（ i）and Fi，	37
1		4	6	5	39	7		31	93	20	1．726	26	12	91，257	D and E，．	38
2		3	3	3	12	4	2	22	51	127	1，690，	11		70，000	D，－	39
29	6	5）	39	46	266	16	25	311	818	2，150	15， 148	21.5	63	849， 479		

Name and Number of Colliery.


[^0]Coniinued.


It will be obserred that this table is made by commeneing to enumerate the colleries that are located in the Green Montain basin first, the most northerly in the distrlct, and Labulating them in their successive order southward, beginaing each time to eummerate at the castern end of the basin, and counting weatward. This is bone with the view of keeping the coal produced from cach basin separately. E, Mammoth vein; 1, Wharton vein: G, Primrose vein.

## Explosions of earbureted hỵdrogen gas,

Frills of roof anel sites:

Falls of coal,
Falls of roof,
Falls of rock and slate
Total by falls,

$$
\begin{aligned}
& \text { In shafts and slopes: } \\
& \text { ing into slopes, . . }
\end{aligned}
$$

Falling in oo slopes,
Holstlng machinery breaking, ropes, sc., . . . . . . . . . . . . . . . . . . . sundries in slopes,

$$
\text { Total } 14 \text { slopus. }
$$

By mine cars in gangroays:

By mine cars,

$$
\begin{aligned}
& \text { Miscullinenms under ground: } \\
& \text { xploslous of blastlug powder, }
\end{aligned}
$$

By exploslous of blastlug powder,
By males.
By premature blasts,
By sumdrles,
Total miscellaneous under gronnd
Total under ground,

## Abnce ground: <br> By machinery, <br> lyy sullucation In lreaker chates,

Jy snndrles,
Total above ground
(iross total,


The whole umber of fatal collery aceldents, is shown in thls tahle, durlng the year just ended, were twenty-six, equivalent to nearly ten per eent, less than the arerage for the past ten ycars, or about thre and a half per cent, less than the greatest fatality record shee 187a, and twenty-linee and eight tenths per cent. in excess of the lowest deathrale, which weretwenty-one in 1875; but as the mines only worked about half the durhig that year, the death tonnage of coal was only 121 , 709 tons for each life lost, compared whlt 165,337 tons in 1880.
The peremtage of casnalles do not vary much from that given in my report of 1879. Stlll, there ls a slight varlation, which is to be expected; for instance, the decrease by falls of coal and fire damp have been about one per cent, each, while those occurring by mine cars has inereased that much.

TABLE NO. V.-showing the number of employes working in and about the mines, and their ages, respectively.

	Number of Employees Working-																						
						Utside.											INSIDE						$\tau$
Agcs, years,	8 to 10	10 to 12	12 to 13	131016	16 to 21	21 to 30	30 to 40	$4)$ to 50	50 to60	6) to70	70 to80	E	12 tol3	13 tol6	16 to21	21 to30	30 to 10	- 10 to50	50 to60	60 to70	70 to 80	$\stackrel{\circ}{\circ}$	
Number,	50	$38 i$	431	601	530	623	475	483	339	171		4,111	32	263	1,048	2,019	1,466	919	$3 ¢ 9$	47	4	6,14	10,255

TABLE NO. VI.-Shows the performance of work done and the comparative


## Reference.

Where there are two locomotives used, one inside and the other outside, only that of the finslie one is taken into accommt. Hence, the averages hare been obtalned by dividing by nineteen. It will be observell that the average difference, in first cost, of mules and locomotive is $\$ 85290$, and the mean difiorence in fityor of the latter is $\$ 597$ per day. This, divitedinto the difference in first cost, gives $t 43$ days, or about 4.8 months, that the locomotlve would pay for itself, (interest, of course, being disearded in both cases.) Showing a saving of about 130 per cent. by locomotive hatulage.

It will also be noticed, In the table, that the expenses of mule power, at some of the eollieries, greatly execeds that of others, which is to be expected, as the condition of things vary so mueh at each place; for instance, that twetve mules were necessary to do the same amonnt of work in the same time as that of a locomotive, it would require, under very favorable circumstances, three teamsters to dirlve those mules, liy putting them in four-mule teans, and fin many cases it would require double that number, augmenting the expenses so much as 300 per cent. in favor of the locomotlve.

To use the mine locomotive for undergronnd hanlage, the following conditions should be taken ints eonsfderation: (1.) Adequate ventilation. (2.) Ventilation produced by meehanical appliances, that by fan preferable. (3.) Velocity of the alr current should be from eight to twelve fect per sceond, and not less than six feet. Tlie mean speed of the locomotire is about seven fuet a second, which is a tritle less than the former velocity, of the air current, advocated. (4.) The slze of gangways and tunnels, where locomotlve travels, should not be less than seven feet high by ten feet wide; although there are some running, at a fev collierles, fin places not more than seven feet by efght feet. Of course, the more room the better. (5.) The locomotive track shonld be $k$ ept in good condition, whifels not a very easy matter to io in mines that are very wet, as the water from the elmies abd ditch gets under the ralfroad ties, canstug the jolnts of the $T$ ralls to become sagged (6.) The engine runshould be from tumel mouth, bottom of shaft, or foot of slope, as the ease might be to fnstde tunnel or shding; at any rate, men ought not to be permitted to work on the ronte that the locomotlve traveis, owing to the noxions gases emitted.

The horse power of the locomotive is not absolntely correct, and can only be taken as esfimates. The rest of the dita are reliable, ats they were oblalned from the company's oflicials.

Accidents to mine locomotive hands, in thls district, are comparatively few. The only ease resultug in death, that has oceurred, was an engineer at Ehervale collery, who was fatally injured by a car jumping the tratek, knocking ont a couple of sets of gangway thmbers, whith foll on the englneer when reversing his englue, while those to muledrivers have been slx thls yoar. Of course, there is a limit to
cost of haulage, by mine locomotive and that of mule power, de.


* Engine hauls loaded trip up grade. †only an engineer required.
the use of the mine locomotire for umlerground haulage, and I cannot advocate or permit its use further than that of hanling the coal from the inside turnott to the bottom of the slope or along a portlon of the gangway where the breasts are finished,

Wherever the locomotive is used, in this district, the inlet for the air current isfuside of the terminus of the locomotiverin.

TABLE NO. VII,-Stctistics pertaining to slopes, hoisting, dimensions of hoisting sions of steam

$\frac{\stackrel{L}{g}}{\underset{\sim}{E}}$	NAME OF Colliery.	BY Whom Operated.	$\left\{\begin{array}{l} \dot{z} \\ \dot{2} \\ \frac{0}{6} \\ \frac{0}{n} \end{array}\right.$	Number of slopes,							
1	Upper Lehigh,	Upper L.ehigh Coal Co.	1	1	243	228	476	19 to 28	115	210	56
2	Upper Lehigh,	Upper Lehigh Coal Co.	2	2	424	17.	598	40 to 36	293	fi2	10
3	Upper Lehlgh,	Upper Lehigh Coal Co.	$\stackrel{-}{1}$	3	1,055	273	1,328	23 to 5	330	688	113
4	Upper Lehigh,	Upper Lehigh Coal Co.	5	4	297		1,	17 to 9			
5	Pond Creek, .	Pomil Creek Coal Co.,	1	5	180	75	255	Is to 30	88	172	10
6	Sanuly Rent,	M. S. Kemmerer \& Co.,	2	6	370	116	486	43 to 55	25)	535	4
7	Highland,	G. B. Markle of Co.,	1	7	684	138	$8 \therefore 2$	23 to 35	200	450	8
8	Highland	G. B. Markle \& Co., -	2	8	360	141	504	33	160	440	7
9	Cross Creek, No. 1,	Cox	1	9	891 345	176	$\cdots$	$\begin{aligned} & 18 \text { to } 12 \\ & 32 \text { to } 12 \end{aligned}$	350	821	13
10	Cross Creek, No. 2,	Coxe Bros. \& Co.,	2	10	126 1,045	$\begin{aligned} & 176 \\ & 176 \end{aligned}$	$\begin{array}{r} 2 \times 2 \\ 1,22! \end{array}$	$9 \text { to } \begin{array}{r} 36 \\ 62 \end{array}$	336	912	$\begin{array}{r} 8 \\ 16 \end{array}$
11	Cross Creek, No. 3,	Coxe 1ros. \& Co.	3	11	235	140	375	45 to 22	125	256	5
12	Cross Creek, Nu. ${ }^{\text {, }}$	Coxe Bros. \& Co.,.	4	13	350	$\cdots$		$3{ }^{\text {a }}$ to 6			11
13	Latimer, .....	Parilee Bros. if ${ }^{\text {co., }}$	1	13	$3 \pi$	318	725	65 to 35	930	664	9
14	Latimer,	P'arlee Bros. \& Co., .	2	14	3 s 2	31.4	696	45 to 70	$2: 0$	567	8
15	Stomt, ( Anhesville, ).	Stunt Coal Company, .	7	15	340		390	30 to 40	40	83	5
16	Stout, (Milnesville, ).	Stout Coal Company,	7	16	570	40	610	401060	200	400	10
17	Stont, (Mllnesville,	Stont Coal Company,	6	17	294	150	444	30 to 40	150	200	5
18	Jfollywoot, .	Calvin Pardee \& Co.,	2	18	240		249	10 to 70	$2 \pm 0$	500	12
19	Holly woont,	Calvin Pardee di Co.,	1	19	297	138	435	40 to 60	160	200	5
20	Buck Mountain,	Euck Mountain C. Co.,	1	30	300		300	15			$2 \frac{1}{4}$
21	Juck Mountain,	Buek Mountaln C. Co.,	3	21	300		300	20	411	643	4
22	Buck Mountalu,	Buck Mountafu C. Co.,	4	22	300		3 CO	$3)$	11	6.	2
,	Juck Mountaln,	Buck Mountain C. Co.,	7	23	290		239	31			(114
24	Council litlge,	J. Leisenrlig \& Co.,	2	23	$5\llcorner 0$	150	6.6	28 to 35	270	562	G
2\%	Counchl Ridge,	J.	5	25	433	150	580	45	1.10	307	5
20	Dak	G.	1	26	612	112	734	30 to 40	200	45	5
27	thak Jale,	G. B. Markie \& Co..	2	27	881	131	992	33 to 10	169	419	6
28	Ebervate,	Fberrale Coal Co.,		2	810		810	28 to 38	150	303	7
29	Elervale,	Ebervale Coal Co.,	2	29	630	150	810	251040	250	500	7
30	Ebervale,	Enervale Coal Co.,	3	30	895	150	9.5	-s to 40	250	500	7
31	Ebervale,	Ebervalc Coal Co.,	5	31	33.9	. .	. .	271035	120	$\because 19$	4
32	Ebervale,	Ebervate Coal Co.,	6	32	22)			30 to 38	150	300	4
33	Harlelyh,	MeNalr \& Co.,.	1	33	500	200	700	25 to 30	66	11.8	,
31	Harleigh,	devairs Co.	4	34	3315	. .	336	40 to 45	153	254	4
35	Hack Ridge,	black Ithlge Coal Co.	1	35	300	161	164	40 to 50			
36	Mldale Cross Cruek,	Core lbros. \& Co.,	1	36	177 $46)$			$\begin{aligned} & 40 \text { to } 12 \\ & 21 \text { to } 4 \end{aligned}$	.	$\cdots$	.
37	1.ower Cross Creck,	Coxe bros. \& Co.	1	37	3ax6			15 to 80	$\cdots$		
3.	West Cross C'reek,	Cove liros. \& Co.,	1	3	238	-	2\%	918 1020	$\cdots$	$\cdots$	4
3 )	Eitst Sugar Loat, .	Linrlerman, Krer \& So.	$\stackrel{\square}{2}$	33	1. d (10)	10.4	1,55-4	26 to 47	1 CO	200	7
40	Wast Sugar Loat',	Limlerman, Kıer \& Co.	4	411	310		:110	271034	60		5
41	East Sugar Loaft.	HJuderman, Krer \& Co.	5	41	¢6\%0	3 JiO	810	451021	$1 \times 0$		${ }_{6}$
42	East mugar loar, .	Lladarman, Kecr \& Co.	7	42	5.10	DJ	(63)	251037	230	4 Fi	is
43	Sugar looaf, ..	A. Tardue \& fo.,	2	13	1,412	. .	1,44:	二20	2.0	5.3	14
4.	Suthi Sugar loar,	A. Pardee d Co.,	3	4	(110)	43	703	251047	2.51	$5 \cdot 5$	10
45	Lathrel llill, . .	A. 1'ardee \& Co.,	4	45	1.0 397	$1 \cdot 13$	34,	35 to $\begin{array}{r}68 \\ \text { 32 }\end{array}$	12.	247 562	5
45	Hazicton, No. 3,	A. Jardee \& Co.,	3	16	1,04.0			271045	- ${ }^{\circ}$	-1180	
47	llazleton, No.6,	A. I'ardre © (\%o.,	,	47	$1+12$	205	647	61029	2.5	$6: 313$	
48	Ilazinton manee,	A. Pardee d ( ${ }^{\circ} \mathrm{O}$.,	1	is	1, 179	$\cdots$	1, 1779	181025	240	$41 \%$	107
43	Crystal khlge,	A. lardee o Co.,	1	49	971	150	971	101070	240	412	9
$51)$	Cranberry, .	A. l'ardee \& ('a.,	1	50	0 O	170	1,075	1010.7	300	8.9	15
51	Cranberry,	A. Pardee \& Co.,	2	51	280		280	$2)$	100	270	4
52	Munnt l'leasant,	Pardee, Suns \& Co.,		$5:$	¢58	288	546	431034	150	23)	9

engines and wire ropes, also tineal speed of car in slope, in feet, per second, dimenboilers, dec.


TABLE NO．VII．－

$\begin{aligned} & \dot{L} \\ & \text { 品 } \\ & \text { Z } \end{aligned}$	NAME OF COLLIERY．	Bx Whow Opeirated，	$\begin{gathered} 0 \\ y \\ \frac{0}{3} \\ \frac{0}{7} \end{gathered}$		Length of slopes in feet．			气			
53	Mount Pleasant，．．．	Pardee \＆Sons，	2	53	495	132	6.7	45108	150	250	9
54	Humboldt，	Linderman，Kıer \＆Co．	5	54	375	2 CO	57.5	17	1.50	36）	6
55	Statlurd，．	1dle，．．．．．．	1	5.5	1.70		150	30	75	1：0	5
56	Stallord，．．．	Iflle，．．．．．．．．．	2	56	3.50	$\cdots$	30	45	¢0）	400	s
57	Coleraine，．	Wm．T．Carter \＆So．．	1	57	951	50	1，104	10 tos 5	30	（6）	418
53	Coleraine，	W＇m．T．（arter \＆Co．，	2	5 K	540	60	t00	30 to to	（1）	$1 \times 0$	d
59	Coleraine，	Wm．T．Carter \＆（\％），	4	59	450		4i0	30 to ts	150	300	4
60	Spring Mountain，$\therefore$	J．C．llaydon \＆Co．，	1	60	72	160	8 5	25	220	． 570	9
61	Spring Jountain，．	J．C．Maydon \＆Co．，．	1	61	600	180	740	461095	$\because 50$	550	8
62	spring Mountain，．	J．C．Haydon \＆EO．，．	5	62	700	110	800	45 to 25	250	600	$s$
63	Spring Joumtain，	J．C．Mayton \＆Co．，	6	63	330	20	370	（21）		．．	5
61	Spring Mountain，	J．C．Haylon \＆Co．，	7	64	790	40	830	45 to 10			7
65	beaver Brook，．．	C．M．Dodson \＆Co．，	2	65	と70	180	1,150	2 ito 12	$1 \times 0$	360	15
66	heaver lirook，	C．M．Dodson \＆Co．，	4	$t \mathrm{f}$	5.40	．	540	is to 30	30	（i）	10
67	Beater Brook，	C．M．Vodson de Co．，	9	67	350	172	522	201030	50	100	5
68	Spring lirook，	tieo．11．Myers \＆Co．，	5	fs	390	94	450	4．） 10 tio	210	390	7
69	Spring Brook，	Cieo．H．Myers it Co．，	6	69	$66_{0}$		tilio	1.5 to 35	150	$3 \times 0$	
70	Tresckow，．．．	E．B．Leisenring．．．	6	70	590	240	837	261015	쁘）	$3: 0$	10
71	Tresckow，．．	E．B．Leisenring，．	7	71	349	．．	$3 \times 9$	50 to 41	80	105	．．
72	Room Rın，No．3，	I．C．and Nar．Co．．．	3	72	560	．．	500	35	163	390	7
73	Koum liun，No． 1,	L．C．\＆Nar．Co．shatt，	1	73	310		310	90	150	360	11
74	Panther Creek，No．4，	L．C．and Nav．（o．，－	4	71	78	．．	768	（i）	500	1，250	12
75	Pantler Cruek，No．7，	1．．C．antl Nav．Co．，	7	75	272	$\cdots$	272	70	$3 \times 11$	875	＊
76	l＇inther Creek，No，6，	I．．C．and Nav．Co．，－	6	76	376	．．．	36	45	120	30	6
77	P：antherC．No．fitul．，	1．C．and Niav．Co．，	6	7			$\cdots$		310	750	$\cdots$
78	Panther（retk，No．9，	1．．C．and ミir．Co．，	9	7 s	270		220	35	250	と行	－
79	Screen lbuibling，．．．	L．C．and Nav．Co．，．							．．		
		Total，			41，957			－．．．	－••		．．

＊lope used for letting down phanes and for inside slopes．
$\dagger$ Only single rope in use．
I Portion of this rope used for underground hatulage，
$\ddagger$ Porifon of this rope is used fur hoisting from the surface；hoisting to first lift，engines plated on the surface．
－Single Englnes；the others are all donble angines．
1）－lifect arting：S－Scrond motlon：II－IICmp core：W－Wire core．

Continued.


TABLE NO．VIII．－Shows the number of ventilating fans erected dur

	Collieries．	Owners．	PROPORTION OF FAN．			
				菢		
1			16	5	－1	
2	East Sugar Loaf，\o． 7 ．．．．	Linderman，Skeer \＆ $\mathrm{C}_{\text {co，}}^{\text {con }}$ ．．．．．．．．	16	5	7	
3	Stout，之o．7，（Milnesville，）	Stout Coal Compatry，．．．．．．．．．	16	5	8	
4	I＇ond Creek，．．．．．．．．	Pond Creek Coal Co．，（llmited，）．	15	$3 \frac{1}{6}$	$8 \frac{1}{2}$	
5	Ilazleton，No．6．．．．．．．	A．Parlee \＆Co．．．．．．．．．．．．．	16	5	$7 \frac{1}{2}$	
6	West Cross Creek，．．．．．．	Cox Brothers \＆Co．，．．．．．．．．．．	5	2	．．．	

The above table sbows there were six rentidating fans erected in this district during 1830，and three more are now under way which will be lncluded in the next year＇s report．Fan No． 6 is used for ren－ thation when sinking slope and opening out work，and will be superseded by a larger one in course or time．The if．$L^{\prime}$ ．of the fan engine，in either case，was not taken as we did not have an indicator to show the steam pressure in the eylinder，bence the aceurate per cent．of the power utilized could uot be calculated．
ing 1880 in the South District of Luzerne and Carbon connties.


Marked thus: *Second hand fan. +Cost of erection not kept separately from other accounts.

TABLE NO．IX．－Shows the rates of wages paid to colliery hands in the Wherton vein，（eight feet thick，）in 1880．Inside wages to advance and decline at the rate of ten $p$ er cont．on every dollar rise and fall in coal above or below five dollars，at tide．

				$\begin{aligned} & \dot{⿺} \\ & \text { 를 } \end{aligned}$	䓓	突	ミ゙』	¢			$\begin{aligned} & \dot{L} \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{山} \\ & \text { d } \\ & \text { g } \\ & \vdots \\ & \vdots \\ & 4 \end{aligned}$	¢ E U U \＃	¢
Priee of eoal in market，．	．．．	8350	8350	8410	8130	4．4）	8130	8130	8430	8150	8450	\＄ 40	8150	166
Hate per cent，mided or deductes，．．	，．．	． 15 off	． 15	． 07	． 07	． 07	． 07	． 07	． 07	． 05	． 05	． 05	． 05	07.83
（iangrway per yard，	84 59	8390	\＄3．93	$\$ 118$	818	\＄127	8127	8197	8127	\＄136	$\$ 136$	\＄136	\＄1 36	$\begin{aligned} & \frac{8}{51.2} \\ & 8423 \end{aligned}$
Airway jeryarl，（twenty－flye square feet，）	306	2 （b）	260	278	283	28	285	285	285	2：1	291	$\bigcirc 91$	291	282
Cross－cut per yard，	230	196	106	209	214	214	21.1	21.1	214	219	219	219	219	
Openting breast，．	8 \％	123	723	77	791	791	791	791	791	808	808	808	808	784
Gangway per yard，（is rein twelve fect thlek，）	45	387	387	414	423	423	423	$42: 3$	423	432	432	433	432	413
［rice per two and a liaif ton ear，（B vein，）	91.4	80.3	89.3	86.1	87.8	87.8	57.8	87.8	87.8	89.7	89.7	89.7	89.7	87.1
Price per two ton ear，（D）veln elght fect thlek，）	97	82.5	82.5	88.3	90.3	19.3	90.3	92.3	90.3	92． 2	92.2	92.2	92.2	89.4
Price per ton，Wharton，－	481	41.3	41.3	4.1	45， 1	5.1	45.1	45.1	45.1	43.1	46.1	46． 1	43． 2	44.7

Average price of coal per ton in market，at which miners were palit in 1830，was $\$ 4.2166$ ；In 1s79 it was $\$ 3$ ， 0.46 ；diference or increase， 81.175 ，equivalent to ． 386 per eent．

IABLE NO. X.-Shows the rates of wages paid to colliery employis working in the Mammoth vein, (30' thick.) Inside wages to radvance and decline at the rate of ten per cent. on every dollar rise and fall in the price of coul above and below five dollars at tide.


Miners, working in flat places, are pald from live to six cents per ton for "buggying the coal from the breast to the gangway. The miners get the coal they mine with
 for 1850 over that of 1579 was about twenty-seven per cent., and the increase in wages in December, 1850 , over that of isi9 was twenty per eent.



[^0]:    * New collierles, opening ont work, sinkligg slope, \&e.
    $\dagger$ Not ln operation during 1880.
    $\ddagger$ Men employed at stripping coul.
    I Estimaterl.

