University f Scranton The Library

For Reference

Not to be taken from this room

 1.
-

REPORT

OF THE

Bureau of Mines

OF THE

Department of Internal Affairs of Pennsylvania,

INCLUDING REPORTS OF MINE INSPECTORS.
1897.

WM. STANLEY RAY, STATE PRINTER OF PENNSYLVANIA. 1898.

REPORT

OF THE

BUREAU OF MINES.

COMMUNICATION.

Wepartment of Internal Affairs, Harrisburg, May 1, 1898. Tı His Excellency, Daniel H. Hastings, Governor of Pennsylvania:

Sir: In compliance with the requirements of the Act of June 2d. 1891, and that of May 15,1893 , relative to the Mine Inspectors' Reports of the Anthracite and Bitmminous coal regions, I have the honor to present to you for transmission to the General Assembly the report of the Burean of Mines, together with the reports of the Mine Inspectors of this Commonwealth for the year 1897.

Very respectfully,
JAMES W. LATTA, Secretary of Internal Affairs.

LETTER OF TRANSMITTAL.

Abstract

Harrisburg, Pa., March 1, 1898. Hon. James W. Latta, Secretary of Internal] \backslash ffiairs, Commonwealth of Pennsylvania: Sir: In accordance with section 5 of an act establishing a Bureau of Mines in the lepartment of Internal A ffairs, approved July 15, A. D. 1897 , I have the honor to tramsmit the Ammal Report of the Bureau of Mines for the year ending December 31, 1897, together with the reports of the several mine inspectors of the Anthracite and Bituminous districts.

Very respectfully,
ROBERT BROWNLEE, Chief of Burean of Mines.

CONTENTS.

Page.
Report of the Inspector of the First Anthracite District, 1
Repart of the Inspector of the Second Anthracite District, 25
Report of the Inspector of the Third Anthracite District, 63
Report of the Inspector of the Fourth Anthracite District, 87
Report of the Inspector of the Fifth Anthracite District 125
Report of the Inspector of the Sixth Anthracite District, 161
Report of the Inspector of the Seventh Anthracite District, 189
Report of the Inspector of the Eighth Anthracite District, 207
Report of the Inspector of the First Bituminous District, 233
Report of the Inspector of the Second Bituminous District, 261
Report of the Inspector of the Third Bituminous District, 297
Report of the Inspector of the Fourth Bituminous District, 327
Report of the Inspector of the Fifth Bituminous District, 343
Report of the Inspector of the Sixth Bituminous District. 375
Report of the Inspector of the Seventh Bituminous District, 399
Report of the Inspector of the Eighth Bituminous District, 427
Report of the Inspector of the Ninth Bituminous District, 465
Report of the Inspector of the Tenth Bituminous District, 485

(vi)

INTRODUCTION

REPORT OF BUREA OF MIINES.

In view of the short time I have been in office, and the magnitude of the coal interests of this state, it would be egotism on my part to attempt, nor do I believe it can be expected that I should have much to offer. In compliance with the law to which I am subject, and which is not what it should be in some of its most essential features, 1 submit the following:

On my induction into office, my attention was called to the introduction of the Mine Inspectors' Report of 1896, and especially to the passage that states: "Although for the last decade more has been done in the way of legislation for the protection of the lives and limbs of persons employed in and about the mines of this State, yet the results as to accidents have not been such as to reflect credit on those who have had to execute the laws." Actuated by a desire to change these conditions, if possible, I have given this subject considerable thought and attention, and while there is, no doubt, room for improvement, it is gratifying to know that since the laws were enacted for the protection of those employed in and about the mines of this State, the number of accidents compared with the number of employes and number of tons of coal mined has been much less than before that period, and in the face of very much greater dangers. I beg leave to refer to the report of G. M. Williams, Inspector of the Fourth Anthracite District, where will be found a table showing the production of coal, the number of persons employed, the number in each class of fatal accidents and tons of coal mined per life lost, in each year from 1871 to 1897 inclusive in the Fourth Anthracite District. This is perhaps, in many respects, the most dangerous district in the anthracite region, and I believe it is too large for one man to inspect. Notwithstanding this, a perusal of Mr. William's report shows his familiarity with every mine and its peculiar condition.

Prior to 1870, no report of accidents in the anthracite mines was kept. The following table presents some data of fatal accidents reported by the anthracite mine inspectors since that year:

Fatal Accidents per 1,000 Employes in and About the Anthracite Mines, and Tons of Coal Mined per Fatal Aecident, from 1870 to 1897 Inclusive.

DIAGRAM, SHOWING THE NUMBER OF PERSONS EMPLOYED, NUMBE,

OF GROSS TONS MINED, AND THE NUMBER OF DEATHS FROM 'LVANIA, FROM 1870 TO I897, INCLUSIVE.

DIAGRAM, SHOWING THE NUMBER OF PERSONS EMPLOY

D, NUMBER OF NET TONS MINED, AND THE NUMBER

 NOUS COAL MINES OF PENNSYLVANIA, FROM 1897, INCLUSIVE.| | | | | | | | | | | | | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | 7 | | | | |
| | | | | | | | \checkmark | | | | | |
| | | | | | | | | | | | | 500. |
| | | | | | | 1 | | | | | | |

$10-0.0201$

Fatal Aceidents per 1,000 Employes in and About the Bituminous Mines, and tons of coal mined per Fatal Aceident, from 1878 to 1897 inclusive.

Year.					들 ®
1878,*	25,493	43	1.687	18, 862,208	438,656
1879,*.	26,328	60	2.278	14,279, 244	237,987
1880,	32,964	48	1.456	17,169,448	357,697
1881,	\$5,189	49	1.392	17,509,642	357,339
1882,	44,793	94	2.098	25,663,283	273,014
1883,*.	35,049	51	1.541	15,908,261	294, 597
1884 ,	39,994	105	2.625	$20.553,090$	195,743
1885.	44,145	72	1.630	24,030,919	333,763
1886.	51.846	81	1.569	28,607,173	353,175
1887, ..	57,744	103	1.783	33,902,030	329, 146
1888,	61,564	89	1.445	33, 832, 285	380,138
1889,	55, 600	105	1.888	34,625,449	329,766
1890, .	66, 851	146	2.183	40,740,521	279,045
1891,	74, 166	236	3.182	41, 831,456	177,259
1892 ,	is,784	133	1.688	46,225,552	347,560
1893,	79,834	131	1.640	43,422,498	331,469
1894,	\$6,255	122	1.414	39, 800,210	326.231
1895.	£4,980	145	1.706	51,413,112	354,573
1896,	§3,904	180	2.115	50, 273,653	279, 298
1897,	93,152	149	1.599	54,674,272	366,941

*The returns not complete.
The period covered by this table is co-extensive with mine legislation in the state. Prior to 1870 the loss of life, it is believed, was for several years proportionately even greater than that shown in the table. While it is true that the number of areidents has been reduced since 1870, yet notwithstanding the dangers incident to mining have increased, still with all the requirements of law as to inspection and improved methods of working, and taking into accomnt the dangers peruliar to coal mining, especially anthracite coal, the reason for such a large number of accidents, in a measmre, still seems nexplained. The high death rate in the anthracite region is in part ac: comnted for by the great thickness of the seams or beds, and their frequent heavy pitch, the depth of the mines and their gaseons condition, and the great quantities of explosives used in the mining of coal. There is a class who think and say the mine inspectors are to blame for the large nmmber of accidents. For my part, I so far fail to see how the inspectors are to blame. The inspertor's duty is to examine the mine and see that it is in a safe and lawful condition, and with a few exeeptions they so report them. Not so with the report of the canse and responsibility of many aceidents, as a perusal of the reports will show, and of which in a number of cases reports show the canse to be carelessness on the part of the injured. With all the object lessons presented of men maimed and killed, there is evidence
where men deliberately and against all laws and common sense, enter a mine or a place in a mine with a maked light, when they have been repeatedly told not to do so, and even going so far as to secrete matches or mamfacture a key to open their safety lamps in order to get a light for their pipes. They fat to put up props at the proper lime, neglect putting sprags to protect the coal from falling on them, use an iron bar to ram a eartridge back in a hole, and do many other things that they know themselves they shond not do, all of which are prohibited by law. They may do these things with impunity for a while, but the danger is there, and like a thief in the night, it cometh when least expected, and the inevitable results follow. Thesr are conditions that are undoubtedly difficult to combat. No occasional inspection or regulations on paper can take the place of intelligent supervision of the mines. A mine foreman's first duty should be the care of the health and lives of the men in his charge; kind but rigid discipline should be their motto. Sentiment should have no place in the administration of the laws. They should at all times show a good example by a strict ohservance of the laws, and should not at any time lose sight of the fact, that these are duties they owe to themselves, the men they have charge of, as well as to the State which has commissioned them for that purpose. I beliere with Inspector Williams that what is really necessary to reduce th ? number of accidents in these days is a diseipline that compels obedience to well known rules. Mine foremen shonld not think that becanse they have received or lold a certificate, the law is complied with. They must, by their ability and effort fulfil the duties that are implied in that certificate. Never has there been a time when this was more aprarent. The time has come when, if the certificaterl mine foreman wishes to retain a certificate and position, he must have fewer accidents, which are caused by violations of the mine laws. Miners and men employed in and about the mines should be made to observe the laws and rules preseribed for their safety, as it is not only their own lives they put in jeopardy, but the lives of their fellow-workmen as well. Each man should be a wateh on his neighbor, and when he sees or knows of him, in any way, breaking the law, he should re. prot him to the proper anthorities. I know that men say they don't like to tell the boss about any misdemeanor of their friends, but the man who breaks the law is not their friend, but their worst enemy, and should be cansed to lagally suffer for his misdeeds. We seldom hear, however, of any one being proseconted. It is interesting to note the differenee in this romeretion befween the mines in Seotland as compared with the mines in this State. In 1890 in Sootland there were 486 prosecntions of workmen and 469 convidtions. The following table shows the nature of the offenees, mmber of prosecutions under earls offence, momber of convictions, eases which were withdrawn, total amount of fines and costs imposed:

The result of the prosecutions instituted by the inspectors of mines, the Procurators Fiscal in Scotland and the Owners and Agents of Mines for 1896. Prosecutions of Workmen for Offences under the Mines Acts.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Name of Offence. \& \& \& \& \& \\
\hline \begin{tabular}{l}
1. Obstructing airways or interfering with the ventilation, \\
2. Contravention of Rules About Safety Lamps
\end{tabular} \& 13 \& 13 \& \& \& 1. s.d. \\
\hline \begin{tabular}{l}
Unlocking a safety lamp or having a contrivance for uniccking. \\
Using a damaged safety lamp, \\
Having a safety lamp near the swing of the pick, Sleeping while in charge of a safety lamp. Miscellancous,
\end{tabular} \& 20
5
5
14
11
23 \& 20
5
14
11
21 \& \& 2 \& 29.8.
6.14.
11.1.
14.18.
14.16.
27.16 \\
\hline 3. Contravention of Rules About Matches and Smoking. \& \& \& \& \& \\
\hline \begin{tabular}{l}
Having matches in hls possession in the mine, \(\qquad\) Having a pipe in his possession or smoking in the mine, \\
4. Contravention of Rules About Explosives.
\end{tabular} \& \({ }_{48}^{51}\) \& 50
47 \& \& 1 \& 50.0 .7
50.19.

7

\hline Illegat thawing, \& \& \& \& \&

\hline Taking loase powder into the \& 16 \& 14 \& 2 \& \& 11. 7.

\hline Using insecure canisters, \& 3 \& 3 \& \& \& 3. 7.

\hline Unramming shots, \& ${ }_{34}^{11}$ \& ${ }_{31}^{11}$ \& 2 \& 1 \& 13. 9. ${ }^{\text {13. }} 6$

\hline 5. Contravention of Rules About Timber. \& \& \& \& \&

\hline | Neglecting to set sprags, |
| :--- |
| Neglecting to set props, | \& 30

15 \& 29
14 \& \& 1 \& 24.1.
15.10. 6

\hline 6. Contravention of Rules About Mine Cars or Inclined and Engine Planes. \& \& \& \& \&

\hline Drawing in front of cars, \& 6 \& 5 \& \& 1 \& 2. 1.

\hline Riding or allowing riding on cars, \& 26 \& 26 \& \& \& 18.15 . 0

\hline M Miscellaneous, \& $\stackrel{21}{24}$ \& ${ }_{24}^{21}$ \& \& \& 15. 3. 6

\hline 8. Disobeying orders, \& 14 \& 12 \& \& 2 \& ${ }_{14.13}^{24.10 .}$

\hline 9. Being about the mine \& 2 \& 2 \& \& \& 3.15. 6

\hline 10. Miscellaneous, \& 99 \& 96 \& \& 3 \& 83.6. 7

\hline Total, \& 486 \& 469 \& 4 \& 13 \& 459.6.8

\hline
\end{tabular}

It is also interesting to note that owners and managers are not allowed to violate the mine laws with impunity, as the following table shows:

Prosecutions of Owners, Managers, ete., for Offences under the Mines Acts.

In comparison with the above, the following table shows the number of prosecutions muder each offence, the number of convictions, cases withdrawn, total amonnt of fines and costs imposed, reported by the several inspectors in this State for the year 1897:

The Result of the Prosecutions Instituted by the Inspectors of Mines, of the Commonwealth of Pemnsylvania for the Fear 1897.

Prosecutions of Operators, Mine Foremen and Others.

There is no doubt but the prosecutions of Scottish miners simply represent certain bad eases which happened to be detected. Is it possible that with onr mixed mining population they are more law abiding, and that that is the cause of the great difference in the prosecutions for the contravention of the mining laws? It is much more reasonable to suppose that the laws are not anforced as they should be, and as has already been said, that the lack of discipline is in a great measure the cause of many of the accidents, as may be seen in inspectors' reports.

There is no question but if the mine rules, general and special, were more rigorously enforced, the number of accidents would be very matrrially reduced. Some pople attribnte the canse of so many accidents to the large foreign element employed in and abont the mines. I have my doubts as to that being the canse. My experience and observation have been that this class are as careful of danger. if not more so, than many of the experienced miners. I know I will be criticized for those expressions, but they stand good until proven otherwise. In many sections the foreign element is largely in the majority, and produces the greater portion of the coal. It is not. therefore, strange that we find a great number of aceidents charged to their account, and while it is the that their habits and customs are not all that could be desired, it is at the same time to be hoped that the influence of American laws and American institutions will have the same eflect on them that it has had on others. Wishing to know
something about the number of native born and the number of foreign born men employed in the mines of this state, I inquited of the several mine superintendents as to the number of men employed, the number of native born, the number of naturalized citizens and the number of aliens, with the following result:
Number of employes in 150 anthracite mines from which
returns have been received,
59,S23
Of these there were native born, . $\quad 23,402$
Naturalized citizens, . 13,561
Aliens, . 22,560
Returns from 400 Bituminous Mines Show:
Number of employes, . 59,903
Native born, .
Naturalized citize-ns, . 691
Aliens, . 21,537
It will be noticed from the above figures that according to the number employed in the anthracite and bituminous regions, the number of native born, naturalized citizens and aliens is nearer alike than perhaps would have been believed, and while it is true that the demand of the market could be supplied with many less men, it is also trite that the production of coal is largely dependent on the so-called foreign element. Referring to the demand for coal it will be noticed that the production of anthracite for 1897 has decreased 1,126, 97 gross tons, the canse of which I am not prepared to state, unlfss it may be that the cheaper bituminous coal is superseding it, and this is apparently true, for while the production of anthracite has decreased, the production of bituminous has increased 4,400,616 net tons, notwithstanding the prolonged strike in the western part of the Slate. I do not know whether the tonnage would have been still farther increased over those figures had there been no strike, but I do know that those engaged in the strike could not have been compensated for the misery, trouble and hardships endured by themselves and families during the period of its existence, even if it had been successful in the end. It is fair to assume that the demand for coal was fully supplied. It showed, as has already been stated, that there were too many mines and too many men engaged in the business, and this perhaps is the greatest reason for the snffering and discontent amongst the miners in the State, and not becanse the miner does not get enough for his work under existing rouditions, hut becanse he camont get the work to do. It is difficult to preseribe a remedy for these conditions. Greater minds than mine have fried to solve it and failed. What is, and has always appeared to me to be a proper course to prosime is for the ambitions man to rise above those eonditions. IIe shonld not think that becanse he was born a miner he: eannot do something else. He should take adrantage of
his many opportmities; spend his spare moments in self improvement and stay away from the saloon. Let him read and keep informed of the curreat events of the day, all of which will tend to broaden his capabilities for good, and better enable him to judge for himself when and how to take advantage of the conditions that maintain and make him in intelligence the equal of his employer, and much more the equal of the demagogue who now profits by his credulity.

Blanks were sent to all the operators of mines and collieries in the bituminons region asking for information in regard to the strikes that occurred during 1897. Returns which conld be tabulated were reeeived from 54 mines in which strikes had occurred. The others that were received showed either that there had been no strikes, or tilc returns were made in such a manner as to be useless for statistical pmposes. In the 54 mines from which returns were made the strikes were from the following causes:

For increase of wages, 44
Against reduction of wages, 4
In sympathy with other strikers, 4
Against dockage, 1
For payment of wages overdue, 1
Total, 54
Ordered by labor organization, 50
Not ordered by labor organization, 4
Of these there were-
Successful, ${ }_{25}$
Unsuccessful, 13
Partly successful, 16
Number of employes engaged and involved in strikes,

7,614
Loss to employes in wages, $\$ 668,646$
Loss to employers, 76,815
Average loss to each employe. S8
Knowing that the production of clay and shate from coal mines and from mines operated exclusively for clay is assuming considerable proportions, and as no notice, so far as I am aware, has been taken of this in the industrial statisties of the State, cards were sent to all those who were known to be producing clay. Twenty-four of them in part answered the questions asked, from which the following is deduced:

$$
\text { Mines producing fire clay. } 20
$$

Tons produced. 3.53 .889
Average price per ton. $\$ 1.5$
Nimbler of men employed. :":39
Thickness of seam. 18 in. to 25 ft.

I'rices range from 70 cents to se per ton.
The reports were received from four coal mines which were producing clay or shate that is used in making front brick. The shate from those mines is mined in rommertion with the roal, and add materially to the output of the mine.

Tons produced from the four mines. 90,837
Average price per ton, 80 to 6 feet.
Thickness of seam,
The bricks made from these shales after being burned are usually of a beantiful buff color, and in many cases snstain a greater weight than granits. It has occurred to me that those who are interested in good roads might be aided by studying the possibility of these shates being used, esperially where the native rocks are not suitable for road purjoses, for in those localities shate suitable for brick usually abounds. It is a fact that the most refractory clays or shates are usually found near No. 12 or the Pottsville conglomerate and may he found in localities where the coal has been all carried away. It is from this geologial position that clay suitable for fire brick of every description and quality is found; for rolling mills, glass furnates, bessemer, open hearth and crucible steel works, foundries, malleable iron works, glass works and every purpose for which fire bricks are used. The following is an analysis of clay taken from near the conglomerate and below the seam of coal, and is divided into three sertions designated (1) hard clay, (2) under strata, and (3) sand:

The hatd clay is the hase and by the use of it in conjunction with the other clays the brick is produred suitable for the varied purposes for which tire brick is used.

There is mo doubt that large areas worth exploring for these days exist in localities where it has been given mo attention and where it could be utilized with protit.

I Cedmetions from Mine Inspertors' Reports.

First anthrarite disitiet inspereme ralls attention to the ranse of the large perentage of fatal aceidents in his distriet. which he
states is from falls of roof. He explains the peculiar conditions that maintain in the district in this particular. His report should be read and studied by the people employed in the district.

Second anthracite district inspector calls attention to the method of mining and developing coal properties and shows wherein present. and past methods are both wasteful and expensive. The desire for present gain overules the future, hoth as to the securing the largest quantity of coal and the consegnent lengthening of the time of profitable investment. These remarks are worthy of consideration by all coal operators. Mr. Prythereh also calls attention to mine fires and their causes and gives valuable suggestions for their prevention. He is certainly right in recommending that wooden shanties and other timber structures should, as far as possible, be replaced ly others built of incombustible materials, thereby reducing the large umber of mine fires to the minimum. In view of the present danger of mine fires in the anthracite coal mines, Mr. Prythereh's suggestion of planning a successful method of fighting mine fires when they ocrur, is smrely good advice and worthy of consideration. It will also be observed that he recognizes the necessity of the mine foremen haring a better system and exereising greater discipline in the discharge of their duties.

Third anthracite district inspector reports quite a number of improvements, and it is worthy of note that they are all of a very substantial character. Attention is also called to a rush of sand and gravel in the working of the Mt. Lookont colliery, which fully illustrates one of the many dangers to be contended with in the mining of anthracite coal.

Fourth anthracite district. Attention has already been called to this report. It should be read to be appreciated, as it is both interesting and instructive.

Fifth antharite district inspector's report shows the number of fatal accidents according to the nmmber of tons produced, to be less than it has been for the last 10 years. He states that the conditions of the mines will compare favorably with those of any other mines similarly situated. He also reports many improvements that have been made; some of them of an exceptionally substantial character, especially the pumping station at the Hazleton shaft colliery. In the langnage of the inspector "The plant is very complete, and presonts for consideration a standard for economics in modern mining." The report of the Cranbery mine fire is another evidence of the neassity of not using timber for pump houses or any other house in the mine. Nothing but non-infammable materials should be used in such places.

Sixth anthracite inspector's report shows an increase of fatal accidents and a decrease in production. He calls attention to the fact

$$
R-10-97
$$

that the general condition of the mines of the district is yearly being improved. Notwithstanding this, the number of accidents increase, and judging from his remarks the lack of proper discipline has much to do with the number of fatal accidents in the districts.

Seventh anthracite district inspector reports a decrease in fatal accidents as compared with 1896 and an increase of non-fatal ones, which he attributes to the carelessness of the workingmen. He calls attention to the method of mining and robbing pillars at the Richards colliery of the Union Coal Company, at Mt. Carmel. This is well worthy the consideration and emulation of all miniag men. It shows what thought, skill and well directed effort can accomplish in the saving of coal, even under great disadvantages, and it reflects great credit on Mr. Williams, who is superintendent of the colliery.

If all operators would employ experienced mining men as superintendents to manage their mines, how much more would the wealth of the State be enhanced by secmring from nature's store house a greater portion of her hidden treasures. I see in the columns of the press that a resolution was passed at a recent meeting of the United Mine Workers to have the mining law repealed so far as it relates to the necessity for mine foremen having a certificate of competency. Rather than have that done, would it not be infinitely better to have a clause inserted in the law compelling all mine superintendents to pass an examination also? This, to my mind, would be a step in the right direction and would be a benefit to the State, the miners and the operators as well.

Eighth anthracite district inspector reports fewer fatal accidents than in 1896. He also says that a description of the fatal accidents is a very important feature of the report, and adds that in case a few copies should fall into the hands of those engaged in mining, it might be the means of preventing a repetition of many of the accidents. He also says that for a reduction in the number of accidents that are attributable to carelessness, we can look only to the workingmen themselves and those who are in daily supervision over them. It will be noticed that many substantial improvements have been made in this district also.

First bituminous mine inspector's report shows a decrease of 22 in the number of fatal accidents from that of the year 1896. Judg. ing from the report it would seem that the inspector has a great deal of trouble in grding the ofticials to keep adequate rentilation in the mines and to romply with the logal requirements.

Second bituminons district inspector reports a material increase in the production of coal and coke in his district wer that of 1896 and a decrease in the number of fatal acridents. The inspector also refers to the necessity of strictly enforeing the mine laws, thereby compelling miners and other employes to be more rareful.

Third bituminous district inspector reports an increase in the number of accidents which is due in part to a boiler explosion, something unusual in the bituminous mines of this State. He also very pointedly refers to the necessity of workingmen exercising greater care before they can expect to escape the dangers of their occupation.

Fourth bituminous district inspector reports a very material increase in production for 1897, which he ascribes to the increased number of mining machines that are being used. He also reports a marked decrease in the number of fatal accidents, but fails to give an explanation for this decrease.

Fifth bitnminous district inspector's report shows a marked increase in the production of coal and coke, also an increase in the number of persons employed. He also reports an increase in the number of fatal accidents which he attributes to the recklessness of the victims themselves. A perusal of his report shows that notwithstanding this, the mines in his district are in a better and safer condition and are more attentively looked after by the officers in charge than at any former period. There is, he says, still room for decided improvement.

Sixth bituminous district inspector reports a decrease in the number of fatal accidents and a large increase in the quantity of coal produced over that of 1896 . He also says that many of the mines have been greatly improved by the adoption of better methods of mining. It will also be noticed that the quantity of coal mined is one-third more per fatal accident in 1897 than in 1896 . There is also a large number of modern improvements being installed in this district.

Seventh bituminous district inspector reports that the mines in his district are in reasonably good condition, and the most prolific source of accidents is from the falling of roofs which is due to the incompetency of the miners. He also says that the strike of two montlis did not very materially affect the production as compared with 1896 , the difference being only 624,450 tons, and had not several of the large mines been closed during the entire year, the production would not have been far short of that for 1896 .

Eighth bituminous district inspector reports the mines in his disfrict in fair condition as a whole, but complains of some of the mine foremen being inclined to violate the law rather than enforee its provisions. In speaking of accidents he calls special attention to two deaths during the year which were caused by the persons coming in contact with electric wires. It is true that electricity is no longer an experiment but has steadily advanced in its field of usefulness, and stands today as on of the most effectual aids in the economies of mining. It has made possible the mining of thin seams
of coal that today could not be mined by mole hantage. The electric locomotive is low and can be successfully operated in a height of four feet. On the other hand, a new element of danger has been introduced, as is shown by two men having been shocked to death by coming in contact with a live wire. This was cansed by the use of small wires for conreying the corrent, which necessitates an increase in the voltage. This should not be allowed. Two hundred and tifty volts is enongh, and even at that, it is possible to obtain a very severe shock, while with a 500 or 600 volt cirenit in damp floors or in water, the results may be very serions, as has been shown.

Ninth bitmminous distriet inspector's report shows a decoease in the production of coal which was ransed by a strike that lasted three months. It is evident that had the mines in this distriet been in operation dmong that period, the produrtion would have been increased considerably over that of $\mathbf{1 8 9 6}$. The number of fatal aceidents is the same for 1897 as for 1896 . Fifty per cent. of these are attributed to carelessness which I would infer was superinduced by the lack of proper discipline in the mines. It will be noticed that the introduction of mining machines in the district has been the cause of an increased number of accidents.

Tenth bitmminous district inspector's report shows that a large quantity of coal has been mined and shipped during the year. He says he has more trouble in getting the small operators to rentilate and drain their mines properly than he has with the larger concerns. Mr. Hampson submits a table prepared by one of the smperintendents in his district, which shows the difference in the earning capacity of miners when they are all working muder conditions that are exactly alike.

The arrompanying tables show that the decrease in the production of anthracite begron in 1896 continued during 1897, though to a lesser degree, white the production of bituminons coal and coke shows a material increase. There has been a decrease in the nmmber of fatalities in both anthracite and bituminous mines, but while the mmber of mon-fatal acrejdents has decreased in the anthracite tields, they have increased in the bituminons. The deerease in fatalities and non-fatal arcidents, however, is not large enongh to indicate any material improvement in the safety of working in the coal mines, while an inspection of the classified table of atecidents shows that, as heretofore jof per ernt. have been due to falls of rock, slate and roal, thas indicating that the miner has not ret learned the lesson of self preservation, nor has he had it rigidly impressed upon him by a stridt system of ofersight. There were no umsually serious disasters during the year, and i ngenemal (with the exeretion of the above noted points). the statisties show but little variation from those of 1896. The quantities of powder and dymanite reported are in some instances
only approximate as it is impossible to secure accmate returns of these items where the explosives are not purchased directly from the companies. Among the miscellaneous accidents may be noted several boiler explosions and a number of fatalities from asphyxiation.

The increase in production per life lost shows a slight gatin in the anthracite field and a rery encomaging and material gain in the bituminous mines. Still, there has heen but little change in the prodnction per non-fatal accident.

TABLE showing total production，shipments，the increase or decr ease in production in 1897 compared with that of 1896 ，number of employes，tons of coal produced per employe，tons of coal per underground workman，kegs of powder and pounds of dynamite used， number of horses and mules，number of steam boilers in use，fatal and non－fatal accidents，fatal and non－fatal accidents per 1,000 employes，tons of coal mined per life lost and per non－fatal accident，in the Anthracite Collieries of Pennsylvania．

District．			号	${ }_{\text {Ean }}^{6}$	Persons Empioyed．				
First，	6． 249.833	$+32,786$ $+89,961$	5，984，047	495，230	13.384	4，682	18，066	346	467
Third．	5，985，630 $5,875.823$	$+89,961$ $+160,894$	$5,456,556$ $5,466,974$	${ }^{524,267}$	＋12，501	5,027 5,895	16,578 17.926	361 328	
Fourth，	7，457，418	＋	5，466，972	891，565	17，357	${ }_{8}^{5,293}$	${ }_{25,650}^{17,96}$	${ }_{291}$	430
Fifth．	5，487，550	－384，877	4，758，842	675，945	8，866	8 8，253	17，119	321	619
Sixth，	6．475，930	$\begin{array}{r}\text {＋71，099 } \\ +185 \\ \hline\end{array}$	5．625．688	856,073	12， 033	9.024	${ }_{21,056}$	307	538
Seventh，	$5,108,948$ $4,306,222$	-485.701 $+66,375$	$4,377,761$ $3,762,483$	316.960 557,119	12,379 8,212	7,291 5,280		260 319	412 524
Totals for 1897，	46，947，354	－1，009，897	41，998，203	4，726，008	95，812	53,745	149，557	＊314	\bullet •490
Totals for 1896，	47，957，251	$-3,249,756$	43，523，427			．．．	149.611		

Increase 1897 compared with 1896.
－Decrease 1897 compared with 1896.
－Calcuiated by considering the entire region as one district．

NOTE.

Since the tabie showing the production, shipments, quantity used for steem and heat and sold to local trade in the anthracite region went to the printer, it has been discovered that the $2 n d$, 5 th and 7 th Inspectors, in the distribution of coal in their several districts, fail to account for all the coal produced. It would, therefore, be impossible to state which is correct, total shipments, or that sold to local trade and used in mines for steam and heat. The 1st, 6 th and Sth districts show that there was more coal shipped, sold to local trade and used for steam and heat, than was produced. A reftience to the Sth Inspector's report, table 2, will show that the difference, $13,8 \times 0$ tons was brought from other mines of the company and used at the Wadesville shaft for steam and heat.

The 1st bituminous Inspector's report shows that 6,379 tons are unaccounted for. Coke is manufactured in all the other districts, and as the quantity of coal made into coke is not stated, it would be impossibl. to tell if the distribution of the production is eorrect.

TABLE showing total production, shipments, the increase or decr ease in production in 1897 compared with that of 1896 , number of employes, tons of coal produced per employe, tons of coal per un derground workman, kegs of powder and pounds of dynamite used, number of horses and mules, number of steam boilers in use, fa tal and non-fatal accidents, fatal and non-fatal accidents per 1,000 employes, tons of coal mined per life lost and per non-fatal acci dent, in the Anthracite Collieries of Pennsylvania-Continued.

[^0]TABLE showing total production，shipments，total production of coke in 1897 and the decrease in production compared with that of 1896，number of employes，tons of coal produced per employe，to ns of coal per underground workman，kegs of powder and pounds of dynamite used，number of horses and mules，number of steam boilers in use，fatal and non－fatal accidents，fatal and non－fatal accidents per 1,000 employes，tons of coal mined per life lost and per non－fatal accident in the Bituminous Coal Mines of Penn－ sylvania．

District．	气 		§ 偂				Pers 总 \pm E	E：m ＇วอยว．ns จчว uo	oyed． $\stackrel{\rightharpoonup}{5}$ $\stackrel{-}{0}$	$\begin{aligned} & \text { Tons of coal produced } \\ & \text { per employe. } \end{aligned}$
First， Second， Third， Fourth， Fifth． Sixth． Seventh， Eighth， Ninth， Tenth，	6．459，200 9，134，797 3，400，302 6，541，913 6，501，545 5，501，611 $5,000,375$ 3．795，318 $5,074,385$ $3,261,976$	$\begin{array}{r} -238,401 \\ +1,780,026 \\ +156,452 \\ +1,19.070 \\ +1,529.135 \\ -261,154 \\ -624,450 \\ -11,154 \\ -136,597 \\ +404,880 \end{array}$	$\begin{aligned} & 6,390,001 \\ & 5,14,825 \\ & 3,252,093 \\ & 4,84,677 \\ & 1,497,780 \\ & 5,034,119 \\ & 4,59,346 \\ & 3,683,296 \\ & 2,875,708 \\ & 2,929,282 \end{aligned}$	$\begin{array}{r} 62,820 \\ 25,909 \\ 79,311 \\ 13,504 \\ 17,512 \\ 86,812 \\ 25,635 \\ 83,734 \\ 78,753 \\ 44,263 \end{array}$	$2,505,350$ 33,020 441,946 $3,43,209$ 240,559 4,500 23,500 $1,593,325$ 191,852	$\begin{array}{r} +600,707 \\ +14,497 \\ +290,819 \\ +86,668 \\ -168,521 \\ +2,050 \\ +2.3,377 \\ +325,007 \\ +16,268 \end{array}$	9.654 9．326 5，621 8，333 5，688 8.208 9， 113 6，520 5，088	$\begin{array}{r} 1,011 \\ 2,916 \\ 580 \\ 1,24 \mathrm{~S} \\ 2,962 \\ 763 \\ 814 \\ 417 \\ 1,990 \\ 405 \end{array}$	$\begin{array}{r} 10,665 \\ 12,225 \\ 6,901 \\ 9,581 \\ 8,650 \\ 8,966 \\ 9,933 \\ 6,283 \\ 8,510 \\ 5,493 \end{array}$	606 744 548 683 752 614 503 605 596 594
Totals for 1897，	54，674，452	$+4.400,807$	40，260，127	1，285，2s 4	8，533，291	＋1，925．111	73，418	13，136	88，554	＊617
Totals for 1596．．	50，273．645	$-1.539,467$	38，315，844		6，608．180	－2，314，149	．．．．	．．．．	83，798	

[^1]TABLE showing total production, shipments, total production of coke in 1897 and the decrease in production compared with that of 1896, number of employes, tons of coal produced per employe, to ns of coal per underground workman, kegs of powder and pounds of dynamite used, number of horses and mules, number of steam boilers in use, fatal and non-fatal accidents, fatal and non-fatal accidents per 1,000 employes, tons of coal mined per life lost and per non-fatal accident in the Bituminous Coal Mines of Penn-sylvania-Continued.

- Caiculated by considering the entire region as one district

TABLE showing causes of accidents，number attributable to each cause，and total number of fatal and non－fatal accidents at the Anthracite Collieries of Pennsylvania during 1897.

Cause of Accident．

Explosions of gas and dust，
Explosions of powder，blasts，
Falls of roof，slate，coal，etc．，
Crushed by mine cars，machine
Falling down shafts and slopes，
Failing donn sharts and siopes，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
ropes，sinking，etc．，
Miscellaneous underground accidents，
Miscellaneous surface accldents，
Totals，

Totals， 1596. \qquad

1st District．		2d district．		3d district．		4th district．		5th district．		6th district．	
$\underset{\substack{\text { ¢ } \\ \text { ¢ }}}{\text { ¢ }}$		圱	$\begin{aligned} & \text { 命 } \\ & \text { s. } \\ & \text { I } \\ & \text { E } \\ & \text { Z } \end{aligned}$	－		永		圱		¢	年
1 4 38 5	6 19 58 31	4 8 25 9 1 1	12 21 54 46	5 9 34 8 1	18 12 62 33	9 7 30 6 1	54 23 94 41	1 2 9 12	11 15 30 27	7 9 33 12 1	11 14 17 13
1	8 3	11	14	2 4	9 11	2 3 2	30 27		11 20	2 7 2	${ }_{11}^{7}$
53	125	58	149	63	145	60	269	33	114	73	73
51	134	39	161	108	209	73	225	42	91	67	99

TABLE showing causes of accidents, number attributable to each cause, and total number of fatal and non-fatal accidents at the Anthracite Collieries of Penn sylvania during 1897-Continued.

TABLE showing cause of accidents, the number and percentage attributable to each cause, and the total number of fatal and nonfatal accidents at the Bituminous Coal Mines in Pennsylvania during 1897.

TABIE showing cause of accidents, the number and percentage attributable to each cause, and the total number of fatal and nonfatal accidents at the Bituminous Coal Mines in Pennnsylvania during 1897-Continued.

PRODUCTION of coal and coke in tons, number of employes, number of fatal and non-fatal accidents.

Net tons. 5?,581,036.
\dagger Net tons.

PRODUCTION of coal and coke in tons, number of employes, num ber of fatal and non-fatal accidents-Continued.

Districts.	Number of Employes.					Fatal Accidents.					Non-Fatal Accidents.				
	1897.	1896.	1895.	1894.	1893.	1897.	1896.	1895.	1894.	1593.	1897.	1896.	1895.	1894.	1893.
Anthracite.															
First,	18.066	17,604	16,272	16.014	15,637	53	51	39	47	57	125	134	121	98	96
Second,	16,578	16,353	16,269	15.627	14,429	58	39	34	41	35	149	161	192	141	173
Third.	17.926	15,577	17,413	16,965	15,779	63	108	68	51	64	145	209	167	148	178
Fourth,	25,650	26,059	24,669	22,764	22,790	60	73	74	71	47	269	225	221	229	221
Fifth,	17.119	17,568	18,467	18.361	17.540	33	42	52	58	58	114	91	102	95	99
Sixth,	21.055	20,979	19,810	20.109	21, 572	73	67	59	73	${ }_{7} 6$	73	99	52	94	139
Seventh.	19.670	20,195	19,399	19,121	19.197	46	76	59	78	77	119	106	114	76	119
Eighth,	13.492	13,335	11,306	10,734	10.777	38	46	35	20	27	112	140	106	40	44
	149,557	149,670	143,605	139,965	138,021	424	502	420	439	445	1,106	1,169	1,075	919	1,069
First,	10.665	10,977	11,086	11.175	10,114	22	44	25	25	25	89	123	66	101	77
Second.	12.272	11,040	11, 195	12,148	10,993	21	26	32	18	14	52	31	55	39	28
Fourth,	6. 131	5.964	6,211	6,734	6.112	10	3	${ }^{7}$	9	3	24	17	23	12	25
Fifth,	S. 650	7,524	8.389	${ }_{7} \mathbf{3} .619$	8. 663	25	18	13	13	12	71	48	70	47	22
Sixth.	§.966	8,010	7,081	6,944	6.353	8	11	8	13	12	20	16	19	17	15
Seventh,	9.333	10,564	9,838	9,844	9.399	22	22	18	9	21	58	49	55	47	44
Eighth,	6,283	7.197	8,071	8,160	9.423	7	6	13	13	20	29	36	34	17	31
Ninth,	8,509	8.273	8.557	9. 279	8.754	19	19	20	11	15	33	41	40	40	35
Tenth,	5.493	5. 289	5,09s	5,247	5,697	7	4	5	2	4	18	18	25	17	25
Total,	86,483	\$3,796	84,904	86,177	81,800	149	179	155	124	131	426	398	419	357	346
Grand total,	236,040	233,460	228,509	225,872	219, 821	573	681	575	563	586	1.532	1.567	1,494	1.276	1,415

TABLE showing production of anthracite coal and number of employes in and about the mines by counties.

Counties.	Tons of Coal.					Number of Employes.				
	1597.	1896.	189\%.	1894.	1893.	1897.	1896.	1895.	1894.	1893.
Cas bon.	1,327,235	1, 4SS, 550	1,577,146	1,589,395	1,510,289	4,748	4.153	4,382	5.391	4, 410
Columbla,	481.453	443,330	493,042	510,537	741,990	1,909	2,074	1,756	2.011	2,654
Dauphin,	662.842	702,335	712, 856	699,607	640,723	2,072	1.988	1,985	2.092	2,094
Lackawanna,	11,946,871	11,638, 479	11,859,382	11, 170,38?	11,667,550	33, 992	32,771	30,367	30,629	29.021
Luzerne,	17,141,809	17,964,900	19,143,101	17,243,928	18, 253,144	55.138	5.6, 717	55,798	52.994	51,392
Northumberland,	3,714,667	4,117,569	4.573.144	3,893,660	3,731,404	15,139	14, 787	14,522	13, 870	13.487
Schuylklll,	10,971.94?	11.092.77\%	11.495, 388	9,985,092	9,992, 045	35,098	35,660	32,292	31.696	33.611
Sullivan, ...	164.046	151.75	152,141		70.418	327	1.124	312		307
Susyuehanna,	476.488	174.637	S40,904	413,578	571,956	1,234	1,186	2,191	1,012	1,045
Total.	* $46.94 \overline{1}, 354$	48,674,330	50.847,104	45,566,179	47,179,563	149.557	149,670	143.605	139.695	138.021

- Gross tons.

TABLE showing production of bituminous coal and coke, and num ber of employes in and about the mines by counties-Continued.

Counties.	Tons of Coke.					Number of Employes.				
	1897.	1889.	1895.	1894.	1893.	1897.	1889.	1895.	1894.	1893.
Allegheny,	4,500	250	5,000	6.000	3,000	14,395	14,732	15,022	15,345	14,351
Armstrong.				6,556	971	1,100	1,139	1,204	632
l3edford,		39,200	40,420	6,016	3,000	803	S31	863	845	967
Blair,	36,904	36,943	2S,700	8,200	39,361	516	523	788	707	536
Bradford.	263.474	165,435	1+2,047	42,747	122,219	127	115	109	90	83
Butler, ${ }^{\text {Cambria. }}$						590	500	459	461	328
Cambria,						8,918	8,237	7,219	7,048	6,691
Centre,				13,069	\$3,203	664	*773	- 632	647	2,416
Clarion,				13,069		1,185	S28	842	1,021	1,626
Clearfield,	191, 040	157,756	117.830	45,574	131,360	9,016	8,989	9,416	9,733	10,933
Clinton.						, 236	211	198	151	180
Flk, Fayette.				8,257	29,421	1,245	1,287	1,093	1,297	1,332
Fayette,	4,851,918	3,692,397	5,339,887	3,426,791	3,011,054	13,802	12,250	13,387	12,566	11,185
Huntingdon,					29,103	598	701	630	6S9 ${ }^{\text {² }}$	630*
Indiana,	16,330	22,798	7.172	5,250	33,620	675	800	707	760	873
Jefferson,	445,013	407, 865	276.578	219,655	255,473	6,039	5,972	6,166	6.342	4,234
Lawrence,		558	424	503	494	460
Mckean,						190 95	166 94	164 86	166 42	118 39
Mercer,						1,058	1,022	1,118	1,137	1,010
Potter,										
Tioga, .	476	9,086 1,032	6.862 976	5,027 450	$\begin{array}{r}9,983 \\ \hline 984\end{array}$	1,499 2,089	860 1,988	618 2.085	865 2,207	677 2,230
Washington,		7,200				6,532	7,305	6,835	6,998	7,110
Westmoreland,	2,723,636	2,073,291	2,956,908	1,937,128	1,700,859	14,270	13,289	14,203	14,570	13,016
Total,	8,533,291	6,613,150	8,922,329	5.729,244	5,549,296	86,483	83,796	84,904	86,177	81,800

No. 2. Culm-Flushing Plant at the Black Diamond Colliery.

This report is, perhaps, not so complete as it should be, but with the facilities afforded to perform the labor assigned to the Burean, it is the best that could be done, and had it not been for the kindness of Hon. James W. Latta, Secretary of Internal Affairs, in assigning Mr. Thomas Wilson to prepare the Inspector's reports for publication, to whom all credit shonld be given, I do not see how that work could have been done.

The following papers on the method and cost of flushing culm into anthracite mines, I have copied by permission from the Anthracite Coal Operators' A ssociation letter, which I believe will be read with profit by all who are interested in mining methods.

THE METHOD AND COST OF FLUSHING CULM INTO ANTHRACITE MINES.

At the meeting of the association held October 13th, 1897, a committee of three was appointed to investigate this subject and report at its earliest convenience. At the meeting, January 12th, 1898, Mr. Haddock, chairman of the committee, presented the following report, which had been prepared at his request by Mr. James B. Davies, superintendent of Mr. Haddock's "Black Diamond" and "Dodson" collieries, near Wilkesbarre. Before reading the report the chairman acknowledged his obligation to the Hon. John J. Shonk, for the suggestions looking to the flushing of culm into the mines, which had been so successfully carried out under the direction of Mr. Davies.

Flushing Culm at the "Dodson" and "Black Diamond" Collieries.
Referring to your request for at full report of our mode of fillingr the mines with culm, the expenses, and suggestions for any improvement that might help to make the present system more suecessful, I submit to you the following, which I trust may cover the ground you desire.

Beginning of Flushing.

In Jannary, 1891, we built a small portable washer in order to experiment in cleaning the Dodson culn bank. This was replaced by a larger and more permanent one, which is now our jig house. On romning our culm cleaners we found that getting rid of the dirty water was a problem not easily solved. The law was against us and would not allow us to run it into the Susquehanna river, so we made several smmps on the top of the culm bank and pumped this water into them, in the hope that it would filter through and leave the impurities behind. This it did, but the mud filled our sumps faster
than we could dig them, so it occured to us that we might try the old workings in the mine. A six-inch pipe was laid from the plant down the shaft, which is 400 feet helow the surface; thence from the bottom of the shaft to an old elamber below its level. We were soon convinced that this wats at sucress. Then another question came forward: If the water of the washers could be disposed of into the old workings, why not the breaker culm also? A practical answer to this was secmred by making the new conncetion. In the sping of 1891 the trial was made with the enlm cleaner, and on November zoth of the same year the commection was made with the coal breaker. So this system was begun six yars ago last Mareh and completed the six years on the 20th of this month. Ifter filling several acres at the Dodson mine, the same system of thening was extab). lished at the Blate Diamond mine. When this system of fhshing was completed at both places. different operators examined it, and then :pplived it to their own collieries with success.

No. 1. Culm-Flushing Plant at the Dodson Colliery. The System.

1. Ontside.- 1 small tank is set mader the rhmte that takes the diat from the burkwheat sereen. The dirt amd wator got into this fank toreflur and enter a pipe down the shaft into the mine.
2. Inside.-This pipe is eomfimed along the main gangways and airways from hotfom of the shaft and bamele furm-off byeath of

three ways and elhows into the different chambers. At the bothom or the entrance of these chambers, a wall is built-well timbered on the: gangway side, to dam the dirt that comes from the pipe. If the pitel of strata is light, the culm pipe must be brought down near this wall and the whole length of the chamber. The month of the pipe is raised against the roof in order to completely fill this section. When this is done, the contents of the main culm pipe must be turned into another chamber while the men are taking so many lengths of pipe off in the first chamber to give it another section to fill. When this is ready, they must do the same with chamber No. $\ddot{\text {. }}$. The pipe goes into the clambers in, or as near as possible to, the fach. and continues to fill them thins, upwards. It would be well to notice here, that the lighter the grade the more expensive the work The pipe must be put in nearly the whole length of the chambers and must be taken out as they fill up. There is a saving in pipe am: labor where the piteh is heary enough for water to carry the dirt-such a pitch is exceptional in the Wyoming Valley.

The Pipe.

1. Size of Pipe.-. It the bodson mines we use 6 -inch pipe from the culm plant down the shaft, along the Bemett gangway and Bennett vein, and down the Rock slope to the Ross vein, but in branches that turn to different chambers we use 4 -inch and π-inch pipes. As the Black Diamond mines we use two lines of pipe-one :3-inch line, which takes the breaker culm into the mines, and the other, 4 -inch. which takes the bank cuhn to different points in the same reins. At Dodson mines the bank culm and the breaker culm enter the mines through the same pipe. We intend to do this at Black Diamond.
2. Nature of Pipe.-We have tried three different kinds of pipewrought iron, steel and cast iron pipes. The first is the best. The second is too soft and will soon wear ont, while the third is harder than either, but the friction of the culm in llowing through makes it very rough. On account of this ronghess the friction becomes very great and the casting is soon eaten out.
3. The Wear of Pipes.-The wear of the pipe used depends on the nature of the water and the material that is to be treated.
a. With fresh water and small culm from the buck wheat sereen, it will last some eighteen months.
h. When carrying bank culm from dust to pea coal and some chestnut, it will last say nine months.
c. When this is mixed with ashes, it will mot last more than six months.
d. When small culm from the buckwheat sereen and bank culm run together throngh the same pipe in the ratio of two small sizes :0 one large. the pipe will last some twelve months.

Best Sized Material.

1. The smaller the material the better. The pillars in the mines are full of cracks and crevices-sometimes these run half way and often through the pillars. This depends on the nature of the coal and the size of the pillars. If these pillars are to be made solid, the water must carry very small particles of culm, so that they can pass to the farthest end of these crevices and fill the pillar.
2. The smaller the material the less water will be required to carry it through. The reason for this is obvious. The larger the material the more space between the particles and the quicker the water will travel-it will travel faster than its load. But when its load is ground from rice size to dust, it is easier for the water to take it along than to penetrate through and leave it behind.
3. Also, when small material comes in contact with the pipe, it creates little friction and the pipe will wear better, which is just the reverse in carrying the larger sizes.

Blocking the Pipe.

A great many think that our culm pipe is a great siphon, with one end in the breaker and the other in the old workings, depositing its contents in peace. This is a great mistake. It is quite a problem to run it from one place to another without interrupting the stream of culm and prevent it blocking from the face of the mines to the breaker. When this happens the culm must be taken care of in the usual manner by taking it out to the bank until the pipe is cleaned out. This will sometimes take half a day-a day, and sometimes two days, when a great many lengths of pipe need changing. This blocking seldom happens with the pipe that carries the small material from the buckwheat screen, but it will happen to the culm bank plant pipe about three times a month; and not so often in the pipe that carries the breaker culm and bank culni together. This also proves the importance of having enongh good crnshers to grind the culm to the proper size.

Water.

Among the numerons questions in regard to the culm filling, the? most important are those pertaining to the water.

1. Kind of water:-By all means it should be fresh. Dodson gets its water from the Susquehamm, and the Black Diamond from Toby's creek. Mining water was tried at both places, lont proved injurious to both pipes and pumps. Whatever may be the original percentageof sulphur in this mine water, it is increased two fold when it returns after washing the colm down the mines.
2. Amount of Water.-This depends on:
a. Distance-The Dodson culm pipe is 2,500 feet long, with its month near the bottom of the Ross slope. One and one-half pounds
of water will deposit one pound of breaker culm at this point. Two to two and one-half pounds will deposit one pound of bank culm in the same place. Dodson breaker and culm bank is tlushed through same pipe. Black Diamond breaker culm pipe is 2,924 feet long. One and one-half pounds of water will deposit one pound of breaker culm at this point. Black Diamond culm pipe is 5, 624 feet long. Two to two and one-half pounds of water will deposit one pound of bank culm at this place.
b. When the pipe is changed from running into the slopes or anywhere under the shaft level to the hill, the water must be increased as its altitude above shaft level increases. When the Dodson culm pipe was rumning west some 1,500 feet, then up hill three hundred, until it became some 90 feet above the level of the shaft bottomthen it ran east some 700 feet to discharge its contents into the old cave, it took some six pounds of water for one pound of culm-mixed, large and small.
c. We cannot claim that the above is scientifically correct, on account of the impossibility of keeping the flow of dirt running as steadily as the flow of water. The flow of dirt even from the screen is not continuous, but comes in rushes-even when the dumping of coal is regular, for coal comes to the screen in irregular quantities like into the dump. Besides, there are numerous stops during the day in the breaker and the shaft. Whatever the length of these stops may be, there are the same lengths of clean water in the dirt pipe. If the stop happens to be three, five, ten or twenty minutes, more or less, the quantity of water pumped in that time goes to waste. The pump cannot be stopped until all the culm is out, and that will take some twenty minutes at either of our mines. This proves that no two collieries can reach the same results, for their conditions and irregularities differ very materially, so the waste water cannot be measured. The rule of the mines is, to give as little water as possible, but enough to keep the culm from blocking. When it happens to block, it is usual to increase the water a little more than is necessary. By being too careful against a second blocking, we become too liberal with the water.

Help in the time of Squeeze.
Props and cogs as supports are not to be compared to flushing. The props soon break. The roof must lower many feet in a thick vein before the cog will begin to feel its load. By this time the piller is crushed and its strength is gone. But flushing gives its support to the piller as soon as it comes in contact with it. Even when the piller is far gone and no one dares to venture near the place with a prop, the water will carry its load and deposit the dirt around the pillar and into all its crevices until it becomes whole, in spite of the pressure upon it. The grunting of the pillar ceases as
the dirt rises towards the roof. When the roof is reached and the pillar is buried, its prayer for help ceases and the pressure which was mpon it goes for weaker pillars, but when so many others are braced up in the same way, they will stop the squeeze even if the roof must be broken to the surface. This they did at Dodson, and the shaft (400 feet) was saved. It is quite interesting to know how much this culm filling will "give" muder a great pressure. Some say that such pressure will redure it to half its thickness. In this case the roof will press the culm down to a smaller space than the coal occupied before it was mined. Others say that a great pressure will reduce the culm to one-third. In this case it will reduce it to the

No. 4. Suggestion for a Culm-Flushing Plant.
simte space as the coal oceopied before. This cannot be correct. There is no formula by which we can calculate the help that flushing furnishes the pillar in the time of a general squeeze. We have asked this question of mining engineers, but they seem to be at sea like ourselves-in the same waves and quite as far from shore, in regard (1) the answer. It secms that experience only can throw light on the question. In any event it has proved beyond any doubt that it is the best help for pillars that watsero invented. In a test we made at Black Diamond, by sawing out a robic foot of amflaracite coalgrinding the same into rier and dust and flushing it into a box $1 \ddot{2}$ inches in 12 inches by $17 \frac{1}{2}$ inches, that it filled it completely. Thas the expansion is σ_{2}^{2} inches. Il so many chambers $17 \frac{1}{2}$ feet high were flushed with the same sized material and density, the roof could not press the culm lower than $\mathrm{m}_{2}^{\frac{1}{2}}$ feet, for it would be as hatd as the coal at this point. But the roof cannot drop this $\mathrm{E}_{2} \frac{1}{2}$ feet, for the coal in the pillars must be considered. In a general squecere, r_{2} feet of the top of each pillar will clam the same space.
so the half of it must take its place on top or in the culm and the pressure ramot drive the roof lower than 23 feet, for at this point the solidity underneath it, equals the solidity of the coal itself. We assume in the above that the pillars represent half the coal. In case they represent a third ouly, the roof of a chamber $17 \frac{1}{2}$ feet high will drop some 3 feet 8 inches. The following facts should be considered in comnection with the above:

1. Culm cannot be filled as closely in the mines as in the above: mentioned box, but there is a margin as may be seen in No. 2.
2. No squeeze ever compressed the refuse to the density of coal.
3. The waste of mines is smpposed to fill only a portion of the workings that have been made in mining, especially if the mines have been in operation some time before the flushing begins.
4. Besides, pitch and location of openings have their advantages and disadvantages in ifushing.

Number of Acres Flushed.

The mumber of acres flushed in our two mines-l)odson and Black Diamond- as computed by our engineers, Messrs. Jikman \& Auman, is as follows:

	A rea of space tilled to thickness of vein. Acres.	Area of space covered one foot in thick- ness. Acres.
Dodson. Old Bennett (Hillman) vein,	1.67	8.68
Bennett and Baltimore vein,	17.23	147.66
Ross vein,	24.02	141.74
	42.92	298.08
Black Diamond. Ross vein,	14.43	121.40
Red Ash vein,	17.03	153.21
	31.46	274.61

Quantity of Coal saved.

There is no formmala by which we can calculate the quantity of coal that can be saved per acre by flushing. The conclusions are ont of the reach of any theory. It is a matter of judgment and calculation which vary, of course, aceording to the changing conditions. However, the judges in this case, like many others, must be the very best class of miners-men of experience in squeezes, caves and explosions.

We are of the opinion that their conchsions would be as follows:

1. That when mining under some 400 feet of strata, flushing will save the company one-fifth (in the Bennett vein).
2. When mining 200 fect deeper, in the Ross, it will save a sixth.
3. In the Red Ash, when some 700 feet below the surface, they might say that flushing will save a seventh. The difference in th. amount saved, arises from the fact that the Bennett is under less
weight and makes stiffer and better pillars than either the Ross or the Red Ash. The best pillar is the one that will stay as it was cut out until it is disturbed by a squeeze. The Ross pillars at Dodson and the Red Ash at Black Diamond will not do this. It is their

No. 5. Suggestion for Feeding a Conveyor Line.
nature to break down and fill up the empty chambers. Although the Red Ash pillar in Plymouth is nearly three times as high as that of the Ross, the nature of the coal makes it a tougher and a better pillar. Atmospheric changes do not affect this vein the same as they do the Ross. The Red Ash, above Kingston, is worse for a pillar than even the Ross at Plymouth. There is from 8 inches to 2 feet of loose stuff between the rein and the roof at Black Diamond, which runs off the pillar until it becomes bare, like a prop withont a cap piece, for so many feet each side. This loose stuff decreases our average very much and increases the dirt, besides making a pillar valueless. The owner of ten acres of Red Λ sh from Plymonth to Nanticoke is better of than the owner of twenty acres of Red Ash from Plymouth Junetion to Pittston. The percentage of coal saved by flushing depends very much on the size of the property also, for when two veins are less than seventy feet apart, it is necessary sometimes to stop the party in the upper or lower vein until one is worked or flushed through. Even in the same rein it is necessary to remove miners when their chambers are not half done until the surrounding chambers are flushed. But this cannot be done unless the property is large enough to allow the required number of chambers for such changes. In some: cases a whole gangway should he stopped in order to flush in it a number of chambers to stand in place of so many blocks of coal and
be in readiness by the time the whole of the chamber comes through to the gangway above. But this is impossible unless the size of the property will allow it.

The Question of Fire.

There has been an apprehension that culm, after being filled tight in old chambers, would take fire either from natural combustion, explosions or otherwise. This is out of the question.

1. Culm with the present preparation is lifeless on account of the heavy percentage of slate and slate dust that is mixed with it.

2 . This, when set by the water becomes close and hard-so much so, that it is an impossibility for the fire to penetrate it on account of its being dead and withont crevices for air to feed the fire.
3. The nature of the material, thus set, is better to put fire out in the mines than either water or steam. Water runs away unless the mines are flooded above the fire level. Indeed, three times we have had mines flooded hundreds of feet above the fire and pumped out three times, and the fire is there still. If this could be surrounded by so many flushed chambers its life would soon cease. Steam has its disadvantages, for it is a matter of impossibility to confine it thoroughly, and the heat ruins the mines by bringing down the roof. This then gets on fire-a fire that is more difficult to extiuguish than the one in the coal, for it is fiercer and ascends out of reach and becomes our worst enemy.

Illustrations of the Culm P'lant, and Suggested Improvements.

Cut No. 1.-This represents our Dodson plant, which was the first ever built to help the breaker culm pipe flush the chambers in the mine as they were finished. As can be seen on the cut, it is made up of a pair of engines 12 by 12 inches; one pair of rolls; one set of elevators, and two sets of scrapers, one at right angles with the other. When this was built, we thought the pioneer plant to be faultless, but now its faults are numerous.

1. It has only one pair of rolls, when it should have enough to pulverize the culm.
2. The material, large and small, is all going through these rolls. The small should be taken ont by a screen to save the rolls.
3. Men load the scrapers with shovels, which is too slow and expensive.
4. They are steel tooth rollers, when they should be made of cast iron in sections so that they could be changed. The old-fashioned cast iron rollers were thrown out on account of making too much culm by breaking the coal. This is a very good reason for giving them this work to do.

Cut No. 2.-This is the Black Diamond plant, which is exactly the same as the one at Dodson and open to the same objections.

Cut No. 3.-This shows the eulm bank at Black Diamond and the place from which the culm is removed.

Cut No. 4.-This is an idea which I have had for some time as to how a plant of this sort should be constructed. Mr. T. R. Girffiths has made a drawing which is attached. You will notice it has theee sets of rollers and three small screens, one to sereen the dirt from the first pair of rollers and the second sereen to screen it from the second pair and the third to screen it from the third. The first pair of rolls should break the large bone and slate down to egg size, the second pair should break it to chestnut size, and the third pair should grind it to No. 2 buckwheat and dust. This seems to be expensive, but such a plant would sare itself in pipes. water and labor in six months.

Cint No. 5.-Mr. T. R. Griffiths has also suggested a plan by which we can feed the scraper line by steam power. You will notice by the illustration that it is a frame on wheels that can be pushed into the dump and kept against it ; then romes a pair of circular elevators to take the dirt up in front orer the top and dump the same into a chute that leads into the main line of scrapers. Some might suggest a large hose and water to wash it into the trough. This has too many objections.

1. Situated near towns there is no place to properly care for thi water.
2. It would feed the pipe irregularly and thas block it.
?. The stuff thus wet would clog half the buckets of the elevators by sticking in the bottom and destroying their capacity.
3. In winter the water would freeze.

> Iodson Culm Plant-Cost.

Cost of engine, erusher rolls, elevators and conveyors... .	\$4,873 +20
Erection atad construction of same,	
P'ump for supplying fresh water for culm flushing,	
Culm pipe from plant to shaft head,	
Culm pipe inside mines: bodson breaker and bank culm are flushed through the same pipe,	
S00 feet of 4 -inch pipe,	1,350 00
2,500 feet of 5 -inch pipe,	
1,500 feet of 6 -inch pipe,	

Total,
$\$ 7.47342$
('ulm Flushed Daily it homes).
From breaker, . 119 Tons.
From ("ulan bank, . s0 Tons.

Total.
199 Tons.

Ratio of Water to Culm.

$1 \frac{1}{2} \mathrm{lbs}$. to $1 \frac{3}{4} \mathrm{lbs}$. of water to 1 lb . culm, to flush level and down hill places.

3 lbs to 6 lhs of water to 1 lb . of culm, to flush up hill, aceording to height, 10 to 100 feet above level of shaft bottom.

Average Daily Inside Expense.

Changing and renewing pipes,	1 man,	$\$ 2$	19	$\$ 2$	19	
2	men,	1	88	3	76	$\$ 5$
	95					

Opening blocked pipe, 511
lipe for renewing worn ont sections (250 feet monthly), 2 SO
P'mmpman, 10 hou's work pumping out thshed water: 1 N

Average Daily Outside Expense.

Three men loading conveyors with culm, 21 hours, at $\$ 135$ $\$ 2 \mathrm{~N}$
One engineer, 8 hours, at 116
One pmmpman, 10 hours, at 140
W"ater for boiler, 25
One-half fireman's wages, 8.
Four tons of coal at fifty cents, 200
Wear and tear of crusher rollers, pinions, etc. 130(Two pairs of crusher rollers worn out in six years).Total average daily inside and outside expense,$\$ 20!11$
Arerage Daily Cosi of Flushing Breaker Culm Only.
Half of inside expense. 855
Pumpman, ontside, 140
Half of power, ontside. 1 うt
Labor, etr.. Dispensed with Daily by Flushing the Culm-Ontside.
Two mmes less on lank, at $\$ 1.00$ per day \& 00
Two drivers less on hank, at \$1.2.5 per dan, 14 homrs 1 i.
Differenee in loaderos wages 25

Inside.

$\$ 6,280 \quad 12$

Culm Flushed Daily (7 Hours).

Ratio of Water to Culm.

$1 \frac{1}{2}$ ths. fo $1 \frac{3}{4}$ lhs. of water to 1 lb . eulm, to thesh level and down hill places.

3 lbs. to f lbs . of water to 1 lb . culm, to flush up hill, according to height, 10 to 100 feet above level of shaft hottom.

Average Daily Inside Expense.
Labor, changing and renewing pipes, breaker culn... \$1 82
Bank culm, ... 3 64
Opening blocked pipe, 50
Pipe used for renewing worn out sections, 300
Pumpman, 10 hours, pumping out tlushed water, 175

Average Daily Outside Expense.

5 men loading conveyors with culm, 35 hours, at \$1.35, $\$ 473$
1 engineer, 8 hours, at $\$ 1.4$) 116
1 pumpman, 10 hours, at $\$ 1.40$ 140
Power, 300
Wear and tear of crusher rollers, etc., 200
(4 pairs of rollers worn ont in six years. Black Diamond wears out rollers quicker than Dodson on acconut of grinding ashes.)
$\$ 1229$
Average Daily Cost of Flushing Breaker Culm Only.
Inside, half, 8535
Outside, pumpman, 140
Outside, half of power, 150

```
                            $23 00
```

Total average daily inside and outside expense, $\$ 2300$
$\$ 825$
Labor, etc., Dispensed with by Daily Flushing.
Outside-
1 mule less, at $\$ 1.00$ per day, $\$ 100$
1 driver at 7 hours, at $\$ 1.00$, 70
2 bankmen, 14 hours, at $\$ 1.35$, 189
$\$ 3$ 59
Inside-
1 timberman less, at $\$ 1.80$, \$1 80
2 timbermen less, at $\$ 3.22$. 322
$\$ 502$
$\$ 5.02 \times 2$ shifts, $\$ 1004$
Timber per shift used less $\$ 9.90 \times 2$ shifts, 1980
Labor, etc.. dispensed with daily, by flushing, $\$ 3343$
Daily ontside and inside expense of flushing, 2300
Net daily saving by fushing. $\$ 10 \quad 43$

In closing this report we should call your attention to the following facts:

1. The colm plants of both collieries are put at their original valuation. Their depreciation, of course, has been considerable, and should be considered.

2 . Better and improved plants can be built now for less money. I think the one I suggest in C'ut No. 4 will not cost murh more.
3. When taking into ronsideration the items "Timber and Timbermen" in this report, no appropriation for a general squee\%e was mentioned. That also should be considered. As you know, this of itself "an run up, to thousands of dollars in timber and labor alone, besides the loss of lives and the damages.
4. Veins with the thin strata between, in some cases cannot be mined withont being filled in some shape or form. Mining muder towns, where the surface of the grombd is the same as in this (the W yoming) valley, cannot be done without running the greatest risk.

万. Bore holes should be as numerons ats the property and location of the culm banks will allow, in order to save pipes.
6. The fatcts and statements in this report are based on the operating at our own collieries, and their conditions therefore cannot be applied to other collieries without being changed to suit the nature of the ground, grade of strata, and the localities of the colm bank.

Note.-Since the above article was written, we turned the breaker culm and the bank culm together into a 4 -inch pipe and increased the water whe-fhird. This is working sucerssfully on the level of the shaft and muder the level, but it camot be applied to flush up a luasy grade for the friction will beeoue too great and the pipe is too small to permit an increase of the water in order to got the necessally pressure.

The following report on the same sulbject was presented from Mr. (has. I'. Ford, a member of the commillee and superintendent of the "Florence" and "Ilt. Jessup" collieries:

The matter of rumning culm back into the mines was first projected with a view of economizing space, or gromma, for dumping breaker refuse, culm, ete., and the expense of handling the same from the braker to the bank. Then wats added the idea of support to the mine roof. with a view of taking out pillars of coal, whirh otherwise would be diflicult and hazardous to mine.

We will endeavor to treat the subject under these heads:

First. Economizing Ground space.

In a number of cases this object is accomplished, and where breakers are located near towns, and surface rights are limited, the end attained is invaluable. The achal saving made is dependent on locality and surroundings.

Second. The Expense of Handling Culm from the Breaker.
By this is meant the ontside expenditure, such as dump cars, mules, cost of loading, moloading, drivers, tracks, and in mumerous cases, clatims for damages for polluting streams and flooding adjarent proprrty. supposing the colliery already equipped for bank dumpage. We have made a calculation based on 150,000 tons per annum. Three years would equal a breaker output of 450,000 tons. The enlm sent underground from that tonnage covered abont eighteen and one-half acres in the mines, areraging seven feet high, requiring $5,6 \pi 0,000$ cubic feet of culm to fill this space. The contents named would equal 101,250 tons, or 33,750 tons per annum, or 2,850 tons per month. To handle this quantity from the breaker would cost about $\$ 6.00$ per day, or at twenty days per month, would equal $\$ 120.00$ per month, or, in round numbers, $\$ 1,500$ per year, or one cent per ton cost on the output of the breaker. The claims in many cases paid by individual operators, the Lehigh Valley Coal Company, and the Lehigh and Wilkes-Barre Coal Company, for polluting streams and despoiling property adjacent to streams, are enormons. Now, as jigs and other similar means of washing coal are more gencrally used, by reason of the exhanstion of the big reins and working of the faulty small veins, strippings, ete., the conlm going to the bank wet increases the drainage to the water ways, and thereby angments the liability for damage. The ruming of culm batck into the mines eliminates this amoyance and expense. Again, the hatuding of this culm wet from the breaker, in winter montlis. owing to the freezing in pockets or tanks, wonld at least donble the expense, compared with handling dry culm, but this is all obviated by sending it back into the mines.

Third. The Inside Expense Neressary to Take Care of this C'ulm.
A bore lube is required, or is preferable, especially if the culm is to run any distance, or $\quad u_{j}$ an incline to reach the head or face of the chamber or breasts to be filled. as the vertical height adds impetus to the material. The height of the bore hole depends, necessarily, on the surface covering of the veins. A six-inch hole is used, and costs $\$ 2.50$ per foot. Where a shaft is operated. the enlom pipes pan be hong in it, which obviates the bore hole. There is generally.
fairly good pipe around the mine to convey this material. If the threads are worn, the joints can be wedged sufticiently to carry the water and culm, and if the pipe is turned one-quarter round, say once in every two months, its life will be lengthened greatly, as the wear is uniform, and the friction of the sulphur and coal is equalized.

The place selected for this deposit of culm is the worked out portion of the mine nearest to the hore hole. Stoppings are built at the foot of the places (chambers or breasts) at the narrow orening from the gangway: These consist of props not more than four feet apart, boarded with two-inch plank well fitted on the top, bottom and sides, but no battens are used orer the cracks, as it is found necessary to build the stoppings in such a way that while they will hold back the culm, they will allow the water to pass, hlus acting as a sieve.

The average cost of putting stoppings in a 9 foot vein would be $\$ 9.50$, including material.

In three years there were constructed
37 stoppings, at 100 sq. ft., a verage cost, $\$ 9.50, \ldots$. . . . $\$ 35150$
42 stoppings, at 30 sq. ft., average cost, $\$ 4.35, \ldots$. 18270
Total,
$\$ 23420$

Arguments have been used against running culm back into the mines, as danger of fire from spontaneous combustion was urged. During the first two years, twelve to fifteen tests were made, digging to the botfon rock, but, with one exception, failed to find any sign of heat or fire, and investigation proved that one to be hot water from the exhanst of the pumps, no damage resulted from it.

The quantity of coal left in pillars is about 33 per cent. of the rein contents, and seven-eighths of this is obtained by filling in with culm and smporting the roof while removing the pillars, or about 29 per cent. of the entire vein, in places where it is necessary to support the roof. Where it is not necessary to support the roof, the advantage is not so great, except in making it safer for the miner while removing the pillars. The old method of rohbing the pillars and letting the roof fall in behind them, is about the same as when filling in with culn so far as regards the percentage of coal removed from the pillar.

In wh workings, culm fills too slowly fo take ont all pillars sucessfully by its use. The mine should be opened with that end in view. As each chamber is worked ont, fill it up with culm, taking the pillar with each alternate road. No. 1 pillar would come ont on No. 2 road, ete. Fo rob an old mine, fill up every alteruate chamber, as the pillars would be irregular and too narow to lay roads, and could not eary air where they arorge twelve to fifteen feet in widh.

We have arrived at the conclusion that coal under the size of that which passes over a screen of one-eighth mesh is worthless for practical use as a steam coal, and we do not think the preparation and handling of such coal pays the operator, railroad, or consumer.

The operator gets less in reality than he can possibly load it on the cars for. The railroad is handling it for less than the prepared sizes, and the consumer is blowing it up his stack. While the mine car arerage is increased, the average price realized is so reduced that the result is about the same. It costs no more to put pea coal, and in some cases chestuut, into the car than it does these fine sizes, and yet it is clear to every one that the fine sizes, buckwheat, particularly, are surely crowding the larger sizes from the market.

The cost of loading bank refuse and returning it to the mines, in case culm is used for steam purposes, is as follows:
To load a car of refuse, hoist and run the same into the breaker, would cost per ton, $\$ 025$
To mine pillar and put same through the breaker, including royalty at 25 cents, 155
Arerage net price realized for coal at breaker, 175
Detuct cost of mining pillar, 1 ๖ั

The difference between the cost of handling the refuse, and the profit on the coal shows five cents loss.

LAWS RELATING

Coal Mining.

LAWS RELATING TO COAL MINING.

Abstract

AN ACT To protect miners in the bituminous coal region of the Commonwealth.

Section 1. Be it enacted, \&c., That after the period of three months from the passage of this act, any miner employed by an individual, firm or corporation for the purpose of mining coal shall be entitled to receive from his employer, and failing to receive then to collect, by due process of law, at such rates as may have been agreed upon between the employer and the employed, full and exact wages accruing to him for the mining of all sizes of merchantable coal so mined by him, whether the same shall exist in the form of nut or lump coal; and in the adjudication of such wages seventy-six pounds shall be deemed one bushel, and two thousand pounds net, shall be deemed one ton of coal: Provided, That nothing contained in this act shall be constrmed to prevent operators and miners contracting for any method of measuring and screening the coal mined by such miners, as they may contract for.

Section 2. That at every bituminous coal mine in this Commonwealth, where coal is mined by measurement, all cars, filled by miners or their laborers, shall be uniform in capacity at each mine; no unbranded car or sars shall enter the mine for a longer period than three months, without being branded by the mine inspector of the district, wherein the mine is situated; and any owner or owners, or their agents, violating the provisions of this section, shall be subject to a fine of not less than one dollar per car for each and every day as long as the car is not in conformity with this act, and the mine inspector of the district, where the mine is located, on receiving notice from the check-master or any five miners working in the mine, that a car or cars are not properly branded, or not uniform in capacity according to law, are used in the mine where he or they are employed, then inside of three days from the date of receiving said notice, it shall be his duty to enforce the provisions of this section, under penalty of ten dollars for each and every day he permits such car or cars to enter the mine: Provided, That nothing contained in this section shall be construed or applied to those mines which do not use more than ten cars.

Section 3. That at erery bituminous coal mine in this Commonwealth, where coal is mined by weight or measure, the miners or a majority of those present at a meeting ralled for that purpose, shall have the right to employ a competent person as check-weighman, or check-measurer as the case may require, who shall be permitted at all times to he present at the weighing or measmrement of coal, also have power to weigh or measure the same, and during the regular working hours to have the privilege to balance and examine the scales, or measure the cars: Provided, That all such batancing or examination of scales shall only be done in such way, and in such time, as in no way to interfere with the regular working of the mines. And he shall not be considered a trespasser during working hours while attending to the interests of his employers. And in no manner shall he be interfered with or intimidated by any person, agent. owner or miner. And any jerson violating these provisions shall be held and deemed guilty of a misdemeanor, and upon conviction thereof, he shall be punished by a fine of not less than twenty dollars, and not exceeding one hundred dollars, or imprisonment at the discretion of the court. It shall be a further duty of check-weighman or check-measurer to credit each miner with all merchantable coal mined by him. on a proper sheet or book to be kept by him for that purpose. When differences arise beiween the check-weighman or check-measmer and the agent or owners of the mine, as to the miformity, capacity or correctness of scales or cars used, the same shatl be referred to the mine inspector of the district where the mine is located, whose duty it shall he to regulate the same at once, and in the event of sald sales or ears proving to be correct, then the party or prarties applying for the testing thereof to bear all costs and expenses thereof; but if not correct then the owner or owners of said mine to pay the cost and charges of making satid examination: Provided further, That should any weighman or weighmen, agent or check-measurer, whether employed hy operators or miners, knowingly or willfully allopt or take more or less pounds for a bushel or ton than is provided for in the first section of this act, or willfully neglect the balanoing or examining of the seales or cars, or knowingly and willfully weigh coal with an incorrect seale, he shall be suilty of a misdemeanor, and upon conviction thereof, shall he imprisoned in the commly jail for three months.

Section 4. All arts or parts of acts inconsistent with this act are hereby repealed.

Approved-The 1st day of Jme, A. I). 188:3.
ROBT. E. PATVISON.

AN ACT

To provide payment to the miner for all clean coal mined by him.
section 1. Be it enacted, \&e., That from and after the passage of this act all individuals, firms and corporations engaged in mining coal in this Commonwealth, who, instead of dumping all the cars that come from the mine into a breaker or chutes, shall switeh out one or more of the cars for the purpose of examining them, and determining the actual amount of slate or refuse, by removing said slate or refuse from the car, and who shall, after so doing, willfully neglect to allow the miner in full for all clean coal left after the refuse, dirt or slate is taken ont, at the same rate paid at the mine for clean coal less the actual expense of removing said slate or refuse, he shall be deemed gnilty of a misdemeanor.

Section 2. That any individual, firm or corporation as aforesaid, violating the provisions of this act, upon suit being bronght and conviction had, shall be sentenced by the court to pay a fine of not more than one hundred dollars, and to make restitution by paying to the miner the amomnt to which, under this act, he wonld be entithed for the coal mined by him, and for which he was not paid.

Approved-The 13 th day of June, A. D. 1883.

ROBT. E. PATTISON

AN ACT

To provide for the recovery of the bodies of workmen enclosed, buried or entombed in coal mines.

Section 1. Be it enacted, \&c., That whenever any workman or workmen shall heretofore have been, or shall hereafter be enclosed, entombed or huried in any coal mine in this Commonwealth, it shall be the duty of the court, sitting in equity, in the comnty wherein such workman or workmen are enclosed, entombed or buried, upon the petition of any of the relatives of those enclosed, entombed or buried, to make an order of come for the petitioner to take destimony in order that the court may ascertan whether such workman or workmen, or the body or bodies of such workman or workmen, evn be recovered or taken out of said mine.

If, after full hearing, it shall appear to the court that such modertaking is feasible or practicable, said court may forthwith issue a peremptory mandamus to the owner or owners, lessee or lessees, operator or operators of such coal company, to forthwith proceed to work for and recover and take out the body or bodies of surls work-
man or workmen, and said court shall have full authority to enforce such peremptory mandamus in the manner already provided for the enforcement of such process.

Approved-The 9th day of May, A. D. 1889.
JAMES A. BEAVER.

AN ACT

To provide for the examination of miners in the anthracite region of this Commonwealth and to prevent the employment of incompetent persons as miners in anthracite coal mines.

Section 1. Be it enacted, \&c., That hereafter no person whomsoever shall be employed, or engaged in the anthracite coal region of this Commonwealth as a miner in any anthracite coal mine, without having obtained a certificate of competency and qualification so to do from the "Miners" Examining Board" of the proper district, and having been duly registered as herein provided.

Section 2. That there shatl be established, in each of the inspection districts in the anthacite coal region, a board to be styled the "Miners' Examining Board" of the district, to consist of nine persons, who shall be appointed by the president judge of the proper county, from among the most skillful miners actually engaged in said business in their respective districts, and who must have had five years' practical experience in the same, three of whom to serve one year, three two years and three five years, and thereafter annually three to serve for the term of three years. The said persons, so appointed, shall he and constitute the "Miners' Examining Board" for their respective districts and shall hold the office for the term for which they were appointed, or until their successors are duly appointed and qualified, and shall receive as compeusation for their services three dollats per day for each day actually engaged in this service and all legitimate and necessary expenses incurred in attending the meetings of said board, under the provisions of this act, and no part of the salary of said board, or expenses thereof, shall be paid out of the State Treasury.

Each of said hoards shall organi\%e by electing one of their memhers sectetary, and by dividing themselves into three sub-committees for the more comvenient discharge of their duties; each of said committees shall lave all the powers hereinafter conferred upon the board, and whenever in this act the words examining board are used, they shall be taken to include any of the committees thereof.

Every member of said board shall, within ten days of their appointment or being apprised of the same, lake and subscribe an oath
or affirmation, before a properly qualitied otficer of the county in which they reside, that they will faithfully and impartially discharge the duties of their office.

Any vacancies occurring in said board shall be filled in the manner hereinbefore provided, from among such only as are eligible for original appointment.

Section 3. Each of said examining boards shall designate some convenient place within their districts for the meetings of the several committees thereof, of which due notice shall be given, by advertisement in two or more newspapers of the proper county, and so divided as to reach, as nearly as practicable, all the mining districts therein. Each of said committees shall open, at the designated place of meeting a book of registration, in which shall be registered the name and address of each and every person duly qualified under this act to be employed as a miner in an anthracite coal mine. And it shall be the duty of all persons now employed as miners, or who shall hereafter desire to be so employed, to apply to said board and be registered as such within ninety days thereafter; application for registration only may be sent by mail to the board after being properly attested before any person authorized to administer an oath or affirmation in the county in which the applicant resides. The form of application shall be subject to such regulation as may be prescribed by the boards, but in no case slall any applicant be put to any unnecessary expense in order to secure registration.

Section 4. That said board shall be entitled to demand and receive from each applicant for examination and registration and for the certificate herein and after provided, a fee not exceeding fifty cents, and for registration only, a fee not to exceed twenty-five cents, and a like fee of twenty-five cents for registering any person who shall have been examined and registered by any other said board, and the amount derived from this source shall be held by said boards and be applied to the expenses and salaries herein provided, and such as may arise under the provisions of this act; and the said boards shall report annually to the court of common pleas of their respective counties and the Bureau of Statistics, all moneys received and disbursed under the provisions of this act, together with the number of miners examined and registered under this act and the number who failed to pass the required examination.

Section 5. That it shall be the duty of each of said boards to meet at least once every month, at such places as they may deem expedient, and examine all persons who shall desire to be employed as miners in their respective districts, and the said boards shall grant to such persons as may be qualified, certificates of competency or qualification, which shall entitle the holder thereof to be employed as, and do the work of, miners as may be expressed in said certificate, and such certificate shall be good and sufficient evidence of registra-
tion and competency under this act, and the holder thereof shatl be entitled to be registered without examination in any other of the anthracite districts, upon the payment of the fee herein provided. All persons applying for examination for a certificate of competency, or to entitle them to be employed as miners, must produce satisfactory evidence of having had not less than two years practical experience as a mine laborer.

Section 6. That no person shall hereafier engage as a miner in any anthracite coal mine without having obtained such certificate as aforesaid. And no person shall employ any person as a miner who does not hold such certificate as aforesaid, and no mine foreman or superintendent shall permit or suffer any person to be employed under him, or in the mines under his charge and supervision as a miner, who does not hold such certificate. Any person who shall violate or fail to eomply with the provisions of this act shall be guilty of a misdemeanor and on conviction thereof, in the court of quarter sessions, shall be sentenced to pay a fine not exceeding one hundred dollars.

Section 7. That all persons who shall be actually engaged as miners at the time of the passage of this act, shall be entitled to registration without examination, upon producing satisfactory proof that they have been employed in an anthacite mine in this Commonwealth.

Section 8. It shall be the duty of the several Miners' Examining Boards to investigate all complaints or charges of non-compliance or violation of the provisions of this act and prosecute all persons so offending, whenever there shall appear to the board reasonable ground for such action.

Section 9. That all acts and parts of acts inconsistent herewith be and the same are hereby repealed.

Approved-The 9th day of May, A. D. 1889.
JAMES A. BEAYER.

AN ACT

To provide for the health and safety of persons employed in and about the anthracite coal mines of Pennsylvania and for the protection and preservation of property connected therewith.

ARTICLE I.
Sedion 1. Be it enaceded, 太o., That this act shall apply to every anthracite coal mine or collirry in the Commonweallh, provided the said mine or colliery employs more than ten (10) persons.

ARTICLE II.

Inspectors and Inspection Districts.

Section 1. The counties of Susquehanna, Wayne, Lazerne, Lackawama, Carbon, Schuylkill, Northmberland, Columbia, Lebanou and Danphin, or so much of them as may be included under the provesions of this act, shall be divided into eight (8) inspection districts as follows:

Section 2 . First. All that portion of the Lackawanna coal field lying northeast of East and West Market streets in the city of Scranton, and of Slocum and Drinker streets in the borongh of Dunmore, including the coal fields of Susquehanna and Wayne counties.
second. That portion of the Lackawanna coal field in Lackawanna county lying southwest of East and West Market streets in the city of Scranton, and west of Slocum and Drinker streets in the borough of Dummore.

Third. That portion of the Wyoming coal fields situated in Luzerne county, east of and including Plains and Kingston townships.

Fouth. The remaining portion of the Wyoming coal field west of Plains and Kingston townships, including the city of Wilkes-Barre and the boronghs of Kingston and Edwardsville.

Fiffin. That part of lazerne comnty lying south of the Wyoming coal field together with Carbon county.

Sixif. That part of the Schnylkill coal field in Schnylkill comnty lying north of the Broad Mountain and east of a meridian line through the centre of the borongh of diaradville.
seventh. That part of the Schuylkill coal field in Schmylkill county lying north of the Broad Momentain and west of a meridian line through the rentre of the borough of Girardville, together with Columbia, Northmberland and Dauphin counties.

Eighth. All thet part of the sehuylkill coal field in schuylkill comnty lying south of the Mahanoy Valley, and the county of Lebanoll.

Sxefion 3. In order to fill any varancy that may oceme in the oflece of Inspector of Mines by reason of expiration of term, resignation, removal for cause or from any other reason whaterer, the judges of the court of dackawanta combly shall appoint an examining hoard for the counties of Susquehama, Wrayne and Lackawama, and the judges of the court of Luzerne county shall appoint an examining board for the counties of Sullivan, Carbon and Lazerne, and the judges of Schnylkill comnty shall appoint an examining board for the counties of Schuylkill, Northumberland, Lebanon, Columbia and Dauphin.

Section 4. The said Board of Examiners shall be composed of three reputable coal miners in atotul practice and two reputable
mining engineers, all of whom shall be appointed at the first term of court in each year, to hold their places during the year. Any vacancies that may occur in the Board of Examiners shall be filled by the court as they occur. The said Board of Examiners shall be uermitted to engage the services of a clerk, and they, together with the clerk, shall each receive the sum of five dollars per day for every day they are actually engaged in the discharge of their duties under this appointment, and mileage at the rate of six cents per mile from their home to the place of meeting and return by the nearest practicable railway route.

Section $\overline{5}$. Whenever caudidates for the office of inspector are to be examined, the said examiner shall give public notice of the fact in not more than tive papers published in the inspection district and at least two weeks before the meeting, specifying the time and place where such meeting shall be held. The said examiners shall be sworn to a faithful discharge of their duties, and fomr of them shall agree in their recommendation of all candidates to the Governor who have answered ninety per centum of the questions; the names of the applicants, the questions asked aud answered thereto shall be sent to the Secretary of the Commonwealth, and published in at least two local papers, daily or weekly, and shall recommend only such applicants as they find qualified for the office.

Should the Board of Examiners not be able to agree in their selection and recommendation of a candidate, the judges of the court of common pleas shall dissolve the said board and appoint a new board of like qualifications and powers.

Upon the recommendation of the Board of Examiners as aforesaid, He Governor shall appoint such person or persons to fill the oftice of inspector of mines under this act, and shall issue to him a commission for the term of five yars, subject, however, to removal for neglect of duty or malfeasance in office as hereinafter provided for.

Section 6. The person so appointed must be a citizen of Pennsylrania and shall have attained the age of thirty years. He must have a knowledge of the different systems of working coal mines, and he must produce satisfactory evidence to the Board of Examiners of having had at loast five (a) years practical experience in anthracite coal mines of Pemssybania. He must have had experience in coad mines where noxions and explosive gases are evolved.

Before cutcring upon the duties of his oflice he shall take an oath or aflirmation before an oflicer properly qualified to administer the same, that he will perform his duties with fidelity and impartiality; which oath or aftirmation shall be filed in the oflice of the prothonofary of the county. He shatl also provide himself with the most modern instrmments and appliances for earrying out the intentions of this act.

Section 7. The salary of each of the said inspectors shall be three thousand dollars per annum, which salary, together with the expense incurred in carrying into effect the provisions of this act, shall be paid by the State Treasurer out of the Treasury of the Commonwealth upon the warrant of the Auditor General.

Section 8. In case the inspector becomes incapacitated to perform the duties of his oftice, for a longer period than two weeks, it shall be the duty of the judges of the court of common pleas to deputize some competent person recommended by the Board of Examiners to fill the office of inspector until the said inspector shall be able to fulfill the duties of his office and the person so appointed shall be paid in the same manner as is provided for the Inspector of Mines.

Section 9. Each of the said inspectors shall reside in the district for which he is appointed, and shall give his whole time and attention to the duties of the office. He shall examine all the collieries in his distriet as often as his duties will permit or as often as the exigencies of the case or the condition of the mines require it; see that every necessary precaution is taken to secure the safety of the workmen and that the provisions of this act are observed and obeyed; attend every inquest held by the coroner, or his deputy, upon the bodies of persons killed in or about the collieries in his district; visit the scene of the accident for the purpose of making an examination into the particulars of the same whenever loss of life or serious personal injury oceurs as elsewhere herein provided for, and make an annual report of his proceedings to the Secretary of Internal Affairs of the Commonwealth at the close of every year, enumerating all the accidents in and about the collieries of his district, marking in tabular form those accidents causing death or serious personal injury, the condition of the workings of the said mines with regard to the safety of the workmen therein and the ventilation thereof, and the result of his labors generally shall be fully set forth.

Section 10. The Board of Examiners, each for its respective district as hereinbefore provided for, in order to divide more equitably among the several mine inspectors the labor to be performed and the territory to be covered by them_in the performance of the duties of the office, may, at any time when they shall deem it desirable or necessary, readjust the several districts by the creation of new boundary lines, thereby adding to or taking from, as the case may be, the districts as at presenf bounded and described, if the court having jurisdiction approve the same.

And in case it shall be deemed desirable or necessary to readjust any contiguous district, comprised by more than one judicial district, by the creation of new boundary lines, then in such case the examining boards of the territory affected or requiring such adjustment, shall, in joint session, make such change or readjustment as they shall jointly agree upon, if the nearest court having jurisdic-
tion to the territory affected to whom the said joint examining boards shall submit the matter, shall approve the same.

Section 11. The mine inspector shall have the right, and it is hereby made his duty to enter, inspect and examine any mine or colliery in his district and the workings and mathinery belonging thereto, at all reasonable times, either by day or night, but not so as to impede or obstruct the working of the colliery, and shall have power to take one or more of his fellow inspectors into or around any mine or colliery in the district for which he is appointed. for the purpose of consultation or examination.

He shall also have the right and it is hereby made his duty, to make inquiry into the condition of snch mine or colliery workings, machinery, rentilation, drainage, method of lighting or using lights and into all matters and things connected with or relating to, ats well as to make suggestions providing for the health and safety of persons employed in or about the same, and especially to make inquiry whet her the provisions of this act have been complied with.

The owner, operator or superintendent of such mine or colliery is hereby required to furnish the means necessary for such entry, inspection, examination, inquiry and exit.

The inspector shall make a record of the visit, noting the time and material circumstances of the inspection.

Section 12. No person who shall at or practice ats a hand agent or as the manager or agent of any coal mine or colliery, who is pecnniarily interested in operating any roal mine or colliery in his district, shall, at the same time, hold the office of inspector of mines under this act.

Section 13. Whenever a petition signed by fifteen or more reputable coal ogerators or miners, or hoth, selting forth that any inspertor of mines mextects his duties, or is incompetent. or is guilty of malfeasance in oftice it shall be the daty of the rourt of rommon phas of the proper combly to issue a eitation in the name of the (ommonweallo (o) the said inspector to appear at not less that sive days notice. on a day lixed, before said cotit athe the courl shatl then procerd to inguite into and investigate the allegations of the petitioners. If the romet tind that satid inspector is negle effal of his thetes or that for is itrompelont to perform the duties of the ofter, for athy ranse that existed previous to his appointment or tiat has arisen sime his appointment, or that he is gnilty of malfeasame in oftice, the comet shall certify the same to the Governor of the Commenweathb, who shall declare the oftiee of insperetor for the district racant and proced. in complianer with the provisions of this ate to appoint a propery qualitied person to fill the oflice.

The rose of satid investigation shall be borne by the removed inspector: but if thr allegations in the petition are not sustained the costs shall be patid by the petitioners.

Section 14. The maps and plans of the mines and the records thereof, together with all the papers relating thereto, shall be kept by the inspector, properly arranged and preserved, in a convenient place in the district for which each inspector has been appointed, and shall be transferred by him with any other property of the Commonwealth that may be in his possession, to his successor in office.

Section 15. The persons who, at the time this act goes into erfect, are acting as inspectors of mines under the acts hereby repealed shall continue to act in the same manner as if they had been appointed under this act, and until the term for which they were appointed has expired.

ARTICLE III.

Surveys, Maps and Plans.

Section 1. The owner, operator or superintendent of every coal mine or colliery shall make, or cause to be made, an accurate map or plan of the workings or excavations of such coal mine or colliery, on a scale of one hundred feet to the inch, which map or plan shall exhibit the workings or excavations in each and every seam of coal and the tumnels and passages connecting with such workings or excavations. It shall state in degrees the general iuclination of the strata with any material deflection therein in said workings or excarations, and shall also state the tidal elevations of the bottom of each and every shaft, slope, tumel and gangway, and of any other point in the mine or on the surface where suci elevation shall be deemed necessary by the inspector. The map or plan shall show the number of the last surrey station and date of each survey on the gangways or the most adranced workings. It shall also accurately show the boundary lines of the lands of the said coal mine or colHiery and the proximity of the workings thereto, and in case any miue contains any water dammed up in any part thereof, it shall be the duty of the owner, operator or superintendent to cause the true Iocation of the said dam to be accurately marked on said map or plan, together with the tidal eleration, inclination of strata and area of said workings containing water, and whenever any workings or excavations is approaching the workings where such dam or water is contained or situated, the owner, operator or superintendent shall notify the inspertor of the same without delay.

A true copy of which map or plan the said owner, operator or sulperintendent shall deposit with the inspector of mines for the district in which the said coal mine or colliery is situated, showing the workings of each seam, if so desired by the inspector, on a separate sheet of tracing muslin. One copy of the said map or plan shall be kept at the colliery.

Section 2. The said owner, operator or superintendent shall, as often as once in erery six months place, or canse to be placed, on the said Inspector's map or plan of said coal mine or colliery, the plan of the extensions made in such coal mine or colliery during the precedig six months. The said extensious shall be placed on the inspector's map and the map returned to the inspector within two months from the date of the last survey.

Section 3. When any coal mine or colliery is worked out preparatory to being abandoned, or when any lift thereof is about to be abandoned, the owner, operator or superintendent of such coal mine or colliery shall have the maps or plans thereof extended to include all excavations, as far as practicable, and such portions thereof as have been worked to the boundary lines of adjoining properties; or any part or parts of the workings of which is intended to be allowed to fill with water, must be surveyed in duplicate and such surveys must practically agree, and certified copies be filed with the inspector of the district in which the mines are situated.

Section 4. Whenever the owner, operator or superintendent of any coal mine or colliery shall neglect or refuse, or from any cause not satisfactory to the inspector, shall fail, for a period of three months, to furnish to the inspector the map or plan of said colliery or of the extensions thereto, as provided for in this act, the inspector is hereby authorized to cause an accurate map or plan of such coal mine or colliery to be made at the expense of the owner thereof, which cost shall be recoverable from said owner as other debts are by law recoverable.

Section 5. If the inspector finds or has reason to believe, that any map or plan of any coal mine or colliery, furnished under the provisions of this aci, is materially inacomate, it shall be his duty to make application to the court of common pleas of the county in which such colliery is situate for an order to have an accurate map or plan of said colliery prepared, and if such survey shall prove that the map furnished was materially inacemate or imperfect, such owner, operator or superintendent shall be liable for the expense incurred in making the same.

Sertion fi. If it shall be found that the map or plan furnished by the owner, operator or supreintendent was not materially inaccurate or imperfect, the Commonwealth shatl be held liable for the expense incurred in making such test surver.

Section 7 . If it shall be shown that the said owner, operator or sujerintendent has knowingly or designedly cansed or allowed such map or plan, when furnished, to he ineorrect or false, such owner. operator or superintendent thus offending, shall be guilty of a misdemeanor and upon conviction thereof, shall be pmished by a fine not exceeding fise hundred dollars or imprisonment not exceeding three monfles, at the discretion of the court.

Section 8. The maps or plans of the several coal mines or collieries in each district and which are placed in the custody of the inspector, shall be the property of the Commonwealth, and shall remain in the care of the inspector of the district in which the said collieries are situated to be transferred by him to his successor in office; and in no case shall a copy of the same be made without the consent of the owner, operator or superintendent.

Section 9. The inspector's map or plan of any particnlar colliery shall be open for inspection, in the presence of the inspector, to any miner or miners of that colliery, whenever said miner or miners shall have cause to fear that his or their working place or places is becoming dangerous, by reason of its proximity to other workings which may be supposed to contain water or dangerous gases. Said map shall also be open to the inspection and examination of any citizen interested, during business hours.

Section 10. It shall be obligatory on the owners of adjoining coal properties to leave, or cause to be left, a pillar of coal in each seam or vein of coal worked by them, along the line of adjoining property, of such width, that taken in connection with the pillar to be left by the adjoining property owner, will be a sufficient barrier for the safety of the employes of either mine in case the other should be abandoned and allowed to fill with water; such width of pillar to be determined by the engineers of the adjoining property owners together with the inspector of the district in which the mine is situated, and the surveys of the face of the workings along such pillar shall be made in duplicate and must practically agree. A copy of such duplicate surveys, certified to, must be filed with the owners of the adjoining properties and with the inspector of the district in which the mine or property is situated.

ARTICLE IV.

Shafts, Slopes, Openings and Outlets.

Section 1. It shall not be lawful for the owner, operator or superintendent of any mine to employ any person or persons in such mine or permit any person or persons to be in such mine for the purpose of working therein, unless they are in connection with every seam or stratum of coal; and from every lift thereof, worked in such mine, not less than two openings or outhets, separated by a strata of not less than sixty (60) feet in breadth underground, and one hmodred and fifty (150) feet in breadth at the surface, at which openings or outlets safe and distinct means of ingress and egress are at all times available for the person or persons employed in the said mine, but it shall not be necessary for the said two openings to belong to the same mine if the persons employed therein have safe, ready and
arailable means of ingress and egress by not less than two openiugs. This section shall not apply to opening a new mine or to opening any new lift of a mine while being worked for the pmpose of making communication between said two outlets, so long as not more than twenty persons are employed at any one time in such mine or new lift of a mine; neither shall it apply to any mine or part of a mine in which the second outlet has been rendered mavailable by reason of the final robbing of pillars previous to abandoument, so long as not more than twenty persons are employed thencin at any one time. The cage or cages and other means of egress shall, at all times, be available for the persons employed where there is no second ontlet.

Section 2. The owner, operator or superintendent of any mine to which there is only one shaft, slope or outlet may petition the court of common pleas in and for the county in which such mine is situated, which said court is hereby empowered to act in the premises, setting forth that, in consequence of intervening lands between the working of his mine and the most practicable point, or the onis practicable point, as the case may be, at which to make or bring to the surface from the working of his mine, he is unable to make an additional shaft, slope or outlet in accordance with the requirements of this act. whereupon the court may make an order of reference and appoint three disinterested persons, residents of the combty, viewers, one or more of whom shall be a practical mining engineer, all of whom, after being sworn to a faithful discharge of their duties, shall view and examine the premises and determine as to whether the owner shall have the privilege of making an additional outlet through or ugon any interrening lands, as the case may require, and report in writing to the court, which report shall be entered and filed of record. If the finding of the viewers, or any two of them, is in favor of the owner of such coal mine or colliery, he may make an additional shaft, slope or ontlet muder, through or upon intervening lands, as may be determined upon and provided for by the award. If the finding of the riewers is against the owner, or if no award be made by reason of any default or neglect on the part of the owner, he shall be bound to comply with the provisions of this atet in the same manmer as if this seetion had not beern enacted. In ense the said owner, operator or superintemdent desires to, and clams that he onght to make an additional opening moder, through or upon any adjoining or intervening lands, to meet the requirements of this act, for the ingress and egress of the men employed in his or their mitue, he or they shall make a statement of the facts in the petition, with a surver. setting forth the point of commencement and the perint of termination of the propesed ontlet which he or the y, their engineers, agents or employes may enter upon said intervening lands and survey and mark, as he or they shall find it proper to
adopt for such additional outlet, doing as little damage as possible to the property explored; and the viewers slall state in their report what damage will be sustained by the owner or owners of the intervening lands by the opening, constructing and using of the outlet, and if the report is not appealed from, it shall be confirmed or rejected by said court as to right and justice shall appertain, and any further and all proceedings in relation thereto shall be in conformity with like proceedings as in the case of a lateral railroad across or under intervening lands, under the act in relation to lateral railroads, approved the fifth day of May, Amo Domini one thousand eight hundred and thirty-two, and the supplements thereto, so far as the provisions of the same are applicable hereto; and the notices to the owner of interveuing lands, of the intention to apply for the privilege of making an outlet and meeting of the viewers shall be given, and the eosts of the case shall be paid as provided in the said act of fifth day of May, Anno Domini one thousaud eight hundred and thirty-two, and the supplements thereto.

Section 3. The escapements, shafts or slopes shall be fitted with safe and available appliances by which the persons employed in the mine may readily escape in case an accident occurs deranging the hoisting machinery at the main outlets.

Section 4. In slopes where the angle of inclination is fifteen degrees or less there must be provided a separate traveling way, which shall be maintained in a safe condition for travel and kept free from steam and daugerous gases.

Section 5. No inflammable structure, other than a frame to sustain pulteys or sheares, shall be erected over the entrance of any opening connecting the surface with the underground workings of any mine, and no "breaker" or other inflammable structure for the preparation or storage of coal shall be erected nearer than two hundred (200) feet to any such opening, but this act shall not be construed to prohibit the crection of a fan drift for the purpose of ventilation, or of a trestle for the transportation of cars from any slope to such breaker or structure, neither shall it apply to any shaft or slope until the work of development and shipment of coal has commenced: Provided, That this section shall not apply to breakers that are now erected.

Section 6. The top of each shaft and also of each slope, if dangerous, or any intermediate lift thereof, shall be securely fenced off by railing or by vertical or flat gates.

Section 7. Every abandoned slope, shaft, air-hole and drift shall be properly fenced around or across its entrance.

Section S. All maderground entrances to any places not in actual course of working or extension shall be properly fenced across the whole width of such eutrancess so as to prevent persons from inadvertently entering the same.

Section 9. The owner, operator or superintendent of any coal mine or colliery which is worked by shaft or slope, shall provide and maintain a suitable appliance by or through which conversation can be held by and between persons at the bottom and at the top of the shaft or slope, and also an efficient means of signaling from the bottom of such shaft or slope to the engineer in charge of the hoisting engine.

Section 10. Hand rails and efficient safety catches shall be attached to, and a sufficient cover overhead shall be provided on every cage used for lowering or hoisting persons in any shaft.

Section 11. Wherever practicable, every cage or gun-boat used for lowering or hoisting persons in any slope, shall be provided with a proper protector, so constructed that persons, while on such cage or gun-boat, shall not be struck by anything which may fall or roll down said slope.

Section 12. The main link of the chain connecting the rope to the cage, gun-boat or car in any shaft or slope, shall be made of the best quality of iron; bridle chains made of the same quality of iron shall be attached to the main link, rope or rope socket from the cross-head of the cage or gun-boat when persons are being lowered or hoisted thereon.

Section 13. The ropes, safety catches, links and chains shall be carefully examined every day they are used, by a competent person delegated for that purpose and any defects therein found, by which life or limb may be endangered, shall be immediately remedied.

Section 14. An eflicient brake shall be attached to every drum that is used for lowering or raising persons or material in any mine.

Section 15. Flanges or horns of sufficient dimensions to prevent the rope from slipping off the said drum shall be provided and properly attached to the drum, and all machines used for lowering or hoisting persons in mines shall be provided with an indieator to show the position of the cage, car or gun-boat in the shaft or slope.

Section 16. Over all shafts which are being sunk or shall hereafter be sunk, a safe and substantial structure shall be erected to sustain the sheaves or pullers, at a height of not less than twenty (20) feet above the tipping-place, and the top of such shaft shall be arranged in such manner that no material can fall into the shaft while the bucket is being emptied.

Section 17. The said structure shall be erected as soon as a substantial foundation is obtained, and in no case shall a shaft be sumk to a depth of more than fifty (50) feet withont such structure.

Section 18. If provision is made to land the bucket upon truck, the said trmek shall be constructed in such mamer that material annot fall into the shaft.

Section 19. All rock and coal from shafts as they are being sunk, shall not be raised except in a bucket or on a cage, and such bucket or cage must be comected to the rope or chain by a safety hook, clevis or other safe attachment.

Section 20. Such shafts shall be provided with guides and guide attachments applied in such manner as to prevent the bucket from swinging while descending or ascending therein, and such guides and guide attachments shall be maintained at a distance of not more than seventy-five (75) feet from the bottom of such shaft, until its sinking shall have been completed, but this section shall not apply to shafts one hundred (100) feet or less in depth.

Section 21. Where the strata are not safe every shaft shall be securely cased, lined or otherwise made secure.

Section 22. The following rules shall be observed, as far as practicakle, in every shaft to which this act applies.

First. After each and every blast the chargeman must see that all loose material is swept down from the timbers before the workmen descend to their work.

Second. After a suspension of work, and also after firing a blast in a shaft where explosive gases are evolved, the person in charge must have the said shaft examined and tested with a safety lamp before the workmen are allowed to descend.

Third. Not more than four persons shall be lowered or hoisted in any shaft on a bucket at the same time, and no person shall ride on a loaded bucket.

Fourth. Whenever persons are employed on platforms in shafts the person in charge must see that the said platforms are properly and safely constructed.

Fifth. While shafts are being sunk all blasts therein must be exploded by an electric battery.

Sixth. Every person who fails to comply with or who violates the provisions of this article shall be guilty of an offense against this act.

ARTICLE V.

Boilers and Connections, Machinery, \&c.
Section 1. All boilers used for generating steam in and about mines and collieries shall be kept in good order, and the owner, operator or superintendent shall have them examined and inspected by a qualified person as often as once in six months, and oftener if needed. The result of such examination, under oath, shall be certified in writing to the inspector for the district within thirty (30) days thereafier.

Section 2. It shall not be lawful to place any boiler or boilers, for the purpose of generating steam, under uor nearer than one hundred (100) feet to any coal breaker or other structure in which persons
are employed in the preparation of coal: Provided, That this section shall not apply to boilers or breakers already erected.

Section 3. Each nest of boilers shall be provided with a safety valve of sufficient area for the steam to escape and with weights or springs properly adjusted.

Section 4. Every boiler house shall be provided with a steam gauge properly connected with the boilers, to indicate the steam pressure, and another steam gange shall be attached to the steam pipe in the engine house and placed in such position that the engineer or fireman can readily examine them and see what pressure is carried. Such steam ganges shall be kept in good order, tested and adjusted as often as once in every six months and their condition reported to the inspector in the same manner as the report of boiler inspection.

Section 5. All machinery used in or about the mines and collieries, and especially in breakers, such as engines, rollers, wheels, screens, shafting and belting shall be protected by covering or railing so ats to prevent persons from inadvertently walking against or falling upon the same. The sides of stairs, trestles and dangerous plank walks in and around the collieries shall be provided with hand and guard railing to prevent persons from falling over their sides. This section shall not forbid the temporary removal of a feuce, guard rail or covering for the purpose of repairs or other operations, if proper precautions are used, and the fence, guard rail or covering is replaced immediately thereafter.

Section 6. A sober and competent person, not under eighteen (18) years of age, shall be engaged to rim the breaker engine and he shall attend to said engine while the machinery is in motion.

Section 7. A sigual apparatus shall be established at important points in every breaker so that in case of an accident the engineer can be promptly notified to stop the machinery.

Section 8. No person moder fifteen (15) years of age shall be appointed to oil the machinery, and no person shall oil dangerons parts of such machinery while it is in motion.

Section 9. No person shall play with, loiter around or interfere with any machinery in or about any mine or colliery.

Section 10. Failure to comply with the provisions of this article slatl be deemed an offense against this act.

ARTICLE VI.

Wash Houses.

Section 1. It shall he the duty of the owner, operator or superiatendent of eark mine or colliery, at the request in writing of twenty or more men employed in any of the mines, to provide a suitable building, not an engine or boiler house, which shall be convenient to
the principal entrance of such mine, for the use of the persons employed therein for the pmrpose of washing themselves and changing their clothes when entering the mine and returning therefrom. The said building shall be maintained in good order, be properly lighted and heated, and supplied with pure cold and warm water, and shall be provided with facilities for persons to wash. If any person o: persons shall neglect or fail to comply with the provisions of this article, or maliciously injure or destroy, or cause to be injured or destroyed, the said building, or any part thereof, or any of the appliances or fittings used for supplying light, heat and water therein, or doing any act tending to the injury or destruction thereof, he or they shall be deemed guilty of an offense against this act.

ARTICLE VII.

Ambulances and Stretchers.

Section 1. The owner, operator or superintendent of every mine or colliery, except as hereinafter provided, shall provide and keep at such mine or colliery an ambulance and also at least two (2) stretchers, for the purpose of conveying to their places of abode, any person or persons who may be injured while in the discharge of his or their work at such mine or colliery.

Section 2. The said ambulance shall be constructed upon good, substantial and easy springs. It shall be covered and closed and shall have windows on the sides or ends. It shall be of sufficient size to convey at least two (2) injured persons with two (2) attendants at one time, and slatl be provided with spring mattresses or other comfortable bedding to be placed on roller frames, together with sufficient covering and protection and convenient movement of the injured. It shall also be provided with seats for the attendants. The stretchers shall be constructed of surh material and in such manner as to afford the greatest case and comfort in the carriage of the injured person.

Section 3. Whenever any person or persons employed in or about a mine or colliery shall receive such injury by aceident or otherwise, while so employed, as would render him or them nuable to walk to his or their place of abode, the owner, operator or superinfendent of such mine or colliery shall immediately cause such person or persons to be removed to his or their place of abode or to an hospital as the case may require.

Section 4. It is provided, however, that the owner, operator or superintendent of any mine or colliery shall be excepted from the requirements of an ambulance as aforesaid, if the places of abode of all the workmen at such mine or colliery be within a radius of a half mile from the principal entrance to such mine.

Section 5. 1t is provided further, that where two or more mines or collieries are located within one mile of each other, or the ambulance is located within one mile of each colliery, but one ambulance, as aforesaid, shall be required, if the said mines or collieries have ready and quick means of communication, one with the other, by telegraph or telephone.

Section 6. An ambulance, as aforesaid, shall not be required at any mine or colliery at which less than twenty (20) persons are employed.

Section 7. In case the distance from any mine or colliery to the place of abode of the person injured, is such as to permit his conveyance to his home or to an hospital more quickly and conveniently by railway, such mode of conveyance shall be permitted, but in such case the conveyance must be under cover and the comfort of the injured person must be provided for.

ARTICLE VIII.

Certified Mine Foremen.

Section 1. It shall not be lawful, neither shall it be permitted, for any person or persons to act as mine foreman or assistant mine foreman of any coal mines or colliery, unless they are registered as a holder of a certificate of qualification or service under this act.

Section 2. Certificates of qualification to mine foremen and assistant mine foremen shall be granted by the Secretary of Internal Affairs to every applicant who may be reported by the examiners, as hereinafter provided, as having passed a satisfactory examination and as having given satisfactory evidence of at least five years' practical experience as a miner, and of good conduct, capability and sobriety.

The certificate shall be in manner and form as shall be preseribed by the Secretary of Internal Affairs, and a record of all certificates issued shall be kept in his department.

Section 3. For the purpose of examination of candidates for such rertificates, a board of examiners shall be appointed in each of the inspection districts provided for by this act. The said board shall consist of the district inspector of mines, two (2) practical miners and one owner, operator or superintendent of a mine. The said inspector shall act ex-officio, and the said engineer and owner, operator or superintendent shall be appointed in like manner and at the same time as the boards of examiners for candidates for mine inspectorship, under this act are now appointed. The said board shall act as such for the period of one year from the date of their appointment. Meetings of the board may he held at any time, and they may make such rules and conduct such examinations as in their judgment may seem proper for the purpose of such examinations. The said board
shall report their action to the Secretary of Internal Affairs, and at least three (3) of the members thereof shall certify to the qualification of each candidate who has passed such examination. The traveling expenses of the members of such board to and from their place of meeting, together with the sum of five dollars per day each to the said two (2) practical miners and owner, operator or superintendent. members of each board, for each day they are actually engaged therein, not exceeding ten (10) days in all, during the year, shall be paid by the Commonwealth on an order of the Auditor General drawn on the State Treasurer upon the certificate of the mine in spector, member of such board.

Section 4. Certificates of qualification to mine foreman and assistant mine foreman shall be granted by the Secretary of Internal Affairs to every applicant who may be reported by the examiners, as heretofore provided, as having passed a satisfactory examination and as having given satisfactory evidence of at least five (5) years' practical experience as a miner, and of good conduct, capability and sobriety. The certificate shall be in manner and form as shall be prescribed by the Secretary of Internal Affairs, and a record of all certificates issned shall be kept in the department. Certificates of qualification and certificate of service shall contain the full name, age and place of birth of the applicant, as also the length and nature of his previous service in or about the mines.

Section 5. Before certificate as aforesaid shall be granted applicants for same shall pay to the Secretary of Internal Affairs the following fee, namely:

For examination, one dollar; for registration of certificate, one dollar, for certificate, one dollar. All fees so received shall be covered into the treasury of the Commonwealth.

Section 6. No mines shall be operated for a longer period than thirty days without the supervision of a mine foreman. In case any mine is worked a longer period than thirty (30) days without such certified mine foreman, the owner, operator or superintendent thereof slatl be subject to a penalty of twenty dollars per day for cach day over the said thirty (30) days during which the said mine is operated.

Section 7. In case of the loss or destruction of a certificate the Serretary of Internal Affairs may supply a copy thereof to the person losing the same upon the payment of the sum of fifty (50) cents: Provided, It shall be shown to the satisfaction of the Secretary that the loss has actually occurred.

Section \&. If any person or persons shall forge or counterfeit a certificate or knowingly make or cause to be made any false statement in any certificate under this act, or in any official copy of the same, or shall urge others to do so, or shall utter or use any such forged ot
false certificate, or unofficial copy thereof, or shall make, give, utter, produce or make use of any false declaration, representation or statement in any such certificate or copy thereof, or any document containing the same, he or they shall be grilty of a misdemeanor, and upon conviction thereof, shall be fined two hundred dollars, or imprisoned for a term not exceeding one (1) year, or both, at the discretion of the court trying the case.

Section 9. And no person shall be permitted to act as fire boss in any coal mine or colliery, except he has had five (5) years' practical experience in mines as a miner, three (3) of which he shall have as a miner wherein noxious and explosive gases are evolved, and the said fire boss shall certify to the same before entering upon his duties, before an alderman, justice of the peace or other person authorized to administer oaths, and a copy of said deposition shall be filed with the district inspector of mines wherein said person is employed.

ARTICLE IX.

Employment of Boys and Females.

Section 1. No boy under the age of fourteen (14) years, and no woman or girl of any age, shall be employed or permitted to be in any nine for the purpose of employment therein. Nor shall a boy under the age of twelve years or a woman or girl of any age, be employed or permitted to be in or about the outside structures or workings of a colliery for the purpose of employment, but it is provided, however, that this prohibition shall not affect the employment of a boy or female of suitable age in an office or in the performance of clerical work at a colliery.

Section 2. When an employer is in doubt as to the age of any boy or youth applying for employment in or about a mine or colliery, he shall demand and receive proof of the said lawful employment age of such boy or youth, by ertificate from the parent or guardian, before salid boy or youth shall be employed.

Section 3. If any person or persons contravene or fail to comply with the provisions of this act in respect to the employment of hoys. young male persons or females, or if he or they shall connive with or pormit others to contravene or fail to comply with said provisions, or if a parent or guardian of a boy or young male person make or give a false certificate of the age of such boy or young male person, or knowingly do or perform any other act for the purpose of securing employment for a boy or young male person under the lawful employment age and in contravention of the provisions of this act. he or they shall be guilty of an offense against this act.

ARTICLE X.
 Ventilation.

Section 1. The owner, operator or superintendent of every mine shall provide and maintain a constant and adequate supply of pure air for the same, as hereinafter provided.

Section 2. It shall not be lawful to use a furnace for the purpose of rentilating any mine wherein explosive gases are geuerated.

Section 3. The minimum quantity of air thas produced, shall not be less than two hundred (200) cubic feet per minute for each and every person employed in any mine, and as much more as the circumstances may require.

Section 4. The ventilating currents shall be conducted and circulated to and along the face of each and every working place throughout the entire mine, in sufficient quantities to dilute, render harmless and sweep away smoke and noxious or dangerous gases, to such ath extent that all working places and thaveling roads shall be in a safe and fit state to work and travel therein.

Section $\overline{\text {. }}$ All worked out or abandoned parts of a mine in operaion, so far as practicable, shall be kept free of dangerous bodies of siscs or water, and if found impraticable to keep the entire mine free from an accumulation of gases or water, the mine inspector must be immediately notified.

Section 6. Every mine employing more than seventy-five (75) persomis must be divided into two or more districts. Each district shall be provided with a separate split of pure air and the ventilation shall be so arranged, that not more than seventy-five persons shall be employed at the same time in any one current or split of air.

The inlet and return air passages for any particular disirict must be separated by a pillar of coal or stone, if the thickness and dip of the vein will permit, except where it is necessary to cut through said dividing pillar for the purposes of ventilation, traffic or drainage.

Section 7. All air passages shall be of suflicient area to allow the free passage of not less than two hundred (200) cubic feet of air perminute for every person working therein; and in no case, in mines generating explosive gases, shall the velocity exceed four hundred and fifty (450) lineal feet per minute, in any opening through which the air currents pass, if gauze safety lamps are used, except in the main inlet or outlet air ways.

Section S. All crossecuts connecting the main inlet and outlet air passages of avery district, when it beeomes necessary to close them permanemly, shall be substantially closed with brick or other suitable buidding material, laid in mortar or cement whenerer jracficable, but in no case shall said air stoppings be constructed of plank exerpt for temporary purposes.

Section 9. All doors used in assisting or in any way affecting the ventilation shall be so hung and adjusted that they will close automatically.

Section 10. All main doors shall have an attendant whose constant duty it shall be to open them for transportation and travel and prevent them from standing open longer than is necessary for persons or cars to pass through.

Section 11. All main doors shall be so placed that when one door is open, another, which has the same effect upon the same current, shall be and remain closed and thus prevent any temporary stoppage of the air current.

Section 12. An extra main door shall be so placed and kept standing open, so as to be out of reach of accident, and so fixed that it can lee at once closed in the event of an accident to the doors in use.

Section 13. The frame work of such main doors shall be substantially secured in stone or brick, laid in mortar or cement unless otherwise permitted in writing by the inspector.
Section 14. All permanent air bridges shall be substantially built of such material and such strength as the circumstances may reęuire.

Section 15. The quantities of air in circulation shall be ascertained with an anemometer or other efficient instrument; such measurements shall be made by the inside foreman or his assistant once a week at the inlet and outlet airways, also at or near the face of each gangway and at the nearest cross-heading to the face of each gangway and at the nearest cross-heading to the face of the inside and outside chamber or breast where men are employed, and the headings shall not be driven more than sixty (60) feet from the face of each chamber or breast and shall be entered in the colliery report book.

Section 16. A report of these air measurements shall be sent to the inspector before the twelfth day of each month, for the preceding month, together with a statement of the number of persons employed in each district.

Section 17. All ventilators used at mines shall be provided with recording instruments by which the speed of the ventilators or the ventilating pressure shall be registered for each hour, and such datit shall be preserved at the colliery for future reference, for a period of three months.

Section 18. Any person or persons who shall neglect or fail to (omply with the provisions of this article, or who shall make any false report in regard to air measurements, shall be guility of an offense against this act.

ARTICLE XI.

Props and Timbers.

Section 1. It shall be the duty of the owner, operator, superintendent or mine foreman of every mine to furnish to the miners all props, ties, rails and timbers necessary for the safe mining of coal and for the protection of the lives of the workmen. Such props, ties, rails and timbers shall be suitably prepared and shall be delivered to the workmen as near to their working places as they can be conveyed in ordinary mine cars, free of charge.

Section 2. Every workman in want of props, ties, rails or timbers shall notify the mine foreman or his assistant of the fact at least one day in advance, giving the length of the props or timber required; and in case of danger from loose roof or sides, he shall not continue i.o cut or load coal until the said props and timber have been properly furnished and the place made secure.

Section 3. A failure to comply with the provisions of this article shall be deemed an offense against this act, and shall be taken to be aegligence per se on the part of the owner, operator, snperintendent or mine forman, as the case may be, of such mine, in action for the recovery of damages for accidents resulting from the insufficient propping of such mine, through failure to furnish the necessary props or timbers.

ARTICLE XII.

General Rules.

The following general rules shall be observed in every mine to which this act applies:

Rule 1. The owner, operator or superintendent of a mine or coliiery shall use every precaution to ensure the safety of the workmen in all cases, whether provided for in this act or not, and he shall place the underground workings thereof, and all that is related to be same, under the charge and daily supervision of a competent person who shall be called "mine foreman."

Rule 2. Whenever a mine foreman cannot personally carry out the provisions of this act so far as they pertain to him, the owner, oper:ator or superintendent shall authorize him to employ a sufficient number of competent persons to act as his assistants, who shall be subject to his orders.

Rule 3. The mine foreman shall have charge of all matters pertaining to rentilation, and the speed of the ventilators shall be particularly under his charge and direction; and any superintendent who shall canse the mine foreman to disregard the provisions of this act shall be amenable in the same manner as the mine foreman.

Rule 4. All accessible parts of an abandoned portion of a mine in which explosive gases hare been found, shall be carefully examined
by the mine foreman or his assistants at least once a week, and all danger found existing therein shall be immediately removed. A report of said examination shall be recorded in a book kept at the coliiery for that purpose and signed by the person making the same.

Rule 5. In mines generating explosive gases, the mine foreman or his assistant shall make a careful examination every morning of all working places and traveling roads and all other places which might endanger the safety of the workmen, before the workmen shall enter the mine, and such examination shall be made with a safety lamp, within three (3) hours at most, before time for commencing work, and a workman shall not enter the mine or his working place until the said mine or part thereof and working place are reported to be safe. Every report shall be recorded without delay in a book which shail be kept at the colliery for the purpose and shall be signed by the person making the examination.

Rule 6. The person who makes said examination shall establish proof of the same by marking plainly the date thereof at the face of each working place and all other places examined.

Rule 7. A station or stations slall be established at the entrance to each mine or different parts of each mine, as the case may require, and a workman shall not pass beyond any such station until the mine or part of the mine beyond the same has been inspected and irported to be safe. It shall be the duty of the fire boss to remain at the danger station until relieved by some person authorized by himself or the mine foreman, who shall stand guard until said mine or part of mine shall be reported safe, and he shall not let any person phss without permission from the fire boss.

Rule 8 . If at any time it is found by the person for the time being ia charge of the mine or any part thereof, that by reason of noxious gases prevailing in such mine or such part thereof, or of any cause whatever the mine or the said part is dangerous, every precaution shall be used to ensure the safety of the workmen; and every workman, except such persons as may be required to remove the danger, shall be withdrawn from the mine, or such part thereof as is so found diangerous, mutil the said mine or said part thereof is examined by a competent person and reported by him to be safe.

Rule 9. In every working approaching any place where there is likely to be accomulation of explosive gases, or in any working in which danger is imminent from explosive gases, no light or fire other than a locked safety lamp, shall be allowed or used. Whenever safety lamps are required in any mine they shall be the property of the owner of said mithe, and a competent person, whe shall be appointed for the purpose, shall examine every safety lamp immediately before it is laken into the workings for use, and ascertain it to be clean, safe and serurely locked, and safety lamps shall not be used until they
have been so examined and found safe, clean and securely locked, unless permission be first given by the mine foreman to have the lamps used unlocked.

Rule 10. No one, except a duly authorized person, shall have in his possession a key or any other contrivance for the purpose of unlocking any safety lamp in any mine where locked lamps are used. No lucifer matches or any other apparatus for striking light shall be taken into said mine or parts thereof.

Rule 11. No blast shall be fired in any mine where locked safety lamps are used except by permission of the mine foreman or his assistants, and before a blast is fired, the person in charge must examine the place and adjoining places and satisfy himself that it is safe to fire such blast before such permission is given.

Rule 12. The mine foreman or his assistant shall visit and examine every working place in the mine at least once every alternate day, while the men of such place are or should be at work, and shall direct that each and every working place is properly secured by props or timber, and that safety in all respects is assured by directing that all loose coal or rock shall be pulled down or secured, and that no person shall be permitted to work in an unsafe place unless it be for the purpose of making it secure.

Rule 13. The mine foreman, or some other competent person or persons to be designated by him, shall examine at least once every day all slopes, shafts, main roads, traveling ways, signal apparatus, pulleys and timbering and see that they are in safe and efficient working condition.

Rule 14. Any person having charge of a working place in any mine shall keep the roof and sides thereof properly secured by timber or otherwise so as to prevent such roof and sides from falling, and he shall not do any work or permit any work to be done under loose or dangerous material except for the purpose of securing the same.

Rule 15. Whenever a place is likely to contain a dangerous accumulation of water, the working approaching such place shall not not exceed twelve (12) feet in width, and there shall be constantly lept, at a distance of not less than twenty (20) feet in adrance, at least one (1) bore hole near the center of the working and sufficient flank bore holes on each side.

Rule 16. No person shall ride upon or against any loaded car, eage or sun-boat in any shaft, slope or plane in or about a mine or colliery.

Rule 17. Not more than ten (10) persons shall he hoisted or lowered at any one time in any shaft or slope, and whenever five persons shall arrive at the bottom of any shaft or slope in which persons are regularly hoisted or lowered they shall be furnished with an empty car or cage and be hoisted, excrpt however, in mines where there is
provided a traveling way having an average pitch of fifteen (15) degrees or less and not more than one thonsand $(1,000)$ feet in length. This, however, shall not prohibit the hoisting or lowering of twenty (20) persons at one time on slopes where two (2), or more loaded cars are regularly hoisted: Provided, That not less than thirty (30) workmen working therein, make such request in writing, to the inspector of the district, and if, in his judgment, the hoisting appliances in every respect are of sufficient sirength, he may comply with the request of the workmen.

Provided, 'That in any coal mine or colliery where the hoisting appliances are not of sufficient strength to hoist or lower the number of persons named, he shall have the power to reduce the number of persons to be hoisted or lowered.

Rule 18. An engineer placed in charge of an engine whereby persons are hoisted or lowered in any mine, shall be a sober and competent presson of not less than twenty-one (21) years of age.

Rule 19. Every engineer shall work his engine slowly and with great care when any person is being lowered or hoisted in a shaft or slope and no one shall interfere with or intimidate him while in the discharge of his duties.

Rule 20. An engineer who has charge of the hoisting machinery by which persons are lowered or hoisted in a mine, shall be in constant attendance for that purpose during the whole time any person or persons are below gromnd, and he shall not allow any person or f.ersons, except such as may be deputed by the owner, operator or superintendent, to handle or meddle with the engine under his charge or any part of its machinery.

Rule 21. When any person is about to descend or ascend a shaft or slope, the headman or footman, as the case may be, shall inform the engineer by signal or otherwise of the fact. and the engineer slatl return a signal before moving or starting the engine. In the absence of a headman or footman the person or persons about to descend or ascend shall give and receive the signals in the same manner.

Rule 2.3. The owner, operator or superintendent of a colliery shall place a competent person to be called "ontside foreman," in charge of the breaker and the outside work of such colliery and who shatl direct. and as far as practicable, see that the provisions of this aet are complied with in respect to the breaker, ontside machinery, ropes, agges and all other things pertaining to the outside work, unless otherwise provided for in this act.

Rale 2:3. In all coal breakers where the coal dast is so dense as 10 be injurions to the health of persons employed therein, the owner. operator or superintemdent of said braker shall, upon the request of the inspector, immediately adopt measures for the removal of the dust, as far as practicable.

Rule 24. Any miner or other workman who shall discover anything wrong with the ventilating earrent or with the condition of the roof, side, dimbor or roadway, or with any other part of the mine in general, such as would lead him to suspect danger to himself or his fellow workmen or to the property of his employer, shall immediately report the same to the mine foreman or other person, for the time being in charge of that portion of the mine.

Rule 25. Any person or persons who shall knowingly or wilfully damage, or without proper anthority, remove or render useless any fencing, means of signaling, apparatus, instrument of machine, or shall throw open or obstruct any airway, or open a ventilating door and not have the same closed, or enter a place in or about a mine against caution, or carry tire, open lights or matches in places where safety lamps are used, or handle without proper authority, or disturb any machinery or cars, or do any other act or thing whereby the lives or health of persons or the security of the property in or about a mine or colliery are endangered, shall be guilty of an offense against this act.

Rule 26. Gunpowder or any other explosive shall not be stored in a mine, and a workman shall not have at any time in any one place, more than one keg or box containing twenty-five (25) pounds, unless more is necessary for a person to accomplish one day's work.

Rule $2 \overline{2}$. Every person who has gunpowder or other explosive in a mine, shall keep it in a wooden or metallic box secmrely locked, and such box shall be kept at least ten (10) feet from the tracks in all cases where room at such a distance is available.

Rule 28. Whenever a workman shall open a box contatining explosive or while in any manner handling the same, he shall first place his lamp not less than five (5) feet from such explosive and in such a position that the air current cannot convey sparks to it, and a workman shall not approach nearer than five (5) fcet to an open box containing powder, with a lamp, lighted pipe or any other thing containing fire.

Rule 29. When high explosives other than gunpowder are used in any mine; the manner of storing, keeping, moving, charging and firing or in any manner using such explosives, shall be in accordance with special rules as furnished by the manufacturers of the same. The said rules shall be endorsed with his or their official signature and shall be approved by the owner, operator or superintendent of the mine in which such explosives are used.

Rule 30. In charging holes for blasting in slate or rock in any mine, no iron or steel-pointed needle shall be used, and a tight cartridge shall not be rammed into a hole in coal, slate or rock with an iron or steel tamping bar, unless the end of the tamping bar is tipped with at least six (6) inches of copper or other soft metal.

Rule 31. A charge of powder or any other explosive in slate or rock which has missed fire shall not be withdrawn or the hole reopened.
Rule 32. A miner or other person who is about to explode a blast by the use of patent or other squibs or matches, shall not shorten the match, nor saturate it with mineral oil, nor tmrn it down when placed in the hole, nor ignite it except at its extreme end, nor do anything tending to shorten the time the match will burn.
liule 33 . When a workman is about to fire a blast he shall be careful to notily all persons who may be in danger therefrom, and shall give sufficient alarm before and after igniting the match so that any fetson or persons who may be approaching shall be warned of the danger.

Rule 34. Before commencing work and also after the firing of every blast, the miner working a hreast or any other place in a mone. shall enter such breast or place to examine and ascertain its condition, and his laborer or assistant shall not go to the face of such breast or place until the miner las examined the same and found it to be safe.

Rule 35. No person shall be employed to blast coal or rock unless the mine foreman is satisfied that such person is qualified, by experience and judgment, to perform the work with ordinary safety.

Rule 36. A person who is not a practical miner shall not charge or fire a blast in the absence of an experienced miner, moless he has given satisfactory evidence of his ability to do so with safety, and has obtained permission from the mine foreman or person in charge.
lanle 37. An accomulation of gas in mines shall not be removed by brushing where it is practicable to remove it by brattier.

Rule 38. When gases igniled hy blast or ohtherwise, the person igniting the same shall immediatoly extinguish it, if possible, and notify the mine foreman or his assistant of the fact, and workmen must see that no gas blowers are left burning upon leaving their working places.

Rule 39. Every fireman in charge of a boiler or boilers for the generation of skam, shall keep a constant watch of the samb. He shall see that the steam pressure does not at any time exced the limit allowed by the onfside foreman or superintemdent. He shall freguently try the safety valse, and shall not inerease the weight on the same. Il shall maintain a proper depth of water in eath boiler, and if anything should happen to prevent this. he shall report the same withont delay to the foreman, for the lime being in fharge, and take stieth ofter attion as may under the paticular ciremmstanes be neeessary for the protection of life and preservalion of property.

Title 40. At every shaft or slope in which provision is made in this act for lowering and hoisting persons, a headman and footman
shall be designated by the superintendent or foreman to be at their proper places from the time that persons begin to descend, until all the persons who may be at the botom of said shaft or slope when quitting work shall be hoisted. Such headman and footman shall personally attend to the signals and see that the provisions of this act, in respect to lowering and hoisting persons in shafts or slopes, shall be complied with.

Rule 41. No person, except the man giving the signal, shall jump on a car, cage or gumboat after the signal to start has been given, and if any person shonld enter a car, cage or gumboat in excess of the lawful number. the headman or footman shall notify him of the fact and request him to get off, which request must be immediately complied with. Any violation of this rule must be reported promptly to the mine foreman.

Rule 42. An empty trip shall be hoisted in any shaft or slope where the engine has been standing idle for an hour or more, before men are hoisted or lowered in said shafts or slopes, and no person or persons shall ascend any shaft or slope when working on the night turn, until one trip shall first be hoisted therein.

Rule 43 . Every passage-way used by persons in any mines and also used for transportation of coal or other material, shall be made of sufficient width to permit persons to pass moving ears with safety, but if found impracticable to make any passage-way of sufficient width, then holes of ample dimensions, and not more than one hundred and fifty (150) feet apart, shall be made on one side of said passage-way. The said passage-way and safety holes shall be kept free from obstructions and shall be well drained; the roof and sides of the same shall be made secure.

Rule 44. When locomotives are used in any mine their speed shall not exceed six (6) miles per hour, and an efficient alarm shall be provided and attached to the front end of every train of cars pushed by a locomotive in any mine or part of a mine.

Rule 45 . Locomotives propelled by steam, if using fire, shall not be used in any passage-way which is also used as an in-take air-way to any mine or part of a mine where persons are employed, unless there be a suffiecient quantity of air circulating therein to maintain a healthy almosphere.

Rule 46. No person shall comple or uncouple loaded or empty cars while the same are in motion: Prorided however, That this shall not apply to the top or bottom men of slopes, planes or shafts.

Rule 47. When cars are run on gravity roads by breaks or sprags, the rumer shall only ride on the rear end of the last car, and when said cars are rum hy sprags, a space of not less than two (2) feet from the body of the car shall be made on one or both sides of the fracb; wherever it may be necessary for the rumer to pass along the side
of the moving cat or cats, and sad space or passage-way shall always be kept free from obstructions.

Bule 48. No miner or laborer shall run cars out of any breast or chamber or on any gravity road muless he is a suitable person, employed by the mine foreman for that particular work; and no person shall be employed by any mine foreman to perform such work, under the age of sixteen (16) years.

Rule 49. Safety holes shall be made at the bottom of all slopes and planes and be kept free from obstruction to enable the footman to escape readily in case of danger.

Rule 50. Safety blocks or some other device for the purpose of preventing cars from falling into a shaft or running away on a slope or plane, shall be placed at or near the head of every shaft, slope or plane, and said safety blocks or other device must be maintained in good working order.

Rule 51. No person shall travel on any gravity train while cars are being hoisted or lowered thereon. Whenever ten (10) persons arrive at the bottom or top of any plane on which it is necessary ior men to travel, traffic thereon shall be suspended for a period of time long enongh to permit them to reach the top or bottom of said plane.

Rule 52. No mine cars shall be used in any mine unless the bumpers are of sufficient length and width to keep the bodies of said cars separated by not less than twelve (12) inches when the cars stand on a straight level road and the bumpers tonch each other.

Rule $\pi 3$. It shall be the duty of the owner, operator or superintendent of any or all coal breakers, to have them properly heated in order to prevent injury to the health of persons employed therein.

Rule 5 . For the purpose of making known the rules and the provisions of this act to all persons employed in or about such mine or colliery to which this act applies, an abstract of the act and rules shall be prosted up in legible characters in some conspicuous place or places at or near the mine or colliery, where they may be conreviently read by the persons employed, and so often as the same becomes ohliterated or destroyed the owner, operator or superintendent shall canse them to be renewed with all reasonable dispatch. Any person who pulls down, injures or defaces such abstract of the act or rules when posted up in pursuance to the provisions of this act. shall be guilly of an offense against this act.

Rule 55. No person or persons working in any coal mine or colliery shall cut any props of timbers white the same are in position to support the roof or sides. When it becomes necessary to remove any of the said props or timbers for the purpose of mining coal that may be supported by the same to dislodge any of the said props or timbers, it mast be done by blasting.

Rule 56 . It shall not be lawfol for any mine foreman or superintendent of any mine or colliery to emiploy any person who is not com-
petent to understand the regulations of any mine evolving explosive gases: Provided, That this rule will not apply to a section of mine, free from the said explosive gases.

Rule 57. Any superintendent or mine foreman who prevents the footman from giving an empty car or cage to the number of men designated in a former rule, shall, upon information by any person engaged in the mines, given the mine inspector, be fined the sum of fifty dollars for each offense.

Rule 58. Every person who fails to comply with any of the foregoing rules or any of the provisions of this article, shall be guilty of an offense against this act.

ARTICLE XIII.

Inquests.

Section 1. Whenever loss of life to a miner or other employe occurs in or about a mine or colliery, notice thereof shall be given promptly to the inspector of mines for the district in which the accident occurred, by the mine foreman or outside foreman or other person having immediate charge of the work at the time of the accident; and when death results from personal injury such notice shall be given promptly after the knowledge of death comes to the said foreman or person in charge.

Section 2. Whenever loss of life occurs or whenever the lives of persons employed in a mine or at a colliery are in danger from any accident, the inspector of mines shall visit the scene of the accident as soon as possible thereafter and offer such suggestions, as in his judgment shall be necessary, to protect the lives and secure the safety of the persons employed. In case of death from such accident, and after examination he finds it necessary that a coroner's inquest shall be held, he shall notify the coroner to hold such inquest without delay, and if no such inquest be held by the coroner within twenty-four (24) hours after such notice, the inspector shall institute a further and fuller examination of such accident, and for this purpose he shall have power to compel the attendance of witnesses at such examination and to administer oaths and affirmations to persons testifying thereat. The inspector shall make a record of all such investigations and accidents, which record shall be preserved in his office. The costs of such investigation shall be paid by the county in which the accident occurred in like manner as costs of inquests held by coroners or justices of the peace are now paid.

Section 3. An inquest held by the coroner upon the body of a person killed by explosion or other accident, shall be adjourned by the coroner if the inspector of mines be not present to watch the proceedings, and the coroner in such case shall notify the inspector, in
writing, of such adjourned inquest, and the time and place of holding the same, at least three (3) days previous thereto.

Section 4. Due notice of an intended inquest to be held by the coroner, shall be given by the coroner to the inspector, and at any such inquest the inspector shall have the right to examine witnesses.

Section 5. If, at any inquest held over the body or bodies of persons whose death was caused by an accident in or about a mine or colliery, the inspector be not present, and it is shown by the evidence given at the inguest that the accident was cansed by neglect or by any defert in or ahout the mine or colliery, which in the judgment of the jury, requires a remedy, the coroner shall send notice in writing to said inspector of such neglect or defantt.

Section 6. Nu person who is interested personally, nor a person employed in the mine or at a colliery in or at which loss of life has occurred by accident, shall be qualified to serve on a jury empaneled on the inquest, and a constable or other officer shall not summons such a person so gualified as juror, but the coroner shall empanel a majority of the jury from miners who are qualified to judge of the nature of the accident; every person who fails to comply with the provisions of this article shall be gnilty of an offense against this act.

ARTICLE XIV.

Returns, Notices, Et Cetera.
Section 1. Notices of death or serions injuries resulfing from accidents in or about mines or collimies, shall be made to the inspector of mines, in writug, and shall specify the name, age and occupation of the person killed or injured, and also the natme and character of the aceident and of the injury cansed thereby.

Section 2. . The owner, operator or superintendent of a mine or colliery, shall, withont delay, give notice to the inspector of the district in which said mine or colliery is simated in any or all of the following cases:

First. Where any working is commenced for the purpose of opening a new slope of mine to which this act applies.

Second. Where any mine is abandoned or the workings thereof discontinued.

Third. Where the working of any mine is recommenced affer any abandonment or discontinname for a period exceeding three months.

Fourth. Where any new coal breaker is completed and work commenced therein for the purpose of preparing coal for market.

Fifth. Where the pillars of a mine are to be removed or robbed.
Sixth. Where at sumeze of crosh or any other eanse or chatnge may seem to attect the safety of persons employed in any mine, or where fire occurs or a dangerous body of gas is found in any mine.

Section 3. On or before the first day of February in each year, the owner, operator or superintendent of every mine or colliery, shall send to the inspector of the district, a correct report specifying with respect to the year ending December thirty-first, previously, the name of the operator and ofticials of the mine, with his postoffice address; the quantity of coal mined, the amount of powder or other explosives consumed; the number of persons employed above and below ground in or about such colliery, classifying the persons so employed. The report shall be in such form as may be from time to time prescribed by the inspectors of the district. Blank forms for said reports shall be furnished by the Commonwealth.

ARTICLE XV.

Injunctions.

Section 1. Upon application of the inspector of mines of the proper district, acting in behalf of the Commonwealth, any of the courts of law or equity having jurisdiction where the mine or colliery proceeded against is situated, whether any proceedings have or have not been taken, shall prohibit, by injunction or otherwise, the working of any mine or colliery in which any person is employed or is permitted to be for the purpose of working in contravention of the prorisions of this act, and may award such costs in the matter of the injunctions or other proceedings as the court may think just; but this section shall be without prejudice to any other remedy permitted by law for enforcing the provisions of this act. Written notice of the intention to apply for such injunction in respect to any mine or colliery, shall be made to the owner, operator or superintendent of such mine or colliery not less than twenty-four (24) hours before the application is made.

ARTICLE XVI.

Arbitration.

Section 1. Whenever an inspector finds any mine or colliery or part thereof, or any matter, thing or practice connected with such mine, which in any respect thereof is not covered by or provided against by any provisions of this act or by any rule, to be dangerous or defective, or in his judgment tends to bodily injury to a person, he shall give notice thereof in writing to the owner, operator or superintendent of such mine or colliery, stating in such notice the particular matter or defect requiring remedy and may demand that the same be remedied; but the owner, operator or superintendent of said mine or colliery shall have the right to refer the demand of the imspector to a board of arbitration, and the matter shall then be arbitiated within forty-eight (48) hours of the time such eomplaint or demand be made. And the party against whom the award is given shall pay
all cost attending the case. The said board of arbitration shall be composed of three (3) persons, one of whom shall be chosen by the inspector, one by the said owner, operator or superintendent and a third by the two thus selected, and the decision of a majority of such board shall be final and binding in the matter.

ARTICLE XVII.

Penalties.

Section 1. Any judge of the court of quarter sessions of the peace of the county in which the mine or colliery, at which the offense, act or omission as hereinafter stated has occured, is situated, is hereby authorized and required, upon the presentation to him of the affidavit of any citizen of the Commonwealth setting forth that the owner, operator or superintendent, or any other person employed in or about such mine or colliery had been negligently guilty of an offense against the provisions of this act, whereby a dangerous accident had resulted or might have resulted to any person or persons employed in such mine or colliery, to issue a warrant to the sheriff of said county directing him to cause such person or persons to be arrested and brought before said judge, who shall hear and determine the guilt or innocence of the person or persons so charged; and if convicted he or they shall be sentenced to pay a fine not exceeding fire hundred dollars, in all cases not otherwise provided for in this act, or an imprisonment in the county jail for a period not exceeding three (3) months, or both, at the discretion of the court: Provided, That any defendant may waive trial before a judge as herein provided and at any time, at or before the time of such trial, demand a trial by a jury in the conrt of quarter sessions, in which case he may enter into a recognizance before said judge with such surety or sureties and in such sum as said judge may approve, conditioned for his appearance at the next court of quarter sessions to answer the charge against him and abide the ordets of the court in the premises, meanwhile to be of good behavior and keep the peace, or in default of such recognizance to be committed to the county jail to await such trial.

Section 2. If any person shall feel himself aggrieved by such conviction and sentence before a judge as aforesaid, he may appeal therefrom subject to the following conditions, namely: The appellant shall. within seven days after the decree has been made, give notice to the prosecutor of his intention to appeal, and within the same time enter into a recognizance, with such surety or sureties and in such sum as shall be approved by said judge. conditioned to appear and try such appeal before the next court of quarter sessions of the peace and to abide the judgment of the court thereon and to pay
all such costs and penalties as may be there awarded, and upou the compliance with such conditions the judge shall release the appellant from custody pending the appeal.

Section 3. Nothing in this act shall prevent any person from being indicted or liable under any other act, to any higher penalty or punishment than is herein provided, and if the court before whom any such proceeding is had shall be of the opinion that proceedings ought to be taken against such persons under any other act, or otherwise, he may adjourn the case to enable such proceedings to be taken.

Section 4. All offenses under this act are declared to be misdemeanors and in default of payment of any penalty or cost by the party or parties sentenced to pay the same, he or they may be imprisoned for a period not exceeding three (3) months and not less than thirty (30) days.

Section 5. For any violation of duty by the mine inspector prescribed by this act, he shall be deemed guilty of a misdemeanor, and upon conviction, be sentenced to pay a fine of not more than three hundred dollars or be imprisoned for a period not exceeding three months, or either, or both, at the discretion of the court.

Section 6. All fines imposed under this act shall be paid into the county treasury for the use of the county.

Section 7. No conviction or acquittal under this act, in any complaint, shall be received in evideuce upon the trial of any action for damages arising from the negligence of any owner, operator or superintendent or employe in any mine or colliery.

Section 8. That for any injury to person or property occasioned by any violation of this act or any failure to comply with its provisions by any owner, operator, superintendent, mine foreman or fire boss of any coal mine or colliery, a right of action shall accrue to the party injured against said owner or operator for any direct damages he may have sustained thereby; and in case of loss of life by reason of such neglect or failure aforesaid, a right of action shall accrue to the widow and lineal heirs of the person whose life shall be lost, for like recovery of damages for the injury they shall have sustained.

ARTICLE XVIII.

Definition of Terms.

In this act, unless the context otherwise requires, the term "coal mine or colliery" includes every operation and work, both under ground and above ground, used or to be used for the purpose of mining and preparing coal.

The term "workings" includes al the excavated parts of a mine, those abandoned as well as the places actually at work.

The term "mine" includes all underground workings and excarations and shafts, tumels and other ways and openings; also all such
shafts, slopes, tumnels and other openings in course of being sunk or driven, together with all roads, appliances, machinery and materials connected with the same below the surface.

The term "shaft" means a vertical opreuing through the strata and which is or may be used for the purpose of rentilation or drainage or for hoisting men or material in connection with the mining of coal.

The term "slope" means any inclined way or opening used for the same purpose as a shaft.

The term "breaker" means the structure coutaining the machinery used for the preparation of coal.

The term "owners" and "operators" means any person or body corporate who is the immediate proprictor or lessee or oceupier of any coal mine or colliery or any part thereof. The term "owner" does not include a person or body corporate who merely receives a royalty, rent or fine from a coal mine or colliery or part thereof, or is merely the proprietor of the mine subject to any lase, grant or license for the working or operating thereof, or is merely the owner of the soil and not interested in the minerals of the mine or any part thereof. But any "contractor" for the working of a mine or colliery ot any part or district thereof, shall be smbject to this act as an operator or owner, in like manner as if he were the owner.

The term "superintendent" means the person who shall have, on behalf of the owner, general supervision of one or more mines or collieries.

ARTICLE XIX.

All laws or parts of laws inconsistent or in conflict with the provisions of this act are hereby repeated.

Approved-The 2d day of June, A. D. 1891.

ROBT. E. PATTISON.

AN ACT

Relating to lituminous coal mines and providing for the lives, .iealth, safety and welfare of persons employed therein.

ARTICLE t .

> Survey-Maps and Plaus.

Section 1. Be it enacted, \&e., That the operator or superintendent of every bituminous coal mine shall make or catuse to be made by a competent mining engines or surveyor, an accorate map or plan of such coal mine, not smaller than on a seale of two hundred feet to an inch, which map shall show as follows:

First. All measurements of said mine in feet or decimal parts thereof.

Second. All the openings, excavations, shafts, tonnels, slopes, planes, main-entries, cross-entries, rooms, et cetera, in proper numerical order in each opened strata of coal in said mine.

Third. By darts or arrows made thereon by a pen or pencil the direction of air currents in said mine.

Fourth. An accurate delincation of the boundary lines between said coal mine and all adjoining mines or coal lands, whether owned or operated by the same operator or other operator, and the relation and proximity of the workings of said mine to every other adjoining mine or coal lands.

Fifth. The elevation above mean tide at Sandy Ilook of all tumnels, and entries, and of the face of working places adjacent to boundary lines at points not exceeding three hundred feet apart.

Sixth. The bearings and lengths of each tumnel or entry, and of the boundary or property lines. The said map or plan, or a true copy thereof, shall be kept in the general mine office by the said operator or superintendent for use of the mine inspectors and for the inspection of any person or persons working in said mine whenever said person or persons shall have cause to fear that any working place is becoming dangerous by reason of its proximity to other workings that may contain water or dangerous gas.

Section 2. At least once in every six months, or of tener if necessary, the operator or superintendent of each mine shall cause to be shown accurately on the map or plan said coal mine, all the excavations made therein during the time elapsing since such excavations were last shown upon said map or plan; and all parts of said mine which were worked out or abandoned during said elapsed period of time shall be clearly indicated by colorings on said map or plan, and whencrer any of the workings or excavations of said coal mine have been driven to their destination, a correct measurement of all such workings or excavations shall be made promptly and recorded in a survey book prior to the removal of the pillars or any part of the same from such workings or excavations.

Section :3. The operator or superintendent of every coal mine shall, within six months after the passage of this atet, furnish the mine inspector of the district in which said mine is located with a correct eopy on tracing muslin or sun print, of the map or plan of said mine hereinbefore providexl for. And the inspector of the district shall, at the end of each year or twice a year if he requires it, forward said map or plan to the proper person at any particular mine, whose duty it shall be to plare or canse to be plated on satid map or phan all extensions and worked out or abandoned parts of the mine during the preceding six or twelve months, as the case may be, and retum the
same to the mine inspector within thirty days from the time of receiving it. The copies of the maps or plans of the several coal mines of each district as hereinbefore required to be furnished to the mine inspector shall remain in the care of the inspector of the district in which the said mines are situated, as official records, to be transferred by him to his successor in office; but it is provided that in no case shall any copy of the same be made withont the consent of the operator or his agent.

Section 4. If any superintendent or operator of mines shall neglect or fail to furnish to the mine inspector any copies of maps or plans as hereinbefore required by this act, or if the mine inspector shall believe that any map or plan of any coal mine made or furnished in pursuance of the provisions of this act is materially inaccurate or imperfect, then, in either case, the mine inspector is hereby authorized to cause a correet survey and map or plan of said coal mine to be made at the expense of the operator thereof, the cost of which shall le recoverable from said operator as other debts are recoverable by law: Provided, however, That if the map or plan which may be claimed by the mine inspector to be inaccurate shall prove to be correct, then the Commonwealth shall be liable for the expense incurred by the mine inspector in causing to be made said test survey and map, and the cost thereof, ascertained by the Auditor General by proper vouchers and satisfactory proof, shall be paid by the State Treasurer upon warrants which the said Auditor General is hereby directed to draw for the same.

ARTICLE II.

Section 1. It shall not be lawful for the operator, superintendent or mine foreman of any bitmminous coal mine to employ more than twenty persons within said coal mine, or permit more than twenty persous to be employed therein at any one time unless they are in communication with at least two available openings to the surface from each seam or stratum of coal worked in such mine, exclusive of the furnace upeast shaft or slope: But provided, That in any mine ugetatid hy shaft or slope and rentilated by a fan, if the air shaft shatl he divided into two compartments, one of them may be used for an air-way and the other for the purpose of egress and ingress from and into said mine by the persons therein employed and the same shatl he considered a compliance with the provisions of this section hereinbefore set forth. And there shall be cut ont or around the side of erery hoisting shaft, or driven through the solid strata at the bottom thereof, a traveling way not less than five feet high and theee feet wide to enable persons to pass the shaft in going from one side of it to the other without passing ower or under the cage or other hoisting apparatus.

Section - The shaft or outlet, other than the main shatt or outlet shall be separated from the main outlet and from the furnace shaft by natural strata at all points by a distance of not less than one hundred and fifty feet (except in all mines opened prior to June thirtieth, one thousand eight hundred and eighty-five, where such distances may be less, if in the judgment of the mine inspector one hundred and fifty feet is impracticable). If the mine be worked by drift, two openings exclusire of the furnace upcast shaft and not less than thinty feet apart, shall be required (except in drift mines opened prior to June thirtieth, one thousand eight hundred and eighty-five, where the mine inspector of the district shall deem the same impracticable). Where the two openings shall not have been provided as required hereinbefore by this act, the mine inspector shall cause the second to be made without delay; and in no case shall furnace ventilation be used where there is only one opening into the mine.

Section 3. Unless the mine inspector shall deem it impracticable, all mines shall have at least two entrics or other passage ways, one of which shall lead from the main entrance and the other from the opening into the body of the mine, and said two passageways shall be kept well drained and in a safe condition for persons to travel therein, throughout their whole length so as to obtain, in cases of emergency, a second way for egress from the workings. No part of said workings shall at any time be driven more than three hundred fect in advance of the aforesaid passageways, except entries, airways or other narrow work, but should an opening to the surface be frovided from the interior of the mine, the passageways aforesaid may be made and maintained therefrom into the working part of the mine, and this shall be demmed sufficient compliance with the provisions of this act relative thereto; said two passageways shall be separated by pillars of coal or other strata of sufficient strength and width.

Section 4. Where necessary to secure access to the two passageways required in section three of article two of this act in any slope mine where the coal seam inclines and has workings on both sides of said slope, there shall be provided an orercast for the use of persons working therein, the dimensions of which shall not be less than four feet wide and five feet high. Said overeast shall connect the werkings on botlo sides of said slope and the intervening strata be. tween the slope and the orereast shall be of sufficient strength and thickness at all points for its purpose: Provided, That if said over east be substantially constructed of masonry or other incombustible material it shall be deemed sufticient.

Section 5 . When the opening or outlet, other than the main opening, is made and does not exceed seventy-five feet in vertical depth, it shall be set apart exclusively for the purpose of ingress to or egress from the mine by any person or persons employed therein it shall be
kept in a safe and available condition and free from steam and datigerous gases, and all other obstructions, and if such opening is a slaft it shall be fitted with safe and convenient stairs with steps of an average tread of ten inches and nine inches rise, not less than two fcet wide and to not excerd an angle of sixty degrees descent with landings of not less than cighteen inches wide and four feet long, at easy and convenient distances: Provided, That the requirements of this section shall not be applicable to stairways in use prior to Junc thirtieth, one thonsand eight hundred and eighty-five, when iat the judgment of the mine inspector, they are sulficiently safe and cenvenient. And water coming from the surface or out of the strata in the shaft shall be conducted away by rings, casing or otherwise and be prevented from falling upon persons who are ascending or dereending the stairway of the shaft.

Section 6. Where any mine is operated by a shaft which exceeds serenty-five feet in rertical depth, the persons employed in said mine shall be lowered into and raised from said mine by means of machinery, and in any such mine the shaft, other than the main shaft, shall be supplied with safe and suitable machinery for hoisting and lewering persons, or with safe and convenient stairs for use in cases of emergency by persons employed in said mine: Provided, That any mine operated by two shafts, and where safe and sintable machinery is provided at both shafts for hoisting coal or persons, shall have sulticiently complied with the requirements of this section.
Section 7. . It any mine, where one of the two openings required herembefore is a slope and is used as a traveling way, it shall not have a greater angle of descent than twenty degrees and may be of any depth.

Section 8. The machinery used for lowering or raising the emphoyes into or out of the mine and the staits used for ingress or egress. shall be kept in a safe condition, and inspected once each twenty-four hours by a competent person employed for that purpose. Ind such machinery and the method of its inspection shall be approved by the mine inspector of the district in which the mine is situated.

ARTICLE III.

Hesisting Marhinery, Safoty Catches, Signaling Apparatus, Et Cetera.
Seetion 1. The operator or superintendent shall provide and maintain, from the top to bottom of every shaft where persons are raised or lowered, a metal lube suitably adapted to the free passage of somed through which conversation may tre held between persons at the fop and bothom of said shaft, atul also a means of signaling from the top to the hottom thereof, and shatl provide every cage or gear carriage used for hoisting or lowering persons with a sufficient over-
head covering to protect those persons when using the same, and shall provide also for each said cage or carriage a safety catch approved by the mine inspector. And the said operator or superintendent shall see that flanges, with a clearance of not less than four inches, when the whole of the rope is wound on the drum, are attached to the sides of the drum of every machine that is used for lowering and hoisting persons in and out of the mine, and also that adequate brakes are attached to the drum. At all sliafts safety gates, to be approved by the mine inspector of the district shall be so placed as to prevent persons from falling into the shaft.

Section 2. The main coupling chain attached to the socket of the wire rope shall be made of the best quality of iron and shall be tested by weights or otherwise to the satisfaction of the mine insuector of the district where the mine is located, and bridle chains shall be attached to the main hoisting rope above the socket, from the top eross-piece of the carriage or cage, so that no single chain shall be used for lowering or loisting persons into or out of the mines.

Section 3. No greater number of persons shall be lowered or hoisted at any one time than may be permitted by the mine inspector of the district, and notice of the number so allowed to be lowered or hoisted at any one time shall be kept posted up by the operator or stiperintendent in conspicuous places at the top and bottom of the shaft, and the aforesaid notice shall be signed by the mine inspector of the district.

Section 4. All machinery about mines from which any accident would be liable to occur shall be properly fenced off by suitable guard railing.

ARTICLE IV.

Section 1. The operator or superintendent of every bituminous coal mine, whether shaft, slope or drift, shall provide and hereafter maintain ample means of ventilation for the circulation of air through the main-entries, cross-entries and all other working places to an extent that will dilute, carry off and render harmless the. noxious or dangerous gases, generated in the mine, affording not less than one hendred cubic feet per minute for each and every person employed therein: but in a mine where fire damp has been detected the minimum shall be one hundred and fifty cubic feet per minute for each person employed therein, and as much more in either case as one or more of the mine inspectors may deem requisite.

Section 2. After May thirtieth, one thonsand eight hundred and nithety-four, not more than sixty-five persons shall be permitted to work in the same air current: Provided. That a larger number, not exceeding one hundred, may be allowed by the mine inspector where,
in his judgment, it is impracticable to comply with the foregoing requirement; and mines where more than ten persons are employed, shall be provided with a fan, furnace or other artificial means to produce the rentilation, and all stoppings between main intake and return air-ways hereinafter built or replaced shall be substantially built with suitable material, which shall be approved by the inspector of the district.

Section 3. All ventilating fans shall be kept in operation continuously night and day, unless operations are indefinitely suspended, except written permission is given by the mine inspector of the district to stop the same, and the said written permission shall state the particular hours the said fan may not be in operation, and the mine inspector shall have power to withdraw or modify such permission as he may deem best, but in all cases the fan shall be started two hours bcfore the time to begin work. When the fan may be stopped by permission of the mine inspector a notice printed in the various larguages used by persons employed in the mine, stating at what hom or hours the fan will be stopped, shall be posted by the mine foreman in a conspicious place at the entrance or entrances to the mine.

Said printed notices shall be furnished by the mine inspector and the cost thereof borne by the State: Provided, That should it at any time become necessary to stop the fan on account of accident or nceded repairs to any part of the machinery connected therewith, or by reason of any other unavoidable cause, it shall then be the duty of the mine foreman or any other ofticials in charge, after first having provided, as far as possible for the safety of the persons employed in the mine, to order said fan to be stopped so as to make the necessary repairs or to remove any other difficulty that may have bren the cause of its stoppage. And all rentilating furnaces in mines shall, for two hours before the appointed time to begin work and during working hours, be properly attended by a person employed for that purpose. In mines generating fire-damp in sufficient quantities to be detected by ortinary safety lamps, all main air bridges or orereasts made after the passage of this act shall be built of masonry or other incombustible material of ample strength or be driven through the solid strata.

In all mines the doors used in guiding athd directing the ventilafion of the mine shall be so hung and adjusted that they will close themselves, or be supplied with spring or pulleys so that they connot be left standing open, and an attendant shall be employed at all principal doors through which cars are hanled. for the purpose of opening and closing said doors when trips of cars are passing to and from the workings, minless an improved self-acting door is used, which principal doors shall be determined by the mine insprector or
mine foreman. A hole for shelter shall be provided at each door so as to protect said attendant from being run over by the cars while attending to his duties, and persons employed for this purpose shall at all times remain at their post of duty during working hours: Provided, That the same person may attend two doors where the distance between them is not more than one hundred feet. On every inclined plane or road in any mine where haulage is done by machinery and where a door is used, an extra door shall be provided to be used in case of necessity.

ARTICLE V.

Safety Lamps, Fire Bosses, Et Cetera.
Section 1. All mines generating fire-damp shall be kept free of standing gas in all working places and roadways. No accumulation of explosive gas shall be allowed to exist in the worked out or abandoned parts of any mine when it is practicable to remove it, and the entrance or entrances to said worked out and abandoned places shall be properly fenced off, and cautionary notices shall be posted upon said fencing to warn persons of danger.

Section 2. In all mines wherein explosive gas has been generated within the period of six months next preceding the passage of this act, and also in all mines where fire-damp shall be generated, after the passage of this act, in sufficient quantities to be detected by the ordinary safety lamp, every working place without exception and all road ways shall be carefnlly examined immediately before each shift by competent person or persons appointed by the superintendent and mine foreman for that purpose. The person or persons making such examination shall have received a fire boss certificate of competency required by this act, and shall use no light other than that enclosed in a safety lamp while making said examination. In all cases said examination shall be begun within three hours prior to the appointed time of each shift commencing to work, and it shall he the duty of the said fire boss at each examination to leare at the face and side of every place so examined, evidence of his presence. And he shall also, at each examination, inspect the entrance or entrances to the worked out or abandoned parts which are adjacent to the roadways and working places of the mine where firedamp is likely to accumnlate, and where danger is found to exist he shall place a danger signal at the entrances to such places, which shall be sufficient warning for persons not to enter said place.

Section 3. In any place that is being driven towards or in dangerous proximity to an abandoned mine or part of a mine suspected of containing inflammable gases, or which may be inundated with* water, bore holes shall be kept not less than twelve feet in advance of the face, and on the sides of such working places, said side holes
to be drilled diagonally not more than eight feet apart, and any place driven to tap water or gas shall not be more than ten feet wide, and no water or gas from an abandoned mine or part of a mine and no bore holes from the surface, shall be tapped until the employes, except those engaged at such work, are out of the mine, and such work to be done under the immediate instruction of the mine foreman.

Section 4. The fire boss shall at each entrance to the mine or in the main intake air-way mear to the mine entrance, prepare a permanent station with the proper danger signal designated by suitable letters and colors placed thereon, and it shall not be lawful for any person or persons, except the mine officials in cases of necessity, and such other persons as may be designated by them, to pass beyond said danger station until the mine has been examined by the fire boss as aforesaid and the same, or certain parts thereof, reported by him to be safe, and in all mines where operations are temporarily smspended the superintendent and mine foreman shall see that a danger signal be placed at the mine entrance or entrances, which shall be a sufficient warning to persons not to enter the mine, and if the ordinary circulation of air throngh the mine be stopped each entrance to said mine shall be securely fenced off and a danger signal shatl be displayed upon said fence and any workman or other person, (except those persons hereinbefore provided for, passing by any danger signal into the mine before it has been examined and reported to be safe as aforesaid, shall be deemed guilty of a misdemeanor and it shall be the duty of the fire boss, mine foreman, superintendent or any employe to forthwith notify the mine inspector, who shall enter proceedings against such person or persons as provided for in section two of article twenty-one of this act.

Section 5. All entries, tumels, air ways, traveling ways and other working places of a mine where explosive gas is being generated in such quantitios as ran be detected by the ordinary safery lamp, and pillar workings and other working places in any mine where a sudden inflow of said explosive gas is likely to be encountered. (by reason of the subsidence of the overlying strata or from any other extuses), shall be worked exclusisely with locked safety lamps. The use of open lights is also prohibited in all working places, roadways of other parts of the mine through which fire-damp might be carried in the air currat in dangerous quantities. In all mines or parts of mines worked with lorked safety lamps the use of electrie wires and clectrie corrents is positively prohibited, maless said wires and machincry and all other meehanieal deviees attached thereto and connected therewith are constructed and protected in such a manner as to serure freedom from the emission of sparks or flame therefrom into the atmosphere of the mine.

Section 6. Ifter January first, one thousand eight hundred and ninety-fout, the use of the common Davy safety lamp for general work on any bituninous coal mine is hereby prohibited, neither shall the Clamny lamp be so used moless its gauze is thoroughly protected by a metallic shield, but this act does not prohibit the use of the Davy and Clamy lamps by the mine officials for the purpose of examining the workings for gas.

Section 7. All safety lamps used for examining mines or for working therein shall be the property of the operator, and shall be in the care of the mine foreman, his assistant or fire boss, or other competent person, who shall clean, fill, trim, examine and deliver the same, locked, in a safe condition to the men when entering the mine before each shift, and shall receive the same from the men at the end of each shift, for which service a charge not exceeding cost of labor and material may be made by the operator. A sufficient number of salety lamps, but not less than twenty-five per centum of those in use, shall be kept at each mine where gas has at any time been generated in sufficient quantities to be detected by an ordinary safety lamp, for use in case of emergency. It shall be the duty of every person who knows his safety lamp to be injured or defective, to promptly report such fact to the party anthorized herein to receive and care for said lamps, and it shall be the duty of that party to promptly report such fact to the mine foreman.

ARTICLE VI.

Mine Foreman and His Duties.

Section 1. In order to better secure the proper ventilation of the bituminous coal mines and promote the health and safety of the persons employed therein, the operator or superintendent shall employ a competent and practical inside overseer for each and every mine, to be called mine foreman; said mine foreman shall have passed an examination and obtained a certificate of competeney or of service as required by this act and shall be a citizen of the United States and an experienced coal miner, and said mine foreman shall devote the whole of his time to his dnties at the mine when in operation, or in case of his necessary absence, an assistant, chosen by him and shall keep a careful watch over the ventilating apparatus, and the air ways, traveling ways, pump and pump timbers and drainage, and shall often instruct, and as far as possible, see that as the miners adrance their excavations all dangerous coal. slate and rook overhead are taken down or "arefnlly secured against falling therein, or on the traveling and hauling ways, and that sufficient props, caps and timbers of suitable size are sent into the mine when required, and all props shall be eut square at both ends, and as near as prace
ticable to a proper length for the places where they are to be used, and such props, caps and timbers shall be delivered in the working places of the mine.

Section 2. Every workman in want of props or timbers and cap pieces shall notify the mine foreman or his assistant of the fact at least one day in advance, giving the length and number of props or timbers and cap pieces required, but in cases of emergency the timbers may be ordered immediately upon the discovery of any danger. (The place and manner of leaving the orders for the timber shall be designated and specified in the rules of the mine.) And if, from any cause, the timbers cannot be supplied when required, he shall instruct the persons to racate all said working places until supplied with the timber needed, and shall see that all water be drained or liauled out of all working places before the miner enters and as far as practicable kept dry while the miner is at work.

Section 3. It shall be the duty of the mine foreman to see that proper cut-throughs are made in all the room pillars at such distances apart as in the judgment of the mine inspector may be deemed requisite, not more than thirty-five nor less than sixteen yards each, for the purpose of rentilation, and the ventilation shall be conducted through said cut-through into rooms by means of check doors made of canvas or other suitable material, placed on the entries, or in other suitable places, and he shall not permit any room to be opened in advance of the ventilating current. Should the mine inspector discover any room, entry, air-way or other working places being driven in advance of the air current contrary to the requirements of this section, he shall order the workmen working in such places to cease work at once until the law is complied with.

Section 4. In all hanling roads, on which hanling is done by animal power, and whereon men have to pass to and from their work, holes for shelter, which shall be kept clear of obstruction, shall be made at least every thirty yards and be kept whitewashed, but shelter holes shall not be required in entries from which rooms are driven at regular intervals not exceeding fifty feet, where there is a space four feet between the wagon and rib, it shall be deemed sufficient for shelter. On all hauling roads whereon hauling is done by marhinery, and all gravity or inclined planes inside mines upon which the persons employed in the mine must travel on foot to and from their work, such shelter holes shall be cut not less than two feet six inches into the strata and not more than fifteen yards apart, unless there is a space of at least six feet from the side of the car to the side of the roadway, which space shall be deemed suflicient for shelter: Provided, That this requirement shall not apply to any parts of mines which parts were opened prior to the passage of this act if deemed impracticable by the mine inspector.

Section 5. The mine foreman shall measure the air current at least once a week at the inlet and outlet and at or near the faces of the eatries, and shall keep a record of such measurements. An anemometer shall be provided for this purpose by the operator of the mine. It shall be the further duty of the mine foreman to require the workmen to use locked safety lamps when and where required by this act.

Section 6. The mine foreman shall give prompt attention to the renoval of all dangers reported to him by the fire boss or any other person working in the mine, and in mines where a fire boss is not employed, the said mine foreman or his assistant shall visit and examine every working place therein at least once every alternate day while the miners of such place are or should be at work, and shall direct that each and every working place be properly secured by props or timbers, and that no person shall be directed or permitted to work in an unsafe place unless it be for the purpose of making it safe: Provided, That if the owner or operator of any mine employing a fire boss shall require the mine foreman to examine every working place every alternate day, then it shall be the duty of the mine foreman to do so.

Section 7. When the mine foreman is unable personally to carry out all the requirements of this act as pertaining to his duties, he sliall employ a competent person or persons, not objectionable to the operator, to act as his assistant or assistants, who shall act under his instructions, and in all mines where fire-damp is generated the said assistant or assitants shall possess a certificate of competency as mine foreman or fire boss.

Section 8. A suitable record book, with printed head lines, prepared by and approved by the mine inspector, the same to be provided at the expense of the Commonwealth, shall be kept at each mine generating explosive gases, and immediately after each exantination of the mine made by the fire boss or fire bosses, a record of the same shall be entered in said book, signed by the person or persons making such examinations, which shall clearly state the nature and location of any danger which he or they may have discovered, and the fire boss or fire bosses shall immediately report such danger and the location of the same to the mine foreman, whose duty it shall be to remove the danger, or to cause the same to be done forthwith as far as practicable, and the mine foreman shall also each daycountersign all reports entered by the fire boss or fire bosses. At all mines the mine foreman shall enter in a book provided as above by the mine inspector, a report of the condition of the mine, signed by himself, which shall clearly state any danger that may have come under his observation during the day, and shall also state whether he has a proper supply of material on hand for the safe working of tha mine, and whether all requirements of the law are strictly com-
plied with. He shall, once each week, enter or cause to be entered, plainly, with ink, in said book, a true record of all air measurements required by this act, and such books shall at all times, be kept at the mine office for examination by the mine inspector of the district and any other person working in the mines.

ARTICLE VII.

Timber and Other Mine Supplies, Et Cetera.

Section 1. It shall be the duty of the superintendent, on behalf and at the expense of the operator to keep on hand at the mines at all times, a full supply of all materials and supplies required to preserse the health and safety of the employes as ordered by the mine foreman and required by this act. He shall at least once a week, examine and countersign-(which countersignature of the superintendent shall b : held, under this act to have no further bearing than the evidence of the fact that the mine superintendent has read the matter entered on the book)-all reports entered in the mine record book, and if he finds that the law is being violated in any particular, he shall order the mine foreman to comply with its provisions forthwith. If from any cause he cannot procure the necessary supplies or maferials as aforesaid, he shall notify the mine foreman, whose duty it shall be to withdraw the men from the mine or part of mine until such supplies or materials are received.

Section 2. The superintendent of the mine shall not obstruct the mine foreman or other officials in their fulfillment of any of the duties required by this act. It mines where superintendents are not employed, the duties that are herein prescribed for the superintendent shall devolve upon the mine foreman.

ARTICLE VIII.

Steam Boilers, Stables, Regulations for the Use of Oil, Powder, Et Cetera.

Section 1. After the passage of this act it shall be unlawful to place a main or principal ventilating fan shed inside of any bituminous coal mine wherein exptosive gas has been detected or in which the air rurrent is contaminated with coal dnst. No stationery steam hoiler shall be phaced in any bitmminous coal mine, unless sald steam heiler be placed wifhin fifty feet from the bottom of an up-rast shaft, which shaft shall not be less than twentr-five square feet in area, and after May thirtioth, one thousand eight hundred and ninety-five. nit stationary steam boiler shall be permitted to remain in any bifuminous coal mine, only as aforesaid.

Section 2. It shall not he lawful after the passage of this act to provide any horse or mule stables inside of bituminons coal mines. muless satid stables are excavated in the solid strata or coal seams, and
no wood or other combustible material shall be used excessively in the construction of said stables, untess surrounded by or incased by some incombnstible material. The air current used for ventilating said stable shall not be intermixed with the air current used for rentilating the working parts of the mine, but shall be conveyed directly to the retmon air cmrent, and no open light shall be permitted to be used in any stable in any mine.

Section 3. No hay or straw shall be taken into any mine, unless pressed and made up into compact bales, and all hay or straw taken into the mines as aforesaid, shall be stored in a storehouse excavated in the solid strata or built in masonry for that purpose. After January first, one thousand eight hundred and ninety-four, no horse or mule stable or storehouse, only as aforesaid, shall be permitted in any bituminous coal mine.

Section 4. No explosive oil shall be used or taken into bituminous coal mines for lighting purposes, and oil shall not be stored or taken into the mines in quantities exceeding five gallons. The oiling or greasing of cars inside of the mines is strictly forbidden unless the place where said oil or grease is used is thoroughly cleaned at least once every day to prevent the accumulation of waste oil or grease on the roads or in the drains at that point. Not more than one barrel of lubricating oil shall be permitted in the mine at any one time. Only a pure animal or pure cotton-seed oil or oils, that shall be as free from smoke as pure animal or pure cotton-seed oil, shall be used for illuminating purposes in any bituminous mine. Any person found knowingly using explosive or impure oil, contrary to this section, shall be prosecuted as provided for in section two of article twenty-one of this act.

Section 5. No powder or high explosive shall be stored in any mine, and no more of either article shall be taken into the mine at any one time than is required in any one shift, unless the quantity b : less than five pounds, and in all working places where locked safety lamps are used blasting shall only be done by the consent and in the presence of the mine foreman, his assistant or fire boss, or any competent party designated by the mine foreman for that purpose; whenever the mine inspector discovers that the air in any mine is becoming vitiated by the unnecessary blasting of the coal, he shall have the power to regnlate the use of the same and to designate at what hour of the day blasting may be permitted.

ARTICLE IX.

Opening for Drainage, Et Cetera, on Other Lands.
Section 1. If any person, firm or corporation is or shall hereafter be seized in his or their own right of coal lands, or shall hold such lands under lease and shall have opened or shall desire to open a
coal mine on said land, and it shall not be practicable to drain or ventilate such mines or to comply with the requirements of this act as to ways of ingress and egress or traveling ways by means of openings on lands owned or held under lease by him, them or it, and the same can be done by means of openings on adjacent lands, he, they or it may apply by petition to the court of quarter sessions of the proper county, after ten days' notice to the owner or owners, their agents or attorney, setting forth the facts under oath or aftirmation particularly describing the place or places where such opening or openings can be made, and the pillars of coal or other material necessary for the support of such passageway and such right of way to any public road as may be needed in connection with such opening, and that he or they cannot agree with the owner or owners of the land as to the amount to be paid for the privilege of making such opening or openings, whereupon the said court shall appoint three disinterested and competent citizens of the county to view the ground desig. nated and lay out from the point or points mentioned in such petition, a passage or passages not more than eighty feet area by either drift, shaft or slope, or by a combination of any of said methods by any practicable and convenient ronte to the coal of such person, firm or corporation, preferring in all cases an opening through the coal strata where the same is practicable. The said viewers shall, at the same time, assess the damages to be paid by the jetitioner or petitioners to the owner or owners of such lands for the coal and other valuable material to be removed in the excavation and construction of said passage, also for such coal or other valuable material necessary to support the said passage, as well as for a right of way not exceeding fifteen feet in width from any such opening to any public road, to enable persons to gain entrance to the mine through such opening or to provide therefrom, upon the surface, a water course of stitable dimensions to a natural stream to enable the operator to discharge the water from said mine if such right of way shall be desired by the petitioner or petitioners, which damages shall be fully paid before such opening is made. The proceedings shall be recorded in the road docket of the proper county, and the pay of riewers slall be the same as in road cases; if exceptions he filed they shall be disposed of by the court as speedily as possible, and both parties to have the right to take depositions as in road cases. If, however, the petitioner desires to make such openings or roads or waterways before the final disposition of such exceptions, he shall have the right to do so by giving bond, to be aprpoved by the court sfcuring the damages as provided by law in the case of lateral railroads.

Section 2. It shall be compulsory upon the part of the mine owner or operator to exercise the powers granted by the provisions of the
last preceding section for the procuring of a right of way on the surface from the opening of a coal mine to a public road or public roads, upon the request in writing of fifty miners employed in the mine or mines of such owner or operator: Provided however, That with such request satisfactory security be deposited with the mine owner or operator by said petitioners, being coal miners, to fully and sufliciently pay all costs, damages and expenses caused by such procetdings and in paying for such right of way.

Section 3. In any mine or mines, or parts thereof, wherein water may have been allowed to accumulate in large and dangerous quantities, putting in danger the adjoining or adjacent mines and the lives of the miners working therein, and when such can be tapped and set free and flow by its own gravity to any point of drainage, it shall be lawful for any operator or person having mines so endangered, with the approval of the inspector of the district, to proeced and remove the said danger by driving a drift or drifts protected by bore holes as provided by this act, and in removing said danger it shall be lawful to drive across property lines if needful.

And it shall be unlawful for any person to dam or in any way obstruct the flow of any water from said mine or parts thereof, when so set free on any part of its passage to point of drainage.

Section 4. No operator shall be permitted to mine coal within fifty feet of any abandoned mine containing a dangerous accumulation of water, until said danger has been removed by driving a passage way so as to tap and drain off said water as provided for in this act: Provided, That the thickness of the barrier pillars shall be greater and shall be in proportion of one foot of pillar thickness to each one and one-quarter foot of waterhead if, in the judgment of the engineer of the property and that of the district mine inspector, it is necessary for the safety of the persons working in the mine.

Section 5. All operators of bituminous coal mines shall keep posted in a conspicuous place at their mines the general and special rules embodied in and made part of this act, defining the duties of a!l persons employed in or about said mine, which said rules shall be printed in the English language, and shall also be printed in such other language or languages as are used by any ten persons working therein. It shall he the duty of the mine inspector to furnish to the operator printed copies of such rules and such translations thereof as are required by this section, and to certify their correctness over his signature. The cost thereof shall be borne by the State.

ARTICLE X.

Inspectors, Examining Boards, Et Cetera.

Section 1. The board of examiners appointed to examine candidates for the office of mine inspectors under the provisions of the act
to which this is a supplement, shall exercise all the powers granted, and perform all the duties required by this supplementary act, and at the expiration of their term of office, and every four years thereafter, the Governor shall appoint, as hereinafter provided. during the month of January, two mining engineers of good repute and three other persons, who shall have passed successful examinations qualifying them to act as mine inspectors or mine foremen in mines generating fire-damp, who shall be citizens of this Commonwealth and shall have attained the age of thirty years and shall have had at least five years of practical experience in the bituminous mines of Penusylrania, and who shall not be serving at that time in any official capacity at mines, which five persons shall constitute a board of examiners whose duty it shall be to inquire into the character and qualification of candidates for the office of inspector of mines under the provisions of this act.

Section 2. The examining board, so constituted shall meet on the fist Tuesday of March following their appointment, in the citr of Pittsburgh, to examine applicants for the office of mine inspector: Provided, howerer. The examining board shall meet two weeks previous to the aforesaid time for the purpose of preparing questions, et cetera. and when called together by the Governor on extra occasions at such time and place as he may designate, and after being duly organized and having taken and subscribed before any officer anthorized to administer the same the following oath, namely, "We, the undersigned, do solemuly swear (or aftirm) that we will perform the duties of examiners of applicants for the appointment as inspectors of bitmminous coal mines to the best of our abilities, and that in recommenting of rejecting said applicant, we will be governed by the evidence of the qualifications to fill the position under the law creating the same, and not by any consideration of political or personal favor; and that we will certify all whom we may find gualified according to the true intent and meaning of the ate and none others."

Section 3. The general examination shall be in writing and the manuscript and other papers of all applicants, fogether with the tally sheets and the solution of each question as given by the examining board, shatl be filed with the Sectetary of Internal \backslash ffairs as public documents, but each applicant shall undergo an oral examination pertaining to explosive gases and safety lamps, and the examining board shall eertify to the Governor the names of all surf applicants which they slall find eompetent to fill this oflice under the provisions of this act, which names, with the certificates and their pereentages and the oathe of the examiners, shall be mated to the Secelary of the Commonwealth and lie flled in his oflice. No person shall be certified as competent whose percentage shall be less
than ninety per centum, and such certificate shall be valid only when signed by four of the members of the examining board.

Section 4. The qualification of candidates for said office of inspectors of mines to be inquired into and certified by said examiners, shall be as follows, namely: They shall be citizens of Pennsylvania, of temperate habits, of good repute as men of personal integrity, and shall have attained the age of thirty years, and shall have had at last five years of practical experience in working of or in the workings of the bituminous mines of Pemsylyania immediately precedins their examination, and shall have hat practical experience with fire-damp inside the mines of this country, and upon examination shall give evidence of such theoretical as well as practical knowledge and general intelligence respecting mines and mining and the working and rentliation thereof, and all noxious mine gases, and will satisfy the examiners of their capability and fitness for the duties imposed upon inspectors of mines by the provisions of this act. And the examining board shall immediately after the examination, furnish to each person who came before it to be examined, a copy of all questions whether oral or written, which were given at the examination on printed slips of paper and to be marked solved, right, imperfect or wrong, as the case may be, together with a certificate of competency to each candidate who shall have made at least ninety per centum.

Section 5. The board of examiners may, also at their meeting, or when at any time called by the Governor together for an extra meetiug, divide the bituminous coal regions of the State into inspection districts, no district to contain less than sixty nor more than eighty nines, and as nearly as possible equalizing the labor to be performed by each inspector, and at any subsequent calling of the board of examiners this division may be revised as experience may prove to be advisable.

Section 6. The board of examiners shall each receive ten dollars per day for each day actually employed, and all necessary expenses, to be paid out of the State Treasury. Upon the filing of the certifieate of the examining board in the office of the Secretary of the Commonwealth, the Governor shall, from the names so certified, commission one person to be inspector of mines for each district as fixed hy the examiners in pursuance of this supplementary act, whose commission shall be for a full term of four years from the filleenth day of May following: Aways provided however, The highest candidate or candidates in perentage shall have priority to be commissioned for a full term or unexpired term before those candidates of lower percentage, and in case of a tie percentage the oldest candidate shall be commissioned.

Section 7. As ofien as vacancies occur in said office of inspectors of mines. the Governor shall commission for the muexpired term
from the names on file, the highest percentage in the oftice of the Secretary of the Commonwealth, until the number shall be exhausted, and whenever this may occur, the Governor shall cause the aforesaid board of examiners to meet, and they shall examine persons who may present themselves for the vacant office of mine inspector as herein provided, and the board of examiners shall certify to the Governor all persons who shall have made ninety per centum in said examination, one of whom to be commissioned by him according to the provisions of this act for the office of mine inspector for the unexpired term, and any vacancy that may occur in the examiring board sliall be filled by the Governor of this Commonwealth.

Section 8. Each inspector of mines shall receive for his services an annual salary of three thousand dollars and actual traveling expenses, to be paid quarterly by the State Treasurer upon warrant of the Auditor General, and each mine inspector shall keep an office in the district for which he is commissioned and he shall be permitted to keep said office at his place of residence: Provided, A stitable apartment or room be set off for that purpose. Each mine inspector is hereby authorized to procure such instruments, chemical tests and stationery and to incur such expenses of communication from time to time, as may be necessary to the proper discharge of his duties under this act at the cost of the State, which shall be baid by the State Treasurer upon accounts duly certified by him and andited by the proper department of the State.

Section 9. All instruments, plans, books, memoranda, notes and other material pertaining to the office shall be the property of the State, and shall be delivered to their successors in office. In addition to the expenses now allowed by law to the mine inspectors in erforcing the several provisions of this act, they shall be allowed all necessary expenses by them incurred in enforcing the several provisions of said law in the respective courts of the Commonwealth, the same to be paid by the State Treasurer on warrants drawn by the Auditor General after auditing the same; all such accounts presented by the mine inspector to the Auditor General shall be itemi\%ed and first approved by the court before which the proceedings were instituled.

Section 10. Each mine inspertor of bituminous coal mines shall, before eutering upon the discharge of his duties, give bond in the sum of five thousand dollars, with sureties to be approved by the president judge of the district in which he resides, conditional for the faithful discharge of his duties, and take an oath or affirmation to discharge his duties impartially and with fidelity to the best of his kitowledge and ability. But no person who shall act as manager or agent of any coal minr, or as mining engincer or is interested in opprating any coal mine, shall, at the satme time act as mine inspedor of coal mines under this act.

Section 11. Each inspector of bituminous coal mines shall devote the whole of his time to the duties of his office. It shall be his duty to examine each mine in his district as often as possible, but a longer period of time than three months shall not elapse between said examination, to see that all the provisions of this act are observed and strictly carried out, and he shall make a record of all examinations of mines, showing the condition in which he finds them, especially with reference to ventilation and drainage, the number of persons employed in each mine, the extent to which the law is obeyed and progress made in the improvement of mines, the number of serious accidents and the nature thereof, the number of deaths resulting from injuries received in or about the mines with the cause of such accident or death, which record completed to the thirty-first day of December of each and every year, shall, on or before the fifteenth day of March following, be filed in the office of the Secretary of Internal Affairs, to be by him recorded and included in the annual report of his department.

Section 12. It shall be the duty of the mine inspector on examination of any mine, to make out a written, or partly written and partly printed report of the condition in which he finds such mine and post the same in the office of the mine or other conspicuous place. The said report shall give the date of the visit, the number of cubic feet of air in circulation and where measured, and that he has measured the air at the cut through one or more rooms in each heading or entry, and such other information as he shall deem necessary, and the said report shall remain posted in the office or conspicuous place for one year and may be examined by any person employed in or about the mine.

Section 13. In case the inspector becomes incapacitated to perform the duties of his office or receives a leave of absence from the same from the Governor, it shall be the duty of the judge of the court of common pleas of his district to appoint, upon said mine inspector's application or that five miners or five operators of said inspector's district, some competent person, recommended by the board of examiners to fill the office of inspector until the said inspector shall be able to resume the duties of his office, and the person so appointed shall be paid in the same manner as is hereinbefore prorided for the inspector of mines.

ARTICLE XI.

Inspectors' Powers, Et Cetera.

Section 1. That the mine inspectors may be enabled to perform the duties herein imposed upon them, they shall have the right at all times to enter any bituminous coal mine to make examinations or obtain information, and upon the discovery of any violation of this act, they shall institute proceedings against the person or persons at
fault under the provisions of section two of article twenty-one of this act. In case, however, where, in the judgment of the mine inspector of the district, any mine or part of mine is in such dangerous condition as to jeopardize life or health, he shall at once notify two of the mine inspectors of the other districts, wherempon they shall at once proceed to the mine where the danger exists and examine into the matter, and if, after full investigation thereof, they shall agree in the opinion that there is immediate danger, they shall instruct the superintendent of the mine in writing to remore such condition forthwith, and in case said superintendent shall fail to do so, then they shall apply, in the name of the Commonwealth, to the court of common pleas of the county, or in case the court shall not be in session, to a judge of the said court in chambers in which the mine may be located for an injunction to suspend all work in and about said mine, whereupon said court or judge shall at once proceed to hear, and determine speedily the same, and if the cause appear to b:• sufficient after hearing the parties and their evidences, as in like cases, shall issue its writ to restrain the working of said mine until all cause of danger is removed, and the cost of said proceedings shall be borne by the owner, lessee or agent of the mine: Provided, That if said court shall find the canse not sufficient, then the case shall be dismissed and the costs shall be borne by the county wherein said mine is located.

ARTICLE XII.

Inquests, Et Cetera.

Section 1. Whenever, by reason of any explosion or other accidents in any bituminous coal mine or the machinery connected therewith, loss of life or serious personal injury shall ocenr, it shall be the duty of the person having charge of such mine to give notice thereof forthwith to the mine inspector of the district and also to the coroner of the county, if any person is killed.

Section 2. If the coroner shall determine to hold an inquest, he sliall notify the mine inspector of the district of time and place of holding the same, who shall offer such testimony as he may deem nccessary to thoroughly inform the said inquest of the canse of the death, and the said mine inspector shall have anthority at any time to appear before such coroner and jury and question or cross-question any witness, and in choosing a jury for the purpose of holding such inquest it shall be the duty of the coroner to empanel a jury, ner one of which shall be directly or indirectly interested.

Section 3. It shall be the duty of the mine inspertor, upon heing nolified of any fatal arcident as herein provided, to immediately repair to the scene of the accident and make such suggestions as may appear necessary to secure the safety of any persons who may be en-
dangered, and if the results of the aecident do not require an investigation by the coroner the said mine inspector shall proceed to investigate and ascertain the cause of the accident and make a record thereof, which he shall file as provided for, and to enable him to make the investigation he shall have power to compel the attendance of persons to testify, and to administer oaths or affirmations, and if it is found upon investigation that the accident is due to the violation of any provisions of this act by any person, other than those who may be deceased, the mine inspector may institute proceedings against such person or persons as provided for in section two of artiele twenty-one of this act.

Section 4. The cost of such investigation shall be paid by the county in which the accident occurred in the same manner as costs of inquests held by coroners or jusfices of the peace are paid.

ARTICLE XIII.

Neglect or Incompetence of Inspectors.

Section 1. The court of common pleas in any county or district, ирин a petition signed by not less than fifteen reputable citizens, who shall be miners or operators of mines, and with the affidavit of one or lioie of said petitioners attached setting forth that any inspector of mines negleets his duties or is incompetent, or that he is guilty of a malfeasance in office, shall issue a citation in the name of the Commonwealth to the said mine inspector to appear on not less than fifteen days' notice, upon a day fixed, before said court, at which time the court shall proceed to inquire into and investigate the allegations of the said petitioners.

Section 2. If the court find that the said mine inspector is neglectful of his duties or incompetent to perform the duties of his office or that he is gnilty of malfeasance in office, the court shall certify the sime to the Governor, who shall declare the office of said mine in-sper-(or vacant and proceed in compliance with the provisions of this ate to supply the vacancy; and the costs of said investigation shall, if the charges are sustained, be imposed upon the mine inspeetor, but if the charges are not sustained, they shall be imposed upon the fetitioners.

ARTICLE XIV.

1)iscretionary Powers of Inspectors, Arbitration, Et Cetera.

Secion 1. The mine inspectors shall exercise a sound diseretion in the enforcement of the provisions of this act, and if the operator, owner, miners, superintendent, mine foreman or other persons emphyed in or about the mine as aforesaid shall not be satisfied with any decision the mine inspector may arrive at in the discharge of his duties under this act, which said decision shall be in writing signed

$$
\mathrm{H}-10-97
$$

hy the mine inspector, the said owner, operator, superintendent, mine foreman or other person specified above shall either promptly comply therewith or within seven days from date thereof appeal from such decision to the court of quarter sessions of the county wherein the: mine is located, and said court shall speedily determine the question involved in said decision and appeal and the decision of said court shall be binding and conclusive.

Section 2. The court or the judge of said court in chambers may in its discretion, appoint three practical, reputable, competent and disinterested persons whose duty it shall be, under instructions of the said court, to forthwith examine such mine or other cause of complaint and report under oath, the facts as they exist or may have been, together with their opinions thereon within thirty days after their appointment. The report of said board shall become absolute muless exceptions thereto shall be filed within ten days after the notice of the filing thereof by the owner, operator, mine superintendent, mine foreman, mine inspector and other persons, as aforesaid, and if exceptions are filed the court shall at once hear and determin the same and the decision shall be final and conclusive.

Section 3. If the court shall finally sustain the decision of the mine inspector, then the appellant shall pay all costs of such procecdings, and if the court shall not sustain the decision of the mine inspector then such costs shall be paid by the county: Provided, That no appeal from any decision made by any mine inspector whicil can be immediately complied with shall work as a supersedeas to such decisions during the pendency of such appeal, but all decisions shail be in force until reversed or modified by the proper court.

ARTICLE XV.

Examinations of Mine Foremen and Fire Bosses.

Section 1. On the petition of the mine inspector the court of common pleas in any county in said district shall appoint an examining board of three persons, consisting of a mine inspector, a miner and an operator or superintendent, which said miner shall have received a certificate of competency as mine foreman in mines generating explesive gases, and the members of said examining board shall be (itizens of this Commonwealth, and the persons so appointed shal) afier being duly organized take and subscribe before an officer an thorized to administer the same, the following oath, namely: "We, thr undersigned, do solemnly swear (or affirm) that we will perform the duties of examiners of applicants for the position of mine foremen and fire bosses of bituminous coal mines to the best of our abilities, and that in certifying or rejecting said applicants we will be governed by the evidence of the qualifications to fill the position
under the law creating the same and not by any consideration of personal favor; that we will certify all whom we may find qualified and none others."

Section 2. The examining board shall examine any person applying thereto as to his competency and qualifications to discharge the duties of mine foreman or fire boss.

Applicants for mine foreman or fire boss certificates shall be at least twenty-three years of age, and shall have had at least five years' practical experience, after fifteen years of age, as miners, superintendent at or inside of the bituminous mines of Pennsylvania and shall be citizens of this Commonwealth and men of good moral character and of known temperate habits.

The said board shall be empowered to grant certificates of compelency of two grades, namely: certificates of first grade, to person:s who have had experience in mines generating explosive gases and who shall have the necessary qualifications to fulfil the duties of mine foreman in such mines; and certificates of second grade, to persons who give satisfactory evidence of their ability to act as mine foreman in mines not generating explosive gases.

Section 3. The said board of examiners shall meet at the call of the mine inspector and shall grant certificates to all persons whose examination shall disclose their fitness for the duties of mine fore man as above classified, or fire boss, and such certificates shall be sutficient evidence of the holder's competency for the duties of said position so far as relates to the purposes of this act: Provided, That all persons holding certificates of competency granted under the provisions of the act to which this is a supplement shall continue to act under this act: And provided further, That any person acting as mine foreman upon a certificate of service under the act to which this is a supplement may continue to act in the same capacity at any mine where the general conditions affecting the health and safety of the persons employed do not differ materially from those at the mine in which he was acting when said certificate was granted: lrovided, however, That if such a mine foreman leares his present employer and secures employment elsewhere at any mine where in the judgment of the mine inspector of the district the conditions affectin!g the health and safety of the persons employed do differ materially from those at the mine af which he was employed when his cortificate was granted, it shall then be the duty of the mine inspeetor of the district in which he has secured employment to serve writen protest against such mine foreman's employment to the eperator of said mine.
soction 4. The examining board shall hold their office for a period of fonr years from the date from their appointment and shall receive five dollars per day for each day necessarily employed and mileage
at the rate of three cents per mile for each mile necessarily traveled, and all other necessary expenses connected with the examination shall be paid by the Commonwealth. Each applicant before being examined shall pay the examining board the sum of one dollar, and one dollar additional for each certificate granted, which shall be for the use of the Commonwealth. The foregoing examination shall be beld amnually in each inspection district.

ARTICLE XVI.

Suspension of Certificates of Mine Foreman and Fire Bosses.

Section 1. No person shall act as fire boss in any bituminous eoal mines, unless granted a certificate of competency by any one of the several examining boards. All applicants applying to any of the examining boards for fire boss certificates shall undergo an oral ex amination in the presence of explosive gas, and such certificate shall only be granted to men of good moral character and of known temperate habits, and it shall be unlawful for any operator or superintendent to employ any person as fire boss who has not obtained such certiliuate of competency as required by this act.

Section \because. If the mine foreman or fire boss shall neglect his duties or has incapacitated himself by dronkenness, or has been incapacitated by any other canse for the proper performance of said duties, and the same shall be brought to the knowledge of the operator or superintendent it shall be the duty of such operator or superintendent to descharge such delinquent at once and notify the inspector of the district of such action, whereupon it shall be the duty of said inspector to inform the court of common pleas of the comnty who shall issue a citation in the name of the Commonwealth to the said operator, superintendent, mine foreman or fire boss to appear at not less than fifteen days' notice upon a day fixed before said court, at which time the court shall proceed to inquire into and investigate the allegations. If the comr finds that the allegations are troe, it shall notify the examining board of such finding and instruct the said board to withdraw the certificate of such delinguent during any period of time that said comrt may deem suflicient, and at the expiration of such time he shall be entitled to a reexamination.

ARTICLE XVII.

Employment of Boys and Females.
Section 1. No boy under the age of twelve years, or any woman or girl of any age, shall be employed or permitted to be in the workings of any bituminous coal mine for the purpose of employment, or for any other purpose; and no boy under the age of sixteen shall be permitted to mine or load coal in any room, entry or other working place, muless in company with a person over sixteen years of age. If
the mine inspector or mine foreman has reason to doubt the fact of any particular boy being as old as this act requires for the service which said boy is performing at any mine, it shall be the duty of said mine inspector or mine foreman to report the fact to the superintendent, giving the name of said boy, and the said superintendent shall at once discharge the said boy.

ARTICLE XVIII.

Stretchers.

Section 1. It shall be the duty of operators or superintendents to keep at the month of the drift, shaft, or slope, or at such other place about the mine as shall bedesignated by the mine inspector, a stretcher properly constructed, and a woolen and a waterproof blanket in good condition for use in carrying away any person who may be injured at the mine: Provided, That where more than two hundred persons are employed two stretchers and two woolen and two waterproof blankets shall be kept. And in mines generating fire-damp a sufficient quantity of linseed or olive oil, bandages and linen shall be kept in store at the mines for use in emergencies, and bandages shall be kept at all mines.

ARTICLE XIX.

Annual Reports.

Section 1. On or before the twenty-fifth day of January in each year the operator or superintendent of every bituminous coal mine shall send to the mine inspector of the district in which said mine is located a correct report, specifying with respect to the year ending the thirty-first day of December preceding, the name of the operator and officers of the mine and the quantity of coal mined. The report shall be in such form and give such information regarding said mines as may be from time to time required and prescribed by the mine inspector of the district. Blank forms for such reports shall be furnished by the Commonwealth.

ARTICLE XX.

Additional Duties of Mine Foreman.

section 1. Rule 1. The mine foreman shall attend personally to his duties in the mine and carry out all the instructions set forth in this act and see that the regulations prescribed for each class of workmen under his charge are carried out in the strictest manner possible, and see that any deviation from or infringements of any of them are promptly adjusted.

Rule 2 . He shall cause all stoppings along the airways to be properly built.

Rule 3. He shall see that the entries at such places where road grades necessitate sprags or brakes to be applied or removed shall have a clear level width of not less than two and one-half feet, between the side of car and the rib to allow the driver to pass his trip safely and keep clear of the cars there.

Fule 4. He shall direct that all miners undermine the coal properly before blasting it and that blasting shall be done at only such hours as he shall direct and shall order the miners to set sprags under the coal, when necessary for safety while undermining at distances not exceeding seven feet apart, and he shall not allow the improper drawing of pillars.

Rule 5. In mines where fire damp is generated when the furnace fire has been put out it shall not be relighted, except in his presence, or that of his assistant muder his instructions.

Rule 6. In case of accident to a ventilating fan or its machinery, or the fan itself, whereby the ventilation of the mine would be serionsly interrupted, it shall be his duty to order the men to immediately withdraw from the mine and not allow their return to their work until the rentilation has been restored and the mine has been thoroughly examined by him or his assistant and reported to be safe.

Rule 7. He shall see that all dangerous places are properly fenced off and proper danger signal boards so hung on such fencing, that they may be plainly seen; he shall also travel all air roads and examine all the accessible openings to old workings as often as is necessary to insure their safety.

Rule S. He shall provide a book or sheet to be put in some conpenient place, or places, upon which shall be made a place for the numbers used by the miners with space sufficient to each number, so that the miners can write plainly the quantity of props, their approximate length and the number of caps and other timbers which they require, fogether with the date of the order. Said book or sheets shall be preserved for thirty days from their date.

Duties of Fire Boss.

Rule 9. He shall enter the mine before the men have entered it, and before proceeding to examine the same, he shall see that the air eurrent is traveling in its proper course, and if all seems right, he shall proceed to examine the workings.

Rule 10. He shall not allow any person, except those duly anthorized to enter or remain in any part of the mine throngh which a dangerous accmmulation of gas is being passed in the ventilating eurrent from any other part of the mine.

Rule 11. He shall frequently examine the edge and accessible parts of new falls and old gobs and air courses, and he shall report at onee any violation of this act to the mine foreman.

Duties of Miners.

Rule 12. He shall examine his working place before beginning work and take down all dangerous slate, or otherwise make it safe by properly timbering the same before commencing to dig or load coal, and \ln mines where fire bosses are employed, he shall examine his place to see whether the fire boss has left the proper mairks indicating his examination thereof, and he shall at all times be very careful to keep his working place in a safe condition during working hours.

Rule 13. Should he at any time find his place becoming dangerous either from gas or roof, or from any unusual condition which may have arisen, he shall at once cease working, and inform the mine foreman or his assistant of such danger, and before leaving such place he shall place some plain warning at the entrance thereto to warn others from entering into the danger.

Rule 14. It shall be the duty of every miner to mine his coal properly and to set sprags under the coal while undermining to secure it from falling and, after each blast, he shall exercise great care in examining the roof and coal and shall secure them safely before beginning work.

Rule 15. When places are liable to generate sudden volumes of fire damp, or where locked safety lamps are used, no miner shall be allowed to fire shots except under the supervision and with the consent of the mine foreman, or his assistant, or other competent person designated by the mine foreman for that purpose.

Duties of Drivers.

Rule 16. When a driver has occasion to leave his trip he must be careful to see that it is left, when possible, in a safe place, secure from cars or other dangers, or from endangering drivers of trip following.

Rule 17. The driver must take great care while taking his trips down grades to have the brakes or sprags so adjusted that he cau keep the cars under control and prevent them from running onto himself or others.

Rule 18. He shall not leave any cars standing where they may materially obstruct the ventilating current, except in case of accident to the trip.

Duties of Trip Riders or Runners.

Rule 19. He shall exercise great care in seeing that all hitchings are safe for use and see that all the trip is coupled before starting, and should he at any time see any material defeet in the rope, link or chain, he shall immediately remedy such defect or, if unable to do so, he shall detain the trip and report the matter to the mine fortman.

Duties of Engineer.

Rule 20. It shall be the duty of the engineer to keep a careful watch over his engine and all machinery under his charge and see that the boilers are properly supplied with water, cleaned and inspected at proper intervals, and that the steam pressure does not exceed at any time the limit allowed by the superintendent.
Rule 21. He shall make himself acquainted with the signal coders provided for in this act.

Rule 22. He shall not allow any manthorized person to enter the engine house, neither shall he allow any person to handle or run the engine, without the permission of the superintendent.
Rule 23. When workmen are being raised or lowered he shall take special precautions to keep the engine well under control.

Rule 24. The locomotive engineer must keep a sharp lookont ahead of his engine and sound the whistle or alarm bell frequently when coming near the partings or landings; he must not exceed the speed allowed by the mine foreman or superintendent. He must not allow any person except his attendants, to ride on the engine or on the full cars.

Duties of Firemen.

Rule 25. Erery fireman and other person in charge of a boiler or boilers for the generation of steam shall keep, a careful watch of the same; he shall see that the steam pressure does not at any time exceed the limit allowed by the superintendent; he shall frequently try the safety-valve and shall not increase the weight on the same; be shall maintain a proper depth of water in each boiler, and if anything should happen to prevent this, he shall report the same with. out delay to the superintendent, or other person designated by the superintendent, and take such other action as may, under the particular circmustances, be necessary for the protection of life and the preservation of property.

Duties of Fan Engineer.

Rule 26. The engincer in charge of any ventilating fan must keep it ruming at such speed as the mine foreman directs in writing. In case of accident to the boiler or fan machinery, not requiring the immediate withdrawal of the men from the mine by reason of serions interruption of the rentilation, he shall invariably notify the mine foreman. If ordinary repairs of the fan or machinery becomes necessary, he must give timely notice to the mine foreman and await his instructions before stopping it. He shall also examine at the beginning of eath shift all the fan bearings, stays and other parts, and see that they are kept in proper working order. Should it beecome impossible to rum the fan or necessary to stop it to preveut
destruction, he shall then at once stop it and notify the mine foreman immediately and give immediate warning to persons in the mine.

Duties of Furnacemen.

Rule 27 . The furnace man must attend to his duties with regularity, and in case he should be likely to be off. work for any reason whatever, he must give timely notice to the mine foreman.

Rule 28. The furnace man must at all times keep a clear, brisk fire and the fire must not be smothered with coal or slack during working hours, nor shall he allow ashes to aceumulate excessively on or under the bars, or in the approaches to the furnace, and ashes shall be cooled before being removed.
. Rule 29. The furnace man must promptly obey the instructions of the mine foreman.

SHAFTS AND SLOPES.

Duties of Hookers-On.

Rule 30. The hookerson at the bottom of any slope shall be very careful to see that the cars are properly coupled to a rope or chaiu and that the safety-catch or other device is properly attached to the car before giving the signal to the engineer.

Duties of Cagers.

Rule 31. The cager at the bottom of any shaft shall not attempt to withdraw the car until the cage comes to rest, and when putting the full car on the cage he must be very careful to see that the springs or catches are properly adjusted so as to keep the car in its proper place before giving the signal to the engineer.

Rule 3:. At every shaft or slope mine in which provision is made in this act for lowering and hoisting persons, a headman and footman shall be designated by the superintendent or mine foreman, who shall be at their proper places from the time that persons begin to descend until all the persons who may be at the bottom of said shaft or slope, when quitting work, shall be hoisted; such headman and footman shall personally attend to the signals and see that the provisions of this act in respect to lowering or hoisting persons in shafts or slopes shall be complied with.

Rule 33. He shall not allow any tools to be placed on the same cage with men or boys, nor on either cage when persons are being hoisted out of the mine, or being lowered into the mine, except when for the purpose of repairing the shaft or machinery therein. The men shall place their tools in cars provided for that purpose which car, or cars. shall be hoisted or lowered before and after the men have been hoisted or lowered. And he shall immediately inform the mine fore man of any violation of this rule.

Rule 34. He shall also see that no driver, or other person, ascends the shaft with any horse or mule, unless the said horse or mule is secured in a suitable box, or safely penned, and only the driver in charge of said horse or mule shall accompany it in any case.

Duties of Top Man.

Rule 35. The top man of any slope, or incline plane, shall be very careful to close the safety block, or other device, as soon as the cars have reached the landing so as to prevent any loose or runaway cars from descending the slope, or incline plane, and in no case shall such safety block, or other device, be withdrawn until the cars are coupled to the rope or chain and the proper signal given. He shall carefully inspect daily all the machinery in and about the check house, and the rope used for lowering the coal and promptly report any defect discovered to the superintendent, and shall use great care in attaching securely the wagons or cars to the rope and carefully lower the same down the incline. He shall ring the alarm bell in case of accident, and when necessary immediately set free to act, the drop logs or safety switch.

Rule 36. The top man of any shaft shall see that the springs or keeps for the cage to rest upon are kept in good working order, and when taking the full car off he must be careful that no coal or other material is allowed to fall down the shaft.

Rule 37. He shall be at his proper place from the time that persons begin to descend until all the persons who may be at the bottom of said shaft or slope when quitting work shall be hoisted. Such headman and footman shall personally attend to the signals, and see that the provisions of this act in respect to lowering and hoisting persons in shafts or slopes shall be complied with.

Rule 3.8. He shall not allow any tools to be placed on the same cage with men or boys, nor on either cage when persons are beins lowered into the mine, except when for the purpose of repairing the shaft or the machinery therein. The men shall place their tools in cars provided for that purpose, which ear or cars shall be lowered before and after the men have been lowered.

Rule 39. He shall also see that no driver, or other person, descends the shaft with any horse or mule, muless the said horse or mule is secured in a suitable box or safely penned, and only the driver in charge of said horse or mule shall accompany it in any case.

General Rules.

Rule 40. If any person shall receive any injury in or about the mine and the same shall come within the knowledge of the mine foreman, and if he shall be of the opinion that the injured person
requires medical or surgical treatment, he shall see that said injured person receives the same, and in case of inability of such injured person to pay therefor the same shall be borne by the county. The mine foreman shall report monthly to the mine inspector of the district on blanks furnished by said inspector for that purpose, all accidents resulting in personal injury.

Rule 41. No unauthorized person shall enter the mine without permission from the superintendent or mine foreman.

Rule 42. No person in a state of intoxication shall be allowed to go into or loiter about the mine.

Rule 43. All employes shall inform the mine foreman or his assistant of the unsafe condition of any working place, hauling roads or traveling ways, or of damage to doors, brattices or stoppings, or of obstructions in the air passages when known to them.

Rule 44. No person shall be employed to blast coal, rock or slate, unless the mine foreman is satisfied that such a person is qualified by experience to perform the work with ordinary care.

Rule 45. The mine superintendent or mine foreman shall cause te be constructed safety blocks or some other device for the purpose of preventing cars from falling into the shaft, or running away on slopes or incline planes; and safety switches, drop logs or other device shall be used on all slopes and incline planes; and said safety blocks, safety switches or other device must be maintained in good working order.

Rule 46. Every workman employed in the mine shall examine his working place before commencing work, and after any stoppage of work during the shift he shall repeat such examination.

Rule 47. No person shall be allowed to travel on foot to or from his work on any incline plane, dilly or locomotive roads, when other good roads are provided for that purpose.

Rule 48. Any employe or other person who shall wilfully deface, pull down or destroy any notice board, danger signal, general or special rules or mining laws, shall be prosecuted as provided for in section two, article twenty-one of this act.

Rule 49. No powder or high explosive shall be taken into the min : in greater quantities than required for use in one shift, unless such quantity be less than fire pounds, and all powder shall be carried into the mine in metallic canisters.

Rule 50. Powder in quantities exceeding (wenty-five pounds, or wher explosives in quantities excecding ten pounds, shall not be stored in any tipple or any weighing office, nor where workmen have business to visit, and no naked lights shall be used while weighing and giving out powder.

Rule 51. All persons except those duly anthorized, are forbidden to meddle or tamper in any way with any electric or signal wires in or abont the mines.

Rule 52. No greater number of persons shall be hoisted or lowered at any one time in any shaft than is permitted by the mine inspector, and whenever said number of persons shall arrive at the bottom of the shaft in which persons are regularly hoisted or lowered, they shall be furnished with an empty cage and be hoisted, and in cases of emergency a less number shall be promptly hoisted. Any person or persons crowding or pushing to get on or off the cages shall Le deemed guilty of a misdemeanor.

Rule 53. Each workman, when engaged shall have his attention directed to the general and special rules by the person employing him.

Rule 54 . Workmen and all other persons are expressly forbidden to commit any nuisance or throw into, deposit, or leave coals or dirt, stones or other rubbish in the air way or road so as to interfere with, rollute, or hinder the air passing into and through the mine.

Rule 55. No one, except a person duly authorized by the mine foreman, shall have in his possession a key or other instrument for the purpose of unlocking any safety lamp in any mine where locked safety lamps are used.

Rule 56 . Every abandoned slope, shaft, air hole or drift shall be properly fenced around or across its entrance.

Hule 57. No safety lamps shall be entrusted to any person for use in mines until he has given satisfactory evidence to the mine foreman that he understands the proper use thereof and danger of tampering with the same.

Rule 58. No person shall ride upon or against any loaded ear or cage in any shaft or slope in or about any bituminous coal mine; no person other than the trip runner shall be permitted to ride on empty trips on any slope, inclined plane or dilly road, when the speed of the cars exceeds six miles per hour. The transportation of fools in and out of the mines shall be under the direction of the mine foreman.

Rule 59. No persons other than the drivers or trip runners shall be permitted to ride on the full cars.

Rule 60. In mines where coal dust has accumulated to a dangerous extent, care shall be exercised to prevent said dust from floating in the atmosphere by sprinkling it with water, or otherwise, as far as practicable.

Rule 61. In cutting of clay veins, spars or faults in entries, or other narrow workings going into the solid coal in mines where explosive gases are generated in dangerous quantities, a bore hole shall be kept not less than three feet in advance of the face of the work, or an adrance of any shot hole drilled for a blast to be fired therein.

Rule fie. The engineer placed in charge of an engine wherby persons are hoisted out of or lowered into any mine shall be a sober competent person, and not less than twenty-one years of age.

Rule 63. When a workman is about to fire a blast he shall be careful to notify all persons who might be endangered thereby, and shall give suflicient alarm so that any person or persons approaching shall be warned of the danger.

Rule 64. In every shaft or slope where persons are hoisted or lowered by machinery, as provided by this act, a topman and cager shall be appointed by the superintendent or mine foreman.

Rule 65. Whenever a workman shall open a box containing powder or other explosives, or while in any manner handling the same, he shall first place his lamp not less than five feet from such explosive and in such a position that the air current cannot convey sparks to it, and he shall not smoke while handling explosives.

Rule 66. An accumulation of gas in mines shall not be remored by brushing.

Rule 67. When gas is ignited by blast or otherwise, the person having charge of the place where the said gas is ignited, shall immediately extinguish it if possible, and if mable to do so shall insmediately notify the mine foreman or his assistants of the fact. Workmen must see that no gas blowers are left burning upon leaving their working places.

Rule 68. All ventilating fans used at mines shall be provided with recording instruments by which the number of revolutions or the (ffective rentilating pressure of the fan shall be registered and the registration with its date for each and every day shall be kept in the office of the mine for future reference for one year from its date.

Rule 69. Where the clothing or wearing apparel of employes beromes wet by reason of working in wet places in the mines, it shall be the duty of the operator or superintendent of each mine, at the request in writing of the mine inspector, who shall make such request aron the petition of any five miners of any one mine in the district working in the aforesaid wet places, to provide a suitable building which shall be convenient to the principal entrances of snch mise for the use of the persons employed in wet places therein for the purpose of washing themselves and changing their clothes when dulering the mine and returning therefrom. The said building shall be maintained in good order and be properly lighted and heated and shall be provided with facilities for persons to wash. If any persoli or persons shall neglect or fail to comply with the provisions of this article or malicionsly injure or destroy, or canse to be injured or destroyed, the salid building or any part thereof, or any of the appliances or fittings used for supplying light and heat therein, or doing any act tending to the injury or destruction thereof, he or they shall be deemed guilty of an offense against this act.

Rule 70. In all shafis and slopes where persons, coal or other materials are hoisted by machinery the following code of signals shall be used:

One rap or whistle to hoist coal or other material.
One rap or whistle to stop cage or car when in motion.
Two raps or whistles to lower cage or car.
Three raps or whistles when persons are to be hoisted, and for engineer to signal back ready when persons are to be hoisted, after which persons shall get on the cage or car, then one rap shall be given to hoist.

Four raps or whistles, to turn on steam to the pumps.
But a variation from the above code of signals may be used by permission of the mine inspector: Provided, That in any such case such changed code shall be printed and posted.

Rule 71. No person or persons shall go into any old shaft or abardoned part of the mine or into any other place which is not in actual course of working withont permission from the mine foreman, nor shall they travel to and from their work except by the traveling way assigned for that purpose.

Rule 72 . No steam pipes through which high pressure steam is conveyed for the purpose of driving pumps or other machinery, shall be permitted on traveling or hanlage ways, unless they are encased in asbestos, or some other suitable non-conducting material, or are so placed that the radiation of heat into the atmosphere of the mine will be prevented as far as possible.

Rule 73 . Where a locomotive is used for the purpose of hauling coal out of a mine, the tumnel or tunnels throngh which the locomotive passes slall be properly ventilated and kept free as far as practicable of noxious gases, and a ventilating apparatus shall be provided by the operator to produce such ventilation when deemed necessary and practicable to do so by the mine inspector.

Rule 74 . No inexperienced person shall be employed to mine out pillars umless in company with one or more experienced miners, and by their consent.

ARTICLE XXI.

Penalties.

Section 1. Any person or persons whomsoever, who shall intentionally or carelessly injure any shaft, safety lamp, instrument, aircomse or brattice, or obstruct or throw open air ways, or take matches for any purpose, or pipes or other smokers' articles beyond any station inside of which locked safety lamps are used, or injure aty part of the machinery, or open a door in the mine and not close it again immediately or open any door which opening is forbidden. or disolsey any order given in carrying ont the provisions of this act, o! do any other act whatsoever whereby the lives or the health of persons or the security of the miners or the machinery is endangered, shall be deemed gnilty of a misdemeanos and may be punished in a manner provided for in this article.

Section 2. The neglect or refusal to perform the duties required to be performed by any section of this act by the parties therein required to perform them, or the violation of any of the provisions or requirements hereof, shall be deemed a misdemeanor and shall upon conviction thereof in the court of quarter sessions of the county wherein the misdemeanor was committed, be punishable by a finc not exceeding five hundred dollars or imprisonment in the county jail for a period not exceeding six months, or both, at the discretion of the court.
Section 3. That for any injury to person or property occasioned by any violation of this act, or any failure to comply with its provisions by any owner, operator or superintendent of any coal mine or colliery, a right of action shall accrue to the party injured against said owner or operator for any direct damages he may have sustained thereby, and in case of loss of life by reason of such neglect or failure aforesaid, a right of action shall accrue to the widow and liseal heirs of the person whose life shall be lost for like recovery of damages for the injury they shall have sustained.

ARTICLE XXII.

Definition.

Section 1. Coal Mine. In this act the term "coal mine" includes the shafts, slopes, adits, drifts or inclined planes connected with excavations penetrating coal stratum or strata, which excavations are ventilated by one general air current or divisions thereof and connected by one general system of mine railroads over which coal may be delivered to one or more common points outside the mine, when such is operated by one operator.
Excavations and Workings. The term "excavations and workings" includes all the excavated parts of a mine, those abandoned as well as the places actually being worked, also all underground workings and shafts, tumnels and other ways and openings, all such shafts, slopes, tunnels and other openings in the course of being sunk or driven, together with all roads, appliances, machinery and material connected with the same below the surface.
Shaft. The term "shafe" means a vertical opening through the strata, and which is or may be used for the purpose of ventilation or drainage or for hoisting men or material or both in comection with the mining of coal.

Slope. The term "slope" means an incline way or opening used for the same purpose as a shaft.

Operator. The term "operator" means any firm, corporation or individual operating any coal mine or part thereof.

Superintendent. The term "superintendent" means the person who shall have, on behalf of the operator, immediate supervision of one or more mines.

Bituminous Mines. The term "bituminous" coal mines shall include all coal mines in the State not now included in the anthracite boundaries.

The provisions of this act shall not apply to any mine employing less than ten persons in any one period of twenty-four hours.

ARTICLE XXIII.

Section 1. That all acts or parts of acts inconsistent herewith be and the same are hereby repealed.

Approved-The 15th day of May, A. D. 1893.

ROBT. E. PATTISON.

AN ACT

Equalizing and fixing the compensation and mileage of the members of the several boards appointed under the provisions of the act approved June second, one thousand eight hundred and ninety-one, to examine candidates for appointment as Inspectors, foremen and fire bosses, respectively, in the anthracite coal mines, and providing for the employment and compensation and mileage of a clerk to each of said boards.

Section 1. Be it enacted, \&c., That from and after the passage of this act the members of the several boards appointed under the provisions of the act approved Jume second, one thousand eight hundred and ninety-one, to examine candidates for appointment respecfively as inspectors and foremen of anthracite coal mines, shall receive in lieu of all compensation, mileage, expenses, emoluments or allowances heretofore paid them, as follows: Six dollars per day for each day during which the said members shall be actually in attendance on the sessions of the hoard, and mileage at the rate of five cents for each mile actually traveled going from the home of the member to the place of meeting of the board and returning from said plare to his said home by the shortest practicable railway route: Provided, That mileage shall be paid but once for each contimous session of the board, and hy a contimons session shall be meant a session during the comrse of which no adjomrmment for a longer period than forty-eight hours shall take place.

Section 2. Each of the boards pmmerated or deseribed in the first section of this act shall be and the same is hereby anthorized to employ a clerk, whose compensation and mileage shall be the same as that of a member of the board. So much of section form of the act
of June second, one thousand eight hundred and ninety-one, as authorizes the boands of examiners of candidates for inspectors of anthracite coal mises to engage the services of a clerk is hereby repealed, and all clerks hereafter appointed by the several boards hereinbefore mentioned shall be appointed under the provisions of this atet.

Section 3. The members of the said boatds shall, on the final adjournment of each session of their respective boards, submit to the Anditor General sworn statements approved by the president or chairman of their respective boards, setting forth the number of days during which each member shall have been actually in attendance on the sessions of the board of which he is a member during said session, as well as the distance from the home of the member. to the place of meeting of his board as aforesaid, by the nearest practicable railway route, and the number of miles actually traveled by him; and the clerks of said boards shall submit like statements, and the Auditor General shall, upon the receipt of such sworn statements draw his warrant upon the State Treasurer in faror of each of such members and clerks for such sums as shall appear to be properly đ̉ue each.

Section 4. All acts and parts of acts or supplements thereto in conflict herewith are hereby repealed.

Approved-The 26th day of June, A. D. 1895.

DANIEL II. HASTINGS.

IN ACT

For the better protcetion of employes in and about the coal mines by preventing mine superintendent, mine foremen and assistants from receiving or soliciting any sums of money or other valuable consideration from men while in their employ, and providing a penalty for violation of the same.

Section 1. Be it enacted, se., That on and after the passage of this act any mine superintendent, mine foreman or assistant foreman, or any other person or persons who shall receive or solicit any sum of money or other valuable consideration, from any of his or their entployes for the purpose of continning in his or their employ, shatl be guilty of a misdemeanor, and upon conviction shall be subject to a fine not less than fifty dollars, nor more than three hundred dollars, and undergo an imprisomment of not less than six months, or both, at the discretion of the court.

Section 2. All acts or parts of acts inconsistent herewith be and the same are hereby repealed.

Approved-The 15th day of June, A. D. 1897.

DANIEL H. HASTINGS.

AN ACT

Establishing a Bureau of Mines in the Department of Internal Affairs of Pennsylvania, defining its purposes and authority, providing for the appointment of a chief of said bureau and assistants, and fixing their salarles and expenses.
section 1. Be it enacted, \&゙c., That there is hereby established in the Department of Internal Affairs of Pennsylvania a burean to be known as the Burean of Mines, which shall be charged with the supervision of the execution of the mining laws of this Commonwealth, and the care and publication of the annual reports of the inspectors of coal mines.

Section 2. The chief officer of the burean shall be denominated Chiof of the Bureau of Mines, and shall be appointed by the (iorernor; by and with the advice and ronsent of the Scnate, within thirty days after the final passage of this act, and every four years thereafter, who shall be commissioned by the Governor to serve a ferm of fom years from the date of his appointment, and until his suceessor is duly qualified, and shall receive an ammal salary of three thousand dollars and fatveling expenses; and in case of a vateancy in the office of Chief of said Burean, by reason of death, resignation or otherwise the (iovernor shall appoint a qualified person to fill surh vacancy for the unexpired hatance of the term.

Section :3. The Chief of the Bureat of Mines shall be a competent person having had at least ten years practical experience in the working and rentilation of coal mines of this State, and at practical and scientific knowledge of all noxions and dangerons gases found in such mines. The said Chiof of the Burean of Mines so appointed shall, before entering mon the duties of his offere, take and smb. scribe to the oath of office prescribed by the Constitution, the same to be filed in the offiee of the Seeretary of the Commonwealth, and give to the Commenweath a hond in the penal sum of ten thousand dollars, wilh smety io be appoved by the Governor and Secretary of Internal Affairs, conditioned for the fathfnl diselnarge of the duties of his office.

Seetion 4. It shall be the duty of the Chief of the Burean to do. vote the whole of his time to the duties of his office, and to see that the mining laws of this State are fathfully exeruted; and for this
purpose he is hereby invested with the same power and authority as the mine inspectors to enter, inspect and examine any mine or colliery within the State, and the works and machinery connected therewith, and to give such aid and instruction to the mine inspectors from time to time as he may deem best calculated to proteet the health and promote the safety of all persons employed in and abont the mines, and the said Chief of the Burean of Mines shall have the power to suspend any mine inspector for any neglect of dity, but such suspended mine inspector shall have the right to appeal to the Secretary of Internal Affairs, who slall be empowered to approve of such suspension or restore such suspended mine inspector to duty, affer investigating the iauses which led to such suspension. Shonld the Chief of the Burean of Mines receive ininformation by petition, signed by ten or more miners, or one or more operators, setting forth that any of the mine inspectors are neglectful of their duty, or are incompetent to perform the duties of their office, or are guilty of malfeasance in office, he shall at once investigate the matter, and if he shall be satisfied that the charge of charges are well fonnded, he shall then petition the court of common pleas, or the judge in chambers, in any county within or partly within the inspection district of the said mine inspector; which court, upon receipt of said petition and a report of the character of the charges and testimony produced, shall at once issue a citation in the name of the Commonwealth to the said inspector, to appear on not less than fifteen days' notice, on a fixed day before said coust, at which time the court shall proceed to inquire into the allegations of the petitioners, and may require the attendance of such witnesses on the subpoena issued and served by the proper officer or officers, as the judge of the conrt and the Chief of said Burean may deem necessary in the case; the inspector under investigation shall also have similar power and anthority to compel the attendance of witnesses in his behalf. If the court shall find by said investigation that the said mine inspector is guilty of neglecting his official duties, or is incompetent to perform the duties of his office, or is guilty of malfeasance in office, the said court shall certify the same to the Gorernor, who shall declare the office vacant, and shall proceed to sur ${ }^{-}$ ply the vacancy as provided for by the mining laws of this state. The cost of said investigation shall, if the charges are sustained, be imposed upon the mine inspector, but if the charges are not sus tained the cost shall be paid ont of the State Treasury, upon voucher or vouchers duly certified as to correctuess by the judge or proper officer of the court whare such proceedings are held. To enable the said Chief of the Bureau of Mines to conduet more effectually his examinations and investigations of the charges and complaints which may be made by petitioners against any of the mine inspectors ats
herein provided, he shall have power to administer oaths and take aflidavits and depositions in form and manner provided by law: Provided howerer, That nothing in this section shall be construed as to repeal section thirteen of article two of the act of Assembly approved the second day of June, Anno Domini one thousand eight hundred and ninety-one, entitled " A n act to provide for the healtl: and safety of persons employed in and about the anthracite coat mines of Pennsylvania, and for the protection and preservation of property connected therewith," and also articles thirteen and fourteen of an act of Assembly approved the fifteenth day of May, Anno Domini one thousand eight hundred and ninety-three, entitled "An act relating to bituminous coal mines, and providing for the lives. health, safety and welfare of persons employed therein."

Section 5 . It shall be the duty of the Chief of the Bureau of Mines to take charge of and preserve in his office the annual reports of the mine inspectors, and transmit a copy of them, together with such other statistical data compiled therefrom and other matter relating to the work of the Bureau as may be of public interest, properly addressed to the Secretary of Internal Affairs for transmission to the Governor and the General Assembly of this Commonwealth, on or before the first day of March in each year. It shall also be the duty of the Chief of the Burear of Mines to see that said reports, or copy of them, are placed in the hands of the Publir. Irinter for publication at the same date; the same to be published under direction of the Secretary of Internal A ffairs as other reports of his Department are now required by law to be published, and in order that the Chief of said Burean may be able to prepare, compile and transmit his annual report to the Secretry of Internal Affairs within the time herein specified, the mine inspectors are hereby required to deliver their annual reports to the Secretary of Internal Affairs on or before the fifteenth day of February in each year. In addition to the anmal reports herein required of the mine inspectors, the said mine inspectors shall furnish the Chief of the Burean of Mines, monthly and also such special reports or informafion on any subject regarding mine accidents or other matters pertaining to mining interests, or the safety of persons employed in mines as he at any time may require or may deem necessary in the proper and lawful discharge of his official duties. The Chief of the Bureau of Mines shall also establish as far as may be practicable a uniform style and size of blanks for the anmual, monthly and special reports of the mine inspectors, and prescribe the form and character of subject matter to be embraced in the text and the tabulated statements of their reports. The Chief of the Burean of Mines is hereby authorized to make such examinations and investigations as may enable him to report upon the varions systems of
coal mining practiced in the State, method of mining, ventilation, machinery employed, structure and character of the several coal seams operated, and of the associated strata, the circumstances and responsibility of mine accidents, economy of coal production, coal waste, area and exhanstion of coal territory, and such other matters as may pertain to the general welfare of coal miners and others connected with coal mining, and the interests of coal mine owners and operators in this Commonwealth.

Section 6. The Chief of the Burean of Mines shall keep in his oftice a journal or record of all examinations made and work done under his administration, and copies of all ofticial communications, and is hereby authorized to procme such books, instruments and chemical or other tests as may be found necessary to the proper discharge of his duties under this act, at the expense of the State. All instruments, plans, books and records pertaining to the office shall be the property of the State, and shall be delivered to his successor in office.

Section 7. The Chief of the Burean of Mines shall at all times be accountable to the Secretary of Internal Affairs for the faithful discharge of the duties imposed upon him by law, and the administration of his office and the rules and regulations pertaining to said Bureau shall be subject to the approval of the Secretary of Internal Affairs, who is hereby empowered to appoint an assistant to the Chief of the Burean, at a salary of fourteen hundred dollars per annum, and a messenger at a salary of three hundred dollars per annum: And provided further, That the salaries of the Chief of the Bureau of Mines, his assistant and the messenger, shall be paid out of the State Treasury in the manner as other employes of the Department of Internal Affairs are now paid. Provided, That the Chief of said Burean of Mines may be removed or suspended at any time by the Secretary of Internal Affairs, when in the opinion of said Secretary there has been a neglect of duty or a failure to comply with the law, or the instructions of the Secretary of Internal Affairs.

Section 8. No person who is acting as a land agent, or as manager, viewer or agent of any mine or collicry, or who is interested in operating any mine or colliery, shall at the same time serve as Chief of the Bureau of Mines under the provisions of this act.

Section 9. That the mine inspectors of each district of this State shall, within six months after the final passage and approval of this act, deposit in the Bureau of Mines an accurate map or plan of such coal mine, which may be on tracing muslin or sun print, drawn to a prescribed scale; which map or plan shall show the actual locafion of all openings, excavations, shafts, tumnels, slopes, planes, mai?
headings, cross headings, and rooms or working places in each strata operated; pump, fans or other rentilation apparatus, the eutire course and direction of air currents, the relation and proximity of the workings of such coal mines to all other adjoining mines or coal lands, and the relative elevation of all tmonels and headings, and of the face of working places near to or approaching boundary lines or adjacent mines; and on or before the close of each calendar year transmit to the Chief of the Burean of Mines a supplemental map or plan showing all excavations, changes and additions made in such mine during the year, drawn to the scale as the first mentioned map or plan. All such maps or plans to be and remain in the Bureau of Mines as a part of the records of that office.

Section 10. All acts or parts of acts inconsistent with this act be and the same are hereby repealed.

Approved-The 15th day of July, A. D. 1897.
DANIEL H. HASTHNGS.

AN ACT

Requiring the weighing of hituminous coal before screening, and providing a penalty for the violation thereof.

Section 1. Be it enacted, de., That it shall be unlawful for any mine owner, lessee or operator of any bitmminons coal mine in this Commonwealth, employing miners at bushel or ton rates, or other quantity, to pass the ontput of coal mined by said miners over any screen or other device which shall take any part from the weight, value or quantity thereof, before the same shall have been weighed and duly credited to the employe sending the same to the surfare and atcounted for at the legal rate of weight fixed by laws of this Com monwealth.

Section 2. Any owner, lessee or operator of any bitmminons coal mine, violating the provisions of this act. shall be deemed gnilty of a misdemeanor, and shall, upon convietion, for eatch and every such offonse be punished by a dine of not less than one hundred (\$100) dollars nor more than five hander (\$500) dollars, or by imprisonment in the comnty jail for a period not to exceed ninety days, o; by both such fine and imprisomment, at the discretion of the comet; proceedings to be instituted in any comrt of comperent jurisuliction.

Section 3. All acts or parts of acts inconsistent herewith be and the same are hereby repealed.

Approved-The 15th day of July, A. D. 1897.
DANIEL H. HASTINGS.

AN ACT

To protect the lives and limbs of miners from the dangers resulting from incompetent miners working in the anthracite coal mines of this Commonwealth, and to provide for the examination of persons seeking employment as miners in the anthracite region, and to prevent the employment of incompetent persons as miners in anthracite coal mines, and providing penalties for a violation of the same.

Section 1. Be it enacted, \&c., That hereafter no person whomsoever shall be employed or eugaged in the anthracite coal region of this Commonwealh, as a miner in any anthracite coal mine, without having obtained a certificate of competency and qualification so to do from the "Miners' Examining Board" of the proper district, and having been duly registered as herein provided.

Section 2. That there shall be established in each of the eight inspection districts in the anthracite coal region, a board to be styled the "Miners" Examining Board" of the district, to consist of nine miners who shall be appointed in the same manner as the boatds to examine mine inspectors are now appointed from among the most skillful miners actually engaged in said business in their respective districis, and who must have had five years' practical experience in the same. The said persons so appointed shall each serve for a term of two years from the date on which their appointment takes effect, and they shall be appointed upon or before the expiration of the term of the present members of the "Miners' Examining Board," and they shall be and constitute the "Miners' Examining Board" for their respective districts, and shall hold the office for the term for which they were appointed, or until their successors are duly appointed and qualified, and shall receive as compensation for their services three dollars per day for ead day actually engaged in this service, and all legitimate and necessary expenses incurred in attending the meetings of said hoard mender the provisions of this act, and no part of the salary of said board or expenses thereof shall be paid out of the State Treasury.

Each of said hoards shall organize by electing one of their members president, and one member as secretary, and by dividing then-
selves in to three sub-committees for the more convenient discharge of their duties, each of said committees shall have all powers hereinafter conferred upon the board; and whenever in this act the words "Examining Board" are used, they shall be taken to include any of the committees thereof.

Every member of stid board shall, within ten days of their appointment or being aprrised of the same, take and subscribe an oath or affirmation before a properly qualified officer of the county in which they reside, that they will fathfully and impartially discharge the duties of their office.

Any racancies occurring in sad board shall be filled in the manner hereinbefore provided from anong such only as are eligible for original appointment.

Section :3. Each of said examining boards shall designate some convenient place within their districts for the meeting of the several committees thereof, and of which dne notice shall be given by adverfisement in two or more newspapers of the proper combty, and so divided as to reach as nearly as practicable all the mining districts therein; but in no case shall such meeting be held in a building where any intoxicating liquors are sold.

Each of said committee shall open at the designated place of meeting a book of registration, in which shall be registered the name and address of each and every person duly qualified under this act to be employed as a miner in an anthracite coal mine. And it shall be the duty of ail persons employed as miners to be properly registered, and in case of a removal from the district in which a miner is registered, it shall be his duty to be registered in the disfrict to which he remores.

Application for registration only may be sent by mall to the board. after beiag properly attested before any person authorized to administer an oath or affirmation in the county in which the applicant resides. The form of application shall be subject to such regulation as may be prescribed by the boards, but in no case shall any aphlicant be put to any unnecessary expense in order to secure registration.

Section 4. Each applicant for examination and registration and for the certificate hereinafter provided, shall pay a fee of one dollar to the said board, and a fee of twentr-five cents shall be charged for registering any person who shall have been examined and registered by any other board, and the amount derived from this sonree shath be held by said boards and applied to the expenses and salaries herein provided and such as may arise under the provisions of thisact; and the said boards shall report ammally, to the court of common pleas of their respectire comnties and the Burean of Mines and Mining all moneys received and disbursed under the provisions of
this act, logether with the number of miners examined and registered under this act and the number who failed to pass the required examination.

Section 5. That it shall be the duty of each of the said boards to meet once every month and not oftener, and said meeting shall be public, and if necessary, the meeting shall be continued to cover whatever portion may be required of a period of three days in succession, and examine under oath all persons who shall desire to be employed as miners in their respective districts; and said board shall grant such persons as may be qualified, certificates of competency or qualification which shall entitle the holder thereof to be employed as and to do the work of miners as may be expressed in said certincate, and such certificates shall be good and sufficient evidence oí registration and compentency under this act; and the holder thereof shall be entitled to be registered without an examination in any other of the anthracite districts upon the payment of the fee herein provided.

All persons applying for a certificate of competency, or to entitle them to be employed as miners, must produce satisfactory evidence of having had not less than two years practical experience as a miner, or as a mine laborer in the mines of this Commonwealth, and in no case shall an applicant be deemed competent unless he appear in person before the said hoard and answer intelligently and correctly at least twelye questions in the English language pertaining to the requirements of a practical miner, and be perfectly identified under oath, as a mine laborer by at least one practical miner holding miners' eertificates. The said board shall keep an accurate record of the proceedings of all its meetings, and in said record shall show a correct detailed account of the examination of each applicant, with the questions asked and their answer, and at each of its meetings the board shall keep said record open for public inspection. Any miner's certificate granted under the provisions of this act, and the hereinafter mentioned act approved the ninth day of May, Anno Domini one thousand eight hundred and eighty-nine, shall not be transferable to any person or persons whatsoever, and any transfer of the same shall be deemed a violation of this act. Certificates shall be issued only at meetings of said board, and said certificates shall not be legal mess then and there signed in person by at least three members of said board.

Section 6. That no person shall hereafter engage as a miner in any anthracite coal mine without having obtained such certificate as aforesaid. And no person shall employ any person as a miner who does not hold such certificate as aforesaid, and no mine foreman or superintendent shall permit or suffer any person to be employed
under him, or in the mines under his charge and supervision as a miner, who does not hold snch certificates. Any person or persons who shall violate or fail to comply with the provisions of this act, shall be guilty of a misdemesnor, and on conviction thereof shall be sentenced to pay a tine not less than one hundred dollars and not to exceed five hundred dollars, or shall undergo imprisonment for a term not less than thirty days and not to exceed six months, or either, or both, at the discretion of the court.
section 7. The persons who are now serving as members of the Miners' Examining lhoard as created by the act approved the ninth day of May, Anno Domini one thonsand eight limndred and eightynine, entitled "In act to provide for the examination of miners in the anthracite region of this Commonwealth, and to prevent the employment of incomperent persons as miners in anthracite coal mines," shall continue under the provisions of this act to serve as members of the "Miners' Examining Board" until the terms for which they were appointed under the provisions of the said act approved the ninth day of May, Amo Domini one thousand eight homdred and eightr-nine, shall have expired, and in the performance of the duties of their office they shall be sulbject to the provisions and requirements of this act.

Section 8. Nothing in this act shall he construed to in any way, excepting as herein provided, effect miners' certificates which have been lawfully issued under the provisions of the herein mentioned act, approved the ninth day of May, Anmo Domini one thousand eight humdred and eighty-nine.

It shall be the duty of the several Miners Examining Boards to investigate all complaints or charges of non compliance or violation of the provisions of this act, and to prosecute all persons so offernding: and won their failure so to do, then it shall become the duty of the district attorney of the comsty wherein the complaints or charges are made to investigate the same and prosecole all persons so offending, and it shall at all times be the dnty of the distriet atforney to prosecnte such members of the Mincrs Examining Board as have failed to perform their duty muder the provisions of this adf but nothing herein contained shall prevent any citizen, a resident of this Commonwealfh, from proseroting any person or persons violating this art, with power to employ private comnsel to assist in the proserotion of the same; "pon conviction of any member of the Miners Examining Boad for aty violation of this att, in addition to the peratios herein provided, his office shall be dectared rateant. and he shatl be deemed ineligible fo art ats a member of the said board.

Section 10. For the purposes of this act the members of the said "Miners" Board" shall have power to administer oaths.

Section 11. All acts or parts of acts inconsistent herewith are hereby repealed.

Approved-The 15th day of July, A. D. 1897.
DANIELH. HASTINGS.

AYTHRACITE MIIE DISTRICTS.

滝

First Anthracite District.

LACKAWANNA AND SUSQUEHANNA COUNTIES.

Scranton, l'a., Feborary 14, 1898. Hon. James W. Latta, Sectetary of Internal Iffats, IArrishurg, Pa.: Sir: I have the honor of presenting to yon my ammal report as inspector of mines of the First anthacite district for the year embling December 31, 1897.

The total quantity of coal produced was $6,249,8: 33$ tons, which is 2.,386 fons more than in 1896.

The number of fatal aceidents was fifty-fhree, non-fatal one hundred atid twenty-tive. Twenty-eight wives were made widows, and sixtysix children under fombeen years of age were made fatherless by the arceidents.

The average number of days worked was 165.4 against 174.9 in 1896.

There were 117.921 tons of coal produced per fatal accident.
The genetal condition of the mines is good. The rentilation is ample. Several new fans were erected during the year.

The report contaius the usial tables, a brief deseription of each accident, and a few remarks as to the causes of many of them.

Respectfully submitted,
EDWARD RODERICK.
Inspector of Mines.

TABLE A．－Showing the Production of Coal，the Number of Persons Employed by each Company During the Year 1897，and the Average Number of Tons Produced per Employe．

Names of Companies．		
Delaware and Hudson Canal Co．，	2，249，739	5，904
Hillside Coal and fron Co．，	769，701	2，217
＇gelaware，Lackuwanna and Western Railroad（＇o．，	475，485	1，070
Pennsylvania Coal Co．，	326．749	835
Lackawanna Coal Co．，	199，360	643
Johnson Coal Co．，	159，907	790
Pancoast Coal Co．，	192，269	632
New York and Seranton Coal Cu．，	201，050	784
North West Coal Co．．	187，587	494
Elk 1fill Coal and Iron Co．，	150,605	410
Sterrick Creek Cual Co．，	112，408	606
Edgerton Coal Co．，	142，031	299
Blue İidge Coal Co．．．	126，569	575
	134，748	574
	225.622	714
Mt．Jessup and Moosic Mountain Coal Co．，	191，702	559
Riverside Coal Co．，	118，933	402
Murray Coal Co．，	57,490	93
Pierce Coal．Co．，	S6，268	243
Franklin Coal Co	37，410	127
IRussell，B．，Coal Co．，	41，200	95
Totals，	6，249，833	18，066

Tons produced per employe， $345+$ ．

TABLE B．－Number of Fatal Accidents and Quantity of Coal Produced per Life Lost．

Nanies of Companies．		
Delaware and Hudson Canal Co．，	14	160，695＋
Irillside Coal and Iron Co．，．．．．．	4	192，425
telaware，Lackawanna and Western Itai	1	478，485
Pennsylvania Coal Co．，	4	\＄1，687
Pdgerton Coal Co．，．．．．．．．．	6	$\begin{aligned} & 23,671+ \\ & 48,067 \end{aligned}$
Iancoast Coal Co．，．．．．．．．．．．．．．	4	$\begin{aligned} & 48,067 \\ & 37,981 \end{aligned}$
	4	37,981 35,352
Sterrick Were Coal Co．，．	2	93，793
Blue Ritige Coal Co．，	3	42，159
Miscellaneous coal companies，	6	240，731
Totals，	53	117，921＋

TABLE C.-Number of Fatal and Non-Fatal Accidents and Tons of Coal Produced per Accident.

Names of Companies.			
Delaware and Hudson Canal Co.,		47	47,866
Hillside Coal and lron Co.,		24	32,070
Delaware, Lackawanna and Western Railroad Co.,		14	34, 177
Pennsylvania Coal Co., ...		18	18,125
Edgerton Coal Co.. ..		8	17,754
Pancoast Coal Co.,		10	19,227
Johnson Ccal Co., ..		10	18,990
Sterrick Creek Coal Co., ..		7	20,344
		7	26,798
Miscellaneous coal companies,		28	51,585
Totals,		178	$35,111+$

TABLE D.-Showing Occupation of Persons Killed and Injured.

TABLE E．－Classification of Accidents．

Causes of Aecidents．		第	$\xrightarrow[\substack{\text { Ej }}]{\text { c }}$
By cars inside， By cars outside， Ly falls of coal and rock， By fiying coal from shots， By explosions of gas． By explosions of powder， Miscellaneous，inside． Miscellaneous，outside，	$\begin{array}{r} 5 \\ 2 \\ 38 \\ 4 \\ 1 \\ \cdots \\ 1 \\ 2 \end{array}$	31 1 58 14 6 5 8 2	36 3 96 18 7 5 9 4
Totals，	53	125	178

TABLE F．－Nationality of Persons Killed annd Injured．

Remanks on Fatal Areidents．

Fifty－three fatal aceidents ocemred in this district dming the year． Of these， 3 s ，or $\mathbf{7} 1.7$ per cent．Were caused by fatls of roal and rock， and the most of them at or nealr the faces of breasts and gatngays．

Many of them occurred shordy affer mensecessful efforts had been made to pull down the loose pieces，while of others it can be fruth－ fully said that they were purely accidental，for oftentimes the dan－ groms slaths of rock are covered hy a thin layer of coal which hides their treacherons character and thas frequently deceive the most careful miners．

I find a very striking similarity between many of the accidents cansed by falls，hence the evidence of those who are menfonate rongh to wimess them is pracideally the same in many cases as will be seen from the deseriptions given an table nmmber four．

On ummerons orfasions during my tours throngh the mines I have found it necessary to question the safety of the roof，and have cansed examinations to be made，only to find it＂safe and solid in all places but one．＂A closer inspection of this＂one place＂gives a hol－
low somed by striking if with a drill or pick, and reveals a seam on "slip" that is fomm to run up for some distance into the roof, then, as is often the case, fown on the other side a short distance, thus forming a small ridge of rook entirely detached from the main roof, and which wonld in all probability, if not taken down, fall on some one in a short time. It is an artual fact, and well known to most practical miners, that all "bells" or "stalphur balls" fall from smooth and apparently good roof shortly after examinations of them have been made.

These detached slabs ocem in all kinds of roof but are met mostly where the roof is fire clay or slate, thongh they are quite often found in sand rock.

They are of various forms, and increase in size from the small lumps of black rock known as "nigger heads" and "bells" to large, massive stabs sometimes measuring as moch as twenty to thirty feet in leogth and half this width, while not more than three feet thick at their centres and tapering to thin or "feather edges" on all sides. These frequently extend a short distance over the solid coal on the sides and face of breasts or gatioways, hans hiding the "slips and seams," and leaving exposed the onter edge. This of course, the miners know abont, and after an examination, if the slab is large and much labor required to remove it, rather than do so they conclude that "it runs thick towards the rib, or extends over the rib or the face and that will hold it."

Trusting it to be temporarily safe, they proceed to work and think no more of the roof until after firing one or more shots, they discover the seam to be somewhat wider than when first noticed. A gain an inspection is made, and perhaps another effort made to pull it down. If it "comes" casily, well and groot. If not, it is left and a prop or two placed under the outer edge to "steady" it. Thinking all the time that it thickens towards the face or rib, and that the props will surely secure it, and confident now of their saffety, continue working with no more thought of danger from this source. It appears that it does not ocemr to them that the seams already noticed may contime up for a short distance, then down, and that they may be gradwally removing the inner snpports from under a loose piece of rock by mining ont the coal.

If the coal were not removed, and the props left standing at the outside edge, we can readily see how this slab wonld remain in position for an indefinite period. But this is not the ease as the coal to mporarily sustaning it is soon taken away in the course of mining, and it as surely falls as it would if the wooden smpports were suddenly removed from under it. Experienced miners, as already intimated, are frequently injured or killed by these loose pieces of rock falling, as they sometimes do, from small spares between two or more props, and where, natmrally, the least danger is suspected.

It is seldom, however, that falls occur on gangways or breast roads, except close to the faces, where work is progressing, and space for properly securing the roof is not yet made.

In several cases during the year very careful miners were killed while in the act of putting up timber to secure the roof. In such a ases it must be admitted that they had some knowledge of the conditions of the roof, otherwise they would not have proceeded to timber it. At the same time some conditions which they did not suspect existed and thus they were led into an error of jodgment which cost them their lives.

Where 38 ont of a total of $\pi 3$ accidents occur from one canse, it secms rery reasonable to suppose that something must be radically wrong, either with the methods of mining or the management, which if remedied much fewer accidents would naturally follow.

This undoubtedly is a very natural conclusion, but a closer investigation of each one will show how and where each once ocemred and convince anyone conversant with mining as to where the responsibility lies.

As already stated, a glance at table four will show that the most of them happened at or close to the working face, and from danger that none but those working there can guard against.

The roof in a breast or gangway may be perfectly safe when the miners enter in the morning, but with every shot fired, new ground is uncovered, and slips and seams in top coal and roof exposed, to which the miners, as a rule do not pay sufficient attention. Again, if the rein is split into two or more benches, as is generally the case, the "mining" as a rule is done in the "bottom" and requires but six or swen holes to take out a "cut" clear across the face of the breast.

This I consider is all right and a very economical and practical thethod of mining, and where proper care is exercised with roof and overhanging coal and rock, few accidents occur. But when the top roal is "slippy" and the miner works too far under it without temporary props to support it, and neglecis to carefully examine it after each shot is fired, and reaches muder it to bar out some coal lonsened by a recently fired shot, when perhaps the same has spent most of its force on the now six or seven feet of mandermined "top coal," it is then that it falls and kills while "barring out the bottom bench."

Mine Foremen's Examinations.

The anmal examination of applicants for mine foremen and assistant mine foremen certificates was held at Carbondale, Pa.. on the 21 st and 2ed of July, 1897.

The hoard of examiners were the following:
Charles P. Ford, superintendent, Marshwood.
James E. Morrison, miner, Carbondale.

Joseph T. Roberts, miner, Jermyn.
Edward Roderick, mine inspector, Scranton.
The following were recommended for mine foreman certificates:
W. A. James, Arthur Wrightson and John T. Williams, Peckville; David D. Jones, Pully; Thos. J. Kieltz, Archbald; Johu P. Williams and W. H. Mincher, Olyphant; James D. Bryden, Vandling; John Ft. Lewis, Priceburg, and William D. Lewis, Carbondale.

The following were recommended to receive assistant foreman certificates:

Daniel Price, Thomas George and Alfred Parry, Scranton; Thomas A. Price, Taylor; John Price and Peter Flannelly, Carbondale: Robert Colburn, Priceburg; G. P. Propst and P. H. Nealon, Archbald; Slater Cairns, Winton; John Reese, Olyphant; E. G. Jones, Peckville, and William F. Sulivan, Jermyn.

TABLE II.-Gives the total number of tons of coal mined in each colliery, number of days worked, number of employes, number of persons killed and injured, number of kegs of powder used, etc., in the First Anthracite District for the year ending December 31, 1897.
\qquad

- This is reported as culm and is not figured in reporting total production in tons of coal.

Riverside,	Lackawanna,		118,933	18.000		100,933	152.50	402		6	5.095	9	28	
Murrays,	Lackawanna,		57,490	1,450	3,623	52,417	191.75	93	1		1,840	3	18	
Plerce,	Lackawanna,		86,268	1, 800	113	84,355	195.50	243	1	1	2.064	10	28	1
Frankiln,	Lackawanna,		37,410	1,460	2,700	33,250	165.50	127		1	1,247	2	16	\cdots
Dolph.	Lackawanna,		134,748	10,000	604	124.144	103.40	574	1		4.236	8	43	2
Russell B.,	Lackawanna,		41,200	1,000	100	41,100	210.00	95		1	1,220		13
Totals and averages,			2,561,337	213,381	25,388	2,413,326	163.92	\$,141	30	56	98,451	223	\$13	25

Names of Collieries．	Location－County．	० $\stackrel{\infty}{5}$ E 		気 ت ジ 은 응 릉	＂ 气㐅 								
Delaware and Hudson Canal Co．， Hillside Coal and Iron Co．， Elk Hill Coal and Iron Co．． Mt．Jessup Moosic Mt．Coal Co． Pennsylvania Coal Co．， Miscellaneous coal companies，		$\begin{array}{r} 2,249,739 \\ 769,701 \\ 150,605 \\ 191,702 \\ 326,749 \\ 2,561,337 \end{array}$	$\begin{array}{r} 140,396 \\ 39,914 \\ 9,000 \\ 12.16 \mathrm{~S} \\ 11, \$ 29 \\ 213,3 \mathrm{~S} 1 \end{array}$	$\begin{array}{r} 20,052 \\ 17,051 \\ 3,305 \\ 2,746 \\ \ldots, \ldots \ldots \\ 25,388 \end{array}$	$\begin{array}{r} 2, \dot{2} 29,683 \\ 716,100 \\ 138.230 \\ 176,758 \\ 314,920 \\ 2,413.326 \end{array}$	$\begin{aligned} & 194.70 \\ & 133.50 \\ & 116.40 \\ & 153.90 \\ & 140.30 \\ & 163.90 \end{aligned}$	$\begin{array}{r} 5.904 \\ 2.217 \\ 410 \\ 559 \\ 83 . \\ 8,1+1 \end{array}$	$\begin{array}{r} 14 \\ 4 \\ \cdots \quad 1 \\ 4 \\ 30 \end{array}$	$\begin{array}{r} 33 \\ 20 \\ 1 \\ 1 \\ 14 \\ 56 \end{array}$	$\begin{array}{r} 73.336 \\ 30,921 \\ 4.810 \\ 6.646 \\ 9.647 \\ 98,451 \end{array}$	$\begin{array}{r} 141 \\ 69 \\ 15 \\ 29 \\ 7 \\ 223 \end{array}$	$\begin{array}{r} 608 \\ 227 \\ 46 \\ 63 \\ 71 \\ 813 \end{array}$	5 9 1 2 3 25
Totals and averages，．．		6，249， 833	426，658	6S， 542	5，989，047	165.44	18，066	53	125	223，811	484	1，828	45

TABLE III.-Showing the number of each class of employes at each colliery in the First Anthracite District, during the year 1897.

Slmpson, \quad Sterrick
Edgerton,
Blue RIdge.
Forest Mining
Forest Minin
Murray,
Plerce
Frankín,
Dolph.
kussell B.

Total,

| 3 | 120 |
| ---: | ---: | ---: |
| 4 | 150 |
| 3 | 90 |
| 2 | 165 |
| 2 | 233 |
| 1 | 90 |
| 2 | 21 |
| 2 | 50 |
| 1 | 27 |
| 2 | 150 |
| 1 | 19 |
| 35 | 2,198 |

120	148
150	182
90	83
165	145
233	237
90	75
21	22
50	75
27	20
150	165
19	21
198	2,254

48
56
35
36
45
21
13
14
11
35
5
$-\quad 684$

14
15
4
8
21
2
1
1
11
4
1
161

12	
10	
7	
6	
13	
13	
8	
2	
8	
1	
16	
16	
167	

60	48
101	43
40	17
100	70
62	45
143	36
15	8
50	27
12	17
103	66
21	15
1,183	733

ష్టે	E

*	Nownrrsiswnorce

	Occupations of Persons Employcd Inside.							Occupations of Persons Employed Outs.de.							
Names of Colliertes.		$\frac{\stackrel{2}{U}}{\substack{4}}$	s.1.joqel , s.1әu!lif		's.odpuy pue s.foquooci			$\begin{aligned} & \stackrel{y}{4} \\ & \frac{1}{2} \\ & \frac{0}{6} \\ & \frac{0}{x} \\ & \frac{3}{2} \\ & 0 \end{aligned}$	s.ıว						
	$\begin{array}{r}17 \\ 8 \\ 2 \\ 3 \\ 3 \\ 35 \\ \hline\end{array}$	$\begin{array}{r} 1,582 \\ 625 \\ 98 \\ 155 \\ 242 \\ 2,198 \end{array}$	$\begin{array}{r} 1,320 \\ 589 \\ 1118 \\ 158 \\ 249 \\ =.254 \end{array}$	$\begin{array}{r} 639 \\ 244 \\ 32 \\ 56 \\ 63 \\ 684 \end{array}$	$\begin{array}{r} 183 \\ 39 \\ 11 \\ 14 \\ 13 \\ 161 \end{array}$	$\begin{array}{r} 501 \\ 147 \\ 30 \\ 27 \\ 29 \\ 565 \end{array}$	$\begin{array}{r}4,512 \\ 1,652 \\ 251 \\ 473 \\ 599 \\ 5,897 \\ \hline\end{array}$	$\begin{array}{r}13 \\ 5 \\ 3 \\ 2 \\ 3 \\ 13 \\ \hline\end{array}$	55 23 9 10 5 99	95 43 13 18 28 167	$\begin{array}{r} 604 \\ 27 \mathrm{~S} \\ 70 \\ 82 \\ 115 \\ 1,183 \end{array}$	589 207 30 83 83 733	$\begin{array}{r}6 \\ 9 \\ 4 \\ 11 \\ 2 \\ 43 \\ \hline\end{array}$	$\begin{array}{r} 1,369 \\ 565 \\ 129 \\ 146 \\ 236 \\ 2,244 \end{array}$	$\begin{array}{r} 5,904 \\ 2.217 \\ 410 \\ 559 \\ 835 \\ 8,141 \end{array}$
Total.	68	5,200	4.678	1,718	421	1,299	13,384	45	201	364	2,332	1.665	$\%$	4.682	18.046

TABLE IV.-List of fatal accidents that occurred in and about the mines of the First Anthracite District for the year ending December 31, 1897.

Feb. 6, Mike Jedalouis,
Mar. 1, John Plowright, \qquad Laborer,
24 \qquad Johnson No. 1,
..........

Nature and Cause of Accident.

Killed by a fall of coal.
Killed by a fall of top coal.
Instantly killed by a fall of rock on a
gangway. was being amputated.
Instantly killed by falling under a trip of loaded cars on which he had ridden from his work.
Instantly killed by a fall of rock at the Struck and instantly killed by a falling boiler stack. During a high gale one of four guy ropes broke and let the stack fall just as he was passing.
Struck and killed by a car which ran away down a culm plane. The headman
stated that the car came with such speed against the head block as to cause it to pass over it and down the plane where it struek Boroski.
struck and instantly killed by flying coal from a shot which blew through a pillar.
Fatally injured by a fall of rock. Died on Fatally injured by a fall of rock. Died on he was employed had just broken into an old one near the face. The assistant ioreman, who had just come into the place, inquired of the miner if the roof at the "face was safe, to which he
replied that he had twice tried to pull it down that day but had falled, hence concluded it was safe. Shortly after this, while the laborer was shoveling coal back from the face this safe (?) piece

Mayfield, Lack., Jermyn, Lack., Scranton, Lack.,

Scranton, Lack.,

 Scranton, Lack.. Priceburg, Lack.Scranton, Lack., Peckville, Lack., Dunmore, Lack., Edgerton, Lack. Carbondale, Lack
Peckville, Lack.,
Priceburg, Lack. Peckville, Lack.,
Olyphant, Lack.,
Edgerton, Lack., Throop, Lack., ..
Peckville, Lack.,
Throop, Lack.,
Peckville, Lack., Mayfleld, Lack.,
Carbondale, Lack. Carbondale, Lack.

Scranton, Lacka. Dickson City,Lack
Peckville, Lacka.,

Mayfield, Lacka.
Edgerton, Lacka.,
Peckville, Lacka.,

Peckville, Lacka.
Throop, Lacka.,

Fatally injured by a fall of rock near Face of gangway; died shortly after. Fatally injured by a, fall of coal; died
on the following day. Fatally injured by a fall of slippy rock from the side of a new shaft; died the following night
These two men were instantly killed by a fall of rock.
Instantly killed by a runaway trlp of cars on a slope.
twelve feet by falling a distance of Fatally injured by being squeezed between the locomotive tender and truck.
Instantly killed by a fall of top coal
Instantly killed by a fall of rock
Fatally injured by a fall of rock; died in few hours.
Fatally injured by flying coal from a shot; died a few hours afterward
Instantly killed by a fall of middle rock. Instantly killed by a fall of bell rock from the roof on a gangway road.
Fatally injured by a fall of slippy rock Instantly killed by a fall of rock.
Fatally injured by a fall of rock; died
in an hour afterward.
Fatally injured by a fall of top coal and died a month later
Fatally injured by a fall of top coal
Instantiy riled by a fall of rock on a
Instantly killed by a fall of top coal.
Instantly killed by a fall of "buck" or bony coal.
These two men were instantly killed by a
fall of rock which occurred at the face of the place they were working.
Instantly killed at the face of a gangway
by a fall of roof. of gangway; died on being brought to surface.
Fatally injured by a plece of coal strikInstantly killed by a fall of top coal.
Fatally injured while riding up a plane on a trip of empty cars which jumped the track.
Instantly killed by a fall of rock at the face of his working place.
Instantly killed by a fall of bony coal.

		Name of Person.	Occupation.	4	Name of Colliery.	Locallon-County.	Nature and Cause of Acctlent.
Jan.			Drlver, Dock boss, Laborer, Mmber. kunner, Min.r. Miner. Miner, Trackman, Iatorer 1 aborer Miner,	$\begin{aligned} & 16 \\ & 33 \\ & 26 \\ & 40 \\ & 20 \\ & 20 \\ & 25 \\ & 35 \\ & 33 \\ & 46 \\ & 31 \\ & \hline \ldots . \end{aligned}$	Coal Brook, Carbondale, Lack.,		
	11,	Charles w゙.月ber, ..					
	12.	Mike Roscalski.			Pancoast	Carbondale, Lack. Dunmore. Lack. Throop, Lack.. Peckvilie. Lack., Forest City, Lack. Carbondale, Lack., Throop, Lack. Fell twp., Lack.. Edgerton, Lack., Archbald, Lack. Carbondale, Lack., Carbondale, Lack.,	Leg badly brulsed by falling under car. injured on body by coal from a blast. scalp cut by llying cual from a blast.
	${ }_{26} 6$	Willam 11.0 kins			Forest cit		
Feb.	${ }^{3}$ 6.	Thomas 1.ewls,			Coal Brook		Leg fracturid by car jumping track. Brulsed on lody by fall of rock. Badly brulsed by flying coal from a shot.
		Frank 1'erchinski.			l'ancoast,		
Mar.	25.	Gecrge Yourson.			Edgerton.		Badly brulsed by flying coal from a shot. Brulsed on back by fall of rock.
	11.	Anabula dusslee.			Raymmind,		Serfously injured by a fall of coal. Knee cap displaced by a fall of rock.
	15,						
	16.	Thomas A	Min	42	Coal Brook,	Carbondale, Lack.,	slon of a blast. Injured on head and arm by flying coal from a shot. Burned by exploston of gas.
	18.				Marvine, Marvine,		
	15:	Thiodire Harve	1)river,	17		Scranton, Lack., .	
Aprl	19,	James Letinski,	Miner,		Riverside, Blue ridge, Coal Brook,	scranton, Lack. Peckvilte, Lack., Peckville, Lack. Carbondale, Lack.	Head and shoulders injured by fall of rock. Hand hadly crushed by car passing over lt. Beth arms burned by an exploslon of pow-
		Itatrick Malla,	Runner Niner.				
	6.	Frank Smith	Driver,	16	Sterrick Creek,	Peckville, Lack., Dunmore, Lack. Forest City, Lack.	Head badly cut by being thrown against a car.
		Michael Juconirh.	Laburer.	${ }_{28}^{38}$	No. 1 Shaft,		Leg badly bruised by a car passing over it. Struck by an empty car and severely injured.
	9.	Whliam					
	12.	Willam Coztello. Sylwester Mosoleskt	Driver. Laborer.	15	Marvine, Jobnsons,	Scranton, Lack. Pricelurg, Lack.,.	Leg badly squeezed between two cars. injured on head and bods by a fall of
May	4.	Netce Quinn,	Company la	70	Eddy Creek, Richmondale,	Olyphant, Lack., .	Leg tractured liy a plece of bony coal sllding against it.
	4.	Thomas		28		Rlchmondale, Lack., Peckville, Lack.,.	Lack and shoulders injured by a fall of rock.
	5 ,	ael Dulozifsk		24	Richmondale, Riverside		Head and shoulders injured by flying coal from a sloot small th ne of leg fractured by fall of rock Thlgh hadly cut by car which jumped track.
	s.	Thomas Wooley JCsp,th Valinche	Lalurer.	$\frac{20}{16}$	Marvine,	Scrantrn, Lack. Forrst ('ity, Sus.,	

Second Anthracite District.

(LACKAWANNA COUNTY.)

Scranton, Pa., February 14, 1898.
Hon. James W. Latta, Secretary of Internal Affairs:
Sir: I have the honor of presenting my annual report as Inspector of mines of the Second anthracite district for the year ending December 31, 1897.

The total production of coal for the year was $5,985,630$ tons.
The fotal shipments of coal for the year was $5,456,556$ tons.
Of the difference between the two quantities, part was consumed at the mines for generating steam, and part sold at the mines for local consumption.

There are 609 steam boilers in use in the district which are regu larly inspected and reported according to law.

During the year, $11,5 \% 1$ persons were employed underground and 5,027 persons were employed on the surface, making a total of $16,5 \pi / 8$, which is in excess of the number employed during 1896.

Two thousand one hundred and twenty-two horses and mules are used in the mines and around the breakers.
$5,442,325$ pounds of powder and 83,463 pounds of dynamite were used during the year.

Fifty-eight fatal accidents occurred, leaving 29 wives widows and 12:3 children orphans; there were 149 non-fatal accidenis.

Two mine fires occmred during the year which resulted in the loss of eleven lives. A detailed account of each will be fonnd in table IV. Partly on account of these fires the list of fatal aceidents is higher than for 1896 , while the number of tons of coal produced per life lost and per accident is less.

The usual tables and statisties are included, together with a description of each accident; also a few general remarks.

Respectfully submitted,
H. O. PRYTHERCH,

Inspector.

TABLE A.-Showing the Production of Coal, the Number of Persons Employed by Each Company During the Year 1897, and the Average Number of Tons Produced per Employe.

Number of tons produced per each employe, $361+$.

TABLE B.-Number of Fatal Accidents and Quantity of Coal Produced per Life Lost.

TABLE C.-Number of Fatal and Non-Fatal Accidents and Tons of Coal Produced per Accident.

Names of Companies.		
Delaware, Lackawanna and Western Railroad Co	91	32,857
Austin Coal Co.,	5	8,885
Delaware and Hudson Coal Co.,	30	16,745
William T. Smith,	13	49,128
O. S. Johnson,	3	37,442
Pennsylvania Coal Co.,	9	40,346
William Connell \& Co.,	3	43,244
The Connell Coal Co., ${ }^{\text {Greenwood }}$ Coal ${ }^{\text {a }}$ (imited,	${ }_{11}^{8}$	38,925 19,309
Jermyn \& Co.,	12	21,610
Elliott. McClure \& Co.,	1	94,566
West Ridge Coal Co.,	8	15,406
E. D. \& F. M. Spencer,	7	13,790
Nay, Aug Coal Co., ${ }^{\text {Eul. }}$ He.	2	36,712
Bull's Head Coal Co.,		9,259
Columbus Colliery Co.,		57,691
Total and average,	207	28,916+

TABLE D.-Classification of Accidents.

TABLE E．－Occupations of Persons Killed and Injured．

Occupation．		空	Ė ¢ H
Miners，	25		
Laborers，．．．	14	38	52
Doorboys，．．．	2	7	9
	1	30	31
Drivers helpers，．．．．．．	1	6	7
Outside laborers，	1	4	5
Company men，inside，	10	7	17
Headmen，．．．．．．．．．．．．．．．	1	1	2
Fireboss，．．．．	1		1
Runners，．．．．	2	1	3
Slate pickers，		2	2
Sinkers，．．．．．		1	1
Totals，	58	149	207

TABLE F．－Nationality of Persons Killed and Injured．

Killed and injured．	$\begin{aligned} & \text { घु } \\ & \text { 命 } \\ & \text { E } \\ & \text { E } \end{aligned}$		妾宸	$\begin{aligned} & \frac{\frac{1}{5}}{\frac{1}{2}} \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \underset{y y}{\mid c} \end{aligned}$	$\stackrel{1}{0}$ $\stackrel{1}{0}$ \sim	$\begin{aligned} & \text { 总 } \\ & \stackrel{\text { g }}{=} \\ & \text { ت} \end{aligned}$	$\begin{aligned} & \text { 离 } \\ & \text { 咸 } \\ & \text { ن } \end{aligned}$	\％	－	号	E － E
Killed or fatally injured， lnjured，	4 19	i	21	11 33	5 8	1	6 28	5 5	1	2	1	1	58 149
Totals，	23	1	66	44	13	2	34	10	7	3	1	3	207

Other Fatalities．
During the year 1897 a number of fatalities have been reported to the mine Inspector which are not included in table 4．Among this ntamber two resulted from natural canses，white the others befel per－ sons not employed at the mines，or not actually engaged at the time． For these ratsons such fatalities lave not been tabulated，neither are they taken into arrount in calculating the number of tons mined per life lost．In most of these cases the coroner of the county con－ ducted inquiries；following is a bricf description：

Patrick Gallagher，Irish，os years of age，met his death by falling down the Manville shaft．His body was found in the smmp below No． 4 Inmmore vein at 6．4．）A．M．，April 2，by men going to their bork．He was mot engaged at any work at the time of the or－ forrence，as he was dressed in clean clothes．No person had seen him fall．The shaft was properly secured by massive verfical gates． It is erident that he fell from the top of the shaft as patrt of his shoes and clobling were found adtering fo the rlamps of the bridle chains
of the cages which were suspended in the shaft during the night. The coroner's jury returned a verdict to the effect that Gallagher fell down the shaft, but there was no evidence to show how he got there.

Martin Melvin, lrish, 73 years of age, a pump runner employed in the Meadow Brook Shaft, was found dead at his post by John Jenkins, a company man, on May 15 . The coroner's jury returned a verdict to the effect that death was due to a rupture of the aorta.

Patrick Lynn, Irish, unemployed, 19 years of age, met death by falling down Pine Brook shaft June 11, 1897. The young man was sfen around the head of the shaft some time before the occurrence. He begged some food from some boys coming from the mine. He was not employed at the mine at the time. The gates enclosing the head of the shaft were closed and locked. No one witnessed him going in. His remains were found at the bottom of the shaft. The coroner's jury returned the following verdict: "The said Patrick Lynn came to his death by falling down Pine Brook shaft, that his death was accidental, and that no blame can attach to the company."

Michael Fitzpatrick, miner, Irish, 00 years of age, leaving a wife and six children, died in the West Ridge colliery, June 12 . Fitzpatrick was working a chamber in the theee "foot" vein. He complained of pain in the stomach when the laborer and himself retired to his box. He died 15 minutes later in the presence of a number of his fellow workmen. The coroner's jury found that his death was due to hemorrhages.

William Kerrigan, water bailer, Itish, 2a years of age, was killed by falling down Von Storch shaft, August 9. His body was found at the foot of the shaft at 4.30 A. M., August 9 , hy Job Jenkins, fire boss. He was last seen alive at 1.30 A. M.. same day. At this time he wats aslecp at the foot of the eum pile some distance from the shaft. HC descended the shaft at 10 P . M., Angust 8 , for the purpose of working a shift in plare of B. Berry. His brother, Anthony Kerrigan, who is employed as a pump rumer, seeing that his brother was not in a fit condition to work, took him up the shaft and started him for home, telling him at the same time to come to work on his own shift in the morning.

Patrick Gallagher, unemployed, Irish, 14 years of age, was killed by falling off the cage and down the Momet Pleasant shaft, November 1S. Gallagher and another boy named Mangan had been looking for work in the mine. Persons not working at the mine are not allowed down the shaft. These boys descended with the workmen in the morning, and as they were dressed in their working clothes they evaded the headman. Failing to obtain work, the boys ohtained a eage to ascend the shaft. Gallagher, who was not aroustomed fo riding in a cage fell off and was instantly killed. An inguest was held.

Examination of Applicants for Mine Foreman and Assistant Mineforeman's Certificates.

The annual examination for the district was held July 21 and 22 in the Municipal building, Scranton. The board of examiners was composed of the following persons:
H. O. Prytherch, mine Inspector, Jas. Young, superintendent, P. H. Salmon and J. R. Jones, miners.

The following persons were recommended to receive mine foreman's certificates:
B. F. James, John R. James, James H. Brace, Thomas Perry, Scranton; James J. Thomas, Samuel C. Evans, Taylor, and D. F. Holleran, Pittston.

The following persons were recommended to receive assistant mine foreman's certicates:

Rudolph Lynn, John A. Morgan, Edwin Lewis, Thos. Edwards, D. J. Williams, Scranton; Wm. Bennett. Geo. Imes, Old Forge; D. J. Davies, 'Taylor, and Jolm J. Walsh, I'ittston.

Remarks.

When a property underlaid by several seams of coal is about to be developed, there are two very important considerations which determine the order in which the scams will be mined, namely the demand of the market and the economic mining of the seams as a whole. In former years the market seems to have demanded the first attenton; in later years, however, the question of mining is forcing itself prominently to the front. Owing perlaps to this fact, we find that the order in which the coal seams of this district have been worked, does not tend to make the mining of the whole the least (xpensive. Looking at the subject from the mining engineer's standpoint one is forced to admit that on this acconnt the mining of the remaining seams has also been rendered more difficult and less safe. In the early days of mining, the facilities for cleaning and preparing coal for market were of necessity of a primilive kind. Competition, howerer, was active. Owing, therefore, to these and other facts, when a coal property was about to be developed, the sections of the several boreholes were hronght forward and the quality of the several coal seams compared, and the rein which would satisfy the demand of the market, at the time, irrespective of its posifion, was selected, and in most cases was opened and mined. Little or no importance being at that time attached to the subject of mining the remaining beds.

In oher conntries where coal is being mined at depths varying from 1,200 feed to 2.400 feet, and where the long wall system of mining is in rogue, the order in which the beds are mined is not of
so great moment, for with that system, no attempt is made to support the smperincumbent strata, but on the contrary it is necessary that it shonld follow the working face and thus facilitate the cutting of the coal, and then rest on cogs and pack walls. This movement of the overlying strata does not produce fractures except where the roof is very brittle. The cavities left by the working of a seam under the conditions and by the system of mining named, are quickly filled ats the floor and roof of such mines soon meet, learing no receptacle for dangerous gases, and caving and sqeezing in after years are unknown.

Where the pillar and bord system of mining is in rogue, we are confronted by different results. Ifter the selection of the seam to be werked is made in the manner already deseribed, it is generally found that the largest and cleanest is first worked. This bed is often (as in the second antheacite district) orerlaid and underlaid by other workable beds.

When the first seam becomes exhansted the superincumbent strata is supported by pillars of coal principally, also by timbers. Another rein is then developed and mined in a similar manner. We will assume that the second rein worked is above the first one and then trace the result as the rears roll by.

While the work of mining is busily carried on in the second vein, time is doing effective work on the supporting pillars and timbers of the lower rein. The pillars are deteriorating and wearing away and the timbers are decaying. Part of the cavities are filled with fite damp or other dangerous gases and other parts are filled with water. Blasting in the upper rein also has its effect on these supports. The weekly examinations of the old workings plainly show that a collapse must some day follow. As has already been noticed, the settling of the overlying strata on the cogs and pack walls in long wall mining is gradual and few fractures are made; on the contrary in pillar and bodd workings, the supports gradually weaken when suddenly the collapse takes place. Any accumulation of gas is driven with hurricane force, possibly to rause a disastrous explosion. Safety lamps under these conditions offer but slim security.

The effects of such a settling of the roof in the lower vein, particularly when it is a thick one, is serionsty felt in the workings of the rein ahove, as the same pillars support both. The work of mining has to be suspended and the more dangerous work to the workmen, and less remunerative to the operators, namely, cogging, ete., to limit the extent of the squeeze, has to be vigorously executed, resulting invarially in a shattered condition of the colliery. After this work has been acromplished, mining in the upper vein is resumed, and usually it is found that the work has been rendered more expen-
sire to the operators and less safe to those employed. Where the lower rein had cared under the umworked portion of the upper one it has been found that instead of following its usual piteh or dip, the rein has assumed an irregular one, owing to the floor haring settled on pillats as well as where no pillats existed. Dranalage and haulage are therefore mote dillicult and expensive. As to safety, it has been noticed that the effects of the collapse are found in the shape of fratermes in tloon and roof whirh in many eases are diticult to secule.

When the second wein worked is helow the first, the effects are [Hatically the same with the additional damage from water.

In a gencral way, these ate the conditions moder which coal is being n.ined in this district.

In some instances the Diamond, Rock, Fourteen and Clark reins have bern worked out, and the surface reins above and some of the bummore reins helow are being mined foday. In of her instances the thee first named hare been exhatsted and the New 'ounty and Clark veins are being mined. In this way the combinations rhange al different collieries.

Precantions.

Where the old workings, as well as those in course of extension are the property of one company, the former are well and carefully watched hy experienced men and the employes in the latter are duly warned and withdrawn when any danger is approaching. One of the larger companies in the district, in three or four instances, is thashing eolm into the old workings, thas supporting and protecting the coal pillars.

There are some instances in the district where the old workings of exhansfod reins and the workings in conse of extension in other reins under the same property are not owned by the same company: In surlh cases the parties now operating have no aceess to tha workerl out portions and therefore no examinations can be made.

Thin Veins.

If should be stated that the surface and "Dummore" reins are thin, and the lafter gives off considerable fire damp. It is not gencrally known be persons ontside of the mining fraternity that the mining of these thin reins is acompanied by risks peralian to themselves. The surface veins have but a thin corering and this in most cases is soft, requiring eareful timbering-more so than thirker veins at some greater depths.

The Dummore veins being from 2 feet 6 inches to 3 feet 6 inches thick, reguire ronsiderahbe basting of rock for heright, weressitating the use of high explosives which were almost mannown in the larger reins.

Owing to the mixed element now employed in the mines, and after noticing during tours of inspections varions doubtfnl ways of handling and using these high explosives, I deemed it my dnty to rall the attention of the operators and superintendents to the fact and requesting them to comply with general rule 29. This was done by cirular. In reply word was received to the effect that the manufacturers of the high explosives nsed in the district, do not furnish special rules such as are referred to in general rule $2!$ of the mine laws.
bess room is also provided in these veins, so that the risk of accidents from moving cars is greater. It is also more than probable that accidents from explosions of gas will also increase when a large number of mines are working these veins exclusively.

It will be realized from the foregoing that the conditions whirh surround the underground worker are constantly changing and growing more dangerous, as one bed becomes exhansted and another is developed.

During the last few years a number of the most experienced miners have been replated by men less qualified.

If the conditions remained comparatively stationary it is more than probable that a more favorable comparison with old time mining statistics wonld be shown, as the result of the enaction of bettee mining laws and their enforcement.

It has been well established that as long as men are employed in mines, just so long will accidents continue to occur. The history of the coal mining industry of every comntry is made up largely of accidents, and the brighest talent has not been able to discover the means wherely they may be reduced from year to year. It has eccurred to the writer that while everything is being done looking to reducing the number of these fatalities, something material could be accomplished towards lessening the suffering of the injured miner. Possibly some of the accidents which occur in the mines terminate fatally for the want of better care of the injured. There is no fant to find with the ambulances and the attention paid to the unfortunate by his fellow workers and the mine officials. If these persons were better versed in the administration of help, it would be all that could be desired. All the mines of the district are so located that a physician can reach one in a short time, and the hospitals are not far distant. Sitll a man injured in a distant part of a mine minst snffur from loss of blood, and his injuries be aggravated bỵ carrying hefore a doctor can attend him. If a momber of the employes of each mine had sufficient skill to haudage so as to prevent loss of blood, and to afford the most comfort available uader the circumstances while the injured person is being taken ont, it is
more than probable that fewer accidents would terminate fatally, and the victims of those of a less serions nature would also reap great benefit.

There are more ways than one whereby the necessary knowledge could be imparted to a number of the employes of each colliery.

Barrier Pillars.

Before the enaction of the mine law of 1891 little attention was faid to barrier pillars, and as a consequence there are but few mines ia the district which are enclosed by a substantial pillar capable of withstanding the pressure caused by a large body of water. In fact the greater number of snch bartier pillars as were left had been pierced. Should a fire take place in one of these collieries, such as would necessitate the flooding of the mine, it would under the circamstances be difficult to accomplish withont affecting a number of the neighboring mines.

It must also be admitted that there is another view which is more encouraging, namely in cases where the workmen are cut off from the shafts by a fire or cave, these connections would offer a way of escape. The fact that the mine law now in force provides for substantial pillars to be left conjointly by the adjoining companies, can not possibly be expected to supply the deficiency.

Bodies of Water in Old Workings.

It should also be noticed that bodies of water had accumulated in parts of abandoned mines before duplicate surveys of the same were required by law, and as a result, we have to-day to contend with bodies of water, the exact location and position of which are not correctly known. In some cases these rest against boundary lines.

As an extra precaution against accidents from this source I issued a circular to the operators and superintendents of the district, requesting their aftention to art. III, section 9, mine law of 1891, which offers them acress to the maps which are in the possession of the mine Inspector.

Mine Fires.

Generally speaking mine fires originate from one of two causes. namely the ignition of gas blowers by blasting or otherwise, or the careless use of naked lights in the presence of combustible bmildings, such as shanties, engine honses, mule barns, pump rooms, bratices, as well as in breakers situated over or near shafts or other openings conecting the surface with the workings. In writing of mine fires I have no hesitation in stating that in this connection in praticular "an onnee of prevention is better than a ton of
eure." It has sometimes been recommended as a preventative that a fire hoss should be employed on the night shift whose duties should consist of visiting the working places after the day shift had left the mine, to ascertain if the places are clear of fire. He should also visit all shanties, barns, engine houses and phmp rooms. Even this precaution in some cases in the past has proven ineffective.

With regard to fighting mine fires, those originating from ignited blowers have to be dealt with according to the conditions under which tibey are found. A line of water pipes with proper connections should be carried into all places where danger can arise. These should also be frequently tried to prove their efficiency. Discarding the damgers which arise from the presence of fire damp near mine fires, it is safe to state that when it becomes necessary to reverse the direction of the air current near the location of the fire, it has been proved highly dangerous to enter into the new intake for some time after the change has gone into effect, when the fire is located at some distance from the fan.

With regard to fires originating from the second source, namely the careless use of naked lights in shanties, etc., it is recommended that such shanties, as far as possible, be replaced by others built of incombustible materials, thus reducing the risk to a minimum. Breakeis situated over or near shaft or other openings, engine houses, fan houses, etc., on the surface, and mule barns and pump rooms underground will be sources of danger while they exist. It is particularly recommended that a definite plan to cope with fires originating in either of these structures be carefully outlined by the superintendent and mine foreman of each mine, and the result commonicated to the fire bosses, driver bosses, cete., with clear instructions how to act. These instructions should have reference to the ventilating fan, the manipulation of existing doors, and such other doors as are erected for use in such emergencies; also the notification of the em1'oyes as to the escape way to be used under such circumstances. It is also recommended that such instructions be put in practice occasionally to prove their efficiericy and acquaint those held responsible with their execution.

It must be evident to every reader that a more successful way of fighting a fire can be planned at leisure, than at a time when the conflagration is at its height, with many lives in the mine endangered at the time. The mine officials of the Second anthracite district are particularly requested to adopt these recommendations without delay as means tending to save lives and protect property.

Ventilation.

The mines are maintained in a heallhfol condition, being as a bule well ventilated. The only exceptions found are where the shatlow surface reins are being worked, and no fire damp has been found.

I commendable effort is being made to improve the rentilation of these, and before this report is published it is proposed to complete the improrements so that no distinction in this respect need hereafter be made.

Gireat care has been exercised during the year with the roof of all main and traveling roads. Accidents have occurred, thus showing that that part of the mine law which provides for their daily examination has been faithfully performed.

Falls of roof and coal are, howerer, responsible for the greater namber of accidents, both fatal and non-fatal, as 2.5 fatal and 54 non-fatal are attributed to these somrees. These occurred at the face of working places where the conditions change more or less with each blast. By referring to tables IV and V, where these accideuts are described in detail, it will be seen that a great similarity exists. It will also be seen that the description of one will apply to a number. The suggestions which have been repeatedly made after itivestigations are, that more care be taken in making the examination of the face after every blast, and in the work of restanding props which have been dislodged by tlying coal. It has also been found that a custom prevails among miners when a piece of doubtful roof is discovered that an attempt is immediately made to pull it down. Should the roof withstand this attempt the miner conclndes that it is safe to work under. when suddenly it drops. Many accidents have resulted from this canse. The remedy is evident.

Cars luside.
Next in point of number to accidents resulting from falls of roof and coal come those from cars inside. During this year these have been placed prominently before those in charge of the mines with a request that every effort be exerted to reduce them as far as possible. In the mines, boys are employed for the most part to do driving work and lande cars, and some difliculty mast be expected in the work of impressing upon them the necessity of exercising great care.

Explosions of Blasts and Careless Use of Powder.
Accidents resulting from explosions of blasts and the careless use of powder oceur in various ways. While the miners as a rule are areful in complying with the provisions of the mine latw with regari to giving the necessary alarms before each blast, it has been found during the war 18.97 that in a mumber of eases, after reaching at plate of safefy the miner grows impatient untess the bast explodes on what he considers strict time and he is very apt to take it for granted that he squib has "missed" and while he is on his way to the face to relight it. the explosion takes place, pesulting in a very serious or fatal arcident.

In two or three instances it has been noticed that while miners were in a place of safety, fearing a "miss" owing in some calses to wet holes, they modertook to remain at the month of the eross-cnt with their heads extended towards the rhamber in order to listen to the stuib, the flying coal from the bast striking them with fatal results while in that position.

In drilling holes in some of the smaller mines, streaks of suphur are eneontered, and becanse these are harder than the coal, a confraction of the hole takes place, and often the hole becomes erooked. Ibfficulty is therefore experienced in inserting the powder cartridge, and the men in some instances have been tempted to resort to violent means to forer it, catusing a prematme explosion, the investigations of a momber of these aceidents admitting of no other solution. Suitable suggestions have been made by the Inspector in eath and every case.

Five non-fatal accidents have occurred owing to the carcless handling of powder near naked lights. These are violations of law.

> Explosions of (ias.

In such mines as evolve explosive gases in dangerous quantities, definite rules and methods of handling the same are framed and rigidly enforced. When the quantity evolved is small, even when the birometer is low, less attention is paid to rules and methods. The same fact is illustrated in the mining of coal from the solid and in the robbing of pillars. Statistics show that fewer accidents result from falls where the latter work is performed, although it must be admitted that it is far more dangerons than the former. The only explanation which can be offered is that the persons employed at the latter work are ever on the alert, while the former, owing to a false sense of security, grow somewhat indifferent. Where accidents have occurred from this source during the year, practical suggestions have been made to those in charge, alter a searehing investigation into the cause of the accident, fogether with the rules in vogue. Simeh suggestions tend to insure greater salety in the future.

Accidents from Other Sources.

Aecidents resulting from sources which have not already been embmerated in this report, such as falling down shafts, breaker machinery, cats outside, sinking, ete., ete.. fortunately have not been mumerous.

Maps, Reports, Etc.
The maps of the sereral mines in the district have heen deposited in the oftice of the Inspector and are extended from time to time and returned as required by law.

The monthly air reports are also received from the mine foremen before the 12th of the month for the preceding month. Reports of all accidents are promptly forwarded and the same may be said of the reports of boiler inspections.

Article XIV', section 1, reads in part: "Notices of deaths or serious injuries resulting from accidents in or abont mines or collieries shall be made in writing to the Inspector of mines," ete.

Many of the non-fatal accidents described in table V are such as camot be considered serious and therefore should not have been reported.

Table A shows that there are 16,578 persons employed in and about the mines of the district in various capacities, inchang mine foremen and outside foremen. It is not surprising that some of these employes should be found in the act of risking their lives by practices which cannot be justified by law or circumstances. Some mineli: have been found in the act of preparing powder with their lighted lamps on their caps. Some of the mine foremen could add to their cwn usefulness by cultivating a better system and exercising greater discipline in the discharge of their duties. By calling attention to a few who are lacking in judgment it is not intended that the remarks concerning the careless miner and indifferent foreman should aply but to a limited number.

Copies of the mine Inspector's reports, if liberally distributed, Fould tend to show the underground worker the conditions under which accidents have occurred in the past, thus directing his attention and observation.

Mining Operations Discontinued.

During the year mining operations have been discontinued at one shaft only in this district, namely the Delaware and Itudson Canal Company's Von Storch shaft. At this shaft the "Clark" rein was being worked. but owing to danger threatening from a squee\%e it was mutnally agreed between the mine Inspector and the company's officials that it was unsafe to continue the operations.

On June 12. 1897, I visited the mine to examine a squeeze on part of MrDonough's road. Its effects were visible for a distance ex(ending some 300 feet, but no imminent danger was antieipated from the indications surrounding it at the time. So it was decided that a carefnl and experienced man be delegated to watels it while it was being secured by timbering and to give the alarm in case of strions indications appearing.

On Augus 20, 1S97, I revisited the squee\%e in response to a report, and found that it had made considerable progress since Jume 12. It was plain to be seen at this time, that the trouble originated in old workings io the right, and also that timbering was not successful in arresting it. Owing, therefore, to the more serions indications
how risible, coupled with the fact that McDonough's road was used for hauling purposes and therefore a number of men and boys were constantly passing, it was decided to suggest to the company's oflicials that work along the road be discontinned, owing to the dangers already described. The oflicials took immediate steps to act on the suggestion. Their promp action under the circumstances is worthy of commendation.

The remaining coal will be worked from the same company's adjoining colliery, the Leggitts Creek, in the First inspection district, and prepared for market at the breaker.

The Von Storch shaft will in the future as in the past, be used as the steond opening to the Von Storeh slope workings, and as a pumping station.

Lawrence Breaker.
During the latter part of 1897 the Connell Coal Company discontinned operating its Lawrence breaker. The mining operations will be continued as in the past, with some material changes in the transfritation, and preparation of the coal. Instead of hoisting the coal mined in the Lawrence colliery to the breaker of the same name, it will in future be run through to the same company's "William A." colliery and then hoisted to and prepared at that breaker. The coal mined in the Lawrence drifts will be lowered throngh the Lawrence shaft and handled and prepared in the manner already described.

Bull's Head Colliery.

During the year 1897 one operation only has been re-started, namely the Bull's Head colliery, in the Second ward, Scranton city. The Rock vein is being worked in this mine. The company is also engaged in opening a small surface vein from a higher level on the slope. Some years ago this mine was owned and operated by the Providence Coal Company. The colliery does not promise to become rery extensive.

Improvements During 1897.

The improvements for the year 1897 are such as the description given in some of the reports already printed would apply. They consist princifally of various comnections made cither by sinking shafis of small depths from one vein to another, or tunnel or plane connections for the purpose of ventilation, or the development of parts of properties. In short, the improvements may be described as such as become necessary from year to year in order to keep up the out-
put, and maintain adequate rentilation. By this means, also, the number of escape ways from some of the mines has been increased.

It should be noted in this connection that some of the operators are replacing their old eylinder boilers by others from which better results are expected.

Improvements are being continnally introduced into the breakers to facilitate the preparation of coal for the market.

TABLE I.-Showing Location, etc., of Collieries in the Second An thracite District.

Name of Colliery.	Name of Operator.	Location-County.	Name of Superintendent.	Postoffice Address.
Jermyn No. 1,	Jermyn \& Co.,	Lackawanna, .	J. J. Jermyn,	Scranton.
Jermyn No. ${ }_{\text {Jormyn }}$ No. 3,	Jermyn \& Co.,	Lackawanna, .		
Sibley,	Fllict McClure \& Co.	Lackawanna,	Jas. C. McClure,	Scranton.
West Ridge,	West Ridge Coal Co.	Lackawanna,	E. A. Clark,	Scranton.
Spencer,	1. D. \& F. M. Spen	Lackawanna,	A. D. \& T, M. Spencer	Dunmore.
Nay Aug, ${ }_{\text {Bulls Head, }}$	Finy Aug Coal Co...	Lackawanna,	J. D. Caryl,	Scranton.
Spring Brook	Fpring Brook Coal Co.,	Lackawanna,	Chas. P. Ford,	Marshwood.
Columbus Colllery Co.,	Columbus Colliery Co.,	Lackawanna,	C. M. Can,	Scranton.

TABLE NO. 2.-Gives the Total Number of Tons of Coal Mined in each Colliery, Number of Days Worked, Number of Employes, Number of Persons Killed and Injured, Number of Kegs of Pow der used, etc., in the Second Anthracite District for the Year ending December 31, 1897.

TABLE NO．2．－Continued．

Namen of Collieries．	Location－County	\div $\stackrel{\text { n }}{0}$ E 든 0 $\frac{0}{2}$ 0 ज़ंढ										＇ssa！！oq meats jo raquins	Number of horses and mules．	
Capouse，${ }_{\text {Pine }}$ Brook，	Lackawanna，	$\begin{aligned} & 219.0 f 9.0 \\ & 190.195 .0 \end{aligned}$	5，000	2,914 20,860	211,155 169,335	$\begin{aligned} & 193.7 \\ & 182.5 \end{aligned}$	$\begin{aligned} & 606 \\ & 662 \end{aligned}$	2	4	$\begin{array}{r} 8,559 \\ 13,924 \end{array}$	$\begin{array}{r} 2.770 \\ 9,000 \end{array}$	3 5	83 65	1
Total，		409，264．0	5.000	23，774	350，490	188.1	1，268	2	11	22，783	11，770	8	148	1
Mount Pleasant，	Lackawanna，	196，512．0	．．．．．．．．．．．．．	45，285	151，227	166.5	516	1	3	7.304	150	15	42	2
Green Ridge Slope，	Lackawanna，	112326.0	．．．．．．．．．．．．．	6，100	106，226	14 S .2	502	1	2	6，704	2，400	21	55	1
No． 5 Pennsylvania Coal Co．	Lackawanna，．	121，562．0	3.105	．．．．．．．．．．．．．	118，457	147.2	369		1	5，25S	1，370	3	35	
Old Forge Breaker，	Lackawanna，	$241,554.0$	6.238		．．．．．． $23 \mathrm{~J}, 316$	${ }^{\text {＊}} 151.0$	59.4	1	7	8，331	6，494	10	55	2
Total，		363.116 .0	9，343	．．．．．．．．．．．．．	353,773	149.1	963	1	8	13，589	7．864	19	90	2
National． Meadow 1rook Shaft． Meaduw brook Tunnel，	Lackawanna． Lackawanna， Lackawanna，	129.734 .0	10，976	11，148	107，610	163.1	473	\ldots	3	7.634	4，500	24	69	2
＂William A．＂，．． Lawrence．	Lackawanna， Lackawanna，	$\begin{array}{r} 218,623.0 \\ 92,781.0 \end{array}$	6,000 4,000	5，866	$\begin{array}{r} 206,757 \\ 88.781 \end{array}$	135.9 127.7	$\begin{aligned} & 604 \\ & 230 \end{aligned}$	4 1	3	$\begin{aligned} & 6.655 \\ & 4,000 \end{aligned}$	$\begin{aligned} & 2.000 \\ & 2.500 \end{aligned}$	$\begin{array}{r} 19 \\ \hline \end{array}$	$\begin{aligned} & 36 \\ & 19 \end{aligned}$	．．．．．．．．
Total，		311.404 .0	10.000	5.866	295.538	131.8	S34	5	3	10.655	4，500	25	55	．．
Greenwood No． 1.	Lackawanna，	144，10S．1	12，000	2.166	129，912	119.7	525	2	6	7.241	3.500	16	83	1

Greenwood No. 2,	Lackawanna,	68,286.2	4,060		64,286	1 (3.8	273	1	2	3,681	4.700	9	42
Total,		212,394.3	16,000	2,166	194,228	111.7	798	3	8	10,922	8,200	25	125
Jermyn No. 1, ${ }_{\text {Jermy }}$ No. ${ }^{\text {J, }}$,	Lackawanna,	$167,501.1$ $91,824.1$	10,200	2,471	154,830 91,824	141.5 66.2	$\begin{aligned} & 564 \\ & 564 \end{aligned}$	6	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	7,415 3,494	350 950	20 15	55 38	1
Total,		259.325 .2	10,200	2,471	246,654	103.8	1,071	6	6	10,909	1,8C0	35	93	1
Sibley,	Lackawanna,	94,566.0	7,300	1.411	85,855	167.3	392	\ldots	1	4,786	650	11	37	
West Ridge,	Lackawanna,	123,216.0		123,246	115.9	383	8	7,004	5.673	5	44
Spencer's Shaft,	Lackawanna,	96,523.0	3.500	6,886	86,147	103.4	221	2	5	3.375	425	11	32
Nay Aug Slope,	Lackawanna,	73,424.0	2,000		71.424	143.2	151	1	1	1,869	208	2	16
Bulls Head Colllery,	Lackawanna,	9,259.0	370	631	8,258	63.0	72	501	2	13
Columbus Colliery Co.,	Lackawanna,	57.691 .0		31,249	26,442	191.0	25						
Spring Brook, ${ }^{*}$	Lackawanna,													
Total,		5,985,630.0	276,019	248,248	5,456,556		16,578	58	149	442.325	83,463	609	2,122	28

Not in operation. + See D., L. \& W. R. R. Co.
\ddagger Pounds.

- A gang of mechanics varying in number is also employed inside and outside the mines.

Capouse, Pine Brock,	2	$\frac{2}{3}$	$\begin{aligned} & 148 \\ & 122 \end{aligned}$	$\begin{aligned} & 137 \\ & 126 \end{aligned}$	71 $5 i$	23 37	$\begin{array}{r} 48 \\ 152 \end{array}$	$\begin{aligned} & 431 \\ & 496 \end{aligned}$	1	8	8	$\begin{aligned} & 118 \\ & 113 \end{aligned}$	39 35	$\stackrel{2}{2}$	175 166	606 662
Total,	4	5	270	263	125	60	200	927	2	15	15	231	74	4	341	1,268
Mount Pleasant,	2	2	112	118	47	26	27	334	1	5	6	115	50	5	182	516
Green Ridge Slope,	1	2	130	130	65	15	26	369	1	6	9	75	42	...	133	502
	$\frac{1}{2}$	$\frac{2}{3}$	112	92 173	38 57	8 15	19 27	$\begin{aligned} & 272 \\ & 449 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2 4	$\begin{array}{r} 8 \\ 14 \end{array}$	$\begin{aligned} & 65 \\ & 79 \end{aligned}$	20 46	1	97 145	369 594
Total,	5	5	284	265	95	23	46	721	2	6	22	144	66	2	242	963
National, Meadow Brook, Neadow Brook Tunnel.	1	1 1	46 20 603	$\begin{aligned} & 27 \\ & 12 \\ & 45 \end{aligned}$	20 10 18	$\begin{gathered} 3 \\ \dddot{3} \end{gathered}$	17 11 3	121 53 133	1	6	11	95	51	2	166	473
Total,	2	2	129	84	48	6	31	307	1	6	11	95	51	2	166	473
"Willlam A."	1	1	205	150	60	12	29	458	1	7	10	65	60	3	146	604
Lawrence Shait,	1	.	19 30	10 3	6 5	1 1	12	48 43	1	4	8	48	25		86	230
Lower Drift,			40	5	4	1	3	53								
Total,	2	1	294	168	35	15	47	602	2	11	18	113	85	3	232	834
Greenwood No. 1, Greenwood No. 2 ,	$\frac{2}{1}$	2 1	137 74	135 79	39 20	34 13	14	372 202	1	9 4	10 6	65 26	66 33	2	153 71	525 273
Total,	3	3	211	214	59	47	37	574	2	13	16	91	99	3	224	798
Jermyn No. 1, Jermyn No. 2,	1	${ }_{2}^{2}$	135 146	115 115	49 64	10 11	38 32	350 371	1	5	10 6	138 80	55 40	5 5	214 136	564 507
Total,	2	4	281	230	113	21	70	721	2	9	16	218	95	10	350	1,071
Sibley,	1		78	72	43	6	22	222	1	4	5	115	42	3	170	392
West Ridge,	1	3	91	97	37	12	47	28s	1	5	7	54	27	1	95	383
Spencer,	2		39	39	34	5	20	139	2	6	6	25	40	3	\$2	221
Nay Aug Slope,	1		35	35	20	3	7	101	1	3	4	12	28	2	50	151

＇26st supanp uopredodo us 10．．．

TABLE No. 4.-List of Fatal Accidents that Occurred in and about the Mines of the Second Anthracite District, for the Year ending December 31, 1897.
\qquad

		Name of Person.	Occupation.	$\stackrel{4}{4}$			Name of Colliery.	Location-County.	Nature and Cause of Accident.
tan.	12,	John McHale. Richard Edwards.	Miner. Miner.	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	${ }_{1}^{1}$		Capouse, Bellevue thaft.	Lackawanna. Lackawanna,	Instantly killed by fall of coal. Fatally injured by premature blast: died January 26 th. He had prepared a blast in the usual way and upon igniting the squib the explosion took place before he had reached a place of safety.
	16.	Antone lif truzzi.	Laborer, Miner, \qquad	28	11	1	Spencer's Shaft,	Lackawanna,	Instantly killed by a fall of rock in face of chamber where extra precautions had heen taken to secure the roof.
	16.	atichael Rvan,		36		6	Archbald,	Lackawanna,	Fatally injured by a fall of rock in face of chamber. He had fired a blast and had neglect 6 d to examine the roof thereafter. A slab fell on him. Died Moses Taylor Hospltal January 19th. Fatally injured by cars. Whlle unhitching a trip of cars his leg was severely injured between the bumpers of the cars. Died January 29th.
	27.	David Thomas.	Runner.	15			Continental,	Lackawanna,	
Feb.	$\stackrel{29}{1 .}$	Albert Wale.	Laborer. Door boy.	$\begin{aligned} & 23 \\ & 16 \end{aligned}$	…		Greenwood No. 2 Dlamond Drift,	Lackawanna, Lackawanna, \qquad	Instantly killed by a premature blast. Wale had left his door. In another part the mine he met a trip of cars. He became confused and in endeavoring to and the rib and instantly killed.
	3,	Martin Naton,	Miner.	36			Mount Pleasant,	Lackawanna,	Fatally injured by fall of top coal caused by excessive undermining and no props. He died in Lackawanna Hospital March 10. 1897.
	6.	J. ${ }_{\text {s ph }}$ (iravitz,	Laborer,	32		${ }^{1}$	Austin Tunnel.	Lackawanna, ...	Killed by fall of rock in extension to slope. Upon investigation it was learned that the miney ined the roof a few minutes before the accident and pronounced it safe.
	G,	Thes. E. Whlliams.	Miner.			6	Taylor Shaft, .	Lackawanca,	While mining coal from the bottom bench after a shot a plece of the top bencte fell. instantly kitling him.

饣

Rendharm Pa_{a}

Aug.Mllchael Nealon IIIllam selbert \qquad Miner
Labor

John Mcllale,
Miner
Alfonso Baldo
Miner.

Martin Mlliar,
Laborer,

Laborer.
Salvatore Vennango,
Salvatore Vennango, .. \qquad 24

Sept

18,
24,
2 Spencer
Joseph smith,

```
John Gallagher
John Gallagher
    Wm. Frankland
    Wm. Frankland
    Wm. Tompkins,
    Wm. Tompkins,
.

J Company man, Company man,


\section*{Lackawanna} Lackawanna

Lackawanna
Lackawanna,
Lackawanna

Killed by fall of rock.
Fatally injured by a fall of roof; taken to the Lackawanna Hospital in the few minutes later Fatally injured by a fall of rock; died in
a few hours.
Fatally injured by fall of roof; died in the Lackawanna Hospital a few hours While loading a car a bell shaped rock While loading a car a bell shaped rock
fllightly injuring his back. He was taken to the Lackawanna Hospital, other complications set in from which he died
Lackawanna,

on December 14 .
instantly killed by fall of roof.
Fire boss 1saac Watkins, while making his morning examination of the workings of the middle vein, Jermyn No. 1 mine, discovered a fire in a chamber known as Apple's, off Davies' old airway on the morning of September 21. Mining was suspended in that section of the colliery and every energy directed towards exfrom an ignited blower having been left burning at quitting time the previous day, and this in a short time communicated fire to the gob. A line of water plpes was immediately laid and propcommenced with the air current flowing in its usual direction. shown by black arrows on tracing. As the work progressed from cross-cut A towards cross-cut \(B\) it was discovered that the location of the fire was nearer to crosscut \(B\) than to cross-cut A. The fire had quantities, and as this had to be loaded out and the place securely timbered, it was decided by the mine officials, after a consultation, to change the direction of the current and reach the location of
the fire with the view of quenching it, and so reduce the heat and smoke. that the work of loading the debris would be facilitated. The current was consequently changed on 2sth September, about two o'clock, Mine Foreman Johns being in charge of the work. The diret -
tion of the currents after the change is shown by red arrows on tracing. Sometime later Mine Foreman Johns and Fire Boss Watkins having found that
the current was working successfully in the new direction, decided to go in with the new intake to the location of the fire. This they did and found t concluded that it would be safe for the shift to go in and commence work from that end. Isaac Watkins, the fire boss. had charge of this shift, consisting of John Gallagher, Wm. Frankland, Tompkins and Joseph Smith. About 3.30 rangements with the other men to brlng 1 iron rails later. At 5.10 P . Mr. Geo. Shrives, Al. Whyte Thos. Curley and John Conway were back at the door marked \(D\) on the plan, with the rails on a truck. This door they found closed they arrived. n body of Tompkins at the point shown land. Smith, and the bodies of Franknslde, as shown Gallagher some distance In the day Fire Boss Watkins' body was recovered from a point near the location inquest which followed, it was shown that the air current from \(D\) around the ocation of the fire was intact beyond a doubt, with no possible way by which it could reach the return, except by way of the flre. All doors. brattices and running at its usual speed. The coroner of the county, assisted by the mine inspector held an inquest over the remains of Isaac Watkins and the others October able evidence was submitted. The fury
7. William Fitzhenry,

18, Patrick Lynn,
30, Thomas Hill,
John Farrell,
John McLonneil, Thomas Padden
John Moran,

Headman,
Laborer
Laborer,

Miner,
Collerman
Water bailer.
Water bailer.
Water bailer .... Water baller,
Driver,
\(\qquad\) 39
45

\section*{Lackawanna}

Lackawanna, .......
Lackawanna

\section*{Lackawanna} Lackawanna Lackawanna Lackawanna, Lackawanna Lickawanna
returned the following verdict: "We, the undersigned jurors, find after hearing the evidence submitted, that the said isauses unknown, retreated to the bad air current and met death as the result of breathing sulphurous gases. We further tind that no blame can be attached to Isaac Watkins nor the other officlals. R. Willis Reese, E. D. Owen,
T. P. Cosgrove, F. Cosgrove, J. Nicholls and Wm. Monroe, Instantly kiiled by failing down main shaft.
Fatally injured by a fall of rock; dled Fatally injured by
Fatally injured while riding on cars inFatally injured while riding on cars in-
side after being requested not to do so; side after being re
died shortly after.
Fatally injured by flying coal from blast: died some hours later.
A fire was discovered in the Von Storch Slope about midnight, October 29. This slope crosses the measures and intersects the Diamond, Rock and Fourteen "Foot" cars are run off on what is known as the light bridge. Some distance below this on the slope there are two pump rooms. One is known as the Diamond pump and the other the Fourteen Foot vein pump. On the night in question engaged in looking after these pumps. At 12.40 he smelled smoke. After accertaining the pump rooms to be safe, he started up the slope to locate the fire. He found the light bridge enveloped in smoke; he could also hear the roof reach the section of the mine known as the New Diamond workings by way of the rock vein lieading, but was prevented from doing so by smoke. He knew the water boilers were in that part mine through the second opening shaft, to give the alarm and to notify the company's officials. The fire companies were soon on the ground, but were unable to do effective work for some time, as the dense smoke prevented them from reaching the location of the fre. The mine the men by all available avenues from the second shaft, but were cut off by
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & Name of Person. & Occupation. & & 安 & 先 & Name of Colliery. & Location-County. & Nature and Cause of Accident. \\
\hline & . & & - & & & & & smoke. Finding it was impossible to reach the men they manlpulated doors so as to carry the bulk of the smoke away from the imprisoned men, and after doing so directed thelr attention to the slope which, on account of the heat from the fire, together with the contraction of the air passage owing to falls, was upcasting and thus keeping the fire companies from working. At about 7 o'clock on the morning of October 30 , the smoke abated and in a few hours the fire was well under control. At \(9 \mathrm{P} . \mathrm{M}\). a rescuing party reached the New Diamond workings and there found Joseph Yankoskie ailve. He Informed them that all the other men were dead. Yankoskle, together with notes left by other members of the party, testify that they were all allive at 11.30 A . M., October 30 . They had become discouraged and determined to make one final attempt to reach the Four "Foot" veln along a rock plane connecting the two veins. At about 11.30 they all started through the thick smoke up the plane. Yankoskle, who was leading the way up the plane, heard his companions saying "good-bye," decided to heat a hasty retreat. In the course of some time he reached the dip chambers, and there. with two mules, he remained until rescued. The bodies of Hill, Farrell, McDonnell, Padden, Walsh and Moran were found by the rescuers as told by Yankoskie. at or near the foot of the plane. Had the men, or even one of the number been acquainted with the current in that section of the mine, or had they \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Andrew Nelson, \\
Peter Solekira,
\end{tabular} & \begin{tabular}{l}
Aliner. \\
Miner.
\end{tabular} \\
\hline John McTlernan, & Miner, \\
\hline Joseph Theobald, & Door boy, \\
\hline Mike Kinka, & Laborer, \\
\hline Patrick Schofleld, & Miner, \\
\hline Thomas Lydon, & Miner, ............... \\
\hline Jesse Goodman, & Laborer, \\
\hline John Coyne, & Miner, \\
\hline John Malla, & Miner. \\
\hline
\end{tabular}
known the use of the several doors, they could have done more to save themselves by the manipulation of the sam than it was possible for the mine officials time and under the circumstances. Had any one of them possessed tha knowledge he falled to turn it to good account at the critical time. It is further demonstrated had they remained survived. At the inquest which was held in the Lackawanna county court house, Scranton, November 5th and 6th,
voluminous evidence was submitted by men and boys who had passed up the slope at various times on the night of october that no smoke was noticeable at the location of the light bridge when they passed that spot. Evidence was also submitted to show that no stove was in use at that point, neither did any teaximity to the in cont verdict was rendered: we, the undersigned, find that Thomas Hill and others came to their death by suffocation due to a fire in the Von Storch Slope, the rigin of which is to us unknown. but we belleve it to be of incendiary origin We further believe that the Delaware and Hudson Company did everythins in its power to save the men and subdue the flames after they were discovred. John D. Keator, Robert M. Courtsenh F. Bausch, Patrick Cusick
Fatally injured by fall of roof.
Fatally injured by fall of top coal: died in Pittston at 10 A . M.. November 5 Fatally injured by fall of roof: he was taken to Moses Tay killed by cars inside.
instantly killed by fall of roof.
killed by flying coal from blast,
Fatally injured by fall of roof from which he died the following day.
Killed by fall of rock.
killed by fall of roof
Fatally burned by explosion of gas: died rom the effects January, 1898, in Mose Taylor Hospital.



TABLE No. 5.-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  & & Name of Person. & Occupation. & \(\underset{4}{8}\) & Name of Colliery. & Location-County. & Nature and Cause of Accident. \\
\hline \multirow[t]{7}{*}{May} & 7. & Robert Tool, & Headman, inside.. & 19 & West Ridge, .. & Lackawanna, ...... & Was riding on the front end of a loaded trip, when he fell, two cars passing over him, fracturing his leg and collar bone and otherwise bruising him \\
\hline & 10. & Thomas Cawley, & Miner. & 49 & Capouse, & Lackawanna, ...... & Slightly burned about face and hands, the result of handling powder in \(a\) careless manner. \\
\hline & 15,
15
15 & Reese Evans, Alex. Shunka, & \begin{tabular}{l}
Miner, \\
Lahorer,
\end{tabular} & 34
27
17 & Greenwood No. \({ }_{\text {Gren }}\) Greenwood & \begin{tabular}{l}
Lackawanna, .... \\
Lackawanna, .....
\end{tabular} & Slightly burned by handling powder in a careless manner. \\
\hline & 18, & John Caffery, ... & Driver, & 17 & Plne Brook, .... & Lackawanna, & Leg fractured above the ankle by a deralled car. \\
\hline & 18, & Martin Holleran, Fred W'hite, ...... & \begin{tabular}{l}
Miner, \\
Miner.
\end{tabular} & 24
26 & Greenwood No. 1 , Cayuga. & Lackawanna. ....... Lackawanna, ....... & \begin{tabular}{l}
Back injured by fall of roof. \\
A piece of the top bench fell, Injuring his
\end{tabular} \\
\hline & 21, & James Sheridan. & Driver, & 17 & Oxford, & Lackawanna, & \begin{tabular}{l}
arm and hip. \\
Injured: kicked by a mule.
\end{tabular} \\
\hline & 31, & Thomas R. James, Henrs Hogan, .... & Timberman, Laborer. & 25 & Dodge, Dodge. & \begin{tabular}{l}
Lackawanna, ..... \\
Lackawanna, ....
\end{tabular} & They ignited some gas which had accumulated and were severely burned. \\
\hline \multirow[t]{8}{*}{June} & 2, & John Humlo, ... & Miner, & 54 & Austin, & Lackawanna, ....... & Bruised about the hip and legs by a fall of rock. \\
\hline & 7. & Martin Salmon, & Miner,............ & 56 & Sloan and Central, & Lackawanna, ...... & Head injured and two ribs fractured by flying coal from premature blast. \\
\hline & 10, & Joseph Walters, & Miner, .............. & 54 & Mount Pleasant, & Lackawanna, ...... & A piece of the top coal fell on him, fracturing his leg below the knee and injuring him about the back and ribs. \\
\hline & 11, & Edward David, & Driver's helper. .. & 16 & Taylor Shaft, & Lackawanna, ...... & The boy's lug was caught between the bumper of the second and the body of the first car, fracturing it below the knee. \\
\hline & 14. & Geo. Richards, & Miner, \(\qquad\) & 37 & Tripp Slope, & Lackawanna, ...... & A plece of fire clay fell on him, fracturing his leg and cutting his head. \\
\hline & 15. & Thomas Laird, & Miner, .............. & 43 & Dickson, & Lackawanna, & Slightly injured on the head, hands and face by flying coals from blast. \\
\hline & 15. & Thomas Nee, & Door boy, .......... & 15 & Greenwood No. 1. & Lackawanna, ...... & Car struck him, bruising the calf of his leg. \\
\hline & \[
\begin{aligned}
& 16 . \\
& 16 .
\end{aligned}
\] & Powell Shediskie. Michael Molloy. & \begin{tabular}{l}
Laborer. \\
Company man, ...
\end{tabular} & \[
\begin{aligned}
& 18 \\
& 55
\end{aligned}
\] & Dickson. Manville, & Lackanvanna, ...... Lackawanna, ....... & Sllghtly injured by flying coal from blast. Slightly injured about the hip; crushed between a door and car. \\
\hline July & \[
\begin{aligned}
& 1 . \\
& 1 .
\end{aligned}
\] & IRees Samuel. Edward Kennedy. & \begin{tabular}{l}
Miner. \\
Laborer.
\end{tabular} & \[
\begin{aligned}
& 34 \\
& 20
\end{aligned}
\] & Dodze. Old Forge No. 1. & \begin{tabular}{l}
Lackawanna, ...... \\
Lackawanna, .......
\end{tabular} & Slightly injured by fall of roof. Slightly burned by explosion of gas. \\
\hline
\end{tabular}



TABLE No. 5. - Continued.



\title{
THIRD ANTHRACITE DISTRICT.
}

\author{
(lackawanna, luzerne and sullivan counties.)
}

\section*{Pittston, l'a., February 14, 189s.} Hon. James W. Lata, Secretary of Internal Aftairs, Harrisburg, Pa.:

Sir: I have the honor herewith of presenting my annual report as Inspector of mines for the Third anthracite district for the year 1897. It contains the usual tables, also a brief report of the flooding of a portion of the Mount Lookont colliery with sand and water. The nomber of fatal accidents was \(6: 3\); non-fatal accidents, 180 . Thirtyfive were of such a slight character that they are not reported. The avrage time worked was 149 days.

Very respectfully,
H. McDONALD, Inspector.
Tons of Coal Mined by the Various Companies During the Year 1897.
Pennsylvania Coal Company, ..... \(1,340,0: 20\)
Lehigh Vialley Coal Company, ..... 9.50,069
l'utler Mine Company, Limited, ..... 217,217
Newton Coal Mining Company, ..... 134,048
Old Forge Coal Mining Company, ..... 273,476
Delaware, Lackawanna and Western Railroad Company, ..... 248,357
Forty Fort Coal Company, ..... 265,691
Delaware and Hudson Canal Company, ..... 178,376
Thomas Waddell Estate. ..... 62,708
John C. Haddock, ..... 202,208
Clear Spring Coal Company, ..... 171,679
Hillside Coal and Iron Company, ..... 33,085
Florence Coal Company, Limited. ..... 85,169
W. (i. Payne \& Co. ..... 164, 630
kieystone Coal Company, ..... 109,201
Aroca Coal Company, ..... 59,215
Langeliffe Coal Company, Limited, ..... 93,37.
Stevens Coal Company, ..... 15.),013
Latlit Coal Company. ..... 72,230
Robertson \& Law, ..... อั9,712
Habylon Coal Company, ..... 130,555
Mount Lookout Coal Company, ..... 307,727
Raub Coal Company, limited, ..... 47,828
Algonquin Coal Company, ..... 136,688
Laurel Run Coal Company, ..... 90,440
Westminster Coąl Company, ..... 3,707
IV. B. Miner, ..... 11,697
Crescent Coal Company, ..... 38,586
IV yoming Coal and Land Company, ..... 35,726
State Line and Sullivan Railroad Company, ..... 164,046
Rrookside Coal Company, ..... 31,421
Anthony Brothers, ..... 1,600
Total\(5.875 .8 \div 3\)
Number of Fatal and Non-Fatal Accidents and Tons of Coal Produced per LifeLost and per Person Seriously Injured.


Number of Persons Employed by each Company and Number of Employes per Life Lost and per Person Injured.


The amual examination of applicants for mine foreman and assistant mine foreman's certificates was held in this district at the Butler Hill School building, l'ittston, on June 14, 1897. The board of examiners was composed of H. MeDonald, Inspector of mines; S. B. Bennett, superintendent; Howell Williams and Henry Martin, miners.

Sixteen applicants appeared for examination for mine foreman's cortificates, and the following named persons passed a satisfactory examination:

John G. Ayre, Miners' Mills.
Thomas C. Miller and Richard Deeble, Aroca.
Arthur Guỵ Baird. Dunmore.
James B. Neale and David John, I'ittston.
Thomas G. Parry. Hudson.
Twenty-six applicants were examined and recommended for assistant foreman certificates.

Very few improvements of a special nature were entered into for the year 1897 in this district, on account of the dullness of the 5-10-. 97
coall trade, which has been such as to catuse considerable distress and suffering among the toilers of the mines. On an arerage the breakers of this district worked only a few days over half time for the year. The miners in many instances do not make a day's work when the breaker does by reason of not getting sufficient cars to load their coal. There are sevaral reasons for this, the principal one being the overerowling of the collieries with miners, especially in the collieries where the coal seams are low and of an inferior quality. Then, again, delays are cansed by unawoidable breaking of some part of the machinery in the breakers, which causes a delay of from an hour to two or more, as the case may be; all of which has a tendency to shorten the hours of work for the miner.

\section*{The burning of the Maltby Breaker.}

On April 2, 1897, the Malby breaker of the Lehigh Valley Coal Company: located at Malthy, was discovered to be on fire. Strenbous efforts were made to save the structure, but they were of no a vail. It was completely destroyed, with all the machinery, in a few hours.

A new breaker has been arected on the site of the old one. whieh started to prepare and ship coal on Saturday, July 17 . This is the quickest work on record, as the phans had to be drawn and lumber and machinery provided. The structure was completed in 106 days.

\section*{The Burning of the Hunt Breaker.}

The Hunt breaker, located at Malthy, and owned by the D., L. \& W R. R. Company, and leased to the Wyoming Coal and Land Company, in Jume, 1895, was totally destroyed by fire carly on Friday morning, May \(2 s\), which cansed a susprension of the mine until a brabler could be built on the rompanys land close to the mine epening. The new breaker wats commeneed on Ingust T, and commenced to prepare and ship coal in December, 1897. The capacity is sot tons per day and the breaker is so arranged that the coal from the preckets can be drawn into the cars on two separate tracks under He breaker. A new batheh of the Lehigh Valley Railroad was consta ured foom their main line to the breaker, a distance of a mile. on vhieh complay's road the coal will be shipped fo market.

Colliery Improvements for 1897.
Lehigh Valley Coall Company:-The Hemy hoisting shaft was retimbered from the rock to the surface, s: foet, with the best \(12 \times 12\) mollow pine timber. New buntons and gnides were also put in, which pels the mine in first class condition.

At the Malthe molliery two new horizontal tubular hoikers of 150 horse power each were erectal at the shaft, and the old cylinder boil-
ers at the breaker were abandoned. In the mine an additional intake air course was driven in the eleren-foot seam and the return air course er:larged, which increased the volume of air in the six-foot vein from 85,000 enbie feet to 145,000 cubic feet per minute.

Pemnsylvana Coal Company.-The No. (; shatt was enlarged from 10x16 feet to 10x:21 feet to make room for two hoist-ways a pumpway and an alr-way from the surface to the Pittston seam, a distance of :312 feet, which shaft wats then contimed down to the Red \(\backslash\) sh rein : \(: 00\) feet. The logation for a new breaker has been staked ont to be built in the spring of 1898 , which will prepare the coal from shafts Nos. 5, 6 and 11.

At No. 4 shaft of this company three new Babeock and Wilcox water tube boilers of 150 horse power each were erected, which take the place of twelve cylindrical boilers formerly used. Also at he Ewen breaker six Babcock and Wilcox boikers were erected and put in operaton on February 13, 1897, which supply steam to the beaker, and to No. 7 and Hoyte shafts, supplanting the 27 eylindrical boilers previously used.

Forty Fort Coal Company:-At the Harry E., a new pair of First motion engines have been placed on the head of the inside slope in the Ided Ash seam. Diameter of cylinders 30 inches, length of stroke 48 inches. The drum shaft is 14 inches in diameter and made of steel, length being \(28 \frac{1}{2}\) feet. There will be 8,000 feet of one and one-half inch rope on the drum; 15 cars will be hoisted on a trip.

Raub Coal Company.- It the Louise Colliery an addition of 36 feet was built to the breaker and new machinery placed in position, thereby increasing the capacity of the breaker to 800 tons per day, New openings have been driven from the smface to the Ross and Red Ash seams by fumels on the property lately acquired by the company. A small locomotive lakes the coal from these openings to the breaker, a distance of one mile.

At \(\overline{5}\) P. M., Mark 1, 1897, a sotlling of the surface was discovered on the east side of Eighth street, in the borongh of Wyoming, Pa., which eansed considerable anxiety to the people who resided in that vicinity. Realizing that the workings of the Pittston seam of the Mount Lookont Colliery had extended under that portion of the town. word was sent to notify Willian A. Thomas, the inside foreman of the colliery, of the fact. He immediately deseended the shaft to make an investigation of the mine. On reaching the foot he encountered a rash of sand and water coming throngh the rock thmmel. Knowing the danser of heing eanght hy the rush, he retreated to the foot of the shaft and was looisted to the surface again. The mine had stopped work that day at 3 I'. M., and all the men had come out somb time before the rush took plate. Therefore, the ofticials did mot aftompt to go down agatin for one homs. When the
foot of the shaft was again reached, the rush of sand was found to have stopped, having blocked itself so effectually that it did not start again. I reached the shaft the next morning, and in company with Richard Mainwaring, superintendent; William A. Thomas, foreman, and the fire bosses of the colliery, made an inrestigation to locate the somrce of the trouble. Finding it impossible to proceed by the west heading, on accotint of the heading being blocked by sind, the north heading was next tried, and by going through the air shaft to the top of the anticlinal, we reached the face of the workings of the west side on road 7 (See sketch) by way of the counter heading, reaching chamber 49 . The pillars were found to be in good condition and no indications that a squeeze or cove had taken place, but unmistakable indications showed that a pot-hole or washont had been encountered in one of the inside chambers, as the workings were strewn with the round cobble stone peculiar to this vicinity. An interview with the miners who worked those breasts was had and Frank Miller, who worked in chamber 52 , said that on the day above mentioned he left for home about 12 o clock, intending to procure a suit of oil clothes, as he had, after firing one blast that morning, struck a heavy stream of water in his chamber, which made his place very wet. After a careful examination of the workings in proximity to the trouble, it was decided that the immediate danger was over. Therefore, Mr. Thomas, the mine foreman, was told to proceed and clean the headings up around the foot of the shaft. A meeting of representative mining men was called, and was held in the office of the company at Scranton, to decide what means should be adopted to guard against a future starting of the sand. It was there decided to build eight dams of brick sufficiently strong to wall off this part of the workings, which amounts in area to about \(1: 3\) acres. It took a week to build the temporary dams and clear the mine of sand and debris, preparatory to again mining coal, which was resumed on March 9,1897 . The building of the permanent dams was commeneed on the fiest of April and finished early in Jone. The amount of material used was as follows: \(61:\) barels of (ement, 2ff,200 hatd red brick, firars of sand, 6 cast iron pipes, 20 inches in diameter with flanges redured to 4 inches, outlet. with six 4 -inch outlet valves for same. Three of the above mentioned pipes were placed in the dams on road 7 and three on road 20 , with the 4 inch valves allarhed to each. These pipes and ralves are to he used for relief in case of emergency. The total cost of building the dams was \(\$ 9,076.92\).

In submilting my mport, I would respectfully call altention to the law creating the oflice of ehtief of Bureath of Mines, passed by the late Legislature. While the law in many respects is a good one, yef in my opinion it has its bad features as well, which all who are


\section*{Mourt LookoutColhery Wyomurg.Pa.}

Showiturs a portion of the Pittstor or 11ft Vein where the quicksand carne ir, March \(1^{\text {st }} 1897\) at Bréast 52 Poad 7

Scale 100 ft \(=1\) Inch
Simpsons Watkins Engirucering, Department
Scratitori, Pa.. Oct. \(6^{\text {th }} 189 \%\).


acquainted with mining will have to admit. For instance, is the mining industry of the State of Pennsylvania of so little importance to the general public that, while placing a chief at the head of this industry, a department could not be also made which would be independent of any other department at Harrisburg? It is at present subject to the Department of Internal Affairs, the heads of which acknowledge in their report that they are not versed in the mining business sufticiently to express an opinion as to what should be done. Yet the appointing power of the subordinates in the office of the chief is refused him who should be the most competent person to select his help, and so bring the bureau to that efliciency for which it was intended. I likewise call attention to section 9 , which reads as follows: "That the mine Inspector of each district of this State shatl, within six months after the final passage and approval of this act, deposit in the bureau of mines an accurate map or plan of such coal mine, which may be on tracing muslin or sun print drawn to a prescribed seale, which map or plan shall show the actual location of all openings, excavations, shafts, tunnels, slopes, planes, main leadings, cross headings and rooms or working places in each strata operated, pumps, fans or other ventilation apparatus, the entire course and direction of air currents, the relation and proximity of the workings of such coal mines to all other adjoining mines or coal lands, and the relative elevation of all tunnels and headings and of the face of working places near to or approaching boundary lines or adjacent mines, and on or before the close of each calendar year transmit to the chief of the Bureau of Mines a supplemental map or plan showing all excavations, changes and additions made in such mine during the vear, drawn to the scale as the first mentioned map or plan. All such maps or plans to be and remain in the Burean of Mines as a part of the records of that office."

It is not my intention to enter into a general discussion of this section. I will leare it to the criticism of the mining public. who know how impossible it wonld be for the Inspector of mines to furnish the information this section calls for, with the present farrilities, time. and help, at his command.
Recapitulation of Fatal Accidents．
\begin{tabular}{|c|c|c|c|}
\hline \multirow{8}{*}{} & ＇セセృ\％．L &  & 18 \\
\hline & ＇นยแมวり &  & © \\
\hline & ＇uEl＿ESunH & \(\infty\) \(\qquad\) ： MOM－ & ＝ \\
\hline & \({ }^{4} \mathrm{~S} 110 \mathrm{C}\) & Houncosiminimesores & 5 \\
\hline & －\({ }^{\text {s }}\) ！ & \[
-\vdots \vdots:-\vdots \vdots \vdots \infty
\] & 12 \\
\hline & ＇4spix & \(\vdots!: m\) ：ior icror ：ou & or \\
\hline & ヶчร12．11 &  & \(\omega\) \\
\hline & ＊uepinaruv &  & 0 \\
\hline \multirow{8}{*}{\[
\begin{aligned}
& \text { 피 } \\
& \text { 흘 } \\
& \frac{0}{3} \\
& 0
\end{aligned}
\]} & ＇rezod &  & ๕ \\
\hline & ＇spuey apisano &  & － \\
\hline & ＇Uว\％Sษp Kucduo &  & \(\infty\) \\
\hline & \(\begin{array}{cc}\text {－7s！sse } & \begin{array}{c}\text { sjue } \\ \text { pue } \\ \text { uour．jos }\end{array}\end{array}\) & \[
-1-
\] & er \\
\hline & к．วขриәา 100¢ & \[
m
\] & \[
1 \nabla
\] \\
\hline & ＇6．1วılpp pue sajuuny &  & \(\omega\) \\
\hline & ＇s．a．joqer &  & \(\because\) \\
\hline & ＊s．コวu！⿺𠃊 &  & ¢ \\
\hline \multirow{9}{*}{} & ＇IE7OL &  & 8 \\
\hline &  &  & － \\
\hline & ＇วuұ̣ш јо วp！su！ s．asneo snoutulloวsIIV & ct & et \\
\hline & ราระโq pue дәр －siod jo suotsuldxa Fid & sul! ! ourcont & の \\
\hline & －sopun saeo punors \(\begin{gathered}\text { puiu } К ฐ\end{gathered}\) &  & \(\infty\) \\
\hline & usop su!fej susus &  & － \\
\hline & pur［roo jo silej Kis &  & ल \\
\hline &  &  & 13 \\
\hline & &  & \[
\begin{aligned}
& \text { E゙ } \\
& \text { O } \\
& \text { Hi }
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE-Showing number of each class of serious non-fatal accidents, number of each class of employes, and the nationality of persons seriously injured for each month during the year 1897.



Bernice drlfts,
Vestminster drifts.
Crescent drifts.
Hunt tunnel.
Delaware shaft
Pettebone shaft
Hallstead shaft,
Forty Fort shaf
Harry E. shaft
Babyion shart. .......
Mount Lookout shaft
MIII Hollow shaft
Black Dlamond shaft, Brookslde washery
Bennett washery,
\(\qquad\)

\section*{}

State Line and Sullivan Rallroad Co., Westminster Coal Company Crescent Coal Company Wm. B. Miner
Wyoming Coal and Land Company Delaware and Hudson Canal Cany, Delaware and Hudson Canal Company, . Del., Lacka. and Western Rallroad Co., Del., Lacka. and Western Railruad Co., Forty Fort Coal Company, Babylon Coal Company
Mount Lookout Coal Company,
Thos. Waddell estate
Brookslde Coai Company,
Anthoney Brothers.

Sullivan,
Luzerne,
Luzerne,
Luzerne,
Luzerne,
Luzerne,
Luzerne,
Luzerne.
Luzerne,
Luzerne,
Luzerne,
Luzerne,
Luzerne,
Luzerne,
Luzerne,
\(\qquad\)
\(\qquad\) F. C. Sturges
 F. C. Sturgess,
G. W. Minnes,
Wm. B. Miner,

TABLE NO. 2.-Gives the Total Number of Tons of Coal Mined in each Colliery, Number of Days Worked, Number of Employes, Number of Persons Killed and Injured, Number of Kegs of Powder, etc., used in the Third Anthracite District for the year ending December 31, 1897.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collierles． & Location． &  &  &  &  &  &  &  &  &  &  &  &  &  \\
\hline  & & \[
\begin{array}{r}
1,340,020 \\
950,269 \\
217,217 \\
248,357 \\
266.691 \\
2,854,469
\end{array}
\] & \[
\begin{array}{r}
71,066 \\
30.336 \\
10.244 \\
7.800 \\
24.957 \\
155,904
\end{array}
\] & 15,952
2.058
8.086
8,465
20.076
80.367 & \[
\begin{array}{r}
1,268.954 \\
903.781 \\
204,885 \\
232,097 \\
233,659 \\
2,618,598
\end{array}
\] & \begin{tabular}{l}
138.50 \\
127.75 \\
165.15 \\
147.50 \\
154.75
\end{tabular} & \[
\begin{array}{r}
4.051 \\
3.076 \\
8: 6 \\
889 \\
808 \\
8.406
\end{array}
\] & 6
10
4
2
2
5
36 & 27
24
5
11
66
72 & \[
\begin{array}{r}
42, .353 \\
25,064 \\
10.040 \\
9 ., 293 \\
99.057 \\
103,995
\end{array}
\] &  & ¢2
127
28
28
15
23
313 & \[
\begin{aligned}
& 421 \\
& 385 \\
& 72 \\
& 730 \\
& 113 \\
& 970
\end{aligned}
\] & 7
5
2
1
16
16 \\
\hline & & 5，875，823 & 299，907 & 108，912 & 5，466，974 & \({ }^{*} 149.00\) & 17，926 & 63 & 145 & 203，742 & 109，672 & 618 & 2.091 & 31 \\
\hline
\end{tabular}
＊Average．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Names of Collieries.} & \multicolumn{8}{|c|}{Occupations of Persons Employed Outside.} & \multicolumn{8}{|c|}{Occupations of Persons Employed Inside.} \\
\hline &  &  & \[
\begin{aligned}
& \text { 辰 } \\
& \stackrel{E}{E}
\end{aligned}
\] &  &  &  &  &  &  &  & Engineers and firemen. &  &  &  &  &  \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Del., Lacka. and Western R. R. Co. \\
Hallstead shaft. \(\qquad\) \\
1'ettebone shaft, \(\qquad\) \\
Total, \(\qquad\)
\end{tabular}} & 1 & \(\frac{2}{3}\) & \(\begin{array}{r}87 \\ 117 \\ \hline\end{array}\) & 87
118 & 30
51 & \begin{tabular}{l}
10 \\
21 \\
\hline 1
\end{tabular} & 25
49 & \begin{tabular}{l}
242 \\
360 \\
\hline
\end{tabular} & 1 & \(\frac{4}{7}\) & 14 & \begin{tabular}{l}
53 \\
93 \\
\hline
\end{tabular} & 45
55 & 1 & 118
169 & 360
529 \\
\hline & 2 & 5 & 204 & 205 & 81 & 31 & 74 & 602 & 2 & 11 & 26 & 146 & 100 & 2 & 287 & 889 \\
\hline  & \(\frac{1}{4}\) & 1
2 & 19
150 & 10
125 & \({ }^{17}{ }_{61}\) & 213 & 10
36 & \(\begin{array}{r}61 \\ 399 \\ \hline\end{array}\) & 1 & \(\stackrel{2}{8}\) & 9 & 55 & 59 & 4 & \({ }_{127}^{21}\) & 82
526 \\
\hline Total, ............................... & 5 & 3 & 169 & 135 & 78 & 24 & 46 & 460 & 2 & 10 & 18 & 55 & 59 & 4 & 148 & 608 \\
\hline & & & & & & & & & & & & & & & & \\
\hline Phoenix and Columbla shatts, ................ & \({ }_{2}^{5}\) & \(\stackrel{3}{+}\) & 109
121
88 & 109
121 & 32
48 & \({ }_{11}^{17}\) & 106
30 & 351
336
05 & 3
2
1 & 8
9 & \begin{tabular}{l}
16 \\
\hline 6 \\
\hline 1
\end{tabular} & \({ }^{90} 16\) & \begin{tabular}{l}
60 \\
53 \\
\hline
\end{tabular} & \({ }_{6}^{6}\) & 183
243 & \begin{tabular}{l}
564 \\
579 \\
\hline 189
\end{tabular} \\
\hline Delaarare shatt, \({ }^{\text {Pat................................ }}\) & \(\frac{1}{2}\) & 2 & \begin{tabular}{l}
83 \\
50 \\
\hline
\end{tabular} & \(\stackrel{95}{57}\) & 48
21 & 10
1
1 & \(\begin{array}{r}46 \\ 25 \\ \hline 25\end{array}\) & -295 & 1 & \({ }_{4}^{6}\) & 12 & 8,
70 & 39
28 & \(\frac{1}{3}\) & 144
113 & 429
267 \\
\hline Black Diamond shaft, ........................ & 2 & & 90 & 72 & 64 & 14 & \({ }^{22}\) & 267 & 1 & 6 & 21 & 123 & 37 & 1 & 192 & 459 \\
\hline  & 2 & 2 & 113 & 140 & 56 & 33 & 68 & 414 & , & 7 & 11 & 67 & 59 & 5 & 150 & 564 \\
\hline Elmwood. two shafts, ...................... & 3 & & 62 & 62 & 32 & 2 & 14 & 176 & \(\ddot{2}\) & 4 & 10 & ¢4 & 6 & 4 & 90 & 266 \\
\hline East R Reston shatt.
Ridgewood shaft and siope, .................... & \({ }_{1}^{2}\) & 3
1 & \({ }_{105}^{120}\) & 100
95 & 45
40 & 11
11 & 37
20 & 321
273 & 1 & 5 & 10 & & \({ }_{31}^{61}\) & 2 & 151 & \begin{tabular}{l}
472 \\
\(3 \leqslant 1\) \\
\\
\hline
\end{tabular} \\
\hline Avoca shaft. ................................. & 1 & 1 & 70 & 54 & 16 & 12 & 17 & 201 & 1 & 3 & 5 & 4.3 & 32 & & 87 & \({ }_{288}\) \\
\hline Langellffe shaft and tunnel, .................. & \(\stackrel{2}{1}\) & 1 & 95
66 & \({ }_{6}^{73}\) & 36
14 & 6
7 & 31
18 & \(2{ }^{24}\) & 1 & 6 & 6 & 64 & \(3{ }^{36}\) & 2 & 115 & 359 \\
\hline Lafin shatt. \({ }^{\text {Katy }}\) Did tunels, ............................... & 1 & & 66
54 & 6.6
30 & 14
15 & 7
2 & 18
9 & 173
111 & \({ }_{1}^{1}\) & \({ }_{3}^{4}\) & \({ }_{6}^{6}\) & & \(\stackrel{32}{32}\) & & 141
63 & 314
174 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Babylon shaft. & 2 & 1 & 78 & 51 & 28 & 9 & 13 & 182 & 1 & 6 & 8 & 30 & 26 & 3 & 74 & 256 \\
\hline Mount Lookout shaf & 1 & 3 & 219 & 80 & 67 & 20 & 47 & 437 & 1 & 6 & 17 & 93 & 74 & 5 & 196 & 633 \\
\hline Louise drifts. & 2 & 1 & 105 & 80 & 26 & 4 & 9 & 227 & 1 & 3 & 4 & 69 & 32 & 3 & 112 & 339 \\
\hline 1 I'ne Ridge shaft. & 3 & 2 & 94 & 90 & 45 & 8 & 40 & 282 & 1 & 5 & 11 & 88 & 43 & 1 & 149 & 431 \\
\hline I aurel liun slope. & 2 & 2 & 79 & 75 & 45 & 8 & 40 & 251 & 1 & 6 & 7 & 64 & 41 & 1 & 120 & 371 \\
\hline Westminster tunnel, \(\dagger\) & & & & & & & & & & & & & & & & \\
\hline Miner's tunnel, & 1 & ....... & 30 & 30 & 8 & 1 & 5 & 75 & 1 & 2 & 2 & 8 & 7 & 1 & 21 & 96 \\
\hline Crescent drifts, & 1 & & 30 & 20 & 9 & 2 & 5 & 67 & 1 & 2 & 2 & 21 & 11 & 1 & 38 & 105 \\
\hline Hunt tunnel. & 1 & & 45 & 37 & 20 & 6 & 11 & 120 & 1 & 4 & 8 & 85 & 24 & 2 & 124 & 244 \\
\hline Bernice drifts, & 1 & & 160 & 8 & 29 & 4 & 19 & 221 & 1 & 5 & 12 & 71 & 14 & 3 & 106 & 327 \\
\hline Stevens shaft and slope, & 2 & 2 & 118 & 100 & 40 & 7 & 25 & 294 & 1 & 6 & 13 & 78 & 52 & 5 & 155 & 449 \\
\hline Brookside washers. & & & & & & & & & 1 & & 3 & & 20 & 1 & 25 & 25 \\
\hline Bennett washery; & & & & & & & & & 1 & & 3 & 2 & 5 & 1 & 12 & 12 \\
\hline Total. & 43 & 31 & 2,096 & 1,643 & \$15 & 209 & 657 & 5,494 & 29 & 114 & 211 & 1.638 & 847 & 73 & 2,512 & 8,406 \\
\hline
\end{tabular}

Recapitulation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Pennsylvania Coal Company, & 18 & 24 & 1,088 & 1,103 & 349 & 118 & 238 & 2,938 & 8 & 32 & 125 & 611 & 298 & 9 & 1,113 & 4,051 \\
\hline Lehigh Valley Coal Company, & 9 & 16 & 762 & 1,568 & 291 & 51 & 248 & 1,945 & 7 & 49 & 85 & 590 & 378 & 22 & 1,131 & 3,076 \\
\hline Butler Mine Company. Limited. & 7 & 3 & 248 & 166 & 84 & 13 & 71 & 592 & 2 & 9 & 18 & 168 & 104 & 3 & \({ }^{3} 124\) & 896 \\
\hline Dela., Larka. and Western R. R. Co.. .... & 2 & 5 & 204 & 205 & 81 & 31 & 74 & 602 & 2 & 11 & 26 & 146 & 100 & 2 & 287 & 859 \\
\hline Forty Fort Coal Company, & 5 & 3 & 169 & 135 & 78 & 24 & 46 & 460 & 2 & 110 & 18 & 55 & 59 & 4 & 148 & 608 \\
\hline Miscellaneous coal companies, & 43 & 31 & 2.096 & 1.643 & 815 & 209 & 657 & 5,494 & 29 & 114 & 211 & 1,638 & S 47 & 73 & 2.912 & 8.406 \\
\hline Total, & 84 & 82 & 4,567 & 3.820 & 1.69 s & 446 & 1,334 & 12,031 & 50 & 225 & 483 & 3.208 & 1816 & 113 & 5.895 & 17,926 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{*}\) Idle since May.
\(\dagger\) This collery was in operation only a \(f \cdot w\) weeks.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & & Name of Person Injured. & \(\stackrel{8}{4}\) &  &  & Name of Colliery. & Location-County. & \% & & Nature and Cause of Accident in Brief. \\
\hline \multirow[t]{3}{*}{Jan.} & 7
11
18
18 & \begin{tabular}{l}
Paul O. Real, \\
Leaport Stayiate, Andrew Bushock, \\
Thos. Trynoskey, .......
\end{tabular} & 33
28
20
17 & \[
\begin{aligned}
& \mathbf{s} . \\
& \mathbf{S} \\
& \mathbf{S}
\end{aligned}
\] &  & Fernwood tunnel, Fernwood tunnel. Exeter shaft, & Pittston township, Pittston township, Exeter. & \multirow[t]{3}{*}{Jan.} & \[
\begin{gathered}
8, \\
8, \\
12,
\end{gathered}
\] & \begin{tabular}{l}
Killed by fall of roof. Killed by fall of roof. Killed by having been caught between car and gate on head of shaft. \\
Killed by falling in front of a car.
\end{tabular} \\
\hline & 20. & Fred. Hubell, .......... & 43 & M. & 8 & \begin{tabular}{l}
Phoenix shaft. \\
Delaware shaft, \(\qquad\)
\end{tabular} & \multirow[t]{2}{*}{\begin{tabular}{l}
Duryea \\
ALill Creek,
\end{tabular}} & & 19
21, & Fatally injured by fall of slate: died February 3. \\
\hline & 21, & Peter Courtright, & 34 & د. & 2 & No. 4 shaft, . ............ & & & 26. & Killed; struck on head by block of wood from tower. \\
\hline Feb. & 23.
10.
17 & William Pack Martin Smith, Andrew Breshear, John Murdock & 56
40
27
23 & M.
M.
S.
M.
S. & \(\ddot{3}\) & East Boston shaft, .... Clear Spring shaft, Harry E. shaft, Harry E. shaft. & Luzerne. Pittston Forty Fort, Forty Fort, & Feb.
Mar. & \[
\begin{aligned}
& 25, \\
& 11, \\
& 15,
\end{aligned}
\] & \begin{tabular}{l}
Fatally injured by fall of coal; died January 25. Killed by fall of rock. \\
Filled by fall of rock. \\
killed by fall of rock.
\end{tabular} \\
\hline \multirow[t]{5}{*}{Mar.
Apr.} & 10, & John Murdock, \({ }_{\text {Wlliam }}\) Purick, .......... & \({ }_{29}^{23}\) & \({ }_{\text {in }}^{\text {is. }}\) & 2 & Harry E. shaft, ......... & & Mar. & 2, & Killed by fall of rock. \({ }^{\text {These }}\) were brothers, and while tamping a \\
\hline & 13, & Mlchael Purick, & \({ }_{35}^{26}\) & S & & Avoca shaft, ........... & Avoca, & & 15, & hole the powder exploded, killing both. \\
\hline & 14, & Joseph Sedlinsky, & 50 & M. & 1 & Heldelburg No. 1 shaft, & Avoca, & & 14, & Killed while getting off the cage; some person not known having signaled the engineer to holst. \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& 29, \\
& 23,
\end{aligned}
\]} & \multirow[t]{2}{*}{William Thomas, \(\qquad\) Joseph McHale, ** * . . . .} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Delaware shaft Barnum No. 3 shaft,} & \multirow[t]{2}{*}{\begin{tabular}{l}
Mill Creek, \\
Marcy township.
\end{tabular}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 244, \\
& 26,
\end{aligned}
\]}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Killed by fall of top coal. \\
Fatally burned: he spilled oll on his clothing and took his iamp to dry them and took fire;
\end{tabular}} \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{May} & & Joseph Smith, .......... & & & & Laflin breaker, & & \multirow[t]{3}{*}{May} & 7. & \multirow[t]{3}{*}{\begin{tabular}{l}
Fatally injured by having been struck by car brake; died May 18. \\
Fatally injured; fell in front of cars; died May Kilied by fall of rock.
\end{tabular}} \\
\hline & 6. & Thomas Davis, & 8 & & & Laurel Run slope, ...... & Pa & & 18. & \\
\hline & 14. & John Shular,
Henry Whit & 30
31 & M. & & Ridgewood slope, & Ridgew
Laflin. & & \({ }_{22}^{19}\), & \\
\hline & \({ }_{25}^{20}\), & Anatesta Pep. & 50 & & & Fernwood shaft, ......... & Pitston township. & & 26, & Killed by fall of rock.
Killed by blast fired through cross cut. \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { June } \\
& \text { July }
\end{aligned}
\]} & \multirow[t]{2}{*}{\({ }^{12} 1\).} & Mrartin Novlskie. & \({ }_{21}^{20}\) & S. & & Phoenix shaft, ............ & Duryea, \({ }^{\text {Hughestown, }}\) & June & & Killed by an explosion of gas in old workings. \\
\hline & & Joseph Paul. & 18 & & & Elmwood sha & Pittston tow & & \({ }^{8}\) & Fatally crushed; fell in front of cars; died July 14 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline 14. & Anthony Dugan, & Laborer, \\
\hline 16. & William Beran. & 1'ump runner, \\
\hline 21. & Mlke Clark, & Footman, \\
\hline 22. & John Melvin, & Laborer, \\
\hline 3. & Anthony Kllmonick, & Miner, \\
\hline 7. & John Menchesky, & Laborer \\
\hline 7 , & Joseph Plikins, & Miner, \\
\hline 8. & Martin McGlinn, & Min \\
\hline 8 , & Joseph Leonard, & Laborer \\
\hline 14, & Jas. Bagnoe, & Driver, \\
\hline 22, & Wm. Adams, & Driver. \\
\hline 24, & Andrew Lessley, & Laborer, .......... \\
\hline 26, & Wm. H. Jones, & Miner, \\
\hline 29. & Chas. Elliott, & Runner \\
\hline 2, & Anthony Gasaskas, & Laborer, \\
\hline 8 , & Mike Missavage, & Miner, \\
\hline 9. & Frank Sackoff, & Miner, \\
\hline 9, & Andrew Dravie. & Miner, \\
\hline 9, & John Hoshlnskl, & Laborer, \\
\hline 10, & Geo. Howells, & Driver, \\
\hline 14. & Warren Ruth & Driver, \\
\hline 14. & John Rockwood, & Laborer \\
\hline 17. & George Bradley, & Miner, \\
\hline 17. & Wm. Potsego & Labore \\
\hline 17, & Serratare Pablo, & Miner, \\
\hline 17. & John Yawiskie, & Labore \\
\hline 25. & George Gastus, & Miner, \\
\hline 28. & Mlke Judge & Labore \\
\hline \({ }_{8}^{1}\) & Jas Tregas & Plane runner, \\
\hline \[
8 \text {, }
\] & Andrew Radou Martín Sedea, & Laborer \\
\hline 9, & Joseph Golden, & Miner, \\
\hline 9. & Joseph Kamashes & Laborer, \\
\hline 14. & Danlel McHugh, & Runner. \\
\hline 16. & John Teeber, & Laborer, \\
\hline 19, & Thomas Cosgrove, & Laborer, \\
\hline 20, & Charles Dobble, & Laborer, \\
\hline 20, & Thomas Dobble, & Laborer, \\
\hline 21. & Peter May, & Driver, \\
\hline 21. & James Higgins, & Laborer, \\
\hline 22. & William Wancosky. & Laborer, \\
\hline 22. & Frank Ballus. & \\
\hline 22. & John Crawford, & Laborer, \\
\hline 29, & Thomas Sandow, & Miner, \\
\hline 2. & Francis Dennls, & Miner, \\
\hline 4. & Charles Nallon, & Driver, \\
\hline 5, & Mike Stofko, & Min \\
\hline 5. & William Kemens & La \\
\hline
\end{tabular}


Bruised by fall of rock. Painfully scalded by steam.
Fingers crushed by car wheels.
Bruised by car tipping over on him.
Head and face cut by fall of top coal
Nose broken by having been struck by plece of coal.
Burned slightly on face by gas.
Leg bruised by having been squeezed between car bumpers.
Foot bruised by having been caught in steam shovel
Foot brulsed by fall of coal
Leg and hand injured by fall of coal. Fingers crushed by car wheel. Head cut and bruised by fall of rock Leg bruised by fall of coal Burned by powder

Toes crushed; foot caught in frog.
Leg broken by prop rolling on him. Face and hands burned by gas
Cut and brulsed by premature blast
Back bruised by fall of rock.
Back injured by fall of coal.
Leg broken by fall of rock.
Foot bruised by fall of coa
Foot bruised by fall of coal.
Leg squeezed between car bumpers.
Leg squeezed between car bumpers. Leg broken by fall of rock.
Chin bruised by havlng been struck by Leg broken by rock he was taking down.
Foot crushed under car wheel
Skull fractured while spragging a car. Leg bruised between mine cars. Leg broken by fall of rock

Small bone of leg broken between cars Finger cut off by car door falling on it Painfully injured by fall of rock Squeezed between cars.
Arm broken whlle olling machinery.
Leg broken by coal he was taking down Back bruised by fall of rock.
Painfully squeezed between cars
Leg broken by fall of roof.
Leg broken by fall of roof. from pillar.
Leg broken by coal falling from
Severly bruised by fall of rock.

\begin{tabular}{|c|c|c|}
\hline George Jacob, & Laborer, ........... & 31 \\
\hline Mike Dukhen, .......... & Laborer, & 40 \\
\hline Jas. Harrington. & Miner, & 57 \\
\hline Mike lirennan, & Laborer, & 35 \\
\hline Mike Malia, & Laborer, & 23 \\
\hline Thomas Gascovlck, & Laborer, & 34 \\
\hline Thomas Queeney, & Laborer, & 24 \\
\hline Mike Peters, & Miner & 22 \\
\hline Mike Poveshaw, & Labor & 28 \\
\hline William Titley, & Miner, & 40 \\
\hline Thomas Matches, & Laborer, & 30 \\
\hline Thomas Grodvall, & Laborer, & 41 \\
\hline John Thomas. & Company miner, & 43 \\
\hline John Sulvoskie, & Miner, & 38 \\
\hline Thomas Nicholson, & Driver, & 16 \\
\hline Stanley Kaslavi & Miner, & 30 \\
\hline John O. Boyle, & Driver, & 15 \\
\hline John A. Rother, & Brattice man, & 40 \\
\hline John White, & Door boy, & 15 \\
\hline Jacob Savage, & Miner, & 35 \\
\hline Sllas Prichard, & Door boy, ........ & 15 \\
\hline Eugene Kearns, & Driver, & 16 \\
\hline John WilkInson, & Driver, & 19 \\
\hline Stephen Buchefisky, .... & Laborer. & 37 \\
\hline John Wega, .............. & Miner, & 29 \\
\hline George Matchey, & Runner, & 24 \\
\hline Leapold Shang, ........ & Miner, & 58 \\
\hline Joseph Kirshenosky, .... & Miner. & 45 \\
\hline Jacol Iright, .......... & Laborer & 35 \\
\hline Sylvester Demick, & Miner & 40 \\
\hline Arthur Runt, & Run & 38 \\
\hline Anthony Carriauis, ... & Miner, & 35 \\
\hline Charles Duncarage, & Driver, & 16 \\
\hline Alex. Dusbroskle, & Helper, & 15 \\
\hline Mike Socotsky. & Miner & 25 \\
\hline
\end{tabular}

TABLE No. 5.-Continued.


\section*{Fourth Anthracite District.}

\author{
(LUZERNE COUNTY.)
}

Office of Inspector of Mines, Wilkes-Barre, Pa., Feb. 21, 1898.
Ifon. James W. Latta, Secretary of Internal Affairs, Harrisburg, Pa.:
Sir: I have the honor of presenting herewith my report as Inspector of Mines for the Fourth anthracite district for the year 1897.
beside the usial tables and statistical matter relating to the mines and mine accidents, it has several brief articles bearing upon the condition of the mines.

The total quantity of coal mined was \(7,457,418\) tons. The number of fatal accidents was 60 , making the quantity of coal produced fer life lost 124,290 tons, being a greater quantity than was ever before produced per life lost in this district. Before the law was put in force the quantity of coal produced per life lost was from 50,000 to 60,000 tons, and one person was fatally injured to from 180 to 190 persons employed, though at that time the dangers of coai mining were not to be compared with the dangers at the present time.

Perusal of tables \(\mathbf{B}, \mathrm{C}\), and I) shows that in the year 1871 the first year of the anthracite mine law there was one life lost for 186 employes, and a production of 56,000 tons per life lost. The number of persons employed was 9,870 . In the first decade under the mine law, one life was lost for 263 employes, and 87,409 tons of coal were produced per life lost. In the second decade, one life was lost for 249 persons employed, and 91,507 tons of coal were produced per life lost. In the last seven years one life was lost to 297 persons employed, and 98,646 tons were produced per life lost. The total nomber of employes for last rear was 25,650, against 9,870 in the year when the mine inspection began. The quantity of coal produced in 1897 was \(7,457,418\) tons in an average of 134 days, against \(3,000,000\) tons in the first year of mine inspection in perhaps double the time, or 268 days. It is not fair to compare the accioents in mines with the number of persons employed. In the latter part of the second decade in this distriet, ath unusual number of men were employed opening new mines and driving tunnels who were not producing coal, and it is not just that the accidents should be attributed to coal mining. The purpose of coal mining is to produce
coal, and the accidents should be rated with the production of coal. To compare the accidents of coal mining with the accidents of railroads computed according to railtoad methods is unjust to coal mining, although the records are in the favor of the management of coal mining. The railroads have only one class of accidents, those incident to the transmission of trains. To do this work they are not cramped for room, for they are in the open air and have day hight and what a miner would consider an extraordinarily good light at night.

In the mines it is entirely different. The transmission of the mine cars has to be done through narrow passages where the space is rarely over three feet wide outside of the tracks and is frequently too low for a man to raise his head. Dangerous roof has to be timlered and re-timbered. Floors are heaving, throwing tracks out of order. Ventilation has to be provided. Noxious and explosive gases are unceasingly emitted, and enormous quantities of explosives have to be handled and consumed. The safety of every man is dependent on the unfailing speed of machinery and that no man or boy makes a mistake or a mis-step. The employes of a railroad are selected with care, while very little regard as to the fitness of a person is paid when persons are employed for the mines. The law regulating the qualitication of miners is worse than a farce. There never was such an incompetent class of miners employed as there is now. This has been reported by the mine Inspectors several times, and they are in the best position to know. It would be as appropriate to compare the risks of clerical office work with the risk of railroading as to compare the risk of railroading with that of coal mining in this region, and no one who knows anything about it would aftempt it. I would respectfully call attention to the fact that this district has two and a half times the number of employes, and is capable of producing three times the quantity of coal now, more than it did when mine inspection began, and the inspection is done still by one man only. The risk of mining is certainly many times greater. Owing to the complications attending anthracite minin:g, the manifold pitches and conditions of the coall in the earth, the great thickness and number of the coal sams, the enormous quantity of explosives required in its extraction, and the great quantity of explosire gases evolved, it is recognized as an extremely diflicult region to mine. Notwithstanding this, the Burean of Mines was crated in the Department of Internal Afrairs with no representation whaterer in its organization from the anthracite region. If this Burean was created with a sincere desire to assist the Inspectors in the enforcement of the law and to redure the number of aecidents, it shonld be considered flat it rannot be done hy keeping them ocenpied as they are kept now, at useless clerical work. An examination
of records at the offices of the Inspectors would show infinitely better whether the inspection work is done or not. A number of useless oftices can be created and kept busy reporting to one another with fully as much good as the work exacted by the Burean of Mines under the instruction of the Department of Internal A ffairs at present. It is right that we should be supported and not handicapped ir work so important.

> Yours respectfully,
> G. M. WILLLAMS,

Inspector of Mines, Fomrth Anthracite District.

Total Production of Coal in Tons During the Year 1897.
Lehigh and Wilkes-Barre Coal Company, ........ \(1,849,401.00\)
Delaware and IIndson Canal Company, . . . . . . . . . . 1,141,188.10
Susquehanna Coal Company, . . . . . . . . . . . . . . . . . . 1,291,352.07
Kingston Coal Company, ........................... . . \(731,517.09\)
Delaware, Jackawanna and Western Railcoad Com-
pany, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lehigh Yalley Coal Company, . . . . . . . . . . . . . . . . . . \(349,366.16\)
Red Ash Coal Company, . . . . . . . . . . . . . . . . . . . . . . . \(209,958.12\)
1'arrish Coal Company, . . . . . . . . . . . . . . . . . . . . . . . \(293,586.00\)
Alden Coal Company, . . . . . . . . . . . . . . . . . . . . . . . . . \(230,000.18\)
Plymouth Coal Company, . . . . . . . . . . . . . . . . . . . . . . 185,560.03
West End Coal Company, .......................... . . . . 121,830.00
Hillman Vein Coal Company, . . . . . . . . . . . . . . . . . . 65,889.17
A. J. Davis, Warrior Run colliery, . . . . . . . . . . . . . . \(172,057.18\)

Crescent Coal Mining Companẏ, . . . . . . . . . . . . . . . . . 75,521.11
Melville Coal Company, ............................ . . \(\quad 71,078.10\)
Feynolds © Moyer Coal Company, . . . . . . . . . . . . . . . . 110,524.09
Wyoming Coal Company Washery, ............... . \(58,630.08\)

Total,
7,457,418.13

The total production was made up as follows:
Shipped by rail'oald to market, . . . . . . . . . . . . . . . . . 6,565, 852.11
Sold at the mines for local use,
226,387. 13
Consmmed to generate steam (estimated), ........ . 665,178.09
Total,
7,457,418. 13

\title{
TABLE A．－Showing Number of Lives Lost，Tons of Coal Produced per Life Lost and per Person Injured，Number of Employes and
} Number of Employes per Life Lost and per Person Injured．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Names of the Operators． &  &  &  &  & \[
\text { -uә suossəd ло } \begin{gathered}
\text { pəfold } \\
\text { dəquin }
\end{gathered}
\] & səKoldure
병 &  \\
\hline Lehlgh and Wilkes－Barre Coal Company， & 11 & 168，127 & 67 & 27，603 & 6，420 & 581 & 95 \\
\hline Delaware and Hudson Canal Company， & 11 & 103，744 & 19 & 60，062 & 3，964 & 360 & 208 \\
\hline Susquehanna Coal Company，．．．．．． & 11 & 117，395 & 55 & 23，497 & 4，250 & 386 & 77 \\
\hline Kingston Coal Company，．．．．． & 5 & 146.303 & 19 & 3S， 500 & 2，358 & 471 & 124 \\
\hline Delaware，Lackawanna and Western Rallroad & 5 & 89，990 & 37 & 13.512 & 1，941 & 388 & 52 \\
\hline Lehlgh Valley Coal Company，．．．．．．．．．．．．．．．．． & 4 & 87，341 & 7 & 49，909 & 1，361 & 340 & 194 \\
\hline Red Ash Coal Company，．．．． & & & 4 & 52，487 & 732 & io． & 183 \\
\hline Parrish Coal Company． & 6 & 48，931 & 13 & 22，383 & 1，172 & 195 & 90 \\
\hline Alden Coal Company， & 3 & 76.666 & 21 & 10，952 & 733 & 244 & 35 \\
\hline Plymouth Coal Company， & 1 & 186.636 & 4 & 46，659 & 498 & 498 & 124 \\
\hline West End Coal Company，．． & 1 & 121，830 & 4 & 30.457 & 593 & 593 & 148 \\
\hline Hillman Vein Coal Company， & 1 & 65,889 & 1 & 65，889 & 281 & 281 & 281 \\
\hline  & & & 6 & 28，676 & 423 & 281 & 70 \\
\hline Crescent Coal Mining Company， & & & 3 & 25，173 & 303 & ．．．．．．． & 101 \\
\hline Reynolds \＆Moyer Coal Company． & & & 3 & 14，215 & 245 & 357 & 119 \\
\hline Wyoming Coal Company Washery， & & 58，630 & 1 & 5S，630 & 19 & & 19 \\
\hline For all coal companies， & 60 & 124，290 & 269 & 27，722 & 25，650 & 427 & 95 \\
\hline
\end{tabular}
＊No life lost．

CLASSIFICATION OF FATAL AND NON-FATAL ACCIDENTS.
\begin{tabular}{|c|c|c|}
\hline Cause of Accidents. & Fatal. & Non-fatal. \\
\hline By explosion of fire damp, & 9 & 64 \\
\hline By falls of roof and coal. .. & 30 & 94 \\
\hline By mine cars in various ways, & 6 & 41 \\
\hline By explosion of powder and blasts, & 7 & 23 \\
\hline By falling down shafts, ............ & 3 & \\
\hline By miscellaneous causes in the mines, & 3 & 30 \\
\hline By miscellaneous causes on surface, & 2 & 27 \\
\hline Total, & 60 & 269 \\
\hline
\end{tabular}

Number of wives left widows, 38 ; orphans, 121.

\section*{Mine Accidents.}

During 1897, 60 persons were killed or fatally injured, and 269 were more or less seriously hurt in or about the mines of the Fourth anthracite district. Of the said number, nine were killed or fatally \(i_{1} j u r e d\) and 54 seriously injured by explosions of fire-damp.

As stated many times before, the majority of this class of accidents would not occur if all were working with safety lamps, but if cll worked with safety lamps in the mines that have high seams it is most probable that the number of accidents by falls of roof and of coal would very materially increase, because the light given by a safety lamp would not enable the miner to see loose and dangerous top or coal. It is only in exceedingly few cases that an explosion of gas occurs which can be attributed to the use of safety lamps, but they are numerous from the careless use of naked lights.

In nearly all the mines of this district there are copions feeders of explosive gases, especially so in the gangways, airways and adranced workings, and though in nearly all such places safety lamps only are used, the feeders are ignited from the explosions of blasts. Where these feedcrs are numerous, they ignite one another until the place is filled with flame, and a number of men are burned while endoavoring to extinguish such fires, even where safety lamps are exclusively used. In most of these places, water pipes having water under high pressure lead into each gangway from a rescrvoir on the surface; hose and other paraphernalia are provided, so that they can be promptly used to extinguish these fires; but, even with the best mrovisions hitherto devised, it is a very dangerous and uncertain work to strive to extinguish them. The heat interferes with the eirculation of air and causes the roof and sides to fall, so that as soon as some of the burning feeders are extinguished, explosive gases accumulate and it is frequently found impossible to prevent their ignition Ly the darting up of snake-like flames of the burning feeders. Every year a number of accidents by explosions of gas oceur in this unaroidable manner. A number are also burned through neglecting to make proper examination with a safety lamp before entering a place with a naked light.

There are 177 fire bosses employed in the mines of this district who devote their time entirely to making examinations for gas and watching the men, and air currents.

Thirty fatal and 94 serious non-fatal accidents were caused by falls of roof and of coal, either from the face or sides. These are by a large majority the most mumerous class of accidents in every year. A large proportion occur when the miner is prying down either loose coal or loose rock and has taken a position from which he cannot retreat when the thing is falling. The only way to avert these accidents is for the men to use better precaution to secure a safe position and assure themselves that there is room to retreat beforecommencing to pry any loose rock or coal down.

A number of this class of casualties occur when men are trying lurriedly to replace a prop which has just been knocked down by a blast. It is remarkable how great a risk men will take to replace a frop to prevent a piece of roof from falling, even when the roof gives ominous indications of its approaching fall, and where they fail to replace it, are caught under it and either killed or injured. This class of casualties is peculiar to seams which cannot be undermined and where the coal is mined entirely by blasting with powder or high explosives.

Occasionally an accident by fall of roof or coal occurs because the miner neglects to pull a loose piece down as soon as he discovers it to be loose. Miners are too prone to put such work off until they have finished doing something else, or until the coal is loaded ont from beneath, if it is rock, so as to keep it from mixing with the coal. It is chiefly a careless, shiftless class of miners that are caught in this manner, and they are a class that camot be tanght to improve because they are nearly all sluggards by nature.

A nmmber of casualties oceur owing to the haste of miners to see the effeets of a blast. They rush forward into the powder smoke to see the effeet, when something loosened by the blast and which they camot see owing to the presence of smoke, falls upon them, causing fatal or scrious injury. All that is necessary to prevent these is for the miners to wait a few minutes until the smoke has cleared and until everything that is loosened has fallen.

A few casualies from falls occur beeause the roof and face have not been examined and sounded properly in order to asectain whether or not anything is loose, so that it can be pulled down or seemed with props or double timbering. This class of aceidents oceurs chiefly in places that are comparatively safe and where apparances indifate no danger: Indifference to this is rapidly bred in what is known is safe places and the only exconse given when an aceident oremes is that it was not known that any danger existed in the place. Examination hy sombling shonld be fregnently made in all places, no
matter how safe they may appear; so that dangerous points would be discovered and could be secured. Timber is furnished freely at all the mines and it is sent in to them in repuired lengths, so that rarely is there cause to take amy risks for the want of material to make flaces as safe as propping or timbering can make them.

Six fatal and 41 serious non-fatal accidents were caused in various liays by hauling of mine cars in the mines. The victims of this class of acodents are mostly young men and boys who are employed as fadmen or footmen on slopes and planes, and runners, drivers and door tenders. All these classes of employes have more or less to do with the moving of the mine cars, and the work is unavoidably dangerous.

Foung men and boys are active and are naturally inclined to be almost reckless even in dangerous situations. They jump on and off moving cars, couple and meouple cars when moving, ride sitting on the bump is with their feet sliding on the rail and on front end of cars, run along side of moving cars on narow passageways where if Hey should stumble, slip or fall it is impossible for them to escape being canght by the wheels. They will run alongside of a swiftly moving car to put a sprag in a wheel and to do a number of other foolish things.

The nature of their work is such that aruch of this must be done in ordar to execute the required work. All this is done in narrow and frequently low passages with no light but that of the lamp on their hat, or perhaps a safety lamp in their hand, and where swift currents of air are passing which are likely to extinguish their light, and it is surprising that they escape so well. They are diligent, quick in their movements and rarely complain if ample room is not provided for them. Where it is practicable room is made at liast on one side, but lumps of coal fall from the cars and pieces of fallen rock or pieces of timber or boards frequently get in the way, which are a source of danger to the boys when doing their work. Occasionally a man going to meet a trip of cars, turns on the wrong sirie and is crushed between a car and rib. Sometimes they lose their light and cannot see which is the safe side and take the wrong one and are caught and injured. The only way to reduce this class of casualties is to enforce good discipline and prevent the boys from taking risks, and to provide wide, clean passages for the haulage ways.

Footmen are sometimes injured when failing to get ont of the way of runaway cars at foot of slopes and planes. Safety holes are provided for then to stay in while the cars are being hoisted, but they seldom use them, and then only to run in when they hear a rumaway can coming. Sometmes one fails to reach it and is canght and injured:

There were seven fatal and twenty-three serious non-fatal accidents from explosions of powder and premature blasts in this district during 1897. When we consider that 199,503 kegs, each holding 25 pounds of powder, and 316,660 pounds of dynamite of various grades were handled and used with light from a miner's lamp only, it is surprising that the accidents are not more frequent. The majority of these casualties occur from unexpected explosions of blasts, and most of them when a miner is returning to the face thinking that the squib has "missed" and the blast explodes when he is approaching. There is a risk at all times in returning to try another squib, if it is not certainly known that the first squib has failed. The most of the miners listen attentively to hear the squib go off; others are indifferent and when they think that ample time has been given, return to try another squib and when perhaps close to the face the blast explodes.

Some accidents of this class are caused by defective squibs, others because the squib is rendered unsafe by cutting the match too short to give proper time for the person who lights it to escape. These can be reduced only by diligent care on the part of the men themselves and a rigid discipline on the part of the officials. Three fatal accidents occurred by men falling down shafts. One seems to have opened a gate and walked into the shaft. He may have in the darkness thought the cage was there and walked on. No one was present and it was not known that he had fallen until search was made that night after his failing to return home at the usual time. "The other two were killed because the rople broke, allowing the cage to fall to the bottom. It first caught in ice when lowered in the shaft, and when the rope was slack the cage broke loose and broke the rope.

Three fatal and 30 serious non-fatal accidents were caused in varions unnsmal ways which conld be classed with the others. A number of these were caused by kicking mules or being squeezed between mules and cars or ribs, by ropes on planes and slopes, by the handling of tools, axes, etc., and by the many ways by which a person may be hurt.

Two fatal and 27 non-fatal accidents happened on surface in various wars, but the most of these occurred by either culm or railroad cars and to boys when playing in and around the breakers.

The following table shows that a larger quantity of coal was mined per life lost in the year 1897 than in any previons year since the mine law was enacted. A study of the accompanying table shows conclusively that the number of accidents have decreased in comparison with the quantity of coal mined. In the first decade of years 87.409 tons were mined per life lost. In the second decade 91,507 tons were mined fer life lost, and in the last seven years an areage of 98,646 tons.

During each period the mines have been driven into deeper and much more dangerous parts of the basins. The danger from explosive gas and bad top and bad bottom is many times greater than it was when the mines were working nearer the ontcrop. The increase in number of accidents are in those that occur by explosive gas and by falls of roof and sides, but the increase in the numbers of employes and in the quantity of coal produced has been greater in proportion.


\footnotetext{
REPORT OF THE INSPECTORS OF MINES.
}

TABLE C.-Showing the Production of Coal for each of the First Two Decades and of the Last Seven Years, the Number of Fatal Accidents in each Class, and the Average Tons of Coal Mined per Life Lost.


TABLE D.-Showing the Production, Average Number of Accidents for each Year in each of the First Two Ten Years and the Last Seven
Years, and Average Tons of Coal Produced for each Year in said Periods.


The first mine law was enacted March 3, 1870. The Inspector for the first ten years was Mr. Thomas M. Williams. For the last seventeen years the present Inspector, Mr. Giwilwym M. Williams, has been in office. In 1855 the Pittston district was erected out of a portion of the Wilkes-Barre and Scranton districts. The collieries of Plains, Dorrance and Exeter township were then located in the Pitfston, now the Third district.

\section*{The Mines and Mine Inspection.}

During the year 1897 the mines of this district were inspected sercral times and with the exception of the ones damaged by fire, water or eaves, all were found in safe and lawful condition. Only in two instances was there just cause for complaint as to the ventilation, and these were soon remedied. Each mine foreman has his characteristies; one is prone to overlook the ventilation, the other the timbering, and others the maintenance of roomy gangways, and the fact that the Inspector comes around and finds fanlt does much to keep things in proper condition.

The power for producing ventilation is ample and only requires care in keeping it well up to the faces, and in this the most of the mine foremen deserve commendation, for they do it well. Timber and material for the safe conducting of mines are lavishly supplied and there never was a time when the mines were better secured by good propping and timbering. It is just to state also that there never was a time when so much timber was reguired, for the top is bad in nearly all the seams in nearly all the mines. The deeper the mines get, the poorer the top becomes.

The method of mining is gradually changing, having a marked tendency to leave larger pillars. At all the mines the refuse is utilized to fill old workings so as to add strength to the pillars, and at many, the culm and waste is flushed in from the surface to fill old workings. This most certanly is an important factor in prerenting squeezes and will enhance the safety of the mines.

It is difficult to enforce the rule requiring that the powder and explosives shall be kept in locked boxes. In nearly all the mines there are a number of careless, obstinate miners who cannot be taught to keep the powder in their boxes, and yet these are frequently the very persons who are loud in their desire to magnify any derelicfion on the part of a mine foreman or the company. There is a difforence in the executive ability of mine foremen. Some are able to enforee ohedience better than others, and these are the bosses who are characterized as being hard and tyranical. Yet they are the ones who hare the fewest accidents in their mines. What is really necessary to reduce the number of accidents in these days is a diseipline that compels obedience to well known rules.

Complaints have been made through newspapers that at some of the
shafts the men are not hoisted up as promptly as the law provides. These were investigated and the accusations were denied. Yet, it can be seen that where several hundreds of men are employed in a mine it is impossible to hoist the men and hoist coal in the last hour when all the men have finished their day's work and are going to the shaft. It requires about one hour in these mines to provide the reguired number of cars for the night shifts and these cannot be provided and have the men hoisted at the same time. I have no personal knowledge of any violation, but the conditions themselves indicate this difficulty and there is no way ont of it. The law provides that whenever five men shall come to the bottom of the shaft they shall be hoisted. In one or two instances where men have complained, they have been compelled to stay in their working place Intil quitting time and this was a greater hardship to endure than fo wait a short time at the bottom of the shaft.

There is practically no water in the mines of this district when they are orer 500 feet in depth, unless it is that which fotlows the workings down from the ontcrops. The mines are dry and most of them are exceedingly dusty. The gangways are oceasionally sprinkled with water so that the dust is allayed, but the breasts are intensely dusty and the air currents, though large, are heavily charged with dust. It is with large volumes of air only that working is made tolcable. The presence of so much fine dust in the air may intensify the heat and cathse greater expansion of the flame in explosions of gas, but I have had no cause to even suspect that the dust was itself explosive.

The rentilation is reported monthly as the law prescribes from all the mines exrept one. In this case the foreman has been provokingly aureless. His reports are sent in only after repeated requests. He is an intelligent, capable foreman and is derelict only in this one particular.

The boiler inspection reports come in in lawful order. Some trouble was had in getting reports from inspectors of insurance comfanes, but they, on their attention having bern ralled to the law sent the reports promptly and in satisfactory form.

\section*{The South Wilkes-Bare Colliery}

When the report from this distriet was made for the yar 1896 the baltimore sean workings of the South Willixs-Barre mine were filled with water to a height of 205 feet in the shaft. On Fehruary 1. 1897, two large iron tanks were used to ratise the water out both day and night, and hy May \(2: 3\), il was all out. The gatng:ays, airways and all other passages were found practically chosed by falls of roof and sides and the heaving of the fireclay botfom, and all were literally filled with explosive gases. In the first week of Mareh a small cave came down in a breast of the Hillman seam and released enongh
gas to make an air current of 75,000 cubic feet per minute explosive, and kept it so for several weeks, but it gradually lessened until it was exhausted. They have cleared out the gangways and airways of Hillman seam and have been working steadily day and night to open those of the Baltimore seam, but it will take two or three months more to complete it. Extraordinary care was exercised in working, and so far they have been successful, having had not one accident. The work has been extremely dangerons.

\section*{The Conyngham Mine, Delaware and Hudson Canal Company.}

This mine has had a fire in it for several years and was filled with water the second time in an endeavor to extinguish it. On danuary 14, 1897 , the water had filled to a height of 313 feet. The Inspector being apprehensive of danger to the employes of the Hollenback mine lest the pillar should give way, requested that all employes of the latter mine be probibited from entering the mine until it was considered safe, and the following day work at the mine was suspended. The water was poured into the Conyngham until it attained a height of 394 feet. Two bore holes were drilled to let the pent up gases escape.

On March 2, they started to hoist and pump the water ont and the Lehigh and Wilkes-Barse Coal Company was permitted to work in the Hollenback, and started on March 8. By Saturday, Seplember 18 , the water was all jmmped out and early in November evidence of the existence of a tire became noticeable again. A wide exient of the workings are caved, breaking down all to the surface and the fire lurks somewhere in the heart of the cave. On November 13 a current of noxions gases and steam that came out from the cave had a temperature of 100 degrees \(F\)., which at this writing has risen to 150 degrees.

Having flooded the mine with water twice and fatiled, they are now flashing culm in to fill a circuit of old workings around it, so as to shat the air entirely off and have it so isolated that it eannot do amy injury: At this writing they are flashing the culm in at threce points, vi\%: At the Baltimore air shaft, at one of the bore holes and at the Conyngham shaft. It is hoped and believed that this plan will have the effect of extinguishing the fire.

The Hillman, Kidney and Bowkley seams of the Conyngham are worked from the No. 2 shaft. This was idle for the first cleven months of 1897 owing to a squeeze which had taken place in 1896. Work was resmmed there at the beginning of Deeember, 1897. The mine was inspeeted December 10 and found restored to a satisfactory condition. The rentilation was ample and the gareratys and breasts wore well seenred with exorllent timbering work.

The Baltimore No. 2, Delaware and Hudson Canal Company.
On Monday, December 21,1896 , a fire ignited by a blast in this mine required the flooding of the Red Ash slope workings. The fire being in a high part of the workings, a bore hole was drilled to let the gases escape so as to permit the water to fill to the highest points. On March 24, 1897, at 1 P. M., the bore hole broke into the mine and the confined gases instantly rushed up and were ignited by the boilet fire of the boring machine. The flame consumed the shanty and boring machine and threatened to destroy several houses in the vicinity. It made a flame eighty feet high, a mighty torch swayed by the wind. The fire department was called out and they had to work incessantly for a day and a half to save the houses. At 4 1. M., Mareh 2.5 , the flame was extinguished but the gas continued to escape for several weeks. Finally it ceased and the water in the mine filled to the hole.

By October, 1897, all the water was pumped ont and the workings were found to have been entirely closed in by falls of roof cansed by the action of the water. The slope is being remodelled and arranged so that the gangways will be above the old workings and in new gromed. When this is completed this part of the mine will be much better arranged than the old one was.

\section*{A Squeeze and Serions Inflow of Water at the Avondale Mine.}

Towards the middle of March, 1897, a squeeze began in the Red Ash seam workings west of the No. 1 inside slope in the Arondale Mine of the Detaware, Lackawanna and Western Railroad Company.

The seam was :22 feet in thickness and the workings in this part were old and had for years been abandoned but now they had just resumed working a block of coal formerly left as being loo poor in quality to mine. The pillars were irregular and at some places the breasts were unusually wide and as usmal in this seam the gobs were high.

By March 24 th the squeeze affected the workings in the Ross seam directly over the seat of the trouble in the Red \(\lambda\) sha seam. The rocks overlying the Ross workings cratked, and crevies were opened through which a stream of water flowed into the mine, which was ess timated to be abont 14,000 gallons per minute. It rat down into the workings of No. \(: 3\) slope which is a slope sunk from the lower lift of the No. 1 slope. It was evident at one hatithe pmons could mot frimy, the water and they were taken up.

Dams had been already partially constructed acerss the gangway and airway leading into the workings connered with the Notingham and these were hastily eompleted. By Marth 29th the No. 3 slope and its workings were submerged and it began to fill upon the dams. The next day the dams began to leak and the quantity leaking through
increased as the water raised. By April 20 the water in Avondale lad reached a height of 150 feet vertical above the dams and the leakage into the Nottingham had itled their entire workings below the seventh lift.

At this time it was apparent that the inflow of water had been materially reduced and the D., L. \& W. Company decided to instal the pumps and make energetic efforts to control the water. It continued to rise in the Nottingham until May 8. The Lehigh and Wilkes-Barre by this time had installed more pumps than were Liceded at the fifth lift to hold it. The number of pumps necessary to hold it were started and it was kept at this height until September 13. The workings of six iifts were submerged. On this date they started to reduce the water and have unceasingly pumped day and night in both mines ever since. At this time it has been pumped down to the eighth lift in the Nottingham and to the level of the dams at bottom of No. 1 slope in the Avondale mine. The quantity of inflow has rery materially decreased, being not more than one-half as much as it was when it broke into the mine, and it is confidently expected to decrease as much again as the crevices in the top works become filled with clay, etc.

The production of coal had to be suspended in both mines. One of the hoisting compartments in the Nottingham shaft had to be t:tilized for additional steam and column pipes required for the extra pumps, but after an idleness of two and a half months that part of the mine which was not occupied by the water was put in eperation and the coal was hoisted by one cage. They have been hoisting about 400 mine cars per day. On October 7 work was resumed at the Avondale mines and they are working in the No. 2 slope and that part of the Ross seam workings lying to the rise from the shaft level. It is a question of only a few months before both mines will be producing their usual quantity of coal.

In the breaking in of the water at Avondale there is an ominous warning to all who mine under the flats of the Susquehanna river, of the possibility of enough water breaking into one of the mines to flcod and ruin all the mines that are comeeted together. All the mines are connected from West Nanticoke to Edwardsville except the Woodward, and it behooves all to expreise extraordinary care in mining. The outcrops of all the scams are buried under the sandy hats hetween Nanticoke gap aud the upper end of Plymonth, and to mine the coal in the approaches to these outcrops needs more than the ordinary care and even with the exereise of all possible care, a pot hale or deep crevice in the rock may be struck at any time to the ruin of all these mines.

\section*{An Extensive Squeeze at the W.odward Mine.}

On the morning of Mareh 26 a squeeze began in West gatngway of the Red Ish workings of the Woodward mine of the Delaware, Lackawanna and Western Company at Plymouth township. It was first voticed by the fire boss when making the ustal morning examination of the mine. The colliery was started to work as usual but the squeeze by this time had rapidly spread and had assumed a dangerous aspect and all the employes were sent out. The squeezing was first noticed at the inner breasts where the seam was unusually thick and shelly. The pillars and breasts were of uniform breadth, the pillars heing 30 feet and the breasts 24 feet in width, and it was believed that enongh pillars were reserved to make sure of Freventing a squeeze. However, it came, and kept crushing and spreading until the latfer part of May, so that by that time an area of 35 acres was affected, all above the second lift and west of the shaft. As usual in this district, as soon as the squeeze began, explosive gases appeared in the return airways and the affected workings were also filled with the same kind of gases. A great amount of timbering work was done in the effort to prevent its spreading, and some undoubtedly to good purpose. All work was done with safety lamps and men were kept on the outer side of the squeeze where they could retreat if necessary. The workings of all the seams were affected but there was no coal lost aside from what was in the pillars. The most important parts of the gangways and airways have been reopened and repaired and the work of opening the others is still progressing. Excellent care was taken in the exeention of the work for much of it was in perilous situations, but all was well done and without injury to any who took part.

\section*{The Destruction of the Baltimore Tunnel Breaker.}

Saturday morning, February 20, when about to start to work, the Ealtimore Tunnel breaker took fire in the oil room, evidently from a boy's lamp, and in one hour was entirely consmmed. This was the first breaker erected in the Wyoming Valley. It was erected in 1854 by the Baltimore Coal Company, and the seam they worked is designated as the Baltimore seam throughout the valley and evidently will be known by that name as long as it will be spoken of.

The first shipment of coal was made hy the old canal from the boat sheds near East Market street. Wilkes-Barre. The breaker was located about half a mile east of the boat sheds and here the first locomotive in the Wyoming Valley was used to hanl the cars hack and forth between the breaker and the chates, and before the breaker was erected, between the mine and the chutes. In \(18 f i 7\) the colliery was purchased by the Delaware and Hudson Canal Company and they are
still its possessors. The breaker was not rebuilt and the coal of the Baltimore tunnel is now hoisted up the new No. 4 shaft and hauled by a locomotive to the Baltimore No. 2 breaker where it is prepared and shipped to market. Therefore the name Baltimore tunnel will be superseded by the name Baltimore Shaft No. 4 in all the reports of the future.

\section*{The Burning of the West End Coal Company's Breaker.}

At about ten o'clock Monday morning, March 29, the West End Coal Company's breaker at Mocananqua was discovered to be on fire, and in a short time was completely burned. The colliery was idle and it is not known how the fire originated. On March 14, 1893, a breaker on the same site was burned and this one was erected in its place and commenced to prepare and ship coal on August 15, 1893. A new breaker was erected again on the same site and this was completed and commenced to prepare and ship coal September 2, 1897.

Record of Improvements for the Year 1897.
Improvements by the Lehigh and Wilkes-Barre Coal Company.
At South Wilkes-Barre colliery a rock tunnel has been driven from the Hillman to the kidney seam for hauling purposes. It is 450 feet in length and \(8 \times 12\) feet area.

At the Maxwell colliery a new fan has been erected thirty-five feet diameter, Guibal pattern, 12 feet wide. Area of npcast is 192 square feet. Horizontal engine working direct. Cylinder 20x48 inches diameter. Engine horse power, 150.

\section*{Improvements by the Delaware and Hudson Canal Company.}

At Baltimore tunnel a shaft was sunk to save hauling the coal out from the old tumel. The new shaft is designated as the Baltimore No. 4 shaft and the mine will be known hereafter by that name. The shaft is from the surface to the Baltimore seam. It is 97 feet in depth having an area of 12 by 30 feet. A new gravity plane is being made to take the place of three old planes. When finished it is to be 3,300 feet in length, having grades varying from 7 to 12 degrees. Its sectional area is Sx18 feet.

A rope hanlage has been installed to haul the coal from the head of siope and foot of plance int the Red Ash seam to the bottom of the shaft. The engines are located on the surface.

At Baltimore No. 3 a new gravity plane has been made 800 feet long haring a grade of 15 degrees and a seetional area of \(S\) by 16 feet.

At Baltimore No. 2 the trestle leading from the shaft to the breaker was torn down and a conveyor was constructed to convey
the coal from the shaft to the breaker. Another conveyor line was constructed to conrey the coal of the Baltimore No. 4 shaft to this breaker.

At the Boston colliery the breaker hoisting tower was torn down and a converor was constructed to scrape the coal from the dump at the shaft to the head of the breaker, and in the mine a tumnel has been driven from the bottom to the top split of the Red Ash seam. It is 400 feet in length and \(7 \times 12\) feet area.

The No. 2 shaft at Plymouth was extended from the Bennett to the Red Ash seam 312 feet, making the total depth of the shaft 898 feet.

I new fan was erected to take the place of the old one. It is 22 feet in diameter, encased hy a brick wall. It runs 70 revohtions and is exhausting 97,800 cubic feet of air. The engine is horizontal direct acting, 16x30 inch cylinder.

It the No. B colliery, Plymonth, the Hillman seam was opened and a slope was sunk to a length of 620 feet; average grade 12 degrees; \(7 \times 12\) feet area.

At the No. 4 colliery a new slope has been sunk in the Red Ash seam to a length of 800 and it is still being driven. It is \(7 \times 14\) feet area and has an arerage grade of 7 degrees. It opens a large area of excellent coal.

Improvements by the Susquehanna Coal Company.
In the No. 1 shaft, Nanticoke, an extension of tmmel has been driven from the Lee to the Ross seam a length of 960 feet, and \(7 \times 14\) feet sectional area. A tumnel has been driven from the Forge through troubled ground a length of \(1,5 \pi 0\) feet, \(7 \times 14\) feet area and is still being driven. An extension has been made by a tunnel from the Hillman to the Forge seam 650 feet in length, \(7 \times 14\) feet area. A tumnel has been driven for ventilation purposes from the Hillman to the Hillman 240 feet in length and \(7 \times 14\) feet area.

In the No. 4 slope, Nanticoke, the main slope has been extended through the rock from the Hillman towards the Forge seam a length of 350 feet and it is still being driven. The No. 21 tunnel was exfended a length of 700 feet from the Mills to the Mills and Tunnel No. 23 driven on from the Hillman to the Mills a length of 500 feet. The area of all is \(7 \times 12\) feet.

In the No. 2 shaft, Nanticoke, No. 5 slope was extended through an anticlinal from the Lee to the Lee a length of too feet and the No. 11 siope was driven throngh the rock from the loss to the Lee seam an extended lengith of S50 feet. A new gravity plane S50 feet in length was made in the Ross seam.

At the No. 6 shaft, Gilen Lyon, No. 5 tunnel was driven to a length
of 830 feet from the Twin to the Ross seam. It is \(7 \times 14\) feet area. Three new short gravity planes were made, one of which was in the No. 6 slope.

Improvements by the Delaware, Lackawama and Western Company.
At the Woodward mine a rock tumel was driven through an anticlinal a length of 621 feet, having a sectional area of \(7 \times 14\) feet. \(\Lambda\) new barn has been built in the Red Ash seam which is lighted by electric incandescent lamps. It is the safest, cleanest and best lighted in the whole district. At the Bliss mine two rock tunnels were driven one 1,000 feet in length and the other 179 feet. Each has an area of \(7 \times 12\) feet. Two slopes were driven, one 1,120 feet and the other 1,140 feet in length. The grade on the first is 20 degrees and on the other 24 degrees.

\section*{Improvements by the Parrish Coal Company.}

At the Buttonwood Colliery a slope has been driven in the Hillman seam to the dip south of the shaft a length of 515 feet on a grade of 27 degrees. Two gravity planes were made, one in the Hillman seam, 850 feet in length and \(s\) degrees grade, and one in the Kidney scam, 1,100 feet in length on a grade of 11 degrees.

Improvements by the Alden Coal Company.
At the No. 2 shaft of the Alden Colliery a new steel head-frame has been erected instead of the old timber one; a very great improvement.

Several other minor improvements were made in the most of the mines which are not of sufficient importance to be recorded in this report.

\section*{Iunual Examination of Applicants for Mine Foreman Certificate.}

The annual examination of applicants for certificates of qualification of mine foreman and assistant mine foreman was lield at the Union street school building, Wilkes-Barre, I'a., June 12,15 and 16 . The board of examiners was (. M. Williams, Inspector of mines, Edward Mackin, superintendent; Andrew MeGeehan and William 1). Morgan, miners.

Twenty-three applicants for mine foreman certificates appeared in the examination and the following eleven were recommended to have certificates:

William H. Thomas, Lee, Litzerne county:
James D. Nichols, Nanticoke.
William I. Jones, Peely, Iuzerne comnty.
Willian J. Lloyd, Wanamie.

Patrick II. Devers, Kingston.
Benjamin (x. Jones, 313 E. Church St., Nauticoke.
Thomas James, 275 E. Broad St., Nanticoke.
Gus Hinterleitner, Plymouth.
Thomas D. Nicholls, Nanticoke.
Daniel Powell, Nanticoke.
Thomas Richards, S. Market St., Nanticoke.
Forty-five persons were recommended to have cerificates qualifying them to act as assistant foremen.

Every man who is required to make examination of a mine in this district has to be the possessor of a certificate of qualification for either mine forman or assistant mine foreman.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name of Colliery. & Name of Operator. & Location & -County. & Name of Superintendent. & Postoffice Address. \\
\hline Hollenback No. 2 , & Lehigh and Wilkes-Barre Coal Co., .. & Luzerne, & .... & & \\
\hline Empire No. 4, & Lehigh and Wilkes-Barre Coal Co., ......... & Luzerne, &  & Elmer H. Lawall, General Manager: & \\
\hline South Wilkes-Barre Nos. 3 \& 5 , & Lehigh and Wilkes-Barre Coal Co., .... & Luzerne, & . & W. J. Richards, Chief Engineer: & \\
\hline Maxwell No. 20, Colliery No. 9 . & Lehigh and Wilkes-Barre Coal Co., .. & Luzerne, & & Morgan R. Morgans, Inside Superin- & \\
\hline Lance No. 11, & Lehigh and Wikes-Barre Coal Co., . & Luzerne, & & Superintendent, .................... & Wilkes-Barre. \\
\hline Nottingham No. 15. & Lehigh and Wilkes-Barre Coal Co., ... & Luzerne, & & & \\
\hline  & Lehigh and Wilkes-Barre Coal Co., & Luzerne, & & & \\
\hline Paltimore Tunnel, .... & Delaware and Hudson Canal Co., ... & Luzerne, & & & \\
\hline Baltimore No. 2 , & Delaware and Hudson Canal Co., & Luzerne, & & & \\
\hline Baltimore No. 3 Conyngham, & Delaware and Hudson Canal Co., & Luzerne, &  & & \\
\hline Boston. & Delaware and Hudson Canal Co., & Luzerne, & & C. C. Rose, General Superintendent,. & Scranton. \\
\hline No. 2 Plymout & Delaware and Hudson Canal Co., & Luzerne, & & & \\
\hline No. 4 Plymouth, & Delaware and Hudson Canal Co., & Luzerne, & …........ & & \\
\hline No. 5 Plymouth, & Delaware and Hudson Canal Co., & Luzerne, & & & \\
\hline Colllery No. 3. & Susquehanna Coal Co., & Luzerne, & & Morris Williams, Manager: J. H. & \\
\hline Colllery No. \({ }^{\text {No, }}\) & Susquehanna Coal Co., & Luzerne, & & Bowden, Chief Mining Eugineer;
Geo. T. Morgan, General Superinten- & Wilkes-Barre \& Nan- \\
\hline Colllery No. 7, \({ }^{\text {7 }}\), & Susquehanna Coal Co., & Luzerne, & & dent, & \\
\hline Nos. 1 and 4 Shafts. Nos. 2 and 3 Shafts. & Kingston Coal Co., & Luzerne, & ......... 1 & Daniel Edwards, General Superintendent & \\
\hline Gaylord shaft and slope, & Kingston Coal Co., & Luzerne. & & & \\
\hline Avondale, \({ }_{\text {Woodward }}\) Nos, 1 \& 2 & Delaware, Lack. \& West. R. R. Co., & Luzerne, & & W. R. Storrs, General Coal Agent; W. & \\
\hline Bliss, ............... & Delaware, Lack. \& West. R. R. Co., & Luzerne, & ......... & H. Storrs, Assistant Coal Agent; A & \\
\hline Auchincloss Nos. 1 \& 2, ....... & Delaware, Lack. \& West. R. R. Co., .... & Luzerne. & ......... & Snyder, Chief Mining Engineer; B. Hughes, General Mine Superintendent, & Scranton. \\
\hline Dorrance, & Lehigh Valley Coal Co., & Luzerne, & & & Wilkes-Barre. \\
\hline Franklin, \({ }_{\text {No. }}\) Red Ash . & Lehigh Valley Coal Co., & Luzerne, & & \begin{tabular}{l}
W. A. Lathrop, General Superintendent, \\
M. B. Williams,
\end{tabular} & Wilkes-Barre. Wilkes-Barre. \\
\hline No. 2 Red Ash, & Red Ash Coal Co., & Luzerne, & & M. B. Williams. & Wilkes-Barre. \\
\hline Alden, & Alden Coal Co., & Luzerne, & & K. M. Smith, & Alden Station. \\
\hline Dodson. & Plymouth Coal Co., & Luzerne, & & James B. Davies, & Plymouth. \\
\hline Parrish, ... & Parrish Coal Co., & Luzerne, & & H. H. Ashley, & Plymouth. \\
\hline Wuttonwood, & Parrish Coal Co..
West End Coal & Luzerne, & & H. H. Ashley, & \begin{tabular}{l}
Plymouth. \\
T'Barre \& Shicksh'ny.
\end{tabular} \\
\hline & Mellville Coal Co. & Luzerne, & & J. N. Rice, Manage & Lee \& Scranton. \\
\hline Hadlelgh & Crescent Coal Mining Co. & Luzerne, & & George W. Minnes, & ilkes-Barre. \\
\hline Hillman Vein, & Hillman Vein Coal Co., & Luzerne, & & S. J. Tonkin, & Wilkes-Barre. \\
\hline Warrior Run. & A. J. Davis, & Luzerne, & & A. J. Davis, & Peely \& Wilkes-Barre. \\
\hline Chauncey, & Reynolds \& Moyer Coal Co Wyoming Coal Co., ...... & Luzerne, Luzerne. & & C. H. Reynolds, & \begin{tabular}{l}
Kingston. \\
Sugar Notch.
\end{tabular} \\
\hline
\end{tabular}

TABLE NO．2．－Gives the Total Number of Tons of Coal Mined in each Colliery，Number of Days Worked，Number of Employes， Number of Persons Killed and Injured，Number of Kegs of Pow der used，etc．，in the Fourth Anthracite District for the year ending December 31， 1897.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collierles． & Location． & \begin{tabular}{l}
\(\because\) \\
\(\stackrel{\text { g }}{0}\) \\
ㅌ \\
g
U
0
0
0
0 \\
퓽
\end{tabular} &  &  &  &  &  & Number of fatal accidents. & \(\frac{1}{8}\) &  &  &  &  &  \\
\hline Lehigh and Wilkes－Barre Coal Co． & & & & & & & & & & & & & & \\
\hline Hollenback No．2， Emplre No．4， & Wilkes－Barre， & 159.513 .10
19.026 .12 & \(15,048.00\)
\(4,560.00\) & \(\begin{array}{r}13,768.10 \\ \hline 95.10\end{array}\) & \(130,697.00\)
\(13,471.02\) & 126.60
16.20 & \({ }_{5} \mathrm{C12}\) & 1 & & & 11,000
5,750 & \begin{tabular}{l}
33 \\
30 \\
\hline
\end{tabular} & 70
68 & 2 \\
\hline South Wilkes－Barre Nos． 3 \＆ \(5, \ldots\) & Wilkes－Barre， & 65.445 .10 & 20，000．00 & 16， 868.00 & 28，577． 10 & 21.60 & 498 & & 5 & 252 & 13，500 & 18 & 40 & 1 \\
\hline Stanton No．7，．．．．．．．．．．．．．．．．．．．．． & Wilkes－Barre， & 202，516．09 & 20，531．00 & 13，911．04 & 168，074．05 & 127.40 & 753 & 2 & 12 & 4，443 & 14，600 & 48 & 85 & 1 \\
\hline Maxwell No．20，．．．．．．．．．．．．．．．．．．．．． & Ashley， & 384，931．08 & 19，162．00 & 22，420．00 & 343，349．08 & 132.50 & 918 & 3 & 11 & 9,110 & 10，200 & 18 & 62 & 1 \\
\hline Sugar Notch No．9，．．．．．．．．．．．．．．．．．． & Sugar Notch， & \(172,601.19\) & 9，581．00 & 3，367．10 & 159，653．09 & 118.20 & 6.4 & ．．．． & 2 & 5，411 & 1，400 & 21 & 65 & 1 \\
\hline Lance No．11， & Plymouth， & 219， 105.07 & 17，335．00 & 2，517．05 & 199，253．02 & 127.10 & 795 & 1 & \({ }^{5}\) & 6，006 & 17,000
2,900 & 22 & 96 & \\
\hline Nottingham No， \(15, \ldots \ldots \ldots \ldots . .\). ． & Plymouth， & \(223,111.11\)
\(192,616.07\) & 48，355．00
\(12,772.00\) & \(4,489.00\)
874.00 & \(170,267.11\)
178.970 .07 & 115.72
123.80 & 497
558 & 1 & 14
2 & 1,257
4,590 & 2,900
400 & 42
10 & 63
89 & 2 \\
\hline Wenamle Nos． 18 \＆ 19 ， & Wanamle， & 210，532．07 & 13，687．00 & 10，912．11 & 185， 932.16 & 117.50 & 628 & 3 & － & 5，306 & 30，550 & 30 & 105 & 2 \\
\hline Total， & & 1，849，401．00 & 181，031．00 & 90，123．10 & 1，578，246．10 & \({ }^{*} 102.66\) & 6，420 & 11 & 67 & 44，873 & 106，700 & 272 & 733 & 11 \\
\hline Baltimore Tunnel ．．．．．．．．．．．．．．．．．． & Wilkes－Barre， & 23，392． 16 & 6．000．00 & 733.17 & 16．658．19 & 25.00 & 437 & & 2 & 605 & 105 & 24 & & \\
\hline Baltimore Shaft No．2，．．．．．．．．．．．．． & Wilkes－Barre， & \(73,056.03\) & 8.208 .00 & 1，519．08 & 63.328 .15 & 96.75 & 300 & 2 & & 2，216 & S00 & 18 & c5 & \\
\hline Baltimore shaft No．3， & Wilkes－Barre， & 171，200．05 & 12，312．00 & 2，031．14 & 156，796．11 & 188.25 & 526 & & & 5，197 & \(371 / 2\) & 27 & 67 & \\
\hline Conyngham，．．．．．．．．． & Wllkes－Barre， & 23，472．14 & 15，504．00 & 112.10 & 7.856 .04 & 15.00 & 378 & & 1 & 364 & 204 & 34 & 27 & ．．．． \\
\hline Boston． & Plymouth twp．， & 100．398．01 & 8，202．00 & & 92，196．01 & 166.50 & 313 & 1 & 1 & 3，452 & 1，0371／2 & 18 & 34 & \(\ldots\) \\
\hline No． 2 Plymouth， & Plymouth twp．， & 52，087．09 & 13.680 .00 & & 38.407 .09 & 54.00 & 240 & 4 & & 970 & 695 & 30 & 34 & \(\ldots\) \\
\hline No． 3 Plymouth， & Plymouth twp．， & 262，110．04 & 10．944．00 & 2，645．00 & 248，521．04 & 209.00 & 564 & 1 & 3 & 10，160 & 100 & 24 & 85 & \(\ldots\) \\
\hline No．\({ }^{4}\) Plymouth， & Plymouth twp．， & \(187,849.15\)
\(247,621.03\) & \(8,202.00\)
\(16,416.00\) & & \(179,647.15\)
\(225,877.13\) & 215.50
212.00 & 456
530 & \(\frac{1}{2}\) & 3 & 6,030
9,488 & 1,000
950 & 18
36 & 59 & ．．．． \\
\hline Total， & & 1，141．188．10 & 99.468 .00 & 12．429．19 & 1，029，290．11 & \({ }^{*} 131.33\) & 3，964 & 11 & 19 & 38，482 & 4，925 & 229 & 447 & \(\ldots\) \\
\hline
\end{tabular}

Susquehanna Coal Co.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 472.70403 & 55.000 .00 & ........... & & 168.90 & 1,523 & 4 & 25 & & & 74 & 51 & \\
\hline 40S,807.01 & \(\cdots \frac{11,528.00}{}\) & 21,141.00 & 1,133,587.07 & 170.80 & 1,330 & 3 & 6
4 & 27,020 & 54,700 & \(\cdots\) & 15\% & 5 \\
\hline . \({ }^{\text {409.841.03 }}\) & \(\cdots 30,096.00\) & & & 169.25 & 1,197 & \(\cdots\) & 11 & & & \(\cdots 6\) & 123 & 5 \\
\hline 1.291,352.07 & 136.624.00 & 21,141.00 & 1,133,587.07 & *169.65 & 4,200 & 11 & 55 & 27,020 & 54,760 & 224 & 337 & 10 \\
\hline 291,303.15 & 6,600.00 & & 284,703.15 & 163.60 & 961 & 11 & & 1 8,330 & 7,200 & 62 & 110 & \\
\hline \(339,951.00\) & 4,250.00 & 15,684.03 & 320,016.17 & 173.50 & 1,014 & & 4 & 19,294 & 1,950 & 45 & 114 & 3 \\
\hline 100,262.14 & 2,021.00 & 1,918.10 & 96,323.04 & 128.65 & : 53 & & 3 & 3,525 & 300 & 31 & 48 & \\
\hline 731,517.09 & 12,871.00 & 17,602.13 & 701,043.16 & \({ }^{*} 155.25\) & 2,358 & 5 & 19 & 21,249 & 9,450 & 138 & 272 & 3 \\
\hline 84,959.05 & 41,000.00 & 818.00 & 43,141.05 & 79.00 & 405 & & 3 & 1,S36 & 600 & 38 & 52 & \\
\hline 239, 278.10 & 20,000.00 & 3,097.14 & 216, 180.16 & 136.80 & 814 & 2 & 17 & 6,099 & 4,000 & 24 & 99 & 1 \\
\hline 167,322.10 & \(31,396.00\) & 1,598.13 & 134,327.17 & 173.80 & 565 & 1 & 13 & 5,571 & 13,650 & 11 & 42 & 1 \\
\hline 8,391.00 & 7,844.00 & 542.00 & & & 157 & 2 & 4 & 195 & 6,850 & 7 & 12 & \\
\hline 499,951.05 & 100,245.00 & 6,056.07 & 393,649.18 & *129.83 & 1,9i1 & 5 & 37 & 13,701 & 25,100 & 80 & 205 & 3 \\
\hline 249,982.00 & 14,136.00 & 38,093.00 & 197.753.00 & 143.00 & 686 & 2 & 2 & 5,396 & 4,206 & 22 & 67 & 2 \\
\hline 99,38+.16 & 7,182.00 & 2,399.15 & 89,803.01 & 85.05 & C75 & 2 & & 2,821 & 1,399 & & & \\
\hline 349,366.16 & 21,318.00 & 40,482.15 & 287,556.01 & *114.17 & 1,361 & 4 & 7 & S,217 & 5,605 & 57 & 118 & 3 \\
\hline 93,171.10 & 6,840.00 & & 86,331.10 & 98.70 & 325 & \(\ldots\) & 2 & 2,653 & 200 & 15 & 21 & 1 \\
\hline 116,787.02 & 3,648.00 & 2,724.00 & 110,415.02 & 101.40 & 407 & .... & 2 & 3,917 & 300 & 8 & 36 & \\
\hline 209,958.12 & 10,488.00 & 2,724.00 & 196,746.12 & 100.05 & 732 & .... & 4 & 6,570 & 500 & 23 & 57 & 1 \\
\hline 158.009.12 & 14,136.00 & 5.745 .15 & 138,126.17 & 162.00 & 587 & 5 & 8 & 4, S58 & 4,200 & 31 & 58 & \\
\hline 135,580.08 & 7,296.00 & 1,654.00 & 126,600.08 & 123.10 & 585 & 1 & 5 & 4,054 & 12,750 & 4 & 51 & \\
\hline 293,589.00 & 21,432.00 & 7,429.15 & 264,727.05 & 142.50 & 1,172 & 6 & 13 & S,912 & 16,950 & 35 & 109 & \\
\hline \(230,000.18\) & 7,000.00 & 4,867.00 & 218,133.18 & 176.10 & 733 & & 21 & 6,025 & 9,100 & 20 & S0 & \(\ldots\) \\
\hline 185,560.03 & 15,000.00 & 5,089.00 & 165,471.03 & 202.05 & 498 & 1 & 4 & 5,743 & S00 & 10 & 37 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collieries． & Location． &  &  &  &  &  &  & Number of fatal accidents． &  &  &  &  &  &  \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
Hadleigh Crescent Coal Mining West Fnd Coal Co．， Hillman Vein Coal＇co． \\
Warrior Run，A．J．Davis， Lee Melville Coal Co．．．．．．．．．．．．．．．
Chauncey Reynolds Coal Co． \\
Wyoming Coal Co．Washery， \\
Reynolds \＆Moyer washery，
\end{tabular}} & \multirow[t]{7}{*}{\begin{tabular}{l}
Sugar Notch， \\
Mocanauqua， \\
Winkes－Barre， \\
Lee，．．．．．．．．．．．．．．．．．．．．．．． \\
Plymouth twp．， \\
Sugar Notch． \\
Plymouth．
\end{tabular}} & \multirow[b]{4}{*}{} & \multirow[b]{4}{*}{9.000 .00
\(19,00.00\)
\(10,220.00\)
\(14,856.00\)
\(1,050.00\)} & \multirow[t]{2}{*}{．．．．．．．．．．．} & 66．521．11 & & & & & & & & 24 & \\
\hline & & & & & 96．197．00 & 104．30 & 593 & 1 & 4 & \({ }^{2}, 367\) & 16，300 & 26 & ， & \\
\hline & & & & \(8,334.00\)
\(1,887.00\) & 47，
1535.18
1505.18 & 137.60
168.80 & \(\stackrel{281}{423}\) & 1 & & 2,388
4,108 & & 12
32 & 24 & \\
\hline & & & & ＋374．00 & 69，624．10 & 150.20 & 245 & \(\ldots\). & & 2，922 & & 12 & 22 & \\
\hline & & 89，996．18 & 1，634．09 & 1，203．14 & 87.158 .15 & 220.85 & 336 & 1 & 3 & 5，562 & & 3 & 37 & \\
\hline & & 50，
\(20,527.11\) & \(1,000.00\)
502.00 & & 55．630．08
19.625 .11 & & & & & & & & & \\
\hline & & 1．091，093．14 & \＄1，701．09 & 28，387．14 & 981，004．11 & 159．84 & 3，452 & 7 & 48 & 30，479 & 31，350 & 128 & 253 & \\
\hline
\end{tabular}

Recapitulation. TABLE No. 2.-Continued.

* Arerage.
† There were 57,350 pounds of dynamite used by private contractors in sinking shafts and driving rock tunnels, making the total dynamite used 316,660 tbs.






\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & &  & Name of Person. & Occupation. & ¢ & - &  & Name of Colliery. & \[
\begin{aligned}
& \text { Location-Luzerne } \\
& \text { County. }
\end{aligned}
\] & Nature and Cause of Accident. \\
\hline \multirow[t]{4}{*}{Aug.} & & 33
34 & \begin{tabular}{l}
Martin Holleran, .... \\
Patrlck Kelly,
\end{tabular} & \begin{tabular}{l}
Miner, \(\qquad\) \\
Miner, \(\qquad\)
\end{tabular} & \[
\begin{aligned}
& 66 \\
& 54
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 4
\end{aligned}
\] & \begin{tabular}{l}
Stanton No. 7. ........... \\
Franklin, \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Wilkes-Barre, ..... \\
Wilkes-Barre, .....
\end{tabular} & \begin{tabular}{l}
Fatally injured by a fall of coal in a breast. Died same day. \\
Fatally injured by a blast which fired before he could get away. Died next morning.
\end{tabular} \\
\hline & 21. & 35 & John Pstraka, ....... & Laborer, ............ & 32 & 1 & 2 & Shaft No. 2, ............. & Plymouth, & Killed; head caught and crushed between a car and rib. Went on the narrow side. \\
\hline & 23. & 36 & John Zarinskl, & Miner, ............... & 45 & 1 & 6 & West End Drift, ....... & Mocanaqua, ........ & Fatally injured by a fall of top rock at face of breast. Dicd two hcurs after. \\
\hline & 25. & 37 & James D. Williams,. & Miner, ............... & 35 & 1 & 4 & Shaft No. & Edwardsdale, ..... & Asphyxlated by gas at the face of an idle airway. where he was not working. \\
\hline \multirow[t]{4}{*}{Sept.} & 2. & 3 S & James Jones, ........ & Miner, .............. & 50 & 1 & & \multirow[t]{2}{*}{\begin{tabular}{l}
Boston, \\
Slope No. 6,
\end{tabular}} & \multirow[t]{2}{*}{Plymouth twp., ... Glen Lyon, ........} & \multirow[t]{2}{*}{\begin{tabular}{l}
Kllled by a fall of top slate; had tried to pry it down but falled. \\
Fatally hurt by a runaway car on engine plane. The car uncoupled above him. Died same day.
\end{tabular}} \\
\hline & 7. & 39 & George Kalafut, .... & Footman. & & 1 & 1 & & & \\
\hline & & 40 & Jacob Carbonavitch, & Miner, .............. & & 1 & 4 & Wanamie No. 18, & Wanamle, & Killed by a fall of rock at face of breast when working coal loose from under it. \\
\hline & 28, & 41 & John Ashton, & Laborer, & & 1 & & Alden, & Alden, & Instantly killed by a rush of soft coal trom a vertical faulty seam of coal on tunnel. \\
\hline \multirow[t]{7}{*}{Oct.} & 5. & 4. & Isaac Edmunds, ..... & Company laborer, . & 68 & \[
1
\] & 3 & Parrish, ................. & Plymouth, ......... & Killed by an explosion of gas in an abandoned breast. \\
\hline & & & Lewls R. Richards... & Driver boss, ....... & 29 & 1 & 2 & Parrish, ................ & Plymouth, ......... & Killed by an explosion of gas in an abandoned breast. \\
\hline & 5 & 44 & George Eddy, . & Driver, & 22 & & & Parrish & Plymouth, ......... & Killed by an explosion of gas in an abandoned breast. \\
\hline & & & Daniel Benson, ...... & Miner, & & 1 & & Bliss, ................... & Hanover twp., .... & Instantly klled by a blast. It fired while he was igniting the match. \\
\hline & & 46 & Charles Brosofsky, .. & Laborer, ........... & 40 & 1 & 4 & Maxwell, ................ & Ashley, & Hip dislocated and leg crushed by a fall of rock. Dled November 1. \\
\hline & & & John Selusnak, ...... & Miner, .............. & & 1 & & No. 6 Tunnel, ........... & Glen Lyon, ......... & Instantly killed by a fall of rock from roof at face of breast. \\
\hline & 30, & 48 & William Davies, & Mincr, .............. & 40 & 1 & 2 & Shaft No, 3, ............ & Edwardsdale, ..... & Fatally injured while returning to a blast, thinking the squib "mlssed." Dled November 1. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Nov. & 2. & 49 & Thomas Kelly, ....... & Miner, . & & 1 & \[
\cdots \cdot
\] & Stanton No. 7, .......... & Wlikes-Barre, .....| & Killed by a piece of coal which he evidently pryed loose. He was alone and was not missed until next morning. When found he was lying under a large lump of coal 80 feet down from face of breast. \\
\hline & 8 , & 50 & John Matura, ........ & Laborer, ........... & 18 & .... & .... & Shaft No. 3, ............. & Edwardsdale, ...... & Killed by a fall of rock in a breast when at work with his father. \\
\hline & 13, & 51 & John Wright, \({ }^{\text {Frank }}\) Venouski.... & Driver, \({ }^{\text {Laborer, }}\). \({ }^{\text {c........ }}\) & \({ }_{25}^{18}\) & & & Shaft No. 3, ..............
Phrrish, & Plymouth, & Fatally injured by a fall of rock. \({ }^{\text {Severely }}\) burned by an explosion of gas. \\
\hline & 16, & 52 & Frank Venousk!, .... & Laborer, & 25 & & .... & Parrish, .................. & Plymouth, .......... & Severely burned by an explosion of gas. Died November 24. The miner, Joe Valinskie, was burned at the same time. \\
\hline & 19. & 53 & Patrick McNellis, .. & Miner, ............... & 53 & \(\ldots\) & \(\cdots\) & Maxwell, ................ & Ashley, ........... & Fatally injured by a large lump of coal rolling down upon him. When approaching the face of a breast, pitching 30 degrees, a mass of loose coal moved down upon him. \\
\hline & 20, & 54 & Barney Dugan, ..... & Miner, .............. & 43 & 1 & 7 & Baltimore No. 2, ........ & Wilkes-Barre twp., & Fatally injured; had gone to adjacent breast when firing a blast, when a plece of rock fell and struck him. He died four hours after. \\
\hline \multirow[t]{5}{*}{Dec.} & & 55 & Anthony Sabanis, ... & Miner, .............. & & 1 & 2 & Nottingham, ............. & Plymouth, .......... & Killed by a blast; was returning, thinking the squib had missed. \\
\hline & 7 , & 56 & Henry James, ....... & Driver, & 23 & \(\ldots\) & .... & Shaft No. 2, ............ & Nanticoke, & Fatally injured; car jumped track and crushed him against rib. Died 30 hours after. \\
\hline & & & John Rushofski, .... & Laborer, ............ & & & ... & N. Shaft No. 1, ......... & Nantlcoke, ......... & Instantly killed by a fall of top rock when assisting to restand a prop. \\
\hline & 15. & 68 & William Poppka, .... & Miner. & 30 & 1 & 3 & Hillman Vein, .......... & Wilkes-Barre, ..... & \begin{tabular}{l}
Severely burned by an explosion of gas. Dled December 18. \\
Both instantly killed; they were de-
\end{tabular} \\
\hline & 24, & 59
60 & John Agnew,
Thomas Kennedy, .... & Footman, Footman, & \[
\begin{aligned}
& 46 \\
& 23
\end{aligned}
\] & 1 & 1 & Alden Shaft No. 2,.... .
Alden Shaft No. 2, & \begin{tabular}{l}
Alden, \\
Alden, ..............
\end{tabular} & scending the shaft at 12.30 midnight. Cage caught for a brief time in the ice and again broke through. The fall broke the rone and cage fell to the bottom of shaft, about 460 feet. \\
\hline
\end{tabular}
Recapitulation of Fatal Accidents.


TABLE No. 5.-Giving number in each class, Occupation and Nationality of persons Non-Fatally Injured.



\title{
FIFTH ANTHRACITE DISTRICT.
}
(LUZERNE AND CARBON COUNTIES.)

Hazleton, Pa., February 14, 1898.
Hon. James W. latta, secretary of Internal Affairs.
Sir: I have the honor of herewith presenting my amnual report as Inspector of mines of the Fifth anthracite district, for the year ending December 31, 1897.

The quantity of coal produced during the year was \(5,487,550.07\) tons, which is a decrease of 384,876 tons, as compared with that of the previous rear. Total shipments were \(4.758,842.13\) tons.

The number of lives lost in the production of this quantity of coal was thirty-three, leaving eighteen wives widows, and thirty-three children fatherless.

The number of non-fatal accidents was 114 , making the total casualties in and about the mines 147.

The number of tons of coal produced per life lost was 166,289 , which is the greatest quantity per life lost, in this district for the past ten years.

I feel that I can assert that the general condition of the mines will cempare favorably with any other mines similarly situated.

This report contains the usual tables and descriptions of improvements, with brief notes on accidents and a detailed report of the Cranberry mine fire.

Very truly yours,

> W. H. DAVIES, Inspector of Mines.

Tons of Coal Mined During the Year 1897.
A Pardee \& Co., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25: 25,493. 11
Cross Creek Coal Company, . . . . . . . . . . . . . . . . . . . . . . . 1,057,725. 19
Lehigh Coal and Navigation Company. . . . . . . . . . . . . \(776,629.11\)
Geo. B. Markle \& Co., . . . . . . . . . . . . . . . . . . . . . . . . . . . \(723,312.07\)
Lehigh Valley Coal Company, ........................... . . 684.136.19
A. S. Van Wickle, ........................................... . . . 644.(651. 18

Calvin P'artee \& Co., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(606, \frac{1}{4} 70.18\)
Upper Lehigh Coal Company, . . . . . . . . . . . . . . . . . . . . . \(2: 30\), 239 . \(1: 3\)


Number of Fatal Accidents and Tons of Coal Mined per Life Lost.
\begin{tabular}{ll|l|l}
\hline \hline
\end{tabular}

Number of Non-Fatal Accidents and Tons of Coal Mined per Person Injured.
\begin{tabular}{|c|c|c|}
\hline Name of Operator. & -ul suosiəd jo đəquiñ &  \\
\hline A. Pardee \& Company, & 14 & 18,035 \\
\hline The Cross Creek Coal Complany, & 16 & 66,107 \\
\hline Lehigh Coal and Navigation Company, & 8 & 97.077 \\
\hline G. B. Markle \& Company, & 12 & 60.276 \\
\hline Lehigh Valley ('oal Company, & 22 & 31,097 \\
\hline A \& Van Wickle, & 11 & 51, 604 \\
\hline Calvin Pardee \& Company, & 19 & 31.914 \\
\hline Upper Lehigh Coal Company. & 3 & \\
\hline Lehigh and Wiilkes-Barre Coal Compan & 2 & 21.431 \\
\hline & 2 & 58.233 \\
\hline C. M. Dodson \& Company. & 2 & 99,392 \\
\hline John S. Wentz \& Company, & 2 & 41,318 \\
\hline The Evans Mlining Company, & 1 & 9,694 \\
\hline Total and average. & 114 & 48,136 \\
\hline
\end{tabular}

Number of Fatal and Non－Fatal Accidents and Tons of Coal Mined per Accident．
\begin{tabular}{|c|c|c|}
\hline Name of Operator． &  &  \\
\hline A．Pardee \＆Company， & 16 & 15， 780 \\
\hline The Cross Creek Coal Company & 22 & 48，078 \\
\hline Lehigh Coal and Navigation Company， & 9 & 86， 291 \\
\hline G．B，Markle \＆Company，．．．．．．．．．．．．．． & 15 & 48,220 \\
\hline Lehigh Valley Coal Company， & 27 & 25，338 \\
\hline A．S．Van Wickle． & 18 & 35，813 \\
\hline Calvin Pardee \＆Company， & 21 & 28，879 \\
\hline Upper Lehigh Coal Company，\({ }^{\text {Lehigh and Wilkes－Barre Coal }}\) & 5
2
2 & 46，107 \\
\hline M．\＆．Kemmerer \＆Company，．．．．．．．．．． & 3 & 21， 89 \\
\hline C．M．Dodson \＆Company．．．． & 3 & 66，291 \\
\hline J．S．Wentz \＆Company，．．．．． & 3 & 27，545 \\
\hline The Evans Mining Company， & 3 & 3，231 \\
\hline Total and average， & 147 & 37，330 \\
\hline
\end{tabular}

Comparative Statement Showing the Number of Tons of Coal Produced，Num－ ber of Fatalities，Tons of Coal Produced per Fatal Accident，Number of Persons Employed per Life Lost，and the Number of Deaths per Thousand Employed for the past Ten years．
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Years． &  &  &  &  &  &  \\
\hline 1888， & 4，892，514 & 32 & 152，891 & 14，448 & 451.56 & 2，215 \\
\hline 1589. & 5，655，196 & 46 & 122， 539 & 14，686 & 3．9．26 & 3，200 \\
\hline 1890. & 5．776，699 & 52 & 111，090 & 14.421 & 277.33 & 3．606 \\
\hline 1591. & 5，803，964 & 53 & 109，509 & 14，961 & 282.28 & 3.548 \\
\hline 1892. & 5， 842.721 & 48 & 121，725 & 16，277 & 339.19 & 2，949 \\
\hline 1893， & \(6.239,068\) & 58 & 107．570 & 17，546 & 302.48 & 3.307 \\
\hline 1594. & 6，132，627 & 58 & 105， 735 & 1s， 361 & 316.57 & 3.103 \\
\hline 1595. & 6，590，966 & 52 & 126．750 & 18，487 & 355.13 & 3，461 \\
\hline 1896. & 5.82 .427 & 12 & 139，819 & 17．568 & 418.28 & 2，470 \\
\hline 1897， & 5，487，550 & 33 & 166．289 & 17，119 & 518.73 & 1.911 \\
\hline & 58，293，732 & 474 & 126．431 & 163，548 & 358.07 & 2，980 \\
\hline
\end{tabular}

Nationality of Persons Fatally and Non－Fatally Injured．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Nature of Aecident． & \[
\begin{aligned}
& \text { g } \\
& \frac{y}{4} \\
& \text { 5 } \\
& \text { y } \\
& 3 \\
& 3
\end{aligned}
\] & 管 & 㞻 & \[
\begin{aligned}
& \frac{\dot{y}}{\underline{y y}} \\
& \frac{1}{4} \\
& \frac{1}{4}
\end{aligned}
\] &  & 先 & Eू
㐫
E
E &  &  & 这 & \\
\hline Fatal acciclents．
Non－fatai aceidents， & 9
33 & 5
18 & \({ }_{12}^{7}\) & 1
3 & 5 & \(\stackrel{2}{10}\) & 5
18 & 11 & 3 & 1 & 33
114 \\
\hline Total， & 42 & 23 & 19 & 4 & 5 & 12 & 23 & 15 & 3 & 1 & 147 \\
\hline
\end{tabular}

Table of Comparison, Showing Number of Different Causes of Fatal Accidents. in the Fifth Anthracite Districts during the past Ten Years.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Cause of Accident. & 1888. & 1889. & 1890. & 1591. & 1892. & 1593. & 1894. & 1895. & 1596. & 1897. & Total. \\
\hline By water from old workings, & & & & 9 & & & & & & & 9 \\
\hline Asphyxiated by gases, etc., ... & & & & 6 & & & & & & 5 & 11 \\
\hline By explosion of gas, ........ & & 1 & 1 & & & 1 & 1 & 1 & & & 5 \\
\hline By falls of coal, rock and clay, & 14 & 22 & 19 & 16 & 25 & 18 & 21 & 24 & 18 & 9 & 186 \\
\hline By cars inside and on the surface, & 6 & 11 & 19 & 6 & 15 & 15 & 15 & 13 & 11 & 10 & , 121 \\
\hline By blasts and powder explosions, & 4 & 4 & 1 & 4 & 2 & 11 & 15 & 7 & 2 & 2 & 52 \\
\hline \begin{tabular}{l}
By machincry inside and on the surface, \\
By boller explosions,
\end{tabular} & 2 & 4 & 7 & 5 & 3 & 4 & 3 & \(\stackrel{2}{1}\) & 3 & 2 & 32
9 \\
\hline Py miscellaneous causes, inside and on the surface. & 6 & 4 & 5 & 6 & 3 & 9 & 3 & 4 & 4 & 5 & 49 \\
\hline Total, & 32 & 46 & 56 & 53 & 48 & 58 & 5 S & ¢2 & 42 & 33 & 474 \\
\hline
\end{tabular}

Recapitulation of Fatal Accidents as per Table No. 4.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Occupation. &  & E
¢
L
a & Nationality. & 告 &  & Causes of Accidents. &  & 苞 \\
\hline Foreman, & & & Americans, & & 15.15 & By asphyxiations. . & & 15.15 \\
\hline Miners, ..... & 11 & 33.33 & English. . & 1 & \({ }_{3.03}\) & By mine cars in the mines............. & 9 & 15.15 \\
\hline Miners and laborers.
Drivers and runners, & \({ }_{2}^{4}\) & 12.12
6.06 & Germans,
Irish. & \(\frac{2}{7}\) & 6.06
21.21 & By falls of rock, coal and clay, .......
By blasts on the stripping. & \({ }_{2}\) & 29.27
6.06 \\
\hline Other company men, & 4 & 12.12 & Pollsh, ...... & 5 & 15.15 & By machinery, ......................... & \({ }_{2}^{2}\) & 6.06 \\
\hline Outside laborers. & 7 & 21.21
3.03 & Hungarians, & 9 & 27.27 & By mine and railroad cars, outside, & 5 & 15.15 \\
\hline Watchmen, \({ }_{\text {Chute }}\) tender. & 1 & 3.03
3.03 & Austrians. . & & 12.12 & From miscellaneous causes inslde and
on the surface, .................... & 5 & \\
\hline Carpenters, .. & 1 & 6.06 & & & & & 5 & \\
\hline & 33 & 100.00 & & 33 & 100.00 & & 33 & 100.00 \\
\hline
\end{tabular}

Widows, 18: orphans, 33 .
Accident No. 19, in Table No. 4, is not included in this recapitulation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Oscupation. &  & 免 & Nationality. &  & 或 & Causes of Accidents. &  &  \\
\hline Mine foreman, & & \({ }^{2} .63\) & Americans. & 18 & 15.79 & By explosions of fire damp, .......... & 11 & 9.65 \\
\hline Miners: \({ }_{\text {Miners }}\) iahorers, & \({ }_{22}^{48}\) & 42.10
19.30 & English. & 5 & 4.39
2.63 & By falls of rock, slate and coal in the
mines, & 27 & 23.69 \\
\hline Drivers and runners,
(hoor tenders, & 7 & 6.14 & Germans, & 10 & 8.78 & By falts of rock, coal and clay on & & \\
\hline Other company men. & 4 & \({ }_{3.50}^{1.76}\) & \({ }_{\text {French, }}^{\text {Irish, }}\). & 12 & 10.51 & sy blasts in the mines, .................. & & 4.39 \\
\hline Outside drivers, & 9 & 7.90 & Polish, & 18 & 15.79 & By blasts on the stripping, ............ & 5 & 4.39 \\
\hline Sutside laborers, & 14
3 & \({ }_{2}^{12.28}\) & Hungarians.
Austrians, & \({ }_{11}^{33}\) & 28.95
9.65 & By mine cars in the mines, ........... & \({ }_{10}^{13}\) & \(\underset{8.78}{11.40}\) \\
\hline Engineers, ... & & 1.76 & Italian, ... & 1 & 2.63 & By explosion of powder in the mines, & \(+\) & \({ }_{3.50}^{8.88}\) \\
\hline & & & & & & \begin{tabular}{l}
By explosion of powder on the stripping. \\
By machinery,
\end{tabular} & 4 & .88
3.50 \\
\hline & & & & & & From the surface, ................... & 31 & 27.19 \\
\hline & 114 & 100.00 & & 114 & 100.00 & & 114 & 100.00 \\
\hline
\end{tabular}

Examination of Applicants for Mine Foreman and Assistant Mine Foreman's Certificates.

The annual examination of applicants for certificates of qualification for mine foreman and assistant mine foreman, was held in the Pine street school building, Hazleton, on July 8 and 9, 1897.

The board of examiners was:
W. H. Davies, Inspector.
A. C. Leisenring, superintendent.

Robert Munroe and Patrick Kelly, miners.
The following persons, having passed a satisfactory examination, were recommended and received certificates:

\section*{Mine Foremen.}
J. J. Stickler, Lansford.

John Brisbin, Eckley,
Dan. J. Boyle, Freeland.
William Mealing, Upper Lehigh.
John Panco, Harwood.
John Iturley, Upper Lehigh.
David M. Thomas, Beaver Brook.
Fred. Lesser, Upper Lehigh.
William Sachs, Gowan.
John J. Campleell, Hazleton.
J. Harlor, Hazleton.

Bernard McCauley, Oneida.

Assistant Foremen.
Mark Rourke, Marwood.
Matthew Morris, Lansford.
Neal McHugh, Eckley.
Henry Fox, Nuremburg.
Hugh Mcfiorry, Nesquehoning.
Michael Smith, Nesquehoning.

Colliery Improvements Made Dmring the Year 189 .
Coleraine Colliery, Operated by A. S. Van Wickle.
A slope on the Buck Monntain seam was sumk to the basin; \(n\) second opening was driven as far as the land line, where a shatf is being sumk, the depth of which, when completed, will be :330 fert.

A 16 foot fan is to be erected for the purpose of improving the ventilation in this seam, also for ventilating the Ganna workings.

A tumel is being driven from the Buck Monntain seam to cut the Ganna.

I 12 inch lblake pump was placed at the bottom of the Buck Mombtain slope.

The improved stockton valve has been placed on all the pumps at this colliery which increases their capacity one-third.

I new return tubular boiler was added to the boiler plant, cafacity 150 horse power. This boiler was made by the Vulcan Iron Works at Wilkes-barre and is considered the best yet introduced into this region.

Two new Vulcan mine locomotives were added to the motive power at this colliery.

The railroad from old No. 1 to No. 2 has been relaid with 60 pound rails.

\section*{Evans Colliery.}
A. S. Van Wickle purchased the Evans Colliery, A pril 10, 1897, fud improvements were at once made in all directions.

A large reservoir was built for the storage of water at the mine. I new line of water pipes was laid, also a line of steam pipe was laid from the boilers to the pmoping station for a distance of 3,960 feet for the purpose of doing away with the stationary boiler at the pumping station.

I new railroad was built connecting Esans Colliery with Coleraine, about two and one-lalf miles in length, laid with 60 pound rails. A trestling 900 feet long was built, ranging from 20 to 39 feet high to cross the ravine and Lehigh Valley Railroad above grade. This railroad was completed and coal taken to Coleraine breaker from the Evans Colliery on July \(6,1897\).

In the meantime the old breaker at Erams Colliery was leased to liemedy \& Warner as a washery, who ran this place successfully lantil the breaker was destroyed by fire on September 21,1897 . The fire was discovered about half past six in the evening, and although crery effort was made to extinguish the flames, it was totally destroyed. This fire was of incendiary origin beyond question, as there had been no fire or even stam in use at the breaker for more than a week before the fire took place, but the perpetrators having es(aped, the canse consequently is a mystery.

The plane comecting the breaker with the slope was also destroyed by fire. As soon as the debris was cleared away, the work of reconstruction of phane and pockets was commenced, so as to re sume operations at the Evans Colliery, and this colliery commenced operation again on October is, 1897, by shipping the eoal to Coleraine breaker.

The pumps were repaired and a 15 inch Stockton phunger pmonp was added to the pmoping plant at this colliery, the capacity of which is 2,000 gallons per minnte.

The boiler plant was also increased by the addition of a Vulcan return tubular boiler with a capacity of 150 horse power.

An artesian well 550 feet deep was bored, which yiekls sufficient water to supply the colliery.

A 15 foot diameter fan was put in operation with good results.
A shaft 6x9 feet was sumk, connecting No. 1 and No. 2 seams, also an dirway has been driven to connect these openings with the fan which has greatly improved the ventilation at this colliery.

At present there are two tumels being driven at the Evans Colliery which it is hoped will yidel coal enough to add many years to the life of this colliery.

\section*{G. B. Markle \& Co.}

Highland No. 2.-. \(1 / l\) the coal has been won from the strippings known as Highland No. 3, and the strippings have been abandoned.

Highland No. \(5 .-1 \quad 250\) horse power Cahall boiler nsing waste heat gases from 15 cylinder boilers has been ereeted and new boiler house built.

Sturtevant fan blower system has been installed and boiler house enlarged.

A 50,000 gallon circular raihroad tank has been erected and an auxiliary slate drag line added.

A tumel from the bottom level to connect with old Pink Ash workings at the second lift gangway was driven to the point at which it became necessary to draw off the water, which was done by means of diamond drill holes.

The tumel from the second lift to connect sonth basin from western end, driven in 1896, has been extended to comect with basin south. A tumel is now being driven from the botiom gangway west to commect with the north pitch of rein in hasin south.

The 12 inch bore hole for pump column referred to in 189; has been completed and cased.

By permission of the Cross (reek Coal Company, an airway to the surface has been opened on the sonth side of the tmmel D. basin.

Jeddo No. 4.-Twenty-fom eylinder boilers have been removed and in place thereof, nine Erie city economie boilers of 100 horse power each have been installed and new boiler honse completed.

Sturtevant fan system and Wraren Webster hot water heater of 1,250 horse power have becu installed.

A 50,000 gatlon cirealar milroad tank hats been erected, and a new reservoir of about soo, 0000 gatlon rapatity rompleted.

Culm is being run into the calverins south of beaker to fill up parts of old workings.

Five short tmonels have been diven from the Mammoth to the Wharton rein.

Two "Green Ridge slate pickers" hate been put in Jeddo No. 4 breaker for cleaning stove coal and an auxiliary slate drag line has keen added.

Ebervale.-Carpenter and blacksmith shops have been built, also a wash house for the accommodation of miners.

I stripping known as "Stripping O," has been opened on the Mammoth rein on the north side of the property, and it is now being stripped to the west.

The South Side drainage canal which ended with the west end of the Jeddo property line is now being extended along the south of Ebervale to connect with the sonth side drainage canal on the Harleigh property.

First Lift gangway, north side, has been opened from No. 1 slope to west end of property.

A 60 ton Bucyrus shovel and two 6 -wheel 25 ton Baldwin locomotives have been added to the stripping plant.

Jeddo.-A reservoir of about 2.500,000 gallons capacity at Jeddo South side water works was completed in June.

A Rand Drill Co. air compressor and air pump connected with the 6 inch bore hole reported in 1896 have been installed and an additional hoiler added to the boiler plant at this place.

A six inch pipe line was laid from the north side of East End stripping to the new pmoping station at Jeddo.

A twin pumping plant for pumping water to all collieries on the deddo property has been erected, consisting of two 100 horse power economic boilers and two compound pumps of the Jeanesville Iron Works pattern, and a new pump and boiler house has been erected and necessary pipes laid to lead to mains for supply.

The Old slope pumping station has been abandoned.

\section*{Epper Lehigh Coal Company.}

A new locomotive was purchased to handle the increased tonnage from the several strippings.

At No. 2 boiler plant a 6 foot Sturtevant blower fan was installed which is operated by a \(12 \times 12\) inch horizontal engine.

Although the coal is washed, there is at times considerable dust gronerated about the steamboat sereen, and to obviate this as far as possible, an air stark has been placed through the roof of the breaker to the rolls.

It the eastern end of the property an \(S\) inch artesian well was smbk \%.34 feef and a 10 x ax: inch lifting pump put down 315 feet.

In No. 2 Slope a rock tmmel has been driven 210 feet to connect "ith No. 1 slope for the purpose of drainage; this relieves the pumps in No. 1 at prosent and will eventually do away with them entirely.


Pump, House. Hazleton Shaft Colliery.

At these strippings 173,180 yards of earth and rock were ex cavated during the year.

\section*{Lehigh Valley Coal Company, Lehigh Division.}

Hazleton Colliery No. 1.-Completion of a new 20 inch diameter reversible fan, connected by shaft to the Wharton vein, south dip. The whole structure is of brick, iron and stone. This fan has dispensed with the old fan and has satisfactorily established a permanent means of ventilation.

A tumel has been started southward from the third lift and is being extended southward across the No. 1 basin into the Hazleton No. 6 basin with a view of proving and developing all the overlying reins which heretofore have not been worked in this region.

New stables in rock have been made at the Fifth lift and a tunnel has been started on this same level southward to the overlying veins.

The strippings at this colliery have been extensively increased during the past year.

A number of improvements were also made to the breaker.
Spring Brook Colliery.-A new slope las been sunk inside on the Mammoth vein from the third lift to the basin.

A new slope las been sunk on the Buck Mountain vein from the sibaft level to the basin.

New rolls and other improvements have been made to the breaker and boiler house.

Spring Monntain No. 4 Colliery.-This breaker was burned on May 10, but the cause is shronded in mystery, as every care was taken by the company to prevent fires, and the breaker had been ide the day previons.

The coal from this colliery is now being prepared in the spring Mountain No. 1 breaker. .

Hazleton Shaft Colliery.-The work of sinking this shaft was resumed in the latter part of 1897 and is now down to the proposed first landing.

The centralization of the pumping operations as mentioned in my last report was completed in Angust, one year after the commencement, since which time all the water made on the Hazleton fooperty is heing handled at this one pumping station. The work was of a complex natme, requiring eonsiderable thought and care, leth from an engineering and practical mining standpoint.

The slope was completed in the Wharton vein to an elevation of 1,084 feet and gangways were turned off east and west and two large pump houses built to the north of these gangways in rock. Thit roof of the pimp, houses is formed of "I" beams covered with "T" rails separated by hard brick. The space between the "T" rails
and roof is filled solid with concrete. The foot rests on the "I" beams are on a bevel ledge of solid rock. The side of the pump, bouses were moiled.

The sketch attached gives a fair illustration of this work.
I shaft connects the back end of the pump houses with the column ways. Two column and steam ways were driven from the pamp houses to a point midway to the third lift, where they connect with the slope by a slant heading and the steam way is thence driven bip near to the crop of the vein where a shaft connects the slope to the strippings for the discharge of the column pipe into a flume, from whence the water flows to the creek.

The pumping engines, two in number, are of the Cross Compound Condensing type, with Corliss valve gear, built by the Dickson Manufacturing Company. IIigh pressure cylinder 32 inch diameter, low bressure cylinder 60 inch diameter, stroke 48 inches, plunger \(13 \frac{3}{t}\) inches diameter, lift 5.50 feet. Each pump has a capacity of 3,500 gallons. The water chambers are all lead lined. The poles are of phosphor bronze. All the elbows of the columns are lead lined and the balance of the colnmn pipe wood lined, showing that great care has been taken to insure the permanency of this work.

While the pump houses were being made, a tunnel was driven sonthward and connected into the anticlinal of the Hazleton No. 5 Mammoth workings, and a heading driven across the face into the last breast at the eastern end of these workings. A dam of brick and cement was then built in this tumnel between the Wharton and Mammoth rein, in the walls of which were placed two 17 inch lead lined pipes, also a tapered man hole with movable wooden phag. A suction box was then buit the entire length of the tunnel to the anticlinal of the No. \(\delta\) breast. where it was weighted and anchored to the rib and bottom.

On the north end of the suction pipes, which are lined in the same manner as the column, were placed two large 16 inch lead lined plag cocks built by the Eynon-Evans Manufacturing Company: - These plugs are located just outside the dan and are fitted with bypass valye for equalizing the pressure, and with conical stem and With the powerful gear ean be very easily opened or closed under high pressure withont detriment to the seating. These phog cocks are liad for the purpose of cutting off the delivery of water from back of the dam to the pmops whenever it may become neressary.

The arrangement outlined permits the water to rise to a rertical height of 150 feet above the level of the pmoms withont danger of fooding it. The old workings of the Mammoth being thas conrerted into a smmp nearly three miles in length.

After this work was completed, diamond drills were taken throngh the man hole in the dam to the east rib of breast No. 40 and a series


of six holes were bored through the pillar, fapping the old Diamond workings. In this latter work the greatest care was used, and casing pipe was first sunk, cemented and held in place by lace anchor bolts, and on the end was placed a gate valve through which the boring was completed through the pillar into the water. The drawing of the rods under this heary pressure was under the personal supervision of the mine Inspector and the local representatives of the coal company. After the holes were finished the lalves were opened and the tapping of this large body of water, standing 185 feet above the tumnel level, was successfully completed.

The water has since receded in the Diamond workings about 60 feet.

The intention is to remove this water down to the depth of the suction box above mentioned, which would bring the water to a ,eint below the contemplated third lift of the new shaft.

To provide steam for all this work, a boiler plant of 2,100 horse power, Lehigh Valley standard tubular boilers has been erected and housed in a brick building. The plant is complete with forced and induced draught, blowing and suction fans and double set of fuel economizers with air conduits and arrangement for the guidance of the gases whether direct or for economical use of the same.

The plant is very complete and presents for the consideration of those interested, a standard for economies in modern mining.

\section*{Remarks on Fatal Aecidents.}

I deem it necessary herewith to briefly review the fatal accidents and their causes, but I am pleased to state that fewer fatal aceidents occurred in this district during the year 1897, than during any previous year since 1888 .

By referring to table No. 4 of this report it will be seen that twenty persons lost their lives inside of the mines of this district and of this number eight, or 40 per cent., were from falls of coal, reck or slate.

Of the five persons who lost their lives from asphyxiation, one only could be termed an accident, as the others rould have been averted had the victims themselves used care and proper judgment.

Of the five persons who lost their lives by mine cars, three only could be termed accidents, while the other two could have been everted had it not been for the extreme recklessness of the victinthemselves.

Of the two miscellaneons accidents that oceured in the mines. et: was an mavoidable accident, while the other could have hee-n prerented by ordinary care and forethought on the part of the victims himself.

Again referring to table No. 4 it will be seen that thirteen persons lost their lives outside the mines; four of these lost their lives on lie strippings, one by fall of clay, two by blasts and one from a miscellaneous cause, while the other nine persons lost their lives in or about the breakers.

After careful investigation of the causes of the thirty-three acci-dents which proved fatal, it is my painful duty to state without fear of contradiction that 60 per cent. of these sad occurrences could be traced to the carelessness and indeed in many cases to the extreme recklessness of the victims themselves.

In eonclusion I would state that with the care taken by the foremen and their assistants about the collieries of this district the workmen should resolve to take better care of themselves as in the opinion of the writer this is the only manner in which a reduction in fatalities about the mines can be hoped for.

\section*{Cranberry Mine Fire.}

About 6.30 P. M., October 8, 1897, a driver boy, Albert Billman, employed in the upper lift of No. 3 slope, reported to Foreman Hale the existence of fire in the lower lift of No. 3 Slope. This is an inside slope, nearly a mile distant from the bottom of Slope No. 1, and has three lifts sunk in the Wharton vein on the north dip. About 100 yards west of the slope in the bottom lift a tunnel is driven, cutting the Wharton and l'arlor veins on south dip. Gangways are driven east and west in both veins which are ventilated by a twenty foot fan located on north dip. The inlet is from T'unnel No. 1 on south dip in Parlor vein into the third lift, East Parlor gangway and out through the tumel. Between the tumnel and the slope there is a door that turns part of the air into first and second lifts west parlor gangways on north dip. The east gangways are rentilated from the colmm way and air is conducted into the face by a brattice. Albert Billman stated that when hauling the last empty car to face of gangway he noticed smoke and called the attention of James Forrest, a miner, to the smell of smoke at a point on the turnout where the airway from the lower lift crossed. Forrest seemed to have paid no attention to the boy's story and made light of it. So he and his laborer, Felix Fartofsky, kept on loading the car. When they had the car hoaded. Forrest said that lee would go and look for the driver hoy to have the car pulled ont, leaving Fartofsky at his work. Meanwhile the driver boy had found the smoke denser and he ran down through the smoke to the third lift pmonp house, a distance of about 220 yards from the first lift to the fump, and there he met the driver boy, Robert Barnhart, of the lower lift, who told him the pump house was on fire.

Both drivers tried to jut ont the fire in the jump honse where it originated and where it was burning fiercely. There were four

\section*{MAP DF PGRTIDN DF Nロ 3 SLDPE CRANBERRY MINE}
©-PUMRHGLSE WHERE FIRE GRIGINATED O-WHERE F GRREST WAS F GUIND O- URBAN EOSfsaces. luspector of Thines c. H. Kay EM


barrels of water and the hose conected with the pump always ready for emergencies, but it appears that the fire had too much headway, thus preventing access to this appliance. As the next best means they used powder kegs, carrying water from the ditch and throwing it on the fire. Finding this work of no avail, Billman ran to the surface to notify Foreman Hale, while the other driver, Barnhart, ut tified Fred. Henry and Thomas F. Woodring, miners working in the third lift, East Parlor Gangway, from eight to nine hundred yards beyond the place of fire, and on the south dip. Billman on hi: way out met the pump boy, Thomas Wishnifski, on top of No. 2 siope; the latter hastened down and rushed through the smoke to the fire at the pump house, where he arrived nearly exhausted. Fred. Hemy and Thomas Woodring were at the scene, but soon found themselves powerless to fight the fire, as it had already gained too much headway, and the smoke forced them from the fire a distance of 3 , to 40 yards back toward the tumnel. When Foreman Hale reached the place, he could not advance within that distance of the fire, as the smoke was coming back against the current, so he with Thomas Conahan and the pump boy hurried to the second lift to get the miner Zoran Urban, who was working on the east gangway of that lift. The smoke had penetrated west of the above mentioned airway about 200 yards, so that they could not get through to Urban. They therefore proceeded through a worked out breast up into the first lift and encountered but little smoke in the face of the gangway where Forrest's laborer was working. They found the laborer still engaged at his work at the face of the gangway. He was brought out and when asked where Forrest was, said Forrest had gone to look for the driver. Immediately a search was n:ade for Forrest, who had not left there longer than ten minutes before. The men, led by Foreman Hale, found the air free from smoke until within ten yards of the airway. About there a mule was heard groaning. They concluded that Forest might have tried to liberate the mule and was overcome beside it. Hale repeatedly attempted to get to the mule, but his light was again and again extinguished by the smoke. Realizing that nothing could be done there, Hale, with Conahan and Wishnifski, went back into the first lift gangway but could not advance within sixty yards of the face on account of the density of the smoke. This occupied about ten minbites. By this time the men amed to reach the second lift by the shortest ronte, there being a breast holed through from the second lift a few yards from face of gangway, which was found to be about four hundred yards east from where they hat gotten through coming up. When they found it impossible to reach the man in the second lift; they hurried down to the third by the route they had taken in going up, fearing to be cut off by smoke before getting back

II hen they had reached the third lift it was found that the smoke lad cleared away so they could begin lighting the fire. By this time there was a large force of men present fighting the fire. A short while thereafter Mr. Frank Pardee cane to the scene, followed ly. Mr. Veager, the general inside forman, who personally directed aud joined in the efforts to extinguish the flames. Mine Inspector flavis appeared early on the morning of the ninth and was present erery day, assisting in the work of extinguishing the fire. Three shifts of men under the altemate charge of Mine Foreman Thomas Halr, (ieorge Ernold, Robert Hillhonse, Comrad Miller and John Zell lit \(p \mathrm{t}\) up the work of fighting the fire, which extended from the pump lionse of the third level, throngh the colmmn way up to the turnout on the second level. When they reached the scene on the turnout they immediately set to work to extend the pipe line up the slope, fighting every inch of the way through the smoke and tlames, until they succeeded in completely extingnishing the fire, about 4.00 P . M., October 10. On the same day about 6.00 P. M., Forrest's body was found by Robert Hillhouse and John Zell lying on the slope near the first level. Urban's body had been found by the Mine Inspector and Mr. Yeager, earlier in the day at a point 351 feet east of the slope, in the parlor gangway. The position in which these two bodies were found, showed that while trying to make their escape, they fell victims to asphyxiation from the fumes and gases escaping from the fire.

Sixteen mules stabled on the east side of the same slope were also suffocated.

Anch praise is due to the managers of the colliery, particularly Mr. Frank Pardee, general superintendent, for the precantionary measures taken by them to guard against mine fires. All persons, ofher than the pumpmen themselves, had positive orders against entoring the pump rooms, and even they were not permitted to enter with a naked light, as the company furnishes lanterns to every man in charge of promps. Another rule, and in the opinion of the viriter a rery good one, is that it is the duty of the pump man to dampen the rouf, side and floor of the room in his charge every day. [h addition to this. barrels are constantly kept filled with water, and nose connerfons are attached to the column of eath pmons, which was in readiness for any emergency, still, with all these precantions, two men perished in this conflagration.

The origin of the fire was for a time a mystery, but after a careful investigation, together with the testimony of those first to appear upon the scene, the writer believes beyond a donbt that the origin was incendiary.


TABLE NO．2．－Gives the Total Number of Tons of Coal Mined in each Colliery，Number of Days Worked，Number of Employes，
Number of Persons Killed and Injured，Number of Kegs of Pow der used，etc．，in the Fifth Anthrac ite \(L\) ：trit for the year ending December 31， 189 ．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collieries． & Location－County． & \begin{tabular}{l}
\(\stackrel{\square}{6}\) \\
\(\stackrel{\text { n }}{3}\) \\
玉 \\
 \\
픙
\end{tabular} &  &  &  &  &  &  &  &  & \begin{tabular}{l}
งมุucu．\(\frac{1 \mathrm{p}}{}\) \\
恩
를
号 \\

\end{tabular} &  &  &  \\
\hline A．Pardee \＆Co．
Cranberry，
East Crystal Ridge，\(\ldots \ldots \ldots \ldots \ldots .\). & Luzerne，
Luzerne， & \(181,469.09\)
71.604 .09 & \(26,968.07\)
\(7,923.00\) & 2，771．12
\(1,104.02\) & \(150,615.01\)
63.051 .69 & 149.35
158.30 & 740
200 & 2 & \(\stackrel{9}{5}\) & 4.929
2.131 & 33.700 & 58
17 & s8
30 & 7
2 \\
\hline Total， & & 25： 493.11 & 34， 891.07 & 3.875 .14 & 213，726．10． & 153.82 & 995 & 2 & 14 & 7，053 & 33，700 & 75 & 118 & 9 \\
\hline The Cross Creek Coal Co． & & & & & & & & & & & & & & \\
\hline Drifton，Nos， 1 and 2，．．．．．．．．．．．．． & Luzerne， & 269，678．09 & 33，374． 11 & 8，394．00 & 227．909．18 & 202 & 673 & 1 & 3 & 4.745 & 7.526 & \＄2 & 87 & \\
\hline Eckiey，including Buck Mountain， & Luzerne， & 210，776．00 & 16，579．04 & 1，927．19 & 192，268．17 & 223 & 444 & 1 & & 2.158 & 26，161 & 24 & 52 & 4 \\
\hline  & Luzerne， & 166，537．02 & 17．159．16 & 500．00 & 148.877 .06 & 166 & 452 & 2 & 1 & 3，169 & 15，633 & 25 & 32 & 2 \\
\hline  & Carbon， & 131，562．05 & 23，578．19 & \(4,171.13\)
28.00 & 103，811．13 & 190 & 385
15 & 1 & 2 & \(\begin{array}{r}2,610 \\ \hline 191\end{array}\) & 10,249
400 & 34
1 & 30
6 & 3 \\
\hline  & Luzerne， & 278.730 .03 &  & 4，282．05 & 249，181．18 & & 663 & 1 & 6 & 5．637 & & \(\stackrel{1}{2}\) & 105 & 5 \\
\hline Total， & & 1，057，725．19 & 116，372．10 & 19.3 3． 17 & 922，049．12 & 203 & 2.632 & 6 & 16 & 18，510 & 71.375 & 194 & 312 & 19 \\
\hline Colllery No．1，．．．．．．．．．．．．．．．．．．．．．．． & Carbon． & 261， 831.14 & 24．192．00 & 2，717．00 & 237，574．05 & 162.6 & 700 & & 4 & 1．800 & 53.000 & 29 & 105 & 7 \\
\hline Collery No． 4. & Carbon， & 176，635．08 & 24，367． 60 & 2，\(\times 44.15\) & 166，622．11 & 149.5 & 356 & 1 & & 660 & 8． 500 & 21 & 50 & \\
\hline Colliery No．5，．．．．．．．．．．．．．．．．．．．．．．．． & Carbon， & 150．805．17 & 13，531．00 & 3，074．10 & 153，641．19 & 159.2 & 336 & & 4 & 1.140 & 3．50n & 6 & 37 & 2 \\
\hline  & Carbon， & & & & & & 239 & & & 300 & 23.250 & 23 & 14 & 1 \\
\hline Collery No． 9 ， & Carbon， & 187，350．12 & 6，665． 0 & 4，819．00 & 201，210．01 & \[
\begin{aligned}
& 159.6 \\
& 253
\end{aligned}
\] & 423
267 & & & 330 & 40.925 & 13
14 & 72
4 & \begin{tabular}{l}
3 \\
3 \\
\hline
\end{tabular} \\
\hline Total， & & 776.623 .11 & 68，855．00 & 13.455 .65 & 759，048．16 & 176.8 & 2.321 & 1 & 8 & 4.230 & 135.175 & 106 & 282 & 16 \\
\hline
\end{tabular}
G. B. Markle \& Co,


Total,
A. S. Van Wickle.

\section*{Coleraine,}

Total,
Upper Lehigh Coal Co.
Upper Lohigh,
Lehigh Valley Coal Co.
Hazleton No.
Hazleton No.
Hazleton No.
Hazleton No. 5
lazleton No. 6
Spring Mountain No.
Spring Mountain No.
spring Mountain No. 4. .... Spring Brook,

Total,
Calvin Pardee \& Co.
Lattimer No. 1,
Lattimer No. 3,
Lattimer canal.
Lattimer stripping.
Hollywood,
Harwood,
Total,
Lehigh \& Wilkes-Barre Coal Co.
Tresckow No. \(2, \ldots \ldots \ldots \ldots .\).
M. S. Kemmerer \& Co.
Sandy Run, \(\qquad\)


TABLE NO．2．－Continued．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collieries． & Location－County． &  &  &  &  &  &  &  &  &  & \begin{tabular}{l}
 \\

\[
\begin{aligned}
& \text { 号萢 } \\
& \text { 苞 }
\end{aligned}
\]
\end{tabular} &  &  &  \\
\hline \begin{tabular}{l}
C．M．Dodson \＆Co． \\
Beaver Brook，
\end{tabular} & Luzerne， & 198．785．00 & 25，000．00 & 12．812．00 & 160，975．00 & 169.5 & 542 & 1 & 2 & 4.783 & 1，785 & 55 & 56 & 1 \\
\hline Hazle Brook， & Luzerne， & 82．636．00 & & & 76，515．04 & 151 & 490 & 1 & 2 & 2.224 & 3，500 & 19 & 21 & 1 \\
\hline Evans，．．．．．．．．．．．．．．．．．．．．．．．．．．．． & Carbon， & 9，691．03 & 2．000．00 & 1.934 .00 & 4，760．03 & 49 & 150 & 2 & 1 & 180 & 3.000 & 6 & 12 & \\
\hline Ebervale washery． & Luzerne， & 44，541．18 & 4．365．00 & 747.00 & 39，439．18 & 126.5 & 159 & & & & & 12 & 4 & 1 \\
\hline Stockton washery， & Luzerne， & 4．163．07 & 362.00 & 13．0） & 3.788 .08 & 26 & 133 & & & & & 8 & 3 & \\
\hline Dusky Dlamond，．．．．．．．．．．．．．．．．． & Luzerne， & 4，417．00 & 108.00 & ．．．．．．．．．．． & 4．307．00 & 216 & 26 & ．．．．． & ．．．．． & 305 & 100 & 2 & 1 & \\
\hline Rowe， & Carbon， & 5．420．00 & 112.00 & & 5，281．00 & 225 & 42 & & ．．．． & 250 & ．．．．． & 1 & 9 & \\
\hline
\end{tabular}


\section*{Recapitulation}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A. Par & Hazleto & 252,493.11 & 34. 891.07 & 3,875.14 & 213,726.10 & 153.33 & 995 & 2 & 14 & 7,053 & 33,700 & 75 & 118 & 9 \\
\hline Cross Creek Coal Con & Drifton & 1,057,725.19 & 116,372.10 & 19,303.17 & 922,049.12 & 203 & 2,632 & 6 & 16 & 18,510 & 71,375 & 194 & 312 & 19 \\
\hline Lehigh Coal and Navigation Co., & Lansford. & 776,623.11 & 68,855 00 & 13,455.05 & 759,048.16 & 176.8 & 2,321 & 1 & 8 & 4,230 & 135,175 & 106 & 282 & 16 \\
\hline G. B. Markle \& Co., .......... & Jeddo. & 723,312.07 & 63,764.12 & 4,490.08 & 655,057.07 & 138.2 & 1,656 & 8 & 12 & 17,149 & 75,6371/4 & 96 & 236 & 10 \\
\hline A. S. Van Wickle, & Hazleton & 644,651.18 & & 2,920.00 & 517,421.18 & 248.6 & 1,710 & 7 & 11 & 10,023 & 435.325 & 236 & 200 & 9 \\
\hline Upper Lehigh Coal Company, & Upper Lehigh, & \(230,539.13\) & 35, 770.00 & 3,523.03 & 191.246.10 & 187.7 & 574 & 2 & 3 & 4,773 & 4,000 & 80 & 100 & 6 \\
\hline Lehigh Valley Coal Company, & Hazleton, & 654.136 .19 & 124, 279.08 & 23,322.16 & 556,355.03 & 115.33 & 2,578 & 5 & 20 & 10.011 & 29.552 & 207 & 233 & 16 \\
\hline Calvin Pardee \& Co., & Lattimer, & 606.470 .18 & 97,967.00 & 6,488.13 & 502,015.05 & 157.7 & 2,257 & 2 & 20 & 16,600 & 112,750 & 151 & 190 & 12 \\
\hline Lehlgh \& Wllkes-Barre Coal Co., & Audenried, & 42,958.13 & & & 35,518.13 & 42.4 & 424 & & , & 912 & 4,785 & 14 & 21 & 2 \\
\hline M. S. Kemmerer \& Co., & Sandy Run, & 116, 467.10 & 6,497.12 & 1,675.00 & 108,294.18 & 181.4 & 365 & 1 & 2 & 872 & 20,888 & 34 & 50 & 2 \\
\hline C. M. Dodson \& Co., & Beaver Brook, & 198.785.00 & 25,000.00 & 12,812.00 & \(160,975.00\) & 169.5 & 542 & & 2 & 4,783 & 1.785 & 55 & 56 & 1 \\
\hline J. S. Wentz \& Co., ................ & Hazle Brook, & 82,636.00 & & & 76,515.04 & 151 & 490 & 1 & 2 & 2,224 & 3.500 & 19 & 21 & 1 \\
\hline Evans Mining Company (Fred. S. Duncan, receiver). & Retired, & 9,691.03 & \(3,000.00\) & 1,934.00 & 4.760.03 & 49 & 150 & 2 & 1 & 150 & 3.000 & 6 & 12 & \\
\hline New Ebervale Coal Company, & Ebervale, & 44,541.15 & \(4,365.00\) & 747.00 & 39.439 .18 & 126.5 & 159 & & & & & 12 & 4 & 1 \\
\hline Audenried Coal Company. & Stockton. & 4.163.07 & 362.00 & 13.00 & 3.788 .07 & 26 & 133 & & & & & 8 & 3 & \\
\hline Morgans \& Arnold, & Mcadoo, & 4.417.00 & 108.00 & & 4.307 .00 & 216 & 26 & & & 305 & 100 & 2 & 1 & \\
\hline Stauffer \& Rowe, & Beaver Meadow, .- & 5. 420.00 & 112.00 & & 5. 281.00 & \({ }^{225}\) & 42 & & & 250 & & 1 & 9 & \\
\hline Tresckow Coal Company. & Audenried. & \(1,082.00\)
1,400 & 41.00 & & 1.082.00 & 85 & 15 & & & 47 & & 1 & 2 & \\
\hline ennedy \& Warner, & Retired, & 1,400.00 & & & 959.09 & 27 & 50 & & & & & & 4 & \\
\hline Total. & & 5,487,550.07 & \[
581,385.09
\] & 94,560.16 & 4,758,842.13 & 141.05 & 17,119 & 33 & 114 & 97,842 & 931,5721/4 & 1,287 & 1,854 & 104 \\
\hline
\end{tabular}

TABLE No. 3.-Showing the Number of each Class of Employes at each Colliery in the Fifth Anthracite District, during the Year 1897.

G. B. Markle \& Company.


TABLE NO. 3.-Continued.

\section*{J. S. Wentz \& Company.}

Hazle Brook,
Fred. S. IJuncan.
Evans colliery
New Ebervale Coal Company
Rbervale washery.
Audenrled Coal Commany
Stockton washery,
Kennedy \& Warner.
1vans washery
Morgans \& Arnold
Dusky Diamond,
Stauffer \& Ifowe
Rowe eulliery,
Tresekow Coal Company
Klondyke,


Recapitulation of Table No. 3.


TABLE No. 4.-List of Fatal Accidents that Occurred in and about the Mines of the Fifth Anthracite District, for the Year ending December 31, 1897.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Feb. & 24. & Anthony Shumisky, .... & Miner,.............\(~ 23 ~\) & S. & & Drifton No. 2, ......... & Luzerne, ............... \\
\hline Mar. & 11. & Andrew Crow, .......... & Carpenter, .......... 42 & M. & 2 & Slope No. 4, ........... & Carbon, .................. \\
\hline & 17. & Mlke Amvick, ............ & Driver, \(. . . \ldots \ldots . . .123\) & S. & \(\cdots\) & Milnesville, & Luzerne, ................ \\
\hline & 25. & Thomas Yamrus, ........ & Laborer, ............ 28 & M. & 4 & East End, Jeddo No. 4, & Luzerne, ................ \\
\hline & 25. & Charles Went, .......... & Loader, ............. 38 & M. & 1 & Milnesville, ............ & Luzerne, ................ \\
\hline A pr. & 12. & Frank Gallagher, ...... & Miner, ............... 50 & M. & 2 & Stockton, & Luzerne, \\
\hline & 12, & Peter Feedor, ........... & Miner, .............. 45 & M. & 2 & Stockton, ............... & Luzerne, \\
\hline May & 3. & Andrew Troda, .......... & Laborer, ............ 35 & M. & 3 & Milnesville, & Luzerne, ................ \\
\hline & 19, & Stephen Flesher, ........ & Mintiner, .............. 26 & M. & 1 & Hazle Brook, & Luzerne, \\
\hline June & 23, & Peter Parrizika, ........ & Laborer, ............ 49 & & ... & Coleraine stripping, ... & Carbon,.................. \\
\hline July & 16, & Philip Smlth, ............ & Laborer, ............ 22 & \(\cdots\) & ... & Spring Brook breaker, & Carbon, \\
\hline & 26, & Willlam Linderman, .... & Chute tender, ...... 14 & S. & .... & Lattimer No. 3, & Luzerne, \\
\hline Aug. & 16, & Danlel Gallagher, ...... & Miner, .............. 30 & & ... & Jeddo No. 4, ........... & Luzerne, \\
\hline & 24, & John Werkley, .......... & Driver, ............. 16 & & .... & Highland No. 2, ...... & Luzerne, ............... \\
\hline Sept. & 11. & John Selgle, .............. & Stable boss, ....... 60 & & .... & Milnesville. ............ & Luzerne, ............... \\
\hline
\end{tabular}

Fatally injured by a fall of rock: he was removed to the Hazleton hospital our days later
Fatally injured by falling down a manmoving a flight of stairs.
Fatally injured by the careless manner in which he attempted to jump on a mov ing mine car; he was caught between he car and the chute on the gangFatally injured by being struck by a piece of coal, which fell from the top bench, first striking the car and then the victim. Who was, at the time, loadFatally infured by being struck by a plece of rock thrown from a blast. 6 West Fatally Injured in breast No. 6, West Mammoth gangway, by a plece of coal falling from the top, striking him: h was taken to his home and died same day.
Instantly killed by a "bell" falling from he roof of breast upon him, due to the neglect of the victim himself to stand props al the proper time.
Fatally injured by being squeezed between mine cars on the stripping by the breaking of chain on the plane
Instantly killed by a fall of slate and not propping same.
Instantly kllled; struck by a plece of rock thrown from a blast 900 feet away.
Fatally injured by slepping with one foot Into breaker rolls; he had been cleaning sed to cover them while he went to the engine room; upon returning, he walked into the roll. He was sent to the hospital and died of heart failure while undergolng amputa tion.
Instantly killed by being crushed under Found conveyor line at the breaker. ing of by his fellow miner, the death was due to natural jury wa
Fatally injured by having been crushed under a mine car while uncoupling the same: died the following day
Fatally Injured: he was knocked down while crossing the bottom of the slope
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Date of accident. & Name of Person. & Occupation. & < & \% &  & Name of Colllery. & Location-County. & Nature and Cause of Accident in Brief. \\
\hline Sept. 29, & Patrick McNales, & Plane runner, & 22 & & & Jeddo No. 4, & Luzerne, ................. & Fatally injured by having been struck by a stick of timber that fell from the top of a car: he was taken to the hospital, where he died one month later. \\
\hline \multirow[t]{4}{*}{Oct.} & John Bunsco, & Laborer, \(\qquad\) & & S. & \(\cdots\) & Upper Lehigh stripping. &  & Fatally injured while trying to jump on a moving train; he was removed to the hospital and dled five days later. \\
\hline & Danlel Gayior. & Carpenter, & 38 & M. &  & Eckley, & Luzerne. \(\qquad\) & Fatally injured by belng crushed between a loaded mine car and the dump at the breaker; he died a few days later. \\
\hline & John Sagusky, & Laborer, & & M. & 1 & Beaver Meadow stripping. & Carbon. & Instantly killed by a fall of clay on the stripping. While trying to undermine the same by prodding it with a bar, which was a very foolhardy undertaking when he knew the bank was on the move. \\
\hline & Patrick Gaffney. ........ & Miner, ............. & 45 & S. & . & Beaver Bronk. ........ & Luzerne, ................ & Fatally injured by a fall of coal: he had been told that the top bench was not safe and that he should take it down. On Saturday he fired a shot in the nortn slde of breast: this falling to bring down the bench. he commenced, on Monday, to mine the bottom bench by firing a shot and was drilling the second hole when the top bench along the entire face fell; he died on the way to his home. \\
\hline
\end{tabular}

Oct.
6. John Zeo, \(\qquad\)

Nov.
16. Stephen Calonskl,

James Forrest
Zoran Urbano
20.

John B. Cannon, .........
John B. Cannon, ..........
Miner,
Miner,
Miner,

Miner, \(\qquad\)
Cranberry:

Lattimer No. 2 stripping,
,
53 M.

These two men were suffocated by the gases generated from the explosion of breast to connect the lower level with the upper level workings; the miner, knowing that there was but eight feet of coal to break, drilled a hole in the face of the breast, charged it heavily with powder and fired it; they went
back through the fumes and smoke and attempted to work, when they saw their mistake; they then dropped their tools and started down the breast, reaching a noint thirty-five feet from the face when they both fell, victims of their own fhese two m
were suffocated by smoke during a mine fire in the pump room in an underground slope: they were trying to make their escape; the former was found on the slope, while the latter was found on the gangway, about 351 feet extingulshed.
Instantty killed by springing a hole on the stripplng. He had charged the hole with four kegs of powder, tied the fuse and detonater to a stick of dynamite. ighted the fuse, dropped it into the hol and was putting dirt or stemming in the ing the rictim into the air twenty feet, with the above result.
Instantly killed by a fall of dividing slate in the Ruck Mountain seam. He had been told by the assistant foreman to
take the slate down. The railroad spikes were in evidence where he had tried to wedge it down, but falling in this, he continued blasting in the bottom bench and was trimming after a shot when the slate fell. killing him instantly
Fatally injured; while cleaning the railhe stepped on the track in front of loaded gondola. which knocked him down, the wheels runnlng over both legs. He was alone responsible, as the brakeman told him to keep off the died the same day.


TABLE No. 5.-List of Non-Fatal Accidents that Occurred in and about the Mines of the Fifth Anthracite District, for the Year ending December 31, 1897.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  &  & Name of Person. & \begin{tabular}{l|c} 
Occupation. & \\
& \\
& \multirow{3}{*}{} \\
& \\
\end{tabular} &  & Name of Colllery. & Location-County. & Nature and Cause of Accident in Brief. \\
\hline \multirow[t]{5}{*}{Jan.} & 1
2
3 & \begin{tabular}{l}
Frank Wydiz, \(\qquad\) \\
Joseph Czak, \(\qquad\) \\
Frank Ganoda, \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Laborer, \(\qquad\) 28 \\
Laborer, \(\qquad\) 43 \\
Roll tender, \(\qquad\) 18
\end{tabular} & . & \begin{tabular}{l}
Hazleton No. 1, \\
Harwood No. 2, \\
Hazleton No. 1.
\end{tabular} & \begin{tabular}{l}
Luzerne, \\
Luzerne, \\
Luzerne,
\end{tabular} & \begin{tabular}{l}
Slightly injured by an explosion c. gas. Leg fractured; struck by a piece of coal while pushing coal down a chute. \\
Painfully injured by thoughtlessly commencing to clean breaker rolls without first notifying the engineer.
\end{tabular} \\
\hline & 4 & Willam Herety, ......... & Miner, .............. 28 & & Spring Mountain No. 4, & Luzerne, .............. & Leg fractured; being struck by a plece of rock. \\
\hline & 5 & Joseph Coates, .......... & Miner. \(\qquad\) 44 & & Hazleton No. 3, ........... & Luzerne, & Back badly contused by a fall of top coal. \\
\hline & 6 & Michael Staine, ......... & Miner, ............. 24 & & Harwood No. 5, ........... & Luzerne, & Severely burned by an explosion of powder, caused by a spark from his lamp. \\
\hline & 7 & Mllchael Rabbish, ....... & Miner, ................ 26 & \(\ldots\) & Cranberry No. 1, ........ & Luzerne, & slightly injured by a plece thrown from a blast. \\
\hline \multirow[t]{8}{*}{Feb.} & 8 & John Bauzak, & Miner, \(\qquad\) 40 & & Harwood No. 4, ........... & Luzerne, & Hip dislocated and lacerated wounds of face and hands by a fall of coal. \\
\hline & 9 & George Melsenberger, .. & Laborer, \(\qquad\) 26 & & Hazleton No. 3, & Luzerne, & Eye injured: struck by a pick while trying to pass a fellow workman; he was sent to the hospltal, where the eye was taken out. \\
\hline & 10
11 & Jacob Wagner, ...........
James Boyle, ......... & Stable buss, ........
Miner,
Min
43 & \[
\begin{aligned}
& \mathrm{M} . \\
& \mathrm{M} .
\end{aligned}
\] & \begin{tabular}{l}
Shaft No. 1, \\
Coleraine,
\end{tabular} & \begin{tabular}{l}
Carbon, \\
Carbon.
\end{tabular} & Painfully injured; kicked by a mule. Leg fractured; was struck by a plece of \\
\hline & 12 & Mike Martin, & Miner, \(\qquad\) 45 & & Coleralne, \(\qquad\) & Carbon, & coal while at the bottom of the slope. Arm fractured; struck by the same piece of coal that fractured Boyle's leg. \\
\hline & 13 & Frank Dorsek, & Laborer, \(\qquad\) 33 & & Hazle Brook, & Luzerne, & Painfully injured; squeezed between nine car and slope timber while ascending the slope. \\
\hline & 14 & George Boshwhy, ..... & Outside laborer, ... 26 & & Coleraine, & Carbon, & Leg fractured: struck by a lump of some materlal on the slate bank. \\
\hline & 15 & Angelis Sabasteaa ..... & Miner, ............. 33 & & Derringer, & Luzerne, & Leg fractured by a plece of rock thrown from a blast. \\
\hline & 16 & Condy McGill, .......... & Miner, ............... & & Evans colliery, ........ & Carbon, ............... & Burned by an explosion of powder whlle preparing a cartridge. \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|}
\hline 1. & §2 & John Hovanitz, .......... & Driver, \\
\hline 6, & 83 & Narclssus Rossl, & Mliner, \\
\hline 7. & \$1 & Charles WatkIns, & Miner, \\
\hline 8 , & 8.5 & Mike Lazure, & Miner, \\
\hline 13. & 86 & William Hansley, & Miner, \\
\hline 14. & 87 & Whlliam Fuimer, ........ & Driver, \\
\hline 16. & 88 & James Lamb, ............ & Miner, \\
\hline 16,
21, & \[
\begin{aligned}
& 89 \\
& 90
\end{aligned}
\] & \begin{tabular}{l}
Joseph Barcus, \\
Nathan Schell,
\end{tabular} & Miner, Laborer. \\
\hline 25. & 91 & Mike Yenschall, & Laborer, \\
\hline 29, 4. & \[
\begin{aligned}
& 92 \\
& 93
\end{aligned}
\] & William Jenkins. John Bowden. & Miner,
Miner, \\
\hline 9. & 94 & Richard Guscott. & Miner, \\
\hline 9. & 95 & Lewis Zucal, & Miner. \\
\hline \[
\begin{aligned}
& 9, \\
& 9 \\
& 9,
\end{aligned}
\] & \[
\begin{aligned}
& 96 \\
& 97 \\
& 98
\end{aligned}
\] & Henry Koch. Albert Strickas. John Shaya, & Foreman Miner. Miner, \\
\hline 12. & 99 & Donat Bongion, ........ & Laborer, \\
\hline 22. & 100 & Mike Lapinskl, .......... & Laborer. \\
\hline 23. & 101 & Indrew Rudan, ........ & Miner, \\
\hline 6. & 102 & Anthony Benofskl, ...... & Miner \\
\hline 26, & 103 & Charles Gallagher, ..... & Driver, \\
\hline
\end{tabular}


Ribs fractured by having been crushed by a mine car.
Severely burned by an explosion of gas Leg fractured by having been of gas. by a rush of loose rock on the gangway Face and hand badly infured by a pre mature blast
Leg fractured by a fall of coal in the breast.
Arm and leg fractured by having been thrown down the rock bank, together Eye injured by a piece of coal thrown irom a mine pick; he was sent to the headpital, where the eye was taken out Leg fractured by having been caught be eg fractured by a fall of clay
stripping.
Arm fractured by a fall of coal while en gaged in rohbing pillars.
Painfully burned by an explosion of powder: while preparing a cartridge of Painfully burned by an explosion of H.4 gas; he ignited the gas while golng up the manway with a naked lamp.
Slightly burned by an explosion of C. H. gas: the foreman was making the usual examination of the mine in the morn a face with their naked lamps, igniting the gas, burning themselves and the foreman, who was on his way out to notify them.
Severe contusion of both thighs; while trying to jump on a moving train he legs.
Leg fractured hy having been struck by a piece of loose coal rolling down the breast.
Seriously injured by having been struck by a piece
the plane
Ribs fractured by having been struck by a falling prop near the bottom of the breast.
Leg fractured; while he was unhitching mules from a trip of cars, the trace mules started and the driver was thrown, with the above result.

TABLE No. 5.-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline  & &  & Name of Person. & Occupation. & ¢ &  & Name of Colliery. & Location-County. & Nature and Cause of Aceident in Brief. \\
\hline \multirow{9}{*}{Dec.} & 26.
27. & \[
\begin{aligned}
& 104 \\
& 105
\end{aligned}
\] & \begin{tabular}{l}
Paul Pickenhain, ...... \\
Frank August.
\end{tabular} & \begin{tabular}{l}
Miner, \(\qquad\) \\
Jackman. \(\qquad\)
\end{tabular} & \begin{tabular}{l}
29 \\
27
\end{tabular} & M.
M & \begin{tabular}{l}
East Crystal Rldge, .... \\
Lattimer canal,
\end{tabular} & \begin{tabular}{l}
Luzerne, \\
Luzerne, \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Back severely bruised by a fall of bony coal. \\
Badly injured about the hips and abdomen by a fall of clay from the canal bank.
\end{tabular} \\
\hline & 29. & 106 & Robert Pritchard, ...... & Driver, & 17 & S. & Ebervale canal, & Luzerne. \(\qquad\) & Left leg fractured and foot badly lacerated by being struck by a steel rafl, while dragging the same down a dump with a mule. \\
\hline & 1. & \(10:\) & John Sterbach, ........... & Laborer, & 43 & M. & Hazle mines stripping, & Luzerne, & Leg fractured by a rush of material while he was loading a car. \\
\hline & \[
3 \text {, }
\] & \[
108
\] & John Zemsky, & Driver, \(\qquad\) & 25 & \(\therefore\). & Milnesville, & Luzerne, & Seriously injured by falling under a car on the rock bank. \\
\hline & 3. & 119 & Frank Ptak, .............. & Miner. & 27 & M. & Harwood No. 5, ......... & Luzerne, & injured about the head and body by lieces of coal flying from a blast. \\
\hline & 17. & \[
110
\] & John D. Davis, ........ & Miner. & \[
37
\] & M. & Sandy Run, & Luzerne, & Foot badly lacerated by having been struck by a plece of coal. \\
\hline & 22. & \[
111
\] & William Carey, ........ & Miner. & 25 & M. & Shaft No. 1 , & Carbon,.................... & Burned hy an explosion of gas, owing to extreme recklessness in not using the safety lamp, knowing the gas was there. \\
\hline & & \[
112
\] & Frank Renaud, ........... & Laborer, . \({ }^{\text {a }}\)......... & 2.1 & S. & Cranberry, .............. & Luzerne, ............. & Head crushed by a bell of rock in the breast: his escape from instant death was miraculous. \\
\hline & \[
\begin{aligned}
& 2 \mathrm{~s}, \\
& \underline{2 s},
\end{aligned}
\] & \[
\begin{aligned}
& 113 \\
& 114
\end{aligned}
\] & Enoch Howells, ........ Chauncy Brown, ......... & \begin{tabular}{l}
Engineer, \\
Fireman.
\end{tabular} & 27
28 & \[
\begin{aligned}
& \mathrm{M} \\
& \mathrm{M} .
\end{aligned}
\] & \begin{tabular}{l}
Hazle mines stripping. \\
Hazle mines stripping.
\end{tabular} & \begin{tabular}{l}
Luzerne, \\
Luzerne.
\end{tabular} & These two men were badly injured by a blast on the strlpplng: this was the same accldent that caused the death of Danlel Megrady, and these men narrowly escaped; the cause, as stated in the table, was due to a frozen stick of aynamite. \\
\hline
\end{tabular}

\section*{Sixth Anthracite District.}

\author{
(SCHUYLKILL COUNTY.)
}

Shemandoath, Pia., Feb. 19, 1898.
Hon. dames W. Latta, Secretary of Intermal \(A\) fiatars:
Sir: As required by section nime, article two, of the act of June, 1891. I hater the honor of herewith submitting to you my ammal report of the sixth anthrarite coal district for the year 1897.

The report shows an increase of six fatal and a deerease of twentysix non-fatal aceridents during the year, ats compared with 1 s 96 . It also shows the increase in the nomber of amployes to be serenty-seren and a derease in the production of coal of 45,580 tons.

As to the canses of so many fatal and non-fatal aceidents, it must be quite apparent to the skillful miner that at least nine-tenths of them are the result of inexperience and recklessmess. The law is mandatory to the extent that the operator shall provide for the safety of his workmen, and I do not hesitate to state that this is partically carried ont, yet the number of accidents is increasing and we can look fer mo improvement mess the men are tanght to detect the dangers incident to mining coal, when they present themselves, and at the same time be able to determine how to ared them.

It is a fact that the general condition of the collieries in the sixtla district is being yearly improved, and it is also apparent that the coal companies are making a general effort looking to the end that the lives of their workmen wan be best protected.

In further commenting on the accidents which oecolrred in and abont the coltieries in this district dming the year 1 s 9 , there has not been an mosual calamity resulting in the loss of more than two lives at one time, yot I am forred to saty that some of the officials do not pur forth the moper efforts they should to arert at least some of the areidents, for it has been my experience that some mine foremen are rather impressed with the idea that the miner having been qualified by the Miners board of Examiners he himself is responsible for his safely, so far as the actual entting of coal is concerned. I mine foreman cannot be expected to supervise the artual mining of coal in all of his mine openings. Vel atceidents have occurred during the year where the mine foreman was to some ex-
tent enlpable to the extent that his discipline was lax in not enforcing the instructions given him by his superiors and seeing that they were obeyed.

When a mine accident occurs whereby from five to twenty men are killed, it strikes awe into the hearts of a mining community, but when one is killed at one or another colliery until the death rate reaches ten a month or seventy-three a year, we are too prone to give it but very little thought, and to look upon the accidents as matters of course.

> Yours sery respectfully,
> WILLIAM STEIN, Inspector of Mines.

Examination of Applicants for Mine Foreman's Certificates.
The annual examination for mine foremen's certificates was held in Pottsville, June, 1897. The examiners were William Stein, mine Inspector, William H. Lewis, superintendent, Frank Wilcom and Michael Brennan, miners.

The following are the names of the successful candidates who were granted mine foreman's certificates: William S. Daris, Andenreid, and Patrick J. Freel, New Boston.
T'otal Nimber of Persons Employed Inside and Outside of Mines and Nature of T?heir Employment-Inside.
laside foremen, ..... 59
Fire bosses, ..... 130
Miners, ..... 4,688
Miners' laborers, ..... 2,834
Drivers and runner's, ..... 878
Door boys and helpers, ..... 244
All other company men, ..... 3,199
Total inside, ..... 12,032
Outside.
Outside foremen, ..... 62
Blacksmiths and carpenters. ..... 293
Engineers and firemen, ..... 802
Siate pickers, ..... 4.669)
All other company men, ..... 3,096
Siperintendents, bookkeepers and clerks. ..... 102
Total outside. ..... 9.024Total inside and outside,21,0.5;

Table Showing the Quantity of Coal Produced and Shipped During the Years 1896 and 1897.
\begin{tabular}{l} 
Years. \\
\hline \begin{tabular}{l} 
Quantity of coal produced in tons of 2,240 pounds, \(\ldots \ldots \ldots \ldots\)
\end{tabular} \\
Quantity of coal shipped in tons of 2,240 pounds, \(\ldots \ldots \ldots .0\)
\end{tabular}

Table Showing Number of Fatal Accidents and Quantity of Coal Produced per Life Lost.
\begin{tabular}{|c|c|c|}
\hline &  &  \\
\hline Philadelphia and Reading Coal and Iron Company, & & \\
\hline Lehigh Valley Coal Company, ........................ & 12 & 57,869 \\
\hline Lehigh and Wilkes-Barre Coal Company, & 3 & 174.897 \\
\hline  & 2 & 79,376
126,553 \\
\hline William Penn Coal Company, & 4 & 64,498 \\
\hline Mill Creek Coal Company, ........... & & \\
\hline Cross Creek Coal Company, .............................. & \({ }_{2}^{2}\) & 139,994 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Years. & \[
\stackrel{\text { ® }}{=3}
\] & E & ت゙ &  &  &  & \[
\begin{aligned}
& \text { Number of tons of coal } \\
& \text { mined to each non-fatal } \\
& \text { casualty. }
\end{aligned}
\] &  &  &  \\
\hline \[
\begin{aligned}
& 1593, \\
& 194 \\
& 1994 \\
& 199 \\
& 1996, \\
& 1 \times 96 \\
& 196
\end{aligned}, \ldots
\] & \[
\begin{aligned}
& 60 \\
& 73 \\
& 59 \\
& 67 \\
& 67
\end{aligned}
\] & \[
\begin{array}{r}
139 \\
94 \\
94 \\
99 \\
73
\end{array}
\] & \[
\begin{aligned}
& 199 \\
& 167 \\
& 144 \\
& 166 \\
& 146
\end{aligned}
\] & \[
\begin{aligned}
& 21,974 \\
& 20,169 \\
& 19.816 \\
& 20.979 \\
& 21.056
\end{aligned}
\] & \[
\begin{aligned}
& 110 \\
& 120 \\
& 139 \\
& 196 \\
& 144
\end{aligned}
\] & \[
\begin{gathered}
110.597 \\
86, \times 47 \\
124.82 \times \\
97 \\
8.873 \\
8,711
\end{gathered}
\] & \begin{tabular}{l}
47. 737 \\
67.415 \\
84.292 \\
66.237
88.711 \\
88.711
\end{tabular} & \begin{tabular}{l}
38. 345 \\
37,963 \\
49,758 \\
39, 002 \\
4.,350
\end{tabular} & \[
\begin{aligned}
& 302 \\
& 305 \\
& 359 \\
& 313 \\
& 308
\end{aligned}
\] & \[
\begin{aligned}
& 6,674, .807 \\
& 6.339 .831 \\
& 7.164 .895 \\
& 6,521.510 \\
& 6,475,930
\end{aligned}
\] \\
\hline Total. & 332 & 490 & 822 & 103.934 & 639 & 508, 856 & 354.422 & 2r9.925 & 1.587 & 33,176,973 \\
\hline Averages. & 66 & 98 & 164 & 20.756 & 12 S & 101.771 & 70.884 & 41.985 & \(3: 8\) & 6.635.397 \\
\hline
\end{tabular}

The Following Table, Taking the Death Rate per Thousand as a Basis of Comparison Between the Different Companies and Individual Operators, Shows the Ratio for the Year.


The Following is the Number of Accidents, Fatal and Non-Fatal and the Nationalities of those Killed and Injured.
\begin{tabular}{|c|c|c|}
\hline & Fatal. & Non-Fatal. \\
\hline Americans, & & \\
\hline Jntlish, .. & 3 & 5 \\
\hline Irish, \({ }_{\text {Welsh, }}\) & 8 & 12 \\
\hline Scotch, & & \\
\hline Germans, & 8 & \\
\hline & 35 & 23 \\
\hline Hungarian, & 6 & § \\
\hline Halian, .... & 1 & 3 \\
\hline Total, & 73 & 73 \\
\hline
\end{tabular}

\footnotetext{
Trifling accidents
Number mained,
Wives left widows
Wives lef
Orbhans,
}

\section*{Fatal Aceidents and Their Canses.}
1, om explosions of gis, ..... 7
F'rom explosions of powder amd blatsts. ..... !)
F'rom falls of slate and roal, ..... :3:
F'rom breaking of ropers on sirfine ..... \(\because\)
Fiom falling down shafts. ..... 1
From mine rats and matehincry, ..... 12
sitforalled by at rish of loose coall at baltery ..... 1
sulfocated by was. ..... 1
Miscellaneous undergromnt, ..... 5
Miscellaneons on surface, ..... 2
Total. ..... 73
Non-Fatal Accidents and Their Causes.
Fixplosions of gas, ..... 11
Explosions of powder and blasts, ..... 14
Mine cars and machinery ..... 13
F'alls of slate and coal, ..... 17
Miscellaneous underground, ..... 7
Miscellaneous on surface. ..... 11
Total, ..... 73Summary Sixth Anthrateite District, 1897.
Total production in tons of coal, ..... 6,475,930
Quantity of coal in tons used for steam and heat, ..... 760,041
Sold to local trade and used by employes, ..... 96,032
lailroad shipments in tons of coal, ..... 5,625,688
Tons of coal produced by washeries which are included in total production. ..... 220,457
Number of fatal accidents, ..... 73
Ňimber of non-fatal accidents, ..... 73
Number of fatal accidents inside, ..... 62
Number of non-fatal accidents inside. ..... 53
Number of fatal accidents outside, ..... 11
Number of non-fatal accidents outside. ..... 20
Nimber of wives left widows. ..... 35
Number of children left fatherless ..... 83
Number of persons employed, ..... 21,056
Number of kegs of powder used, ..... 146.757
Number of pomens of dynamite used, ..... 233,5농
Number of steam boilers in use, ..... 903
Number of horses and mules. ..... 2,073
Number of mine locomotives, ..... 39

Names of Collieries and the Number of Accidents that Occurred at Each, and the Names of Foremen.


Gilberton water shaft belonging to the Philadelphia and Reading Coal and Iron Company, is sunk to a depth of 1,075 feet to a vein four feet thick underlying the Buck Mountain vein 30 feet.

The Gilberton Colliery connects with this water shaft as also will the Draper Colliery in the near future. A tumel 767 feet long has been driven north across the basin from the fifth lift of Draper Colliery. The distance west from the shaft to this tunnel is 1,500 feet. The present distance driven west from the shaft in the four foot vein is 350 feet, and the distance driven east in same vein from basin tunnel is 200 feet, leaving 950 feet yet to be driven to connect with the Draper Colliery. After all the connections have been made
foom both collieries with the shaft, the pmops will be abandoned and the water hoisted in tanks holding from 2,000 to 2,400 gallons each. The shaft being divided into fomr compartments, four tanks can be used if occasion requires it.

Two magnifiernt hoisting engines, frxtio inch, are now in ruming D:der and fitted up with all the most modern appliances. I sterl lead frame has been buit on lop of shaft. The ropes are steel wire, two inches in diameter.

Schuylkill Colliery, belonging to the Philadelphia and Reading Coal and Iron Company, has bern permanently abandoned as a shipprer, and the remaining coal to be mined will be prepared at the Heighboring North Mahanoy ('olliery breaker which has been remodeled and enlarged for that purpose. Connection between these two colliory mine workings has been made from North Mahanoy seren foot rein, No. 2 slope, to between the third and fourth lifts of the Schuylkill Buck Momntain rein. This tmmel commecting the two colliery workings is for water drainage as well as a tramsportation arenue throngh which the coal is hated from Schuylkill workings to the hottom of North Malanoy No. 2 slope.

In May, the Springdale Colliery, operated by Lent\% © C'o., was indefinitely abandoned, the rails and pmons were brought to the surfare and the water allowed to flood the colliery. This colliery being also in the same neighborhood with the schuylkill Colliery, and the Workings having also been comected with each other in their early dats of operation, Mr. R. (. Lather, general superintendent for the Philadelphia and Reading Coal and Iron Company, decided not to ailow the water to rise vertically in Springdale shaft more than 20 feet and comsequently made preparations to take the water at this fertical height, rather that assmme the risk of any greater pressure T'o make provision for pumping the water from schuytkill and springdale collieries a new pump slope was smbk 1,0 on feet depp in the seven foot vein parallel with the North Mahanoy No. 2 hoisting sope. Two new duplex pumps, 18 inch plungers, fs inch stroke and :36 inch eqlinders, maximum sped 7 strokes per mimnte, were placed at the fourth lift. Two 18 inch eolmm pipes connect with the pmops to surfare athd the water discharged ber these pumps is fored when reguired to North Mahamoy beaker to wash the roal. Befween these wo discharge pipe rolmoms there is athew gatige tratek in the slope, used for men going down and up, and for the convenience of latel making repaits to the pumps and their atlachments.

The pump rooms are lined with a wall built of brick and cement If inches thick; on top, of these walls are latid 75 pound \(T\) iron rats to support the roof, thas preventing the eoal from fracturing ofr, and also preventing mine lires from the dried timber which mostly is used for roof supports.

During the year the Philadelphia and Reading Coal and Iron Company built a new breaker to take the place of the old one at their Tmonel Ridge Colliery, and have permanently abandoned the preparation of coal at their Elmwood breaker, and all the coal mined at the lilmwod Colliery will soon be prepared at the Tonnel Ridge new breaker which is capable of preparing 1,400 tons daily.

I tumnel has been driven across the basin 333 feet long from the South dip of the top split of the Mammoth rein or Elmwood side of the basin, to the north dip of the top split of the Mammoth vein or tunnel Ridge side of the basin. This fumbel connects with Tumel Ridge new slope east gangway 1,500 feet east of slope and was driven for the purpose of hanling the coal mined from the Ehmwood workings through to the new Tunnel Ridge slope. A new double track hoisting slope bas been sunk 27: yads at Tummel Ridge, through which all the coal mined at these two collieries is hoisted in "gunboats," each boat baving a capacity of six tons. The coal is rumped on top into a separator, and the rock and shate separated from the coal, which is then transferred hy means of a scraper line to the breaker proper for final preparation. The two Elmwood slopes are sunk to the same level with the Tummel Ridge slopes and serve as second outlets. The workmen are also lowered and hoisted through these openings, also the mine supplies necessary for the carrying on the work in connection with both dips of the basin. I pumping station is maintained for the present at cach side of the basin. The roadbeds and drainage gutters are well constructed, and the timbering of the gangways cannot he improved upon. Four fans are in operation, which keep the mine workings well ventilated.

In addition to the surface improvements at Tunnel Ridge, a new patir of hoisting rengines hate been erected on top of the new slope, 40 inch cylinder and 60 inch stroke, with steam boilers eatch 18 feet long, 6 fert diameter and with 68 fom inch tubes; the horse power of arch is 100 .

The means of commmic:ation from top to bottom of slope is by telephone and electric alarms.

Stenographic Report of the Impuest Held hy Deputy Coroner EdWad Fogarty at Mahanoy (ity, December 4, 1897, upon the Bodies of Willian Steed and Martin Whittick. Ontside Laborers Who Were Killed at North Malamoy Coltiery on the \(2 d\) of December, 1897.

The jurors were Mirhatel Hobise, Hary Hume, Andrew C'arlin. W. T. Evans, James fieehan and John Derrick.

The examination of witnesses was conducted by Willian Slein, bine inspector.

The first witness sworn wats Willian H. Richards, district mine
superintendent of the Mahanoy District Collieries; he stated that he was superintendent over the district in which North Mahanoy Colliery is located. I received weekly a report kept daily of the condition of all ropes about the colliery. The rope in this case was reported to me by Mr. Eltringham the outside foreman to be in good order and is now in good condition, never before knew of a rope breaking so close to the socket, my opinion is that the wires in the rope became crystallized by the water which often stood in the "Braney" pit at the bottom of the plane.

On August 16, Mr. Whittick, father of one of the victims of the accident pushed a car over the top of the plane for which he was discharged.
Q. Was that rope in your opinion properly examined when last fassed upon?
A. I can't say positively, as I have only the word of the man who made the examination.
Q. Do you believe the rope was re-socketed wher it is claimed that it was?
A. I can only take the report for that.

Swanze Eltringham was next called, who testified that he was outside foreman at North Mahanoy Colliery at the time of the accident, and the only cause for the rope breaking inside the socket was on account of water.
Q. When was the rope re-socketed last?
A. Frank Wertz, the blacksmith, says four months ago; it is a steel wire rope, one and one-half inches in diameter.
Q. Why is it that no record was kept of the latest repairs to the rope when the rules of the Philadelphia and Reading Coal and Iron Company require it?
A. I don't know.
Q. Did not Mr. Richards, the superintendent, instruct you to resorket your ropes every three or fonr months?
A. I don't remember.
Q. Did you examine the ropes daily?
A. Yes; each day.

At this point the hearing was adjourned to meet on Tuesday evening, December 7, at seven o'clock.

When the hearing was resumed on Tuesday evening, Frank Wertz was examined by Mine Inspector Stein.
Q. Are you conversant with the mine law in relation to the examination of ropes and chains in use at collieries?
A. I never had the law given to me.
Q. Don't you know daily examinations of ropes and chains must be niade?
A. Only from hearsay.
Q. Were you ever told to examine the ropes daily?
A. Yes; about tell years ago.
Q. Would that not be sufficient for ten years hence?
A. I suppose it would.
Q. Can you tell when yon re-socketed the rope?
A. On August 16, 1897, both ropes were re-socketed.

Thomas Morrison, hoisting engineer, then swore to the fact that the rope was re-socketed August 16, 1897.

Mr. Whittick, father of one of the victims, asked Mr. Eltringham, the outside foreman: "Do you consider the foot of that plane a safe place to work?"
A. Yes; if the rules are obeyed. And you thought so yesterday when you told me you thought no one was to blame, and you would be satisfied if the company would pay only the expenses of the funeral.

John Shellan, a laborer, was then sworn. He could not fix the blame on any one for the accident, even though a near relative had been one of the victims.

The mine Inspector then gave several rules in force by a number of large coal mining companies in relation to the care of ropes and chains in use at their collieries, and told how but three weeks before the accident while on a visit to the colliery he cantioned the men working at the bottom of the plane, not to go on the plane or in the "Barney" pit while cars were being hoisted, and that he, in company with Mr. Rees Tasker, division superintendent, and Mr. William H. Richards, district superintendent, had passed the foot of the plane about an hour before the accident occurred on their way to inspect a district of mine workings.
The coroner's jury rendered the following verdict:
"That the said William Steel and Martin Whittick came to their deaths on the 2 d of December, 1897, at North Mahanoy Colliery by the breaking of a plane rope, which was due to the negligence of Swanze Eltringham, outside foreman, in not having the socket reset."
\begin{tabular}{|c|c|c|c|c|}
\hline Name of Colliery. & Name of Operator. & Location-County. & Name of Superintendent. & Postcflice Address. \\
\hline Bear Rldge, & P. \& R. Coal and Iron Co., & Schuylkill, & R. C. Luther, & Pottsville, Schuylkill Co. \\
\hline Boston Kun, & P. \&R. Coal and Iron Co., & Schuylkill, & R. C. Luther, & Pottsville, Schuylkill Co, \\
\hline Draper. & P. \& R. Coal and Iron Co.. & Schuylkill, & R. C. Luther, & Pottrvilic, Schuyikill Co, \\
\hline Ellangowan, & P. \&R. Coal and Iron Co., & Schuylkill, & R. C. Luther, & 1'ottsville, Kchuylkill Co \\
\hline Girard Mammoth. & \(\underset{\mathrm{P}}{\mathrm{P}}\) \& \& R. Coal and Iron Co., & Schuylkill,
Schuylkill, & R. C. Luther, & lottsville, Schuylkill Co ,
Pottsville, schurlkill Co \\
\hline \begin{tabular}{l}
Gilberton. \\
llammend
\end{tabular} & P. \& R R. Coal and Iron Co., & Schuylkill, & R. C. Luther, & Pottsville, Schuyikill Co. \\
\hline Indian Rudge & \(P\) \& R. Coal and Iron Co., & Sehuylkill. & R. C. Luther, & Pottsville, Schuylkill Co . \\
\hline Knlckerbeck & P. \& R. Coal and Iron Co., & Schuylkill, & R. C. Luther, & Pottsville, Rchuylkill Co \\
\hline Kohinoor, Mahanoy Cit & 1. \& 12. Coal and Iron Co., & Schuyikill,
Schuylkill, & R. C. Luther, & Pottsville, Schuylkill
Pottsville, Schuylkill \\
\hline Mahanoy
Maple inil & P. \& R. Coal and Iron Co., & Schuylkill, & R. C, Luther, & Pottsville, Schuylkill \({ }^{\text {Potas }}\) \\
\hline North Mahanos, & P. \& R. Coal and Iron Co., & Schuylkill. & 12. ¢ Luther, & 1'ottsville, schuylkill \({ }^{\text {cos. }}\) \\
\hline St . Nicholas, & P , \& R. Coal and Iron Co., & Schuylkill, & R. \(\because\) Luther, & 'ottrville, Schuylkill Co, \\
\hline Suffolk. & I. \&R. Coal and Iron Co., & Nchuylkill, & 1R. C. Luther, & Pottsvilie. Schuylkill Co. \\
\hline Schuylkill. \({ }_{\text {Shenandeah }}^{\text {S }}\) (ity. & P. \&R. Coal and Iron Co., & Schuy
Schuylkill, & R. C. Luther, & Pottsillle, Schuylkill \(\mathrm{Co}^{\text {cos }}\) \\
\hline Shenandisah (:ity, & \(\stackrel{\text { 1. }}{1} \mathrm{~N}\) \& R . Coal and Iron Co., & Schuylkill, & 12. C. Luther, & Pottsville, Schuylkill Co
Pottsille, Schuylkill
Co, \\
\hline Tunnel ridge & P. \& R. Coal and Iron Co.. & Schuylkill, & I2. ©. Luther, & Pottsville, Schuylkill Co, \\
\hline West shenandoah & 1. \& R. Coal and Iron Co., & Schuylkill, & 16.0 Luther, & Pottsville, Nchuylkill Co , \\
\hline Packer No. & Lehigh Valley Coal Co..
Lehish Valley Coal Co.. & Schuylkill, & W. A. Lathrop. & Wilkes-Barre, Luzerne Co, \\
\hline Packer No. 4 , & Lehtgh Valley Coal Co.. & Schuylk!il, & WV. A. Lathrop, & Wilkes-Barre, Luzerne Co. \\
\hline Packer No. & Lehigh Valley Coal Co.. & Schuylkill, & IV. A. Lathrop, & Wilkes-Barre, Iuzerne Co. \\
\hline l'rimrose & Lehigh Valley Coal Co., & Schuylkill. & W. A. Lathrop. & Wilkes-13arre, Luzerne Co. \\
\hline Parkins No & Lentz \& Co.. ........ & Schuylkill, & 1:dward Reese, & Park Place. Schusikill Co. \\
\hline Stlver Brook, & Silver Brook Coal Co. & Schuylkill, & James Long, & Silver Itrook, Schuylkill Co. \\
\hline Huricy brook No. 4. & Lehigh and Wilkes-Barre Coal & Schuylkill, & F\%. H. Lawall, & Wilkes-Barre, Luzerne Co. \\
\hline Honey Brook No. Onelía. & Lehish and Wilkes-Barre Coal
Cross Creek Coal Co.,.......... & Schuyikill, & 1. H. lawall, & Wilkes-Barre, Luzerne Co, Drifton, Luzerne Co. \\
\hline William Penn, & Stickney \& Conyngh & Schuylkill. & W. H. Lewis. & Shaft, Schuylkill Co. \\
\hline Kehley's Run, & Thomas Coal Co.. & Schuylkill. & Thomas Baird & Shenandoah. Schuylkill Co. \\
\hline Lawrence. . & Lawrence Coal Co. & schuylkill. & William J. Miller, & Frackville. Schuyikill ( C . \\
\hline Cambridg & Cambridge Coal Co. & Schuy-1kill, & John J. MeGinn s, & Frackville, Schuylkill Co. \\
\hline  & Seaman \& Co., & Schuylkill, & Mahlon Gerbe & Tamaqua, Schuylkill Co. \\
\hline Brookwor d Washer & stoddart
Brookwocd Coal Co.
Co. & Schuylkill,
Schuylkill, & J 1. Hollenbe & Pottsville Schuylkill Co.
1435 S. Penn Nq.. Phiadelphia. \\
\hline Monarch Washry; & Leisenring \& Pollock, & Schuy-kill. & James Pollock. & Wilkts-Farre, Luzerne Co. \\
\hline Seaman Washery, & Seaman Bro., & schuylkill, & Mahlon Gerber, & Tamaqua, Scluyylkill Co. \\
\hline Star Washery & Audenreid Coal & Schuylkill, & John G. Scott, & Hazleton, luzcrne Co. \\
\hline Girardville Washers & B. N. Bertolet \& Co. & Schuylkill. & B. N. Bertol & Girardville, Schuylkill Co. \\
\hline Carson Washery, & Carson Coal Company, & Schuylkill. & H. E. Rissing & Audenreld, Schuylkill Co. \\
\hline
\end{tabular}

TABLE NO．2．－Gives the Total Number of Tons of Coal Mined in each Colliery，Number of Days Worked，Number of Employes， Number of Persons Killed and Injured，Number of Kegs of Pow der used，etc．，in the Sixth Anthracite District for the year ending December 31， 1897.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collieries， & Location－－Coun－ ty． & \begin{tabular}{l}
๘ \\
\(\stackrel{n}{5}\) \\
든 \\

\end{tabular} &  &  &  &  &  &  & ＇sдuəpiove［riej－uou jo asquan &  &  &  &  &  \\
\hline Bear Ridge， & schuylkill， & 205，698 & 29，856 & 3，190 & 175，652 & 143 & 660 & & 2 & 1，018 & 10.251 & 46 & 82 & 1 outslde \\
\hline  & Schuylkil， & 126，312 & 21，302 & ． 202 & 104， 808 & 141 & 407 & & \(\frac{2}{2}\) & 1，009 & 16.062 & 8 & 50 & 1 outside \\
\hline Draper，．．．．． & Schuylkill，．．．．． & 157.127 & 24，384 & 1，369 & 131,374
27,549 & 142
141 & 530
956 & 1 & 3
3
3 & 2，968 & 25.290
4.946 & 10 & 112 & \\
\hline Ellangowan，\({ }_{\text {Girard Mamm }}\) & Schuylkill， & 291,517
86,650 & 41,238
\(20,+52\) & 730 & \(\begin{array}{r}279,549 \\ 65,484 \\ \hline\end{array}\) & 141
142 & 956
324 & 6 & 3
1 & 9,696
1,476 & 4.946
1,469 & \({ }_{25}^{12}\) & 112 & 1 outside \\
\hline Gilherton．．．．． & schuylkill， & 16．6， s 02 & －30，559 & 1，092 & 132，151 & 139 & 607 & 2 & \({ }_{3}\) & 2，587 & 1,469
31,883 & 14 & 56 & i outside \\
\hline Hammond． & Schuylkin， & 146． 182 & 24,927 & 4.316 & 116，938 & 143 & 469 & 2 & & 2，598 & 10，256 & 38 & 56 & 1 outside \\
\hline Indian Ridge， & Schuylkill， & 168，343 & 11，576 & 7.945 & 148， 822 & 140 & 565 & \(\stackrel{1}{2}\) & 4 & 4.193 & 3．700 & 8 & 55 & \(\frac{1}{2}\) outside \\
\hline Knickerbocker， & Schuylkill， & 219.467 & 20，122 & 7.283 & 192．062 & 138 & 718 & \(\frac{2}{9}\) & 3 & 5，118 & 17，202 & 28 & 51 & 2 outside \\
\hline Kohinuor，City & Schuvikill，
Schaylkill， & 123.814
\(1+3.545\) & 18,525
21,611 & … \(23,9 \% 7\) & \(105.2 \times 9\)
98,057 & 136
143 & 461
512 & 1 & 1 & \(\stackrel{2,898}{3,278}\) & 1,784
9,817 & 29
28 & 49 & 1 outside
1 outside \\
\hline Maple Hill． & Schuylkili， & 378.025 & 15，689 & － 10 & 362，325 & 143 & 1，234 & 6 & 4 & 11，847 & 6.441 & 28 & 95 & 1 outside \\
\hline North Mahanoy． & Schuylkill， & 156，543 & 22， 345 & 542 & 133.756 & 137 & 626 & 5 & 2 & 3，659 & 9，106 & 16 & 59 & \\
\hline St．Nicholas， & Schrylkl11，．．．．． & 164， 566 & 30，760 & 209 & 133，597 & 143 & 565 & 3 & 1 & 3，831 & 7．569 & 26 & 74 & 2 outside \\
\hline Suffolk．．．．．． & Schuylkill，．．．． & 259，017 & 19，945 & \(9 \% 7\) & 238，095 & 143 & ¢23 & 1 & ．．．． & 6． 801 & 8.448 & 22 & 83 & 1 outside \\
\hline Schuylkill， & Nchuytkill， & 71， 197 & 4，251 & & 67，616 & 116 & 350 & \(\frac{2}{2}\) & － & 2，359 & 3，022 & 20 & 39 & \\
\hline Shenandoah City， & Schuylkill， & 193,809
130,199 & 29,512
7.627 & 17,494 & 146,812
122,572
12022 & 140
140 & 665
470 & & 5
1 & 4．964 & 2.916
5.104 & 26
14 & 64
50 & 1 outside
1 outside \\
\hline Tunnel IRldge． & Schuylkill， & 123，598 & 19.376 & & 104，222 & 141 & 567 & 5 & 3 & 2，470 & 5.96 .1 & 26 & 72 & \\
\hline West Shenandoah， & Schuylki！， & 116．199 & 9． 404 & 16 & 107，062 & 140 & 432 & \(\stackrel{2}{2}\) & ．．．． & 3.017 & 1．953 & 16 & 43 & \\
\hline Packer No． 2 ， & Schuylkill， & 103,336 & 13.714 & 679 & 88，942 & 104 & 339 & 1 & \(\cdots\) & 845 & 17，535 & 13 & 34 & \\
\hline Packer No． 3 ， & Schuylkill，．．．．． & 171，030 & 15． 292 & 1，182 & 151，256 & 169 & 460 & 3 & 3 & \(\stackrel{2}{276}\) & 3.190 & 27 & 39 & ．．．．．．．．．．． \\
\hline Packer No． 4 ， & Schuylkill，．．．．． & 173．299 & 25，631 & － 259 & 147.409 & 173 & 398 & \(\pm\) & 2 & 3，185 & 3，593 & 27 & 36 & ． \\
\hline  & Schuylki！，
schuylkill， & 111.094 & 12,617
7.236 & 4,223
3.318 & 94.254
125.124 & 86
181
181 & 641
433 & 1 & 1 & 2,737
3,307 & 6.350
2.040 & \(\frac{32}{7}\) & 37 & \\
\hline Fark No． & schuylkill， & 23s， 129 & 19，448 & 3． 817 & 217．864 & 141 & \({ }_{84}^{48}\) & 3 & 5 & 6．469 & \(\underline{2,850}\) & \(4{ }^{4}\) & 101 & 2 outside \\
\hline Silver Broo & Nchuylkill． & 253，106 & 18， 616 & 1，786 & 232．703 & 220 & 543 & 2 & 2 & 2，841 & 1.300 & 10 & 30 & \(\frac{2}{2}\) outside \\
\hline Honey Brook No． 4 ， & schuylkill，．．．．． & 239，080 & 38，767 & 4，169 & 196，144 & 144 & \(8: 8\) & 2 & 6 & 4，855 & 12，450 & 37 & 97 & 3 outside \\
\hline
\end{tabular}




TABLE No. 4.-List of Fatal Accidents that Occurred in and about the Mines of the Sixth Anthracite District, for the Year ending December 31, 1897.


TABLE NO. 4. -Continued.



Schuylkill,

Schuylkill,

Schuylkill,

Schnylkill, Schuylkill Schuylkill,
Schuylkll, Schuylkilt,

Schuylkill,

Schuylkill.

Schuylkill,

Schuylkill,
Schuylkill, Schuylkill, Schuylkill, Schuylkill, Schuylkill, Schuylkill, Schuylkill

Fatally injured by a fall of dividing slate while cleaning out coal from a heading in which he worked. Died in State Hospital on the 29th.
Fatally injured: died on the 19th. He der which he ignited while filling a cartspark fell into the keg. Fatally injured: died on the 19th. He attempted to get on a car coming from
head of slope, and the car ran over him. fie was away from his regular place of work at the time. his regular place of was told not to go there by the boss,
Fatally injured; died on the 28 th. He tried to jump on moving cars and fell under.
Killed by a fall of coal at face of breast
Fatally injured by a rush of coal from face of breast: died on the 16 th. squib too short in gangway cut the time to get away from the shot.
Fatally burned by an explosion of gas: died Aucust 7 . He went to face of naked lamp on his cap. Killed by a fall of coal in gangway the face was in advance of the last timber Which had been stood. The mine
responsible for this man's death.
Killed by falling from steamboat picking Killed by falling from steamboat picking
floor, a distance of 42 feet. He was working at the erection of a new breaker.
Fatally injured by a fall of coal; died on the sth.
Killed by a fall of coal-the fault of the miner in not timbering
Fatally injured by a timber falling on Killed: died on the 12th. Which he was attending to.
Killed by a fall of coal in No. 3 breast, seventh lift. west seven foot veln.
Killed instantly in going back to a shot,
Killed by a fall of coal in Shenandoah City drift, Mammoth vein, while "robbing. Filled by a fall of rock at face.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & Name of Person. & Occupation. & ¢ &  &  & Name of Colllery. & Location-County. & Nature and Cause of Accident in Brief. \\
\hline \multirow[t]{8}{*}{Sept.} & Joseph Shondis, .......... & Drlver, ............. & 16 & S. & . & Suffolk, \(\qquad\) & Schuylkill, ......... & Killed whlle riding down hoisting slope. At this colliery the workmen are expected to walk down and up, and a traveling way is provided for that purpurpose. \\
\hline & Peter Lavish, & Miner, & 25 & S. & .. & Tunnel Ridge, & Schuylkill, & Fatally injured by a fall of slate squeezing him against a prop. Died on the eighth \\
\hline & John Bordulis, & Miner. & 40 & M. & 2 & Tunnel Ridge, & SchuyIkill, & Fatalls burned by powder: a spark from his lamp fell into the cartridge he was tilling. Died on the \(26 t \mathrm{~h}\). \\
\hline & \begin{tabular}{l}
Frank Kavasiak. \\
Peter Novatco.
\end{tabular} & \begin{tabular}{l}
Miner, \\
Miner.
\end{tabular} & \[
\begin{aligned}
& 36 \\
& 3 \mathrm{~S}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{M} . \\
& \mathrm{M} .
\end{aligned}
\] & 2 & Packer No. 4, Packer No. 4, & Schuylkill, Schuylkill, & Fatally burned by an explosion or gas. They went up into a breast with a naked lamp before seeing the fire boss in the morning. Kavasiak died on the 25th and Novactco on the 27th. \\
\hline & Joseph Paff, .............. & Laborer, ............ & 19 & S. & & Shenandoah City, ...... & Schuylkill, ......... & Fatally burned by an explosion of gas. He, together with his father, went into an old breast with naked lamps to lift theet iton and exploded the gas. Peter Paff, the father. testilied that he was to blame. Joseph clled on the first of October. \\
\hline & John Youngalavage, ..... & Siner, ............. & 32 & M. & 4 & Kohinoor, ................ & Schuylkill, ........ & Fatally injured by a fall of coal: died on the 10th of December in the Miners' IIospital. After firing a shot he returned to dress off when a fall occurred whtch broke his hack. \\
\hline & John Welsh, & Miner. & 52 & & & Maple Hill, & Schuylkill, .......... & Killed by a fall of coal from upper side of heading he was cleaning out, which was not properly timbered. \\
\hline & Rlchard Flynn, ........... & Miner, ............. & 53 & M. & 5 & Indian Ridge, ........... & Schuylkill, ......... & Fatally injured by a fall of a very small plece of coal. This man was engaged at what is termed "robbing back" and to all appearances the work was very safe. He was one of our most practical miners. He died on his way home. \\
\hline
\end{tabular}


TABLE No. 4.-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline  & & Name of Person. & Occupation. & < & Married or single. &  & Name of Colliery. & Location-County, & Nature and Cause of Accident ln Brief. \\
\hline \multirow[t]{4}{*}{vec.} & 2 2, & Wm. Steel, Martln Whitock, .......... &  & \[
\begin{aligned}
& 55 \\
& 19
\end{aligned}
\] & M.
\[
\mathrm{S}
\] & & \begin{tabular}{l}
North Mahanoy, \(\qquad\) \\
North Jahanoy: \(\qquad\)
\end{tabular} & Schuylkill. \(\qquad\) Schuylkill, \(\qquad\) & These two men were killed at the bottom of dirt plane outside. Contrary to orders given them by the foreman and myself, for I had occasion to pass those two men 45 minutes before they lost their lives, they were shoveling mud out of the "Barney pit.". 1 told them not to get there whlle the car was in mution; they sald they never did. However, they got into the pit, and as the Barney and dumper neared the top or the plane the rove broke at socket. causing the Barney and dumper to run down, killing them instantly. \\
\hline & 10, & John Conrad, &  & 30 & S. & . & Silver Brook, & Schuylkill, ......... & Killed while drilling a hole at surface strlpping by a large quantlty of coas slipping from the bottom slate; the veln at this point is 40 feet thick on an angle of 50 degrees. \\
\hline & 11. & Francisco Sartori, ........ & Miner, & 36 & M. & & Oneida Slope No. 2, .... & Schuylkill, ......... & Smothered by a rush of coal. This man was loading out breast No, 49 in No. 2 West gangway. There was a good stream of water coming down this breast and it appears that the water did not leak freely through the crecn battery and as the chute was full of fine coal and the battery In good running order, as soon as he lifted the board to load his car the water and tine coal came with a rush, completely covering him and smothering him to \\
\hline & 13,
14. & \begin{tabular}{l}
John Connors, \(\qquad\) \\
W'm. Briskey, \(\qquad\)
\end{tabular} & Driver, \(\ldots \ldots \ldots \ldots .\). & & S. & 2 & Lawrence, .............
North Mahanoy; ....... & Schuylkil1,........ & \begin{tabular}{l}
Fatally injured by falling under cars; \\
died in the Miners Hospital. \\
Killed by a fall of coal in breast No. 2 Holmes veln, No, 16 counter.
\end{tabular} \\
\hline
\end{tabular}

Dec.
23,
27, Charles Munshumski, Nicholas Doyie,
Simon Augustitus,
27.

Anthony Maiglus, Miner,
Laborer,
Miner,
\(\qquad\) Laborer,
..............
25
45
25
35
\begin{tabular}{l|l}
25 & S \\
45 & M \\
35 & S \\
35 & M \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)

Kohinoor,
Maple Hill,
Indian Ridge,
Wm. Penn,
\(\qquad\)
\(\qquad\)
m. Penn, \(\qquad\) schuylkill, Schuyikill,
Schuylkill,
\(\square\)
Killed by a fall of coal.
Killed by a fall of coal which he was killed instantly while working at face of
gangway by a fall of coal.
Suffocated by gas in breast No. 29, No. 3 Slope, Buck Mountain vein. The fire boss in charge reported gas in this breast and ordered the miners to repair the plank manway. He allowed Maiglus and his partner to construct their manways, putting on the planks crossed the breast before first reaching the face, which was the cause of the gas accumulating. After working in the intake manway they went up the downcast manway and Malglus fell in the traveling gas. The fire boss was to Ing of the gas in person.
Fatally injured by belng thrown under cars on gangway; died on his way to the hospital. This man had worked only one day at this colllery and was, as far as I could learn, a "greenhorn."


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & & Name of Person. & Occupation. & ¢ & \(\frac{9}{u n}\)
\(\frac{E}{E}\)
\(\frac{5}{6}\)
\(\frac{\pi}{5}\)
\(\frac{5}{5}\)
\(\frac{5}{4}\) & Name of Colliery. & Location-County. & Nature and Cause of Accident in Briof. \\
\hline \multirow[t]{2}{*}{July} & 2. & Peter Yanno, ........... & Miner, . . . . . . . . . . & 40 & M. & Honey Brook No. 5, ......... & Schuylkill, ......... & Shot in the face, arms and breast; he thought the shot had missed tire and went back to re-light it, when it exploded. \\
\hline & 8 , & Henry Ernest, ............. & Miner, \(\qquad\) & 34 & M. & Draper, ........................ & Schuylkill, ......... & Three fingers blown off by an explosion of dynamfte. \\
\hline \multirow[t]{5}{*}{Aug.} & 10,
10, & \begin{tabular}{l}
John Miner, \\
Godfrey Wheat, ............
\end{tabular} & \begin{tabular}{l}
Laborer, \\
Slate plcker,
\end{tabular} & & M. & Fark No. 2 Slope, Tunnel Ridge, & Schuylklll, .......... Schuylkill, .......... & \begin{tabular}{l}
Leg fractured by a fall of coal. \\
Arm fractured: he was running up and down the breaker steps at the dinner hour and fell, breaking his arm.
\end{tabular} \\
\hline & 12. & Peter Zubrus, & Laborer, ........... & 25 & S. & Gilberton, .................... & Schuylkill, ......... & Leg fractured; he was lowering down timber with a rope in the W. Holmes counter; the timber swung around, jamming his leg against a battery. \\
\hline & 13. & John Barrett, & Starter, ............. & 46 & M. & Boston Run, & Schuylkill, ......... & Seriously injured on face, hands and side by an explosion of dynamite. He cut the squib too short. \\
\hline & 17.
20, &  & \begin{tabular}{l}
Miner, \\
Miner,
\(\qquad\)
\end{tabular} & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{M} . \\
& \mathrm{M} .
\end{aligned}
\] & \begin{tabular}{l}
Silver Brook, \(\qquad\) \\
Maple Hill, \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Schuylkill. \\
Schuylkill,
\end{tabular} & \multirow[t]{2}{*}{Leg fractured by a fall of coal. Burned on face and hands by powder; he was filling a cartridge of powder with his lamp on his cap when a spark fell into the cartridge.} \\
\hline & 26. & Edward Foley, .......... & \multirow[t]{2}{*}{Topman, Miner, Miner,} & ec
26
33 & \multirow[t]{2}{*}{\[
\stackrel{\mathrm{S}}{\mathrm{~S}}
\]} & \multirow[t]{2}{*}{Kohinoor, Vulean. Kehley's Run,} & \multirow[t]{2}{*}{Schuylkill. schuylkill. Schuylkill,} & \\
\hline Sept. & 17, & Anth. Domekitus, ........ & & & & & & \begin{tabular}{l}
Arm fractured: fell from a mule. \\
Leg fractured by a fall of coal. \\
Leg and arm severely injured: he had lit a squilb to tire a blast and thinking it had missed fire he returned to relight it, when the shot exploded.
\end{tabular} \\
\hline & 17, & John Bordulis, ............ & Miner, ............... & 31 & S. & Tunnel Ridge, ............... & Schuylkill, ......... & Face, hands and leg burned by powder: while making up a shot of powder a spark from his lamp fell into the cartridge. \\
\hline & 20. & Barney Suclandes, ....... & Miner, & 22 & S. & Packer No. 3, ............... & Schuylkilı, & Face and hands slightly burned by an explosion of gas. He was warned by the fire boss not to enter the breast, but did not heed the warning. \\
\hline
\end{tabular}


TABLE No. 5. -Continued.


\title{
SEVENTH ANTHRACITE DISTRICT.
}

\author{
(NORTHUMBERLAND, COLUMBIA, SCHUYLKILL AND DAUPHIN COUNTIES.)
}

Shamokin, Pa., February 15, 1898.
Hon. James W. Latta, Secretary of Internal A ffairs, Harrisburg, Pa.:
Sir: I have the honor to present you herewith my report as Inspector of Coal Mines for the Seventh Anthracite Mining District for the year ending December 31, 1897, as required by section ten, article two, of the act Juue 2, 1891.

It containstables and statistics showing location of collieries, total number of tons mined and shipped, number of days worked, number of employes, number of persons killed and injured, number of kegs of powder used and other information relative to anthracite coal mining.

The total production in tons of coal for the year 1897 was \(5,108,948\) tons, against \(5,594,649\) tons in 1896 , a decrease of 485,701 tons. The total shipment was \(4,377,761\) tons for 1897 , against \(4.975,827\) tons for 1896 , a decrease of 598,066 tons.

I am especially pleased to note the decrease in loss of life; the number of fatal casnalties was 46 , a decrease of 30 from that of 1896.

The non-fatal casualties wre 119 , against 106 in 1896, an increase of \(\mathbf{1 3}\). This increase was due to the carelessness of the workmen themselves, as nine are attributable to premature blasts and six to flying coal from shots, which demonstrates that the necessary precaution was not exercised.

\section*{Examination of Applicants for Mine Foremen Certificates.}

The annual examination of applicants for mine foremen certificates in the Seventh Anthracite District was held at Pottsville, Pa., June 18 and 19,1897 , and was presided over by the following board. viz: Edward Brennan, Mine Tnspector, Shamokin; Andrew Robertson, coal operator, Shamokin: Rohert Muir, miner, Mount Carmel, and Adam Bachman, miner, Ashland.

The following were recommended to receive mine foreman's certificates:

Thomas Holihan, Middleport.
Alfred White, Mount Carmel.
Richard Holland, Shamokin.
John Stewart, Ashland.
John W. Powell, Williamstown.
Respectfully submitted,
EDIVARD BRENNAN,
Mine Inspector.

TABLE A-Comparative Statement of Fatal Casualties from Various Causes that Occurred During the Years 1895, 1896 and 1897.
\begin{tabular}{|c|c|c|c|}
\hline & 1895. & 1896. & 1897. \\
\hline Falls and rushes of coal and slate, & 23 & 31 & 25 \\
\hline Mine cars and machinery, ..... & & 19 & \\
\hline premature explosions, ......... & & & \\
\hline Exploxions of fire-damp. & 3 & 4 & 1 \\
\hline Kicked by mules, .............................. & 2 & 1 & \\
\hline Boiler explosions, ............................... & & 6 & \\
\hline Miscellaneous, ... & 8 & 8 & 6 \\
\hline Total, & 59 & 76 & 46 \\
\hline
\end{tabular}

TABLE B-Showing Number of Tons of Coal Mined by each Company, Number of Fatal Casualties and Number of Tons Mined for each Fatality.


TABLE C-Showing the Comparisons of Non-Fatal Casualties for the Years 1895, 1896 and 1897.
\begin{tabular}{|c|c|c|c|}
\hline & 1895. & 1896. & 1897. \\
\hline Falls of coal and roof, & 40 & 34 & 36 \\
\hline Explosions of fire damp, & 16 & 19 & 11 \\
\hline Mine cars and machinery, & 36 & 31 & 19 \\
\hline lexplosions of blasting mat & 10 & 3 & 7 \\
\hline Premature explosions, .. & & & 9 \\
\hline Kicked by mules, .... & 2 & 1 & 4 \\
\hline Falling down chutes and m & 1 & 2 & 7 \\
\hline By coal flylng from shots, & & & 6 \\
\hline Miscellaneous, ............... & 9 & 16 & 20 \\
\hline Total, & 114 & 106 & 119 \\
\hline
\end{tabular}

TABLE D-Showing Comparison of the Quantity of Coal Shipped, the Estimated Quantity used and sold at Collieries, and the Total Production for the Years 1895,1896 and 1897.


TABLE E-Showing General Comparisons between the Years 1895, 1896 and 1897.


TABLE F-Showing the Number of Persons Employed by the Several Companies and the Number of Fatalities.
\begin{tabular}{|c|c|c|}
\hline &  &  \\
\hline Philadelphia and Reading Coal and Iron Company, & 29 & 7,356 \\
\hline Lehizh Valley Coal Company, ......................... & & 507 \\
\hline The Inion Coal Company, .......... & 4 & 3.564 \\
\hline Mineral Railroad and Mining Company, & 3 & 1,751 \\
\hline Summit Branch Railroad Company, ..... & & 1.034 \\
\hline 1,ykens Valley Coal Company, .......... & 3 & \\
\hline J. Langdon \& Company, Incorporated, & 3 & 531
3.559 \\
\hline Individual collieries, ............................ & 4 & 3.589 \\
\hline Total, & 46 & 19,670 \\
\hline
\end{tabular}

Method of Mining and Robbing Pillars at the Richards Colliery, The Union Coal Company, Momit Cirmel, Pa.

Appended to my report is a sketch showing the method of mining and robbing pillars at the Richards Colliery, operated by The Union Coal Company, at Monnt C'armel, Pal, mader the supervision of Mr. John L. Williams, Superintendent.

This colliery is the largest producer in the district and has a capacity of 2,300 tons per day. The seams of coal mined at this colliery are small and lean, weraging from two feet to four feet in thickness,

\section*{Trin \(\mathrm{NETH}_{\text {ETH }}\)}
 UNIDN CDAL CO~MT CARMEL,PA.

SOHNL.WRLLIAMS
Sugercrterdent



and standing on steep amgles from 40 degrees up to 80 degrees. Mr. Williams discovered, by experience, that unless some new method of robbing the pillars in these small seams on such steep angles could be successfully adopted, that the life of this model plant would be of short duration. In order to prolong the life of this colliery as long as possible, which would be a benefit to the land owners, the operators and the working men as well as the community at large, Mr. Williams was determined to try a new method of robbing the pillars in small seams on the heary dips so that 90 per cent. of all the coal in place could be taken out. His method is thoronghly explained on the accompanying sketch. The pillars in the upper seam are taken out first; the breasts in that seam are driven up within a reasonable distance from the surface, enough coal being left against the surface to keep it up until the final robbing; after the top rock has subsided below this point, the halance of this coal is buggied to one of the breasts which is used as a counter chnte. Whenever practicable, every fourth or fifth breast is driven throngh to the surface; this opening is used by the men, through which they bring down timber for propping the breast, also the place where the pillar stood. As soon as everything is ready to commence on the pillars, the loose coal in the breasts on either side of the pillar is withdrawn, leaving a space of six or eight yards in length at the top end of the breast. Props are brought down from the surface, through the openings already mentioned, and put up in the open space in the two breasts, one on either side of the pillar to be taken out. These props are put \(\quad \mathrm{p}\) ) five or six feet apart, as circumstances require. If there is a bad, loose bottom under the seam, every other prop is extended through this elod; the other prop is put up on top of the clod. By so doing, the bad bottom is prevented from slipping and mixing with the coal. This is very important where small, lean seams are mined on steep angles, as everyihing which is loose in the breasts has to be loaded ont and sent to the breaker, making it very troublesome and expensive to prepare the coal. As soon as the space in the two breasts, which I have just mentioned, is propped and secured, we are ready to start on the pillar. The miner pints in a light charge of powder and fires a blast in the pillar close to the face of the breast which he has secured with props. This blast loosens the coal in the pillar so that the miner can release a large quantity of it with his drill. The pillar coal worked in this way produces 2.5 per cent. more prepared sizes than the breast coal, which is quite an incrase to the interest of the land owners as well as the coal operator. As soon as this section of the pillar is talken ont and the space where it stood is properly propped, we are now ready to proceed with another section. The coal in the two breasts is withdrawn again for six or eight yards; the breasis are propped and seeured; then we start on
the other section of the pillar and proceed in this manner until a point is reached twenty yards above the monkey, or about twenty-eight or thirty yards above the gangway; at this point, props a little stronger are put about four feet apart across the two breasts which are covered with rombd poles forming a battery. In due time, if the top does not squeeze and fall after the first pillar is taken out in the manner already deseribed, the second pillar is taken out. If the top does not fiall, then the third and even the fourth pillar is taken out, if necessary, leaving a space of 200x:300 feet, more or less, according to circumstances. When the top in fhese openings does subside, owing to the number of props used, it comes down so easily that hardly any concussion is felt in the gangway below. When the top rock has fallen and filled the open space, a small buggy road is laid at the back of the fall to take the balance of the coal which was left to secure the surface. This coal has to be haggied and dumped into one of the breasts used for that purpose; all the other coal runs by gravity to the main gangway below, where it is loaded into the mine car. Where the pillars between the first and second lifts are taken out as shown on sketch, the rock taken from the gangways and breasts in the upper lifts is dumped into these openings, forming a pillar of rock instead of the coal, which has been taken ont. The props and timber for securing the breasts driven up from the second lift are taken down to the first lift gangway and from there distributed and taken down as required below. The props to secure the breasts for taking out the pillars in the third lift are taken down to the second lift and for each additional lift the props would be bronght down to the gangway in the lift above until the basin would be reached. Although this method of mining and robbing pillars has been in practical use at this colliery during the last two years, not one fatal or serious accident has occured in the sections which have been robbed. I am convinced that thonsands of tons of coal have been taken ont which would have surely been lost, if the old system of skipping and robbing pillars had been adopted. I have examined the inside workings at this colliery :and watched the progress of this work very closely during the last two rans, and I must say that I honestly believe that 90 per cent. of the roal has heen taken out of all the places robbed and finished. In looking ower former mine Inspectors reports, I came across the one issined for 1887, in which Mr. William stein, mine Inspector, of shenandoah, I'a., for the Sixth District, makes a favorable mention of Mr. John L. Willians plan for the tilling of large openings in the Kohinoor Colliery, at Shemandah, with culm, in order to sate property and take out more coal in the rohbing of the Mammoth seam, where it is thick. Since then, the plan has been adopted and works suceessinlly all throngh the anthrate region. In my report for the year 1897, ten rears after the time Mr. Stein wrote his report, I have no hesitation in saying that Mr. Williams may well feel proud of another undertak-
ing which he originated, viz: the taking out with safety of 90 per cent. of the coal in the small seams on heavy dips. It is calculated that \(1,000,000\) tons more coal can be taken out of the Richards Colliery alone by adopting this method, which would have otherwise been lost. My object in giving a deseriptive detail of the method used in mining and robbing pillars at this colliery is that it may be instrumental in putting it into the minds of others mining coal and placed in like circumstances to adopt this system wherever practicable.


TABLE NO．2．－Gives the Total Number of Tons of Coal Mined in each Colliery，Number of Days Worked，Number of Employes， Number of Persons Killed and Injured，Number of Kegs of Powder used，etc．，in the Seventh Anthracite District for the year ending December 31， 1897.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collieries． & Location－County． & \begin{tabular}{l}
\(\stackrel{\circ}{\circ}\) \\
\(\stackrel{n}{5}\) \\
\＃ \\
 \\
풍
웅
\end{tabular} &  &  &  &  &  &  &  &  & \begin{tabular}{l}
き \\
\(n\)
五
0 \\

\end{tabular} &  &  &  & \[
\begin{aligned}
& \dot{\text { L }} \\
& 0 \\
& 0 \\
& \text { E } \\
& \text { O } \\
& \text { U } \\
& \text { d }
\end{aligned}
\] &  \\
\hline Burnside． & Northumberlaıd， & 205，440 & 9，340 & 758 & 195，342 & 153 & 705 & & & 4,167 & 13．778 & 8 & \＄3 & 1 & & \\
\hline Elear Valley， & Northuniberland， & 148．929 & S． 714 & 386 & 139，\(\times 29\) & 150 & 473 & 1 & \(\stackrel{2}{1}\) & 3，934 & 2.885 & 10 & 56 & 1 & & \\
\hline Ruck Ridre，．
Henry Clay，． & Northumberland， & 52.94 V & 12，919 & 187 & 39，831 & 151 & 173
647 & \[
\dddot{i}
\] & 1 & 702
2.159 & 1． \(\mathrm{SV}^{4} 4\) & 21 & & & & \\
\hline Henry Mountain， & Northumberland， & 379，384 & 38，877 & 27，615 & 312，892 & 159 & 647
391 & 5 & 1 & 2,159
4,096 & 13,927
9,049 & 110 & ＂1s7 & 1 & & \\
\hline Sterling，．．．．．．．．．．．．．．．．． & Northumberland， & 370，384 & & & 312，892 & & 360 & 1 & 4 & 2,694 & 5，045 & 20 & & & & \\
\hline Arerth rranklin． & Northumberland， & 125， 418 & 9，786 & 4，292 & 111，340 & 1.44 & 457 & 1 & 1 & 1.968 & 7，942 & 27 & 53 & & & \\
\hline Alaska， & Northumberland， & 185.177 & 12， \(\mathrm{S}^{3} 5\) & ， 156 & 172，486 & 133 & 685 & & 2 & 6．259 & 4，009 & 24 & 95 & & & 1 \\
\hline Reliance． & Northumberland， & 123．691 & 18.619 & 9，408 & 95．664 & 133 & 494 & 2 & & 4.223 & 3． 409 & 26 & 52 & & & \\
\hline Locust Spring． & Northumberland， & 137.755 & 14， 177 & & 123.598 & 141 & 48.3 & 3 & 3 & 3.279 & 6,045 & 14 & 64 & 1 & & \\
\hline Locust Gap． & Northumberland，． & 162.291 & 22.579 & 1.965 & 147，754 & 139 & 543 & \(\stackrel{2}{1}\) & 1 & 2.545 & 3．082 & \({ }_{16}^{6}\) & 46 & 1 & & \\
\hline Mentriam． & Northumberland，． & \(38,43.1\)
29,691 & 76042
16,755 & 705 & 31,220
12,231 & 132
24 & 165
29 & 1 & 2 & 540
251 & 2,029
3.450 & 16
8 & 23
1 & & & \\
\hline Fotts． & Columbia，．．．．．．． & 139，309 & 16，658 & 2，935 & 119，716 & 138 & \(5 \%\) & 1 & 1 & 614 & 40，246 & 25 & 45 & & & \\
\hline Keystone Jig． & Colun bla． & 23，151 & 2，540 & 22 & 20.589 & 61 & 2 & & & & & 13 & 5 & & & \\
\hline Bast，．．．．． & Schuyikill． & 114,606 & 29， 190 & & 85,410 & 143 & 48 & & & 462 & 24.845 & 46 & 49 & 1 & & \\
\hline North Ashland， & Columbia． & 12八． 995 & 24.214 & 5，592 & 99，192 & \(1+1\) & 37. & 2 & 3 & 1，616 & 3，315 & 40 & 37 & & & \\
\hline Preston No．3，．．．．．． & Schuylkill，．．．．． & 90， 508 & 18，525 & & 71.980 & 122 & 363 & 1 & 2 & 100 & 16，352 & 21 & 38 & & & \\
\hline George Fales washery
Pennsylvania， & Northumbierland，
Northamberland， & 1.516
0.99 .598 &  & ．．．．．． & 1,816
232,026 & － 278 & & & 14 & 10．175 & & 30 & 89 & 2 & & \\
\hline Rlchards．．．．． & Northumberland． & 289，737 & & & 265， 271 & 129 & 1．437 & 1 & 8 & 9，7s0 & & 14 & 93 & 1 & & \\
\hline Hickory Ridige． & Northumberland． & 125， 277 & & & 117，576 & \(15 \%\) & \({ }^{5} 55\) & & 9 & 3，145 & & 19 & 51 & 2 & & \\
\hline Hickery Swamp， & Northumberlant． & 90，481 & & & 84， 873 & 137 & 69.5 & 1 & 5 & \(\bigcirc\) & & 12 & 46 & & & \\
\hline Camern． & Northumberland， & 330.987 & & & 2¢7，051 & 197 & 1.433 & 3 & 15 & 11，071 & 24.033 & 29 & 128 & 1 & & \\
\hline Luke Fidler， & Northumberland． & －5．973 & & & 32.999 & 234 & 318 & & 4 & 1，583 & 17．142 & 18 & 31 & 3 & & \\
\hline Colbert，．．．．． & Northumberland， & 72.540 & & & 66． 940 & 197 & 31 & & \(\stackrel{2}{4}\) & \(\stackrel{\square}{2}, 108\) & 1．507 & 111 & \(\stackrel{29}{36}\) & ．．．．．． & & \\
\hline Nellson，．．．．．．． & Northumberland， & \(132.5 \leqslant 1\)
\(163,5 \leqslant 9\) & & & 131.589
135,589 & 173
179 & 351
531 & \(\frac{1}{3}\) & & 1，685 & 16,600
24,500 & 11
19 & 36
66 & 1 & & \\
\hline
\end{tabular}

TABLE NO. 2.-Continued.

-Abandoned.


TABLE NO. 3.-Continued.

- Abandoned.

TABLE No. 4.-List of Fatal Accidents that Occurred in and about the Mines of the Seventh Anthracite District, for the Year ending
December 31, 1897.


TABLE No. 4.-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & Name of Person. & Occupation. & &  & 碳 & Name of Colliery. & Locatlon-County. & Nature and Cause of Accident \(\ln\) Brief. \\
\hline Sept. \({ }_{9}^{4,}\) & & Miner, & & & & Burnside. ...... & Northumberland, & Killed by fall of slate. \\
\hline \[
9,
\] & Mike Straub Rogaskle............ & Miner, ..... & & & & Cameron,
Pennsylvania, & Northumberland,
Northumberland, & Killed
Kill by falling ofr breaker trestle.
Killed by fall of top coal. \\
\hline 23. & Nathan Welkel, & Miner, & & & 7 & Locust Spring, & Northumberland, & Kllied by fall of top coal. \\
\hline \begin{tabular}{ll} 
Oct. & \(\begin{array}{l}23, \\
12 . \\
\\
\\
19\end{array}\), \\
\hline
\end{tabular} & Frank Rowe,
Panco Cisco. & & & M. & 2 & Rellance,
Excelsior, & Northumberland, & Killed by explosion of keg of powder.
Killed by fall of top coal. \\
\hline 19, & John Tracey, .............. & & & & & Locust Gap & Northumberland, & Killed by fall of top coal. \\
\hline 20, & Patrick Purceli, & & 26 & ¢ & & Burnslde, & Northumberland, & Killed by fly-wheel bursting. \\
\hline & \begin{tabular}{l}
Andrew Windrue. \\
Frank Shamansky
\end{tabular} & Miner, & \({ }^{30}\) & & 2 & Burnslde, & Northumberland. & Killed by falling through veln; crushed. \\
\hline Nor, \({ }^{4}\), & Frank Shamansky, ...... & Miner, & & & & Nellson,
Preston
No....3. & Northumberland. Schuylk111. & killed by fall of rock.
Killed by falling in rolls. \\
\hline 15.
16. & Samuel Adams,
Stany Domeleskle, ........ & Miner, & & & & North Ashlan & Columbla, & killed by fall of coal. \\
\hline nec. \({ }^{16}{ }^{16}\), & Stany Domeleskle, .......
Alfred Peters. & & & & & \({ }_{\text {Ble }}^{\text {P1g Mountain, }}\) & Northumberland & Killed by fill of rock \\
\hline nee. 1s,' & Curtls Harris, ........... & Miner, & & & & Pig Mountain, & Schuylkill. Northumberland, & Squeezed between car and collar. Killed by falling down manway. \\
\hline
\end{tabular}

TABLE No. 5.-List of Non-Fatal Accidents that Occurred in and about the Mines of the Seventh Anthracite District, for the Year ending Dece mber 31,1897 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & & Name of Person. & Occupation. & \(\stackrel{\text { ¢ }}{4}\) &  & Name of Colliery, & Location-County. & Nature and Cause of Accident in Brief. \\
\hline \multirow[t]{11}{*}{Jan.} & 7. & Lincoln Snyder, . & & & & & \multirow[t]{3}{*}{Northumberland. Northumberland, Dauphin.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Foot and leg bruised by buggy. \\
Eye hurt by flying piece of iron.
\end{tabular}} \\
\hline & 11. & Thos. E. Williams, ..... & Pumpman, & 18 & S. & Richards, ................ & & \\
\hline & \({ }_{13}^{12}\), & Wesley Orndorff, ......... & & & & Short Mountain, ......... & & Body injured by falling in scraper line. \\
\hline & 13. & Mllchael Karpiak, ....... & Miner, & & & Sterllng, & Northumberland, & Head cut by premature blast. \\
\hline & 14. & Joseph Wasko, & Laborer, & \({ }_{27}^{34}\) & M. & Pennsylvania, & Northumberland, & Slipped and fractured leg \\
\hline & 14, & Adam Populsky, \({ }_{\text {Simon }}\) Navakosky. ........ & Miner, & \({ }_{40}^{27}\) & \(\stackrel{\text { M }}{ }\). & Enterprise, \({ }_{\text {Hickory Swamp, }}^{\text {S }}\).......... & Northumberland, .. & Ribs broken by premature blast. \\
\hline & 18. & Edward Singleton, .......
Dominlck Valentine & Miner, & 45 & M. & Mldvalley, \({ }_{\text {Lecust }}\) Spring......... & Columbla, & Ribs fractured by falling from collar. \\
\hline & 21. & John Metzinger, ........ & Miner, & & & Locust Spring, & Northumberland, & Eye injured: struck by coal. \\
\hline & 21. & John Hodoba, .......... & Laborer. & 19 & S. & Pennsylvania, & Norcnumberland, & Burned by exploslon of gas. \\
\hline & 27, & Isaac Fagley, \({ }_{\text {Dantel }}\) Startzel........... & Driver. & \({ }_{5}^{45}\) & M. & Pennsylvanla,
Hickory Ridge, & Northumberland, .... & Leg bruised by mule falling on it. \\
\hline & 28,
30 & Joseph Sokolotsky, ....... & & & & Hickory Swamp. ........ & Northumberland, & Coll \\
\hline Feb. & \({ }^{2}\), &  & & .. & .... & Enterprise, . ............... & Northumberiand, ... & Foot cut by axe while chopping. \\
\hline & \(\stackrel{8}{8}\), &  & & & ..... & Cameron,
Cameron, & Northumberland, & Lea broken by upheaval of breast. \\
\hline & 11. & Anthony Wyshinsky, .. & & & & Enterprise, & Northumberland, & Leg broken by fall of slate. \\
\hline & 12.
18. & Wohn Tote, Yocowili...... & & & & Natalie & rthumberland, & Body hurt by fall of coal \\
\hline & 19. & Charies Gracel, & & & \(\ldots\) & Colbert, & Northumberland, .... & Arm fractured by premature blast. Back hurt by fall of coal. \\
\hline & 19. & \({ }_{\text {Frank }}^{\text {Mike Sesney, }}\) S.. & & & .... & Hickory Swam & Northumberland, & Hip fractured by a fall of clod. \\
\hline \multirow[t]{3}{*}{Mar.} & \({ }^{20}\) & Robert Doughton,
William Swank & & & & Hickory Swamp & Northumberland, & Feg mashed by mine wagon. \\
\hline & 16. & Evan Jones, ... & & & & Midvalley, & Columbla, Northumberiand. & Arm broken by falling from plank. \\
\hline & 18. & Wlillam Powell, & & & & Pennsylvanla, & Northumberland. & surezed falling down breast. \\
\hline \multirow[t]{4}{*}{Apr.} & 1. & Joseph Robosky. & & & & Hickory Rid & Northumberland, & Arm broken by flying coal. \\
\hline & 11. & Thomas Price & & & ... & Natalie, & Northumberland, & 隹 \\
\hline & \multirow[t]{2}{*}{13, 13.} & John C. Willian & & & & Sterling, & Northumberland, & Hurt by \\
\hline & & Joseph Kowltski, & & & & Pennsyl & Northumberland & Arm fractured; kicked by mule. \\
\hline
\end{tabular}



Continental
Burnside
Burnside
Hickory Riage
Richards. \({ }^{\text {Hickory }}\) Swam
Huckory Swamp.
Burnside
North Ashland
Hickory Ridge.
Colbert.
Willamstown
Potts,
Preston No. 3
Cameron,
Cameron,
Neilson.
Neilson.
Sterling,
Cameron,
Pennsylvania
Cameron,
Girard,
Preston No. 3
Monitor, .
Monitor,
Alaska
Locust Spring.
Buck Ridge
Cameron,
Big Mountain
Hickory Ridge
Midvalley
Cameron,
Cameron,
Pennsylvania
Pennsylvania
Midvalley,
Richards
Richards,
Locust Gap.
Cameron.
Cameron.
Nellson
Neilson,

Columbia
Northumberland Northumberland Northumberland Northumberland Northumberland Northumberland Columbia,
Northumberland Northumberland Dauphin,
Northumberiand Schuylkill Northumberland,
Northumberland, Northumberland. Northumberland Northumberland Northumberland, Northumberland Northumberland, Northumberland Schuylkill,
Northumber
Northumberland Northumberland Northumberland Northumberland,

Northumberland Northumberland Northumberland Northumberland Columbia,
Northumberiand Northumberland Northumberland Northumberland Columbla.
Northumherland Northumberland Nortnumberland Northumberland Northumberland,
Northumberland Northumberland

Hurt by fall of top rock.
Hurt by fall of top coal.
Leg and ribs broken by fall of slate
Thigh fractured by flying coal
Face and hands burned by gas.
Legs broken by fall of rock.
Neck, head and arms cut by fall of coal. Toes mashed by fall of coal. Caught between dumpers.
Face and hands burned by powder Back hurt by fall of coal.
Leg crushed between mule and wagon Leg and nose broken; struck by coal. Leg broken; caught between door frame
Leg broken by collar falling on it.
Arms broken by fall of rock.
Face and hands burned by exploding gas Face and hands burned by exploding gas Face and hands burned by exploding gas Fell and fractured leg.
Head hurt by fall of coal
Lea broken; kicked by mule
Fell down chute and rib broken
Foot mashed by fall of rock.
Burned by powder.
Head cut and leg broken by fall of coal. Arm broken, caught between chute and Head Arm broken
Hands injured by premature shot. Injured by fall of top slate.
Knee squeezed between car dumpers, Coal rolled down slope, injuring body.

Eurned by keg of powder exploding.
Internally injured by fall of coal. Leg broken by falling Scalded by steam valve blowing out Arms mangled by a loaded wagon. Leeg broken by fall of rock. Badly cut and bruised by falling down
Slightly burned by explosion of gas. Slightly burned by explosion of gas.


\title{
EIGHTH ANTHRACITE DISTRICT.
}

\author{
(SCHUYLKILL COUNTY.)
}

Pottsville, Pa., February 16, 1898.
Hon. James IV. Latta, Secretary of Internal Affairs, Harrisburg, Pa.:
Sir: I have the honor of herewith presenting my ammal report as Inspector of Mines of the Eighth Anthracite District, for the year ending December 31, 1897.

The total production of coal for the year was \(4,306,222\) tons, which is 66,375 tons more than the total production for the year 1896 . The shipments, including the local sales, was \(3,851,377\) tons; which is 79,715 tons more than the shipments for the year 1896 .

The number of fatal accidents during the year was 38 , which is \(S\) less than for the year 1896 .

In addition to the usual tabulated statistics, I send a brief description of the principal improvements that have been made and are being made at the collieries. I also send a deseription of each of the fatal aecidents, which, I think, is an important part of a report of this character, as not only the general public can see how the accidents in and about the mines occur, but also should a few copies fall into the hands of those directly engaged or interested in mining, it might be the means of preventing a repetition of many of the accidents.

The general condition of the majority of the collieries in this distriet is satisfactory. There are a few exceptions which, while they are not in a dangerons condition, conld be greatly improved.

As it has been said in previons reports, the large companies, and many of the individual operators are taking advantage of every improvement which conduces to the safety of their workmen and the poperties mader their tharge, and they are anxious to prevent arefdents, for, aside from the misery which they bring to the vietims and their families, they are the somree of great loss and annoyance to the owner and superintendent at the collieries where they occur. Yet, with all the extra precantions, accidents will occur as long as amthracite coal is mined, for, with the greater depth attained and the extension of the workings on the heavier dips below large areas of abandoned
workings, the dangers are greatly increased, and extra appliances and precautions have to be adopted to cope with them. It is plain that for a reduction of the number of accidents that are attributable to carelessness, we can only look to the workmen themselves and those who are in daily supervision over them.

> Yours very respectfully,
> JOHN MAGUIRE,
> Inspector of Mines.

\section*{Summary, Eighth Anthracite District, 1897.}
Tons of coal produced, ..... 4,306,222
Tons of coal used at mines for steam and heat, ..... 468,22.5
Tons of coal sold to local trade and used by employes, ..... 88,89.
Railroad shipments of coal, in tons, ..... 3,762,483
Tons of coal produced by washeries, which are included in total production, ..... 182,114
Number of fatal accidents, ..... 38
Number of non-fatal accidents, ..... 112
Number of wives left widows, ..... 13
Number of children left fatherless, ..... 42
Number of persons employed, ..... 13,492
Number of kegs of powder used, ..... 69,688
Number of pounds of dynamite used, ..... 429,746
Number of steam boilers in use, ..... 719
Number of horses and mules, ..... 1,341
Number of mine locomotives, ..... 25
Tons of coal produced per fatal accident. ..... 113,584
Tons of coal produced per each employe. ..... \(3191 \cdot 6\)
Death rate per thonsand of employes by accident ..... 2.8


Nationality of those Killed and Injured.
\begin{tabular}{|c|c|c|}
\hline & Killed. & Injured. \\
\hline Americans, & 17 & \\
\hline English, .. & 3 & 3 \\
\hline Irish, & 9 & 14 \\
\hline Germans, & 1 & 7 \\
\hline Welsh, .. & & 12 \\
\hline & & \\
\hline Poles, & 6 & 20 \\
\hline Russian Poles,
Hungarians, & 18 & 11 \\
\hline Total, & 38 & 112 \\
\hline
\end{tabular}

\title{
Table Showing the Number of Each Class of Employes in the Eighth Anihracite District in 1897-Inside.
}
Inside foremen, ..... 55
Fire bosses, ..... 100
Miners, ..... 3,470
Miners' laborers, ..... 1,612
Drivers and rommers. ..... \(54: 3\)
Door hoys and helpers ..... 17.
All other company men, ..... 2,257
Total inside in 1897, ..... 8,212
Total inside in 1896, ..... S,05\%Increase inside in 1897,159

Outside.
Outside foremen, ..... 56
Blacksmiths and carpenters, ..... 234
Engineers and firemen, ..... 542
slate pickers, ..... 2,204
All other company men, ..... 2,166
Superintendents, book-keeper's and clerks, ..... 78
Total outside in 1897, ..... 5,280
Total outside in 1896, ..... 5,282
Decrease ontside in 1897, ..... 2

The examination of candidates for certificates as mine foremen and assistant mine foremen for the Eighth Anthracite District was held at Pottsville, in Jone, 1897.

The examining board was composed of Thomas Doyle, superintendent; David Lucker and Thomas Holilan, miners, and John Maguire, Mine [nspector.

The following wre recommended to the Secretary of Internal Affairs for certificates of qualification :

Henry Oscar Rowe, Tower City, as mine foreman.
George Maley, Branchdale, as mine foreman.
John Doolin, (ilen Carbon, as mine foreman.
Andrew Rogan, Coaldale, as mine foreman.
George Minnichbark, Poftsville, as assistant mine foreman.
doseph Soshe, Ni. Clair, as assistanf mine foreman.
dohns. Foley, Joliett, as assistant mine foreman.
William Jevan, St. Clair, as assistant mine foreman.
Thomas Hohin, (ilen Carhon, as assistant mine foreman.
Joseph Steimmet\% Tuscarora, as assistant mine foreman.
John F'. Ryan, Pottsville, as assistani mine foreman.
Fred. Sheidiger, Tamatua, as assistant mine foreman.
Mich. E. Crowr. Minersville, as assistant mine foreman.
Geo. H. Beddow, Minersvilhe, as assistant mine foreman.

\section*{Deseription of Falal Accidents.}

A sad aceident ocemred at the New Wadesville shaft about 7 oredock on the morning of Jannaly 1:3, while the men engaged in sinking the shaft were changing shifts. Four of the day shift men had gone down, and four of the night shift hat been hoisted to the surface. After the had gotten oft the burket, William Leonard Taylor, chargeman of the day shift, with Hemry Flym, John Taylor and Peter Linko, labores, got on to go down, taking with them Matthew Reddington.
the pump boy. The weather was very cold and during the time the pucket had been standing at the landing, the cross head had been frozen to the guides above the surface landing, and, unnoticed by the top man or those in the bucket, did not follow the bucket down. The bucket was stopiced at the pminp station, 200 feet below the surface, and Matthew Reddington got off and relieved Theodore Frankeustein, the night pump boy, who got on the bucket to go to the bottom to be hoisted with the next load of men. The bucket was again lowered, and when abont 100 feet below the pump station, the cross head became loose by the jarring of the rope through it, and went down, striking the bucket with fearful force, breaking the cross head and one of the three chains, by which the bucket was suspended, knocked the four men off, causing them to fall to the bottom of the shaft, a distance of three huudred feet, killing them instantly. Theodore Frankenstein was inside of the bucket, but had been struck by part of the broken cross head, and was fatally injured, but had been left in the bucket, which was hanging sideways, beiug held by only two chains. The engineer, when he felt the jar, stopped the engine, and, not knowing anything of the condition of the bucket or cross head, was afraid to move either way, when David Jones, one of the men employed at the shaft, who had just arrived on the scene, quickly took in the situation and the need of prompt action, sprung on to the rope and slid down, at great risk to himself, as he did not know whether the bucket had been left on the rope or whether the rope had been broken betwern the surface and the bucket. He, however, succeeded in getting down safely and found Theodore Frankenstein as above described, and, after disengaging the bucket from the wreck of the cross head, guided him to the top, when he was sent to the Pottsville Hospital, but the poor boy died shortly after reaching there. The writer was at the shaft shortly after the accident, and made an examination as to the canse, and found the guides in the shaft in very good condition, and free from ice or anything that would prevent the cross head from following the bucket down. The steam pipe in the shaft kept the temperature much above the freezing point. There was a thin coating of ice on one of the guides, about ten fect above the surface landing, at the place where the cross head was when the bucket was at the landing, and I think that as the bueket had stood longer than usual on this trip, that the cross head froze and stuck there unnoticed by the top man or those on the bucket.

Elias Shell, a miner, was fatally injured at West Brookside colliery, January 14. He had fired a shot, which knocked ont a prop; while dressing the loose stuff ofl, the slate fell on him, fracturing his spine. He died on Jannary 28.

Michael Fay, a miner, was killed hy a fall of coal at Silver Creek colliery, February :

Stephen Guidash, a miner, was killed at Kaska William colliery, February 10. While crossing the breast, a piece of coal fell from the top, which struck him, eansing his death in a few minutes.

On February 16, William Daer and Joseph Stauesefski, both miners, were severely burned by an explosion of powder at Glendower colliery. They were working together as partners in a breast, and were making a cartridge, when a spark from stanesefski's naked lamp, which was on his head, ignited the powder which was in the keg. Both died a few days afterward.

On February 17, John Mackie, a miner, was killed at the Pine Forrest colliery by a piece of coal falling upon him.

On March 2, John McDonald, an outside laborer, was killed at the Kilmia washery. He was engaged shovelling dirt into a conveyor line, which is 450 feet long, being near the far end of the line. By some means he got into the trough or on chains and was carried over the end wheel and scraped throngh the trough to the washery, where his dead body was found as it dropped from the seraper line.

On March 3, Thomas Barry, a pump man, and Fred. Krise, a young man who had gone down with Barry to see the place, were killed by an explosion of gas at the Middle Creek colliery.

On March 9, Richard Neal, a miner, was killed at Lincoln colliery by a fall of rock.

On March 16, Andrew Mishel, an ontside laborer, was killed at Silver Creek Shaft colliery by having been crushed between cars.

On March 20, Ellsworth Batdorf, a miner, was killed at Lytle colliery. A large piece of the bottom bench slid out from face and crushed him against the loose stuff. killing him instantly.

On March 22, Thomas and Joseph (iarland, brothers, were burned by an explosion of gas at the Lehigh Coal and Navigation No. 11 colliery. They had fired a shot about noon time, and, after eating their dimmer, refurned to the face with naked lamps, when the gas which had acemmulated after the shot had been fired was ignited. Thomas was burned and severely injured ly falling down the mamway, and died from his injuries on the 23d. Joseph was burned on the hands and face, but recovered.

On Mareh 2., John Shearstone was killed in the shaft of the Oak Itill colliery by having been canght between a (age and buntons.

On \(A_{\text {pril }}^{2}\), Joseph (asber, a laborer, (muployed in the third lift, West llolmes Veingangway, at the Lytle eolliery, was severly injured by the explosion of a box of dymamite eaps, which he held in his hand. While handling them, a spark from his pipe fell into them. He died from his injuries on 1 pril 5 .

On Ipril 7 , William Wolf, a driver, was killed at the Good Spring colliery. He was employed on the rock hank, and while bringing an empty car in, his mule took fright at cars rmming on trestle overhead
and ran away. While trying to mhitch the mule from the car, he fell in front of the car, which ran over him, injuring him so badly that he died on the way home.

On May 18, Michael Bitscavage, a laborer, was killed at Lytle colliery. A shot had been fired a short time before the accident, and it seems that the men rushed back to work again withont making any examination, when a large piece of coal fell from the upper side, killing Bitscavage instantly.

On June 22, George Apolock, a laborer, was killed at Otto colliery, by coal llying from a blast.

On the night of Jme 2.t, Lazarms TVilliams, John Dobson, Dennis Leary and Elmer Ternes were severely burned by an explosion of gas at the Marion colliery. They were working at driving the tunnel north on the old level, and had cut the Little Diamond Vein on north dip. They drilled three long holes along the rib, to take the skip off all at once, and fired them together with an electric battery. The large quantity of stuff cut by the shots covered the end of the gas pipe, through which compressed air was carried to the face, thus cutting off the rentilation. Abont ten minutes after the shots had been fired, the men went back to the face, Williams carrying a naked light. He fomd the air pipe blocked and, without making any examination for gas, started to clear the stuff away, when the gats was ignited by his lamp. Dennis Leary and John Dobson were fatally burned, and died from their injuries June 28 and July 5, respectively. Elmer Ternes was severely burned; Lazarus Williams was also burned, but not as serionsly as the others. The latier was clearly responsible for this aceident, as he had been provided with safety lamps, and particularly warned by the inside foreman to be sure and make examination after firing.

William Bricker, a car rmmer, was severely injured at the Williams colliery, July 14, by having been run over hy cars, and died from his injuries at the Pottsville Mospital, August 12.

John Moran was badly injured on July 19, at the Phoenix Park No. 3 colliery by a fall of slate; died July 27.

Hryan Conville, a miner, was severely injured at the Thomaston colliery, Mine Hill slope, on July 27. A large piece of top coal fell on him, which caused his death on September 25.

Andrew Foeck was instantly killed at the St. Clair colliers on September 24, by a runaway car.

Frank Gatvaloski, a laborer, was killed at the Si. Clair colliery, on September 27, by a fall of slate.

Matthew Kushanfskie, a miner, was killed at the East Ridge colliery, on September 27 , by the explosion of a blast.

John Lellescopia, a miner, was killed at the East Ridge colliery on October 5, by a fall of coal.

An explosion of gas oceurred at the Kaska William colliery, on the afternoon of October 14, by which Patrick Sweeney was instautly killed, and John Boner, Charles Mickens and Anthony Rice were fatally burned, and died on the following day. Peter Paul and Patrick Doyle were also burned at the same time, but recovered.

A ndrew Hornjak, a miner, was killed at the Oak Hill colliery, on October 22, by the premature explosion of a blast.

Fred. Hulzaman, shift leader in sinking the new bytle colliery shaft, was fatally injured ou November 4 . The shift was engaged at timbering about thirty feet from the bottom of the shaft, where a scaffold had been erected. About 7 o'clock P. M. the men had gone to the surface for supper. In going down again, those on the bucket with Hulzaman got off on scaffold. He went with the bucket to the bottom, and detached the bucket to send the rope up to let timber down. Wanting to get up to the scaffold, he took hold of the chain with his hands only, without having any foothold on the hook, and ascended in that way. When near the scaffold, he let loose and fell back to the bottom of the shaft, sustaining injuries from which he died at the Pottsville Hospital on November 25.

Improvements Made at Collieries in 1897.

\section*{Lytle Colliery.}

A new shaft has been commenced about fourteen hundred feet south and one hundred feet east of the top of the Primrose No. 2 slope. This shaft is thirty eight feet four inches long, north and sonth, and thirteen feet wide, east and west, clear of timber, and is divided into five compartments, each seven feet by thirteen, with buntons ten by twelve inches between each compartment. At the No. 2 Primrose vein slope, a new piece of slope has been sunk in the overlying strata, a distance of \(32^{2}\) feet. It commences abont serenty feet south of the mesent slope, and comects with the slope below a tlat or light grade in slope and was sunk on a dip of forly-fonr degrees to make the grade of slope more iniform.

\section*{Albright Collier: .}

In airlole was snnk from the surface through the strata 130 feet deep, having an area of 100 square feet, which connects with the Tomnel Vein air-hole near the top of the saddle. The Salem rein fan was commeded to this new airhole, which makes an improvement, and saris the air from esaping through the old workings. A new Cahall boiler, having a capacity of 200 horse power, was installed, which uses up the waste heat of eight plain cylinder boilers. Preparations are being made to work the uprer lift of the Tumbel rein from the Salem slope.

Oak Hill Colliery.
At the bottom of the shaft or fifth lift, the south tunnel was driven bis feet, enting the Black Heath vein, in good condition, nine feet nine inches thick on south dip of forty-three degrees. It was then continued, and has cut the White Ash vein, nine feet three inches thick in good condition. The distance from the top slate of the Black leath to the bottom of the White Ash is 170 feet. An airhole was driven in the Black Heath rein, 394 feet long, from the fifth to the fourth lift. The north tunnel has been continued, and has cut the Skidmore rein, in good condition, five feet four inches tinick. The tumnel from the Black Heath to the Skidmore vein is 120 feet long.

\section*{Marion Colliery.}

On the third or old lift, a tunnel was driven from the Big Tracy vein, 267 feet long, cutting the Little Diamond vein, in poor condition. The tumnel was continued 156 feet, cutting the Little Diamond rein again, on the north dip, in poor condition.

In the lower or fourth lift tunnel, the Big Tracy vein was cut 110 feet from the Little Tracy, and the tunnel continued 84 feet under the Big Tracy and then stopped.

A trial slope was sunk 175 feet west of the Lewis vein slope to a depth of 935 feet; vein in fair condition, dip about thirty degrees south.

\section*{St. Clair Colliery.}

A new single track slope is being sunk from the surface in the Buck Monntain rein, which commences near the mouth of the old Breen drift. The vein has a dip of about forty-two degrees south. The slope is being sunk eastward across the pitch on a grade of twenty-five degrees. It is now about 200 feet below the water level gangway, which is about 200 feet below the surface.

\section*{East Ridge Colliery.}

In the slope, or third level, a tunnel has been driven south from the Skidmore, 108 feet long, cutting the Buck Mountain rein. The tunnel has since been continued to the leader or bottom timber of the Buck Mountain, which is 63 feet. On the first lift another tunnel was driven from the Buck Mountain, cutting the bottom member of that vein at 106 feet. The vein is about six and one-half feet thick, of which about three feet is coal. A tumnel was also driven to the same rein in the second lift. Length, 74 feet.

\section*{Pine Hill Colliery.}

The slope is being sunk deeper in the Buck Mountain vein, which is now about 100 feet below the water level gangway:

\section*{Williams Colliery.}

A tunnel, 260 feet long, has been driven north from the Tracy vein, culting a vein about seven feet thick. An overcast tunnel is being driven back to the Tracy, at right angles to dip, to ventilate this vein.

\section*{Bell Colliery.}

The old breaker was torn down, and a more modern one erected inl its stead, which commened operations abont October 1.

\section*{Ellsworth Colliery.}

The breaker was destroyed by fire on the night of October 5. A new and more modern breaker is now in course of construction.

\section*{Little Diamond Colliery.}

A new lift of 225 feet was sunk on the Little Diamond rein slope, making the depth from surface about 475 feet. The vein is four feet nine inches thick at the bottom of the slope. Dip, about thirty-five de.grees south.
improvements Made During the Year 1897 by the Philadelphia and Reading Coal and Iron Company.

\section*{West Brookside Colliery.}

The No. 4 vein slope, overlying the No. 3 No. 5 vein slope, has been sunk during the year 462 feet, making a total depth of 2,175 feet. The seventh lift gangways have been opened and the sinking is being continned. In the No. 3 No. 5 vein slope, a tumnel has been driven 300 feet east of the slope on the No. \(\overline{7}\) lift, below water level to the No. 6 vein, cutting the rein about three feet thick, having a pitch of fifteeri degrees; length of tmmel, 126 feet.

In the No. 4 slope, the tumel that was commenced at No. 25 breast, in West gangway in 1896, has leeen completed, cutting the No. 4 vein, in good condition. Length of tunnel, forty-seven and one-third yards. Another tumel has been driven from the No. 5s vein to the No. 4 vein, in same gangway, at No. (i) breast, cutting the No. 4 rein, in good condition.
The East Brookside No. 4 rein tender slope has been sunk during the year 1s0 yards. making the depth from surface 423 : \(1-3\) yards, and the sinking will be continned to the level of the lower lift of the No. 5 rein slope. In the lower lift of the No. Frein slope a tunnel has been driven opposite the bottom of the plane. from the No. 5 vein to the No. 4 vein. length 89 ratds. A tmmel is also being driven from the No. 4 vein to the No. 5 vein, opposite the bottom of the slope.

\section*{Lincoln Colliery.}

A tumel is being driven from the No. 1 vein to the No. 2 vein. It starts about 100 feet east of the No. 1 vein slope, on the sixth lift below water level, and will connect with the bottom of the No. 2 vein slope in the sixth lift. It is now in 71 yards, and when completed will be about 300 yards long.

\section*{Phoenix Park No. 3 Colliery.}

A tunnel, which starts at No. 43 chute on the fifth lift, East Diamond rein gangway, has been driven through the saddle from the south to the north dip, the length of which is 435 feet. A proving hole was sunk from the top of saddle on the north dip, to the level of the gang. way before the tunnel was commenced.

\section*{Thomaston Colliery.}

The new Lelar rein slope has been sunk to a depth of \(3062-3\) yards from the surface and 85 yards below the second lift on bottom of the Crosby vein slope; at the bottom of the slope a short tunnel cuts the Crosby rein, which is 11 feet thick and of fair coal. Gangways are turned east and west, and connections are now being made from the Crosby vein to the airhole on the Lelar vein, east of the slope, which is being made with a sectional area of \(S 0\) square feet.

\section*{Glendower Colliery.}

A tumnel has been started at the bottom of the No. 2 plane, in the Glendower slope, to be driven to the Buck Mountain vein. It is now in about 20 yards.

\section*{Wadesville Shaft Colliery.}

At the old shaft, ten new return boilers have been erected, taking the place of the old boiler plant. A new pair of hoisting engines, with cylinders thirty inches in diameter, and sixty-inch stroke, were frected in place of the old coal hoisting engines, with which they started to hoist the water out of the shaft on July 14, the water at that time being up to the water levels.

The new shaft was completed on the \(3 d\) of \(\Lambda\) pril, being 749 feet in depth from the surface to the bottom slate of the Mammoth vein. The Mammoth vein is 25 feet thick and of good coal. Above the Mammoth there is 12 feet of slate between it and the Seven Foot rein, which is \(S\) feet thick of good coal. Ahove the Seven Foot there is 7 feet of slate between it and the Four Foot rein, which is 4 feet thick of good coal; dip, 19 degrees soutlı.

A trial hole has been sunk on the Seven Foot vein, south of the shaft to a depth of 30 yards. Pump gangways were driven in the Seven Foot
rein 75 yards long on each side of the shaft. The main gangways were then opened east and west on the Seven Foot vein. At 243 feet east of the shaft two holes were driven up the pitch to tap the water in the old shaft, which was successfully done. A pair of new hoisting engines were erected, having 40 -inch diameter cylinders and 6io-inch stroke. These engines were started to hoist water on November 13 , with two tanks, each holding eighteen hundred gallons, and at this writing the water has been nearly all taken out to the bottom of the old shaft.

\section*{Eagle Hill Colliery.}

A new air shaft is being sunk from the surface to the workings below, having an area of 120 square feet. It is now down 175 feet, and when completed will be provided with appliances for hoisting men, which will make an additional outlet.

A new Cahall steam boiler of 250 -horse power, which is fired direct, has been added to the steam plant. Two more of the same type are being erected, which will utilize the waste heat from twenty plain eylinder boilers.

\section*{Collieries Abandoned.}

The East Franklin colliery, which has been idle since 1893, was dismantled and abandoned during the year.

At the Otto colliery, the bore hole slope workings, which are mside of the old White Ash slope workings, were stopped on September 17. and abandoned. Both collieries are owned by the Philadelphia and Keading Coal and Iron Company.

TABLE No. 1-Showing Location, etc., of Coll ieries in the Eighth Anthracite District.
Namen

TABLE NO．2．－Gives the Total Number of Tons of Coal Mined in each Colliery，Number of Days Worked，Number of Employes，
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collieries． & たca \(\begin{gathered}\text { n－Schuylkill } \\ \text { Comnty．}\end{gathered}\) &  &  & 淢
言家 & \begin{tabular}{l}
\(\stackrel{2}{8}\) \\
ㄷ \\
 \\
ซ్ㅐㅇ \\
층ㅇ
\end{tabular} &  &  &  &  &  &  &  &  &  \\
\hline West Brookside， & Tower City， & \({ }^{3699.860}\) & 31，734 & & 338， 126 & 185.7 & 1，377 & 1 & 8 & 7.737 & 44，372 & 48 & 106 & 5 \\
\hline \(\underset{\text { Lincoln }}{\text { Lincoing．}}\) & Tremont township，．
Good Spring， & 124，393 & 10，992 & 1,690 & \begin{tabular}{|c}
239,762 \\
111 \\
\hline 1
\end{tabular} & 184.6
151.2 & & & \(\stackrel{2}{1}\) & － \(\begin{aligned} & \text { 4，736 } \\ & 3,216\end{aligned}\) & 7.540
6.644 & & \％\({ }_{3}\) & \\
\hline Middle Creek Shaft， & Frailey township， & 8， 535 & \(\stackrel{2}{2} .671\) & \({ }^{1} 79\) & 5， 115 & 17.5 & 199 & & & & 2．792 & 14 & & \\
\hline Otto． & Branchdale，．．．．．． & \(\begin{array}{r}143,300 \\ 70,089 \\ \hline 10.09\end{array}\) & 33， 263 & 1，704 & 108,333
58,217 & 127.0
126.6 & 451
300 & 1 & 5 & \({ }_{703}^{937}\) & \({ }^{24.7671}\) & 41
22 & 4 & 1 \\
\hline Phoenix Pa & Hheekscherville， & 120．451 & 24， 110 & 88 & 94． 220 & 125.6 & 527 & 1 & & 3，146 & 8．762 & 52 & 70 & \\
\hline Richardson． & Glen Carbon， & 11．737 & 17，693 & 287 & \({ }^{73} \mathbf{7 5 1}\) & 113.9 & 321 & & 1 & 627 & 22， 75 & \({ }^{33}\) & 32 & \\
\hline Glendower． & Glendower，．\({ }^{\text {c．．．．．．}}\) & 117．664 & 25， 11.225 & －i．68 & \({ }_{70,262} 91.811\) & 116.7 & 473
356 & \({ }_{1}^{2}\) & 4 & 2，\({ }_{2}^{2.066}\) & 8．251
3.558
8， & \({ }_{21}^{20}\) & 74
36 & 1 \\
\hline Pine Forest， & St．Cair， & 157． 444 & 25，226 & 1，027 & 128， 191 & 123.0 & 624 & & 6 & \({ }^{2} \cdot \underline{593}\) & 10，312 & 34 & 55 & 1 \\
\hline Silver Creek Shaft， & Silver Creek，．．．．． & 223，519 & 25．475 & 2，152 & 195．932 & 131.4 & 924 & \(\stackrel{2}{2}\) & 1 & 3，276 & 9，735 & 20 & 58 & \\
\hline Wadesville． &  & 34．\({ }^{219}\) & 13.350 & 219 & 33.120 & 196.6 & \({ }_{24}^{87}\) & 1 & 1 & 193 & 5.050 & \({ }_{4}^{10}\) & 9 & \\
\hline Kalmia Washery，\({ }_{\text {Lehigh }}\) coal \＆No． & Tremont township，．． & 222， 205 & 13， 277 & 3，296 & 206． 342 & \({ }_{150.0}\) & 515 & & 8 & \％\(\times 10\) & －32，－525 & 14 & 86 & \\
\hline Lehigh Coal \＆Nav No． 10 & Rahn township，．．．．． & 185，1420 & 20．465 & 4．574 & 159，981 & 147.6 & 548 & & 4 & 960 & 16．950 & 2 s & 85 & ！ \\
\hline Lehlgh Coal ※犬．Nav No．\({ }^{1}\) & Rahn township，
Rahn township，．．．． & 196.632
107.419 & 14.255
13,011 & 3.590 & \(1788.75 \%\)
94,41 & 153.4
164.9 & 431
300 & 1 & 5 & 2，\({ }_{1}^{2,100}\) & \({ }_{15,515}^{14,500}\) & \(\stackrel{21}{15}\) & \({ }_{81}^{68}\) & 2 \\
\hline York Farm． & Pottsville． & 51，213 & 12，315 & 20， 454 & 18．471 & 71.5 & 209 & & & 394 & 5． 258 & 27 & 20 & 1 \\
\hline Blackwood． & Blackwood， & \({ }_{261}^{20,090}\) & & 4． 314 & 15．676 & & 29 & & & & & 11 & \(\stackrel{2}{7}\) & \(\frac{2}{3}\) \\
\hline Morea． & Miorea，．．．． & \({ }^{261 .} 51.864\) & 20．200 & \％11 &  & 224.4 & \({ }_{365}\) & 5 & \({ }_{3}\) & 1，435 & 13．750 & & 24 & 3 \\
\hline St．Clair． & St．clair， & 120，933 & 9，565 & 261 & 111，127 & 157.0 & 359 & 2 & 11 & \({ }_{3,223}^{1,29}\) & － & 11 & \({ }_{28}\) & 2 \\
\hline Greenwoorl & Tamaqua． & 78， 75 & 1，800 & 5，286 & 71，696 & 193.0 & 185 & & 1 & 1.570 & 2.300 & 8 & 15 & 1 \\
\hline East Lehigh， & Tamaqua， & 6,246
30,655 & & 4．108 & 3.951
15.944 & 196.0
217.0 & \(\stackrel{75}{65}\) & & 1 & 1.135 & 1．800 & \({ }_{3}^{2}\) & \(\stackrel{3}{9}\) & \\
\hline Oak H111． & Minersvilie， & 14S， 143 & 10.966 & 1．225 & 135，¢52 & 161.0 & 464 & & & 3.375 & S． 550 & 21 & 38 & 1 \\
\hline Letle． & Minersville， & 243.704 & 25.929 & 2.356 & 215.419 & 204.0 & 651 & 4 & 17 & 5，185 & \({ }^{47,250}\) & 39 & 48 & 1 \\
\hline Altright， & Llewellyn， & 30， 5116 & \(11,42 \times\)
10.000 & 1，372 & 62， 38.74 & 152.5
184.0 & \({ }_{186}^{244}\) & 2 & 9 & 1.300 & 10,000
120 & 11 & 16 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Ellsworth, & New Castle, .......... & 19,798 & 1,500 & 193 & 18,105 & 156.0 & 63 & & & 44 & 4.660 & 3 & ¢ & \\
\hline Roberts, & New Castle, .......... & 33,930 & 3, 832 & & 30,098 & 191.6 & 75 & & & 42 & 6,500 & 7 & 11 & ....... \\
\hline Howard, & Wadesville, & 19,772 & 2.520 & 600 & 16,252 & 155.9 & 83 & & & 469 & & 7 & 6 & \\
\hline Mt. Hope, & St. Clair, . & 63,439 & 5,700 & 5,614 & 52,125 & 174.5 & 152 & & & 1.616 & 15,450 & 15 & 22 & 2 \\
\hline Williams, & Fishbach, & 84.139 & 3,650 & 4,017 & 76,472 & 148.0 & 355 & 1 & 7 & \(\frac{1}{2}, 743\) & 5.325 & 4 & 20 & \\
\hline East Ridge, & Heckschersville, & 78, 526 & 2,775 & & 75,751 & 112.0 & 350 & 2 & & 3.163 & & 2 & 24 & \(\cdots\) \\
\hline Pine Hill, & Mlinersville, .... & 32,500 & 2,500 & 200 & 29.800 & 180.0 & 121 & & 1 & 970 & 950 & 5 & \(\checkmark\) & \\
\hline Lorberry, & Lorberry, & 33,174 & 960 & 1,263 & 30,951 & 192.5 & 91 & & & 835 & 1,550 & 3 & 9 & \\
\hline Little Dlamond, & Minersville, & 12,255 & 2,010 & & 10,245 & 131.0 & 56 & & 1 & 380 & 1.000 & 2 & \(?\) & - + .... \\
\hline Bell, & Brockville, & 7,593 & 415 & 8 & 7,470 & 83.0 & 50 & & & 235 & 700 & 2 & 2 & \\
\hline Tuscarora, & Tuscarora, & §,185 & - 80 & 343 & 7.762 & 155.7 & 37 & & & 598 & 250 & 1 & 5 & \\
\hline Sebastopol, & St. Clair, & 7.072 & 250 & 6,822 & & 250.0 & 28 & & 1 & 40 & 200 & 2 & 11 & \\
\hline Jugular, & New Castle, & 5.047 & 222 & 84 & 4,741 & 111.0 & 17 & & & 2 & 100 & 2 & 5 & \\
\hline Total, & & 4,158,331 & 465,204 & 88,623 & 3,617,884 & 6,426.9 & 13,359 & 38 & 112 & 69,688 & 429.746 & 764 & 1,333 & 24 \\
\hline Wolfe Creek Washery, & Minersville, \({ }^{\text {a }}\), & 59.693 & 1,644 & 256 & 57.723 & 155.1 & 34 & & & & & & & \\
\hline Palmer Washery, & New Phlladelphia, .. & 29,714 & 510 & & 29.204 & 82.5 & 34 & & & & & , & 5 & 1 \\
\hline Manhattan Washery, & Forrestville, ...... & 16.487 & 312 & & 16.175 & 156.0 & 14 & & & & & 2 & 1 & ...... \\
\hline Broad Mountain Washery, & Now Castle. & 37, 215 & 200 & 15 & 37,000 & 208.0 & 36 & & & & & 2 & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & 4,306,222 & 468,225 & 88, 894 & \(3,762,4 \mathrm{S3}\) & & 13,492 & 38 & 112 & 69,68s & 429,746 & 719 & 1,341 & 25 \\
\hline
\end{tabular}
Occupations of Persons Employed Inside.
Occupations of Persons Employed Outside.




\(\qquad\)


TABLE No. 4.-List of Fatal Accidents that Occurred in and about the Mines of the Eighth Anthracite District, for the Year ending
December 31, 1597 .






Nov:



St. Clair,
St. Clair, St. Clair,
Minersville
e, ..............

Tower City Fishback Fishback Fishback Fishback, Minersville, Minersvil St. Clair,

Silver Creek
Tower City
Tower City, …...
Mcrea.
St. Clair,

Burned by an explosion of gas.
Burned by an explosion of gas
Severely injured by being caught by an
outburst of gas.
Arm broken by being caught by ma-
Leg broken by a fall of coal
Leg broken by a fall of coal.
Burned by an explosion of gas
Burned by an explosion of gas.
Leg crushed between mine cars.
njured by a fall of coal.
Severely injured by premature explosion
Leg broken by a fall of coal.
Leg broken by a fall of coal. struck by mine car at bottom of shaft. Burned by an explosion of gas.
Burned by an explosion of gas.
Lek broken by falling under moving mim car.
Injured by a fall of rock.
Severely injured by fall of rock.
(230)

\section*{BITCUIIIOLS IIINE DJSTRICTS.}


\title{
FIRST BITUMINOUS DISTRICT.
}
( ALLEGHENY, FAYETTE, GREENE, WASHINGTON AND WESTMORELAND COUNTIES.)

Hon. James W. Latta, Secretary of Internal \(A\) ffairs:
Sir: In accordance with Article X, section 11, of an act, \(\varepsilon\) ntitled "An act relating to bituminous coal mines, and providing for the lives, health, safety and welfare of persons employed therein," I hereby present my annual report as Inspector of the First bitnminous coal district for the year ending December 31, 1897.

The coal production, as reported to this office, was \(6,459,200\) tons, being a decrease of 223,571 tons from that of the year previous.

Relative to the number of fatal and non-fatal accidents, I am fleased to say that the former show a decrease of 22 and the latter 18 from that of the year 1896 . Twelve wives were made widows and 30 children fatherless by the fatal aceidents.

Some of the annual reports sent to this oftice by the operators are prolific of inacemalies, and cause no end of tronble to this department, and, as a consequence, the report is often delayed, through the carelessness-l do not wish to use a harsher word-of those who compile them, for I have to correct them as best I can, and this, as is -vident, is often mere guess work. The following is a verbatim copy of part of a report received: "Number of miners, 100 ; number of miners' laborers, 20; drivers and runner-7 drivers, 2 runners; door boys and helpers, 1 ; total inside, 110 ; ontside foreman, 1 ; blacksmith and cupenters, 1 ; engineers and firemen, 1 ; superintendents, bookkeepers and clerks, \(\mathbf{1}\); total outside, 7 ; grand total, inside and outside, 12:."

The usual tables will be found in the body of this report, together with a description of the fatal and non-fatal accidents that occurred in the district during the year.

\section*{Mining Statistics.}
Nimber of mines in the district, ..... 76
Number of mines operated during the year, ..... 68
Number of tons, run of mine, of coal mined, ..... \(6,459,200\)
Number of tons of coal shipped by railroad, ..... -,488,409
Number of tons of coal shipped by river ..... 3,901,592
Quantity of coal, in tons, used for steam and heat in and about the mines, ..... 39,668
Sold to local trade and nsed by employes, ..... 23,152
Nimber of days worked. ..... 10,294
Number of persons employed, ..... 10,665
Number of kegs of powder used, ..... 19,308
Number of pounds of dynamite used, ..... 897
Number of steam boilers. ..... 164
Number of horses and mules, ..... 691
Number of mine locomotives. ..... 5
Number of coke orens, ..... 6
Number of fatal accidents. ..... 22
Number of nou-fatal accidents, ..... 89
Number of tons of coal produced per each fatal acci- dent. ..... 293,600
Tons of coal produced per each non-fatal accident, ..... 72,575
Number of wires made widows by fatal accidents, ..... 12
Number of children made fathertess ..... 30
Number of persons employed per each fatal accident, ..... 484
Number of persons employed per each non-fatal acci- dent. ..... 119
Table Showing the causes of Fatal and Non-Fatal Accidents During the Year 1897.
Fatal. Non-fatal.
By falls of slate, ..... 39
liy fall of coal and slate, ..... 1
By fall of roof coal, ..... 4
By fall of coal, ..... 3
Ly cars, ..... 19
By being run over hy dilly trips, ..... 2
By dilly trips, ..... 2
By mining machines, ..... 2
By fall of "black-jack," ..... 1
By premature blast. ..... 1
Miscellaneous, ..... 18

Among the improvements made at the mines of this district during the year, was the erection of ventilating fans at the following mines: Apollo (18-inch), Cleveland (18-inch) and a six foot Murphy at the Impire.

A description of each mine in the district is also given.
All of which is respectfully submitied, Yours very truly,

HENRY LOU'TTIT,
Inspector.
Monongahela, Pa., February 14, 1898.

Mines on the Belle Vernon Division of the Pittsburgh and Lake Erie Railroad.

North Webster.-While the drainage of this mine was satisfactory, the ventilation, in parts of the same, required improvement. This was particularly the case on an entry known as No. 1. Here there were twenty-two persons at work and not a visible movement of air on the entry proper. There were 16,200 enbic feet of air entering the mine, but this was cut up into so many divisions that in some parts it would not move the anemometer, and to add to this, powder smoke was permeating the atmosphere of the mine to a great extent. I gave iustructions that the law in regard to rentilation must be complied with. This, I am informed, has been done.

Cleveland.-In the early part of the year the ventilation was very unsatisfactory, in a greater part of the mine. This was caused by the furnace not being of sufficient power to move the quantity of air required. Being a machine mine, much powder was used and this was also a factor in making matters worse. On one of my visits, I ordered the vacating of some eight places on an entry known as the "Lost" (this was well named). I gave the operators peremptory orders to comply with the law without further delay. This resulted in the erecition of an 18 -foot rentilating fan. At the time of my last visit, the mine was in fair condition. The outlet air measurement showed 63 ,000 cubic feet.

Arnold.-At each visit to this mine it was found in a satisfactory condition. An electric motor was among the improvements made during the year.

Shepplar.-Cubic feet of air at outlet, 23,510. Condition of rentilation, fair. Urainage, in parts of the mine, required improvement. Owing to the location of this mine being near the axis of the Waynesburg anticlinal, it is nearly an impossibility to perfect the drainage; some improvement could be made, howerer. Suggestions to this effect were given.

Manown.-Air measurement, as shown by the instrument, 36,000
cubic feet at inlet. Additional air measurements were taken at the outlet and elitries \(6,18,22,26,28,31\) and 33 . General condition of mine, fair.

Mines on the Pittsburgh and Wheeling Division of the B. and O. R. R.
Nottingham.-This mine has, for some time, given the Inspector a great deal of amoyance on account of defective ventilation and dranage. It seems that the management made no earnest effort to gef the mine into a condition such as the law requires. When their attention was called to the matter, the promises that they would do better in the future and remove cause of complaint were numerous, but, on the next visit, I would find nearly the same condition of affairs existing, and a repetition, in the promise line, wonld be given. Seeing that only harsh measures would avail in this case, I entered suit against Operator Henry Florsheim and Superintendent-Mine Foreman James Kerr, for not providing the necessary ventilation and not keeping the mine properly drained. Previous to the day set for the liearing, Mr. Kerr called at this oftice and requested that the case be withdrawn and that they would immediately make the necessary arrangements to comply with the act relating to bituminous coal mines, their intention being to sink a shaft near the extreme end of the workings as soon as their eng neer could locate the same. Subsequently, this was abandoned and they now propose to erect a fan. I noticed that blasting was allowed to be done at any time by the employes, and this kept the air in the mine mixed with powder smoke; to remedy this, a blasting rard was put up, prohibiting blasting until 4 o'elock P. M. This had a good effeot on the rentilation, as the quantity of air in cirenlation was much purer than previous to the stopping of indiscriminate blasting.

Germania.-On my last visit to this mine, the ventilation and drainage required improvement. A notice was given to the management to have the mine put in such a condition as to comply with the law. A short time after this, work in the mine ceased and it has not been operated since.

Anderson.-Not in operation when last visit was made.
Snowden.-At my last visit, the gentral condition of ventilation was fair, but the dramage, in parts of the mine, reguired improrement. The outlet air measurement, as shown hy the instroment, was \(8,0,000\) cubic feet. Additional air measurements were taken at the inlet and at entries 4, 7, 9, 11 and also at face, and at cut-fhroughs on entries \(1,2,7\) ands. Entries being drimen, \(S\).

Eelipse.-This mine, when last examined, was, in a general way, satisfactory.

Gastonville No. 1.-This mine, as regards ventilation, was in a very unsatisfactory condition. Some of the rooms had no ent-throughs;
the absence of check doors was also noticeable. On one of the entries, four places were being worked in advance of the air eurrent; these I ordered stopped until properly ventilated. I notified the company operating the mine to comply with the act as regards ventilation.

Gastonville No. 2.-r'arts of this mine, as regards ventilation, was also a matter of complaint. A new company has taken charge of these mines, and I have reason to believe they will be put in proper condition without delay.

Hackett--Owing to the condition of this mine and the neglect of the parties in charge to comply with the law as regards ventilation, I entered suit against Superintendent J. E. Boyle and Mine Foreman Robert Cochran under the act of May 15, 1893 , relating to bituminous coal mines, but before this reached the proper authorities, the suit was held in abeyance on the promise being given that they would immediately comply with the act. A shaft has been sunk and a firebasket placed in position which has materially increased the ventilation.
Mines Located on the Monongahela Division of the Pennsylvania Railway.
Shoenberger.-'This is a new drift opening, located abont one-half mile north of Baird station. Ground was broken for the plant on the Sth of April, 1897, under the immediate direction of Mr. A. G. Mitchell, C. \& M. E., of Monongahela, Pa. The mine consists of two main entrics driven south 20 degrees east, and directly toward the center of a field of coal of 447 acres. These entries have a pillar of coal of forty feet between them-that of the butts being thirty-two feet. A line air course-which can also be used as a water way-is being driven on the west side of the coal field. The butt headings on the right of the mains will intersect this as they are driven. Some twelve hundred feet from mine entrance, near tipple, a ravine will be met, which will nearly separate the coal field, and as the main body of coal lays on the other side, the main entries will, as a necessity, cross it. The workings at present are in the first hill, the ventilation being produced by a "grate surface," which is placed at the bottom of a shaft 20 feet deep and 6 feet in diameter-the shaft being (apped by a stack 18 feet in height. The mine is opened on the double entry system. The first room in each butt heading is being driven parallel with the main headings so as to leave a uniform [illar of fifty feet between them. All rooms (except the first one on each entry) are opened thirty-five feet from center to center-the road being on one side. The rooms are twenty feet wide, leaving a pillar of fifteen feet to be withdrawn. The outside improvements at present consist of three railroad sidings with frame tipple, the latter being covered by a building 28 feet wide and 113 feet long. The tipple is equipped with all the modern improvements. The inside workings are under the supervision of W. J. Mollison.

Courtney.-This mine consists of two butt and six face headings. While making an examination, I found that they had cut through into the abandoned Garfield mine and black-damp from the latter was becoming mixed with the rentilation of the former mine to such an extent that it was plainly visible on the naked light. The place where the holing was made has since been closed by a stopping.

Allen.-General condition of drainage, satisfactory. Ventilation, in parts of the mine, required improvement. Two of the entries, designated as Nos. 3 and 4 had no visible movement of the air. On the former entry, eight persons were at work; on the latter, two. If the air had been properly distributed there would have been no cause for complaint. The air current was continuous. The number of persons at work being above the maximum number allowed by law, notice was given the operator to comply with the act of May 15, 1893, relating to bituminous coal mines. The mine foreman reported to this oftice that the cause of complaint had been removed.

Charleroi.-On the date of my last visit, the mine was in a satisfactory condition.

Acme.-Mine was found in fair condition when last examined.
Fidelity.-The condition of this mine, at the time of my last visit, was satisfactory.

\section*{Greene County Mines.}

These mines, for a number of years, have not employed a sufficient number of persons to come under the jurisdiction of this office.

\section*{Maxwell Mine.}

This mine is located on Maple Creek, near the borough of Charleroi, and employs but from six to nine men. At times the number of persons at work exceeded this, but not of late.

\section*{Mines on the Monongahela River.}

Coal Centre.-This mine was in fair condition when last inspected. Cedar Hill.-This mine js idle at present. When in operation it does not, or at least has not for some time, employed a sufficient number of persons to bring it under the jurisdiction of this office.

Beaver.-This mine has been abandoned.
Ivill.-While the drainage was satisfactory, the ventilation, in. parts of the mine, required improvement. The management, upon being notified of the condition of the mine as regards rentilation, made such arrangements as were necessary to increase the quantity of air to the amount reguired by law.

Champion.-This mine was in fair condition when I made my last vist.

Banner, C'liff and Coal Bluff.-These mines were not in operation at the time of my last visit. At present the plants are in the hands of a receiver.

Riverville (fosmerly Wright's Bar) Crowthers and Fox.-Each of these mines was in a fair condition when last examined.

Blyth.-On my last examination of this mine, I found the workings in a bery unsatisfactory condition, in parts, as regards ventilation. The outlet air measurement showed 36,800 cubic feet, but on some of the entries the anemometer would scarcely register. The air is split into two dirisions, one of which passes through a "return," which is almost closed up by water which has accumulated. They have decided to blast down the roof in this "return," so as to make a larger area. An overcast was made in this mine, but I ordered its removal on acconnt of it not having been in conformity with the law. A portion of the mine has a shaly roof, which gives the management great annoyance. A squeeze is also giving them tronble, one entry being already abandoned on account of it, and another is being watched closely.

New Eagle.-General condition of ventilation and drainage, fair.
Climax.--Part of this mine is temporarily abandoned on account of water. The part that is being operated was found in fair condition.

Abe Hays, Fulton, Stonesburg, Vesta No. 3 and Stockdale.-These mines were idle during the entire year. The latter mine is, I am of the opinion, practically abandoned.

Old Eagle.-Outlet air measurement, as shown by the instrument, 55,000 cubic fect. Measurements were also taken in entries 28, 30, Swamp, Sweency and "Little Sweeny." Condition of minf. fatir.

Knob.-Gencral condition of mine, fair. Air measmrements were taken in entries \(18,20, \because 2,23,21,25\), main and No. 2 main, and etitthroughs on entries 22 and 23 .

Caledonia.-Coidition of drainage, in a general, way, satisfactory. Ventilation, in puts of the mine, required improvement.

Sincinnati.- Mine not in operation at the time of my last visit.
Eelipse--General condition, fair. The air current of this mine is split into four division, the "return" of each being sent into the main "return" by orercasts built arross the main entry. The main "refurn" is not in very good condition on acconnt of being somewhat obstructed by falls. To remedy this, they are having two entres driven to a point where as shaff will be sunk to intersect them. On visiting one of the rooms, I found the air so mixed with black-damp, which was escaping from the old workings, the room had holed into, that it was plainly visible on the naked light. I suggested that the place be vacated unless it shonld be properly ventilated.

Mongah.-This mine was found in fair condition on last inspection. I ir measurements were taken at inlets, entries 5,9,12, main, gob and face. The inlet measurement showed 20,506 cubic feet.

Clipper.-The ventilation and drainage, in parts of the mine, required improvement.

Christinia.-At the time of my last general examination of this mine, I found it in fair condition, both as regards rentilation and drainage. The person in charge of the inside workings at the time of this visit was not a mine foreman according to law, as he did not hold a certificate of competency, as required by section 1, article VI of the act relating to bituminous coal mines. I notified the operator, Mr. C. F. Goldstrolm, that it was necessary for the law to be complied with, in this particular, without delay, but it had very little cffect, for, at the time of my next visit, the same person was in charge. Suit was then brought against the operator to compel him to comply with section and article above named. Previous to the hearing, however, Mr. Goldstrohm informed me that as the mine was about to pass out of his hands, he would ask for a withdrawal of the suit and would pay the costs. This was granted. Later, Mr. Goldstrohm employed a legalized mine foreman and operations at the mine were resumed.

Catsburg.-At each visit to this mine, it was found in fair condition.

Gallatin, formerly Watson.-On my last visit, I found the ventilation and drainage in fair condition. From the time the mine suspended operations under the former operators, mitil the new firm took charge, an entry, which was used as a second opening, fell in, and when I visited the mine I found that they were not complying with the act, as regards means of egress. I notified the company to comply with the law relating to the openings. They have since put a stairway in a shaft which is located near the rear of the workings. This will be used in cases of emergeney until the completion of a slope, which they intend to connect with the mine.

Hilldale.-When last visit was made, the mine was not in active operation. A few persons were at work, making preparations to resmme in full.

Black Diamond, Vigilani and stony llill.-Each of these mines, at the time of my last visit was found in fair condition.

Washington.-When last examined they were employing 66 miners, 4 boys, 5 drivers and 3 other persons. The inlet air measmement, as shown by the instrmment, was 25,940 cubic feet. Outlet air measmrement, \(\mathfrak{X} \overline{7}, 270\) cubie: feet. Thu additional air measurements taken were 2.400 and 3,360 cubic feet on entries 6 and 7 , respectively. Condition of mine as regards ventilation and dratnage, was, in parts, unsatisfactory.

Snow Ilill- In operation 178 days during the year. Total number of persons employed, \(16 \%\). When last examined, the general condition was satisfactory.

Abany.-This mine wats, as regards ventilation and dranage, in a satisfactory condition.

There are two noteworthy features in comection with the working of this mine, viz: The Hanlage and Electric Mining Plant. The Haulage is an endless line system, and while the engines ased for this fimpose are not clamed to be of the most modern type they are capable of doing their work in an efticient manner-this being largely (fire to their armagement. The two cylinders are comected to one main shaft; on this shaft is a strong pinion wheel which works in a modern chutch gear: by this armangement the engineer is enabled to start and stop the load in the casiest possible manner. The sheaves, or drums, are 6 feet and 4 feet in diameter, respectively; the former is driven from a counter shaft, which is driven by the friction eluteh gear. Owing to this armagement, it is not necessary to start or stop the engines either to move or stop the loatd, no matter in what position the load is when the signal is given to the engineer. The line, or cable is of one and one-eighth inches in diameter and made of the best plonghslare steel. The cable is threaded on a large driving sheare in grooves cut ont and then around the small sheave and forms a figure eight; it then passes around the "return" wheels, which are five feet in diameter, then enters the mine by the yay of the main catry, which, being driven fifteen feet wide, gives ample room for two tracks, viz empty and full, side by side. After leading down the main entry a distance of 2,150 feet, the emply line departs up a butt entry and travels in the latter for a distance of 1,200 feet, then through a "cut-througln" down the parallel butt with the loads from that dis bict. By this arrangement, it practically makes two distinct districts to haul from, vi\%: at head of hotts and on main entry. The cars were attached singly by means of a grip. The hanlage was installed originally for an output of 600 mine cars per day, with this in view, the line was arranged to travel at a rate of sixty feet per minute with a loaded car attached every sixty feet. While this method gave satisfatcory results, the capacity could be greatly increased by simply dhathing the cars nearer each other and increasing the speed of the linte. The grade against the load for a distance of 2.150 feet is of two fiet two inches per 100; the grade on the other 1,200 feet is f wo feet fer 100 in favor of the load. This system will compare favorably with the modern systems of tail line lambage. The electrie signal system in comnection with this hamlage is, if not actually as complete as some, tharoughly practical. The hattery and one bell is placed nfar the engines and a bell is plated at each station, with three wires extending along the entire system. By this system, when a signal is given from any station or even on :my part of the line, the same signal is heard at all other points at the same time. An electric plant has been recently justalled for the purpose of eutting coal by ma-
chinery. The following is a brief description of it: The boilers, of which there are two, are of the Erie pattern and were bnilt by the Union Iron Works, of Erie, Pia, are 18 feet long and 6 feet in diameter and each contains 78 three-inch diameter tubes. The boilers rest on a firm foundation of brick and stone. Each boiler is equipped with a consolidated nickel seated "pop" safety valve, regulated to 100 pounds pressure, and they are fed by two "Battle Creek," pumps with an improved automatic injecter in reserve. It is not necessary to use both pumps, as one is capable of smplying both boilers and is so arringed that one or both pumps will feed either boiler or the injector can be applied likewise. While both boilers are generally used to furnish stean for the electrjc and hanlage plants, also for the ventilating fan and mine pump, they are so arranged that should anything happen to one, it can at once be detached, and the other is capable of furnishing power for service. The water supply is taken from tanks by the pumps or injector and forced through two enclosed heaters, the exhaust from the power engine being utilized to generate heat for that purpose, and it is capable of raising the temperature of the water from its normal condition in the tanks to 210 degrees Fahrenheit before entering the boilers. The power house is a brick structure \(20 \times 40\) feet inside, which is neatly ceiled and the interior well finished; the floor is of concrete, which greatly reduces the risk from fire. The generator, or dynamo. is a 100 K . W., of 400 amperes, and is of the Westinghouse type. The switchboard is of polished granite and is furnished with Weston's ammeter and volt meter recording instruments, with safety swith of the most improved pattern. The power engine is \(16 x^{2} 4\), and furnished with an antomatic governor and cnt-off, and is fed through is Strattons steam separator and run at a speed of 220 revolutions per minute. This is a 250 volt plant and runs five seven foot mining machines of the chain type, built by Morgan, Gardner © Co., of Chicago.

Anchor.-On my last examination of this mine, I fonnd the general condition fair.

Fayelte City,-In operation 209 days during the year. Total mmber of prosons employed 22s. When last visited the ventilation was fair, but the dranalae, in parts of the mine, was unsatisfactory.

Amity.-On my last visit there were employed inside 160 miners; 15 drivers and 6 other persons. It ontlet the instrment showed a velocity of 190 and 800 feet respertively. Sectional areas 35 and 45 stpure feet. The workings are in two parts, namely, Old and New Hill; in the latter, nime persons were at work. I fomm the condition of the New Hill, as regards ventilation, not \(n\), to the legal requirements. As a remedy, they were driving an entry to connect with another in the old Hill; this had rit abont fourteen yards to be
driven at the fime of my insperetion. The general condition of the other part of the workings was satisfactory.

Walton, Epper and Lower Mines.-The general condition of the venfilation and dramage of the former mine, was fair, but in the lat.er, the air currents were not up to the quantity required by the act relating to bifuminous coal mines.

Ella.-In operation 201 days dmring the year. Total mumber of persons employed in and abont the mine, 204. (ieneral condition of the workings, fair.

Allequippa- - Persons employed on my last risit, 18.2 , classified as follows: 160 miners, 15 hoys, 8 drivers, 6 day hands and \(: 3\) trappers. Entries being driven, 9 batt and 2 face. Instrmment velocity at outlets, 500 and 600 fect, respectively. Sectional area 45 and 55 spuare feet. Condition of mine, fair.

Crescent.-(On my last general examination, the ventilation and datinage required improvenent.

Tremont.-The general condition of the workings of this mine, When last visit was made. was fair.

Chamomi.-The rentilation and drainage, in parts of the mine, were inadequate. Persons employed, 216. Air measmrements taken at inlets, ontlets and entries S. 10, 11 and 17 . The instrument would not register on entries Nos. 14 and 15 . On entry 13, four rooms cared in, making a depression on the surfare of 720 spuare feet, Which broke the strafa so as to admit a large quantity of water into the mine.

Fawert.- Among the imporements made af this mine dmring the farr was the installation of an electric mining plant, which, among other things, consisted of two tubular boilers, 60 inches by 14 feet; one 9. horse power antomatic skimer engine, one fis horse power eommereiall gemerator and three improved chain breast mining machines of the Jeflrey pattern. To facilitate the hanlage, a tail rope system las been installed. (ieneral condition of mine, satisfactory.

Bumola- On dacls visit to this mine during the year, I fomd canse of complant in regard to the ventilation and other matters pertaining (t) the health and safety of the persons employed therein. On one of my examinations, the ventilation was so defeetive that I could not get the instrment to register in any part of the workings, with the exception of the inlet and ontlef; the eherk doors were not in place por no shelter hole made for the rapper boy, who wats stationed at one of the doors; the dranage and roads also needed attention. I motified the management in regard to the condition of the mine, and requested them to remove the eanse of complaint, hat it seems to bave had rery litale effert, for when the mine was risited a short time atere nearly the same condition of things existed. I'uder those ciremmstances I saw no alternative hut to chter suit againsi R. C. C'rawford,
general manager of the Bunola Mining Company, Joseph Stone, SuI, erintendent, and William Penn, mine foreman, for non-compliance with the act of May 15,1893 , relating to bitmminous coal mues. Previous to the time named for the hearing, a representative of the company called at my office and stated that arrangements, to comply with the law, would be made immediately. With this menderstanding the suit was held in abeyance. Total number of persons employed, on my last visit, 125 ; cubic feet of air at the outlet, as shown by the instrument, 21,150.

Beanmont.-On my last general examination of this mine, the rentilation and drainage, in parts of the mine, were inadequate.
Camden.-This mine was not in operation when I made my last visit.
Little Alps.-In operation 230 days during the year. Total number of persons employed, on my last visit, 38 . The inlet velocity of air as shown by the instrument, was 350 ; sectional area, 49 square feet. The ventilation at the working faces was inadequate, but a new furnace had just been completed which should, if properly attended to, remove all cause of complaint as regards the air currents.

Rock Run.-This mine consists of eleven butt and two face headings. Total number of persons employed inside, 125 , classified as follows: 105 miners, 5 boys, 10 drivers, 3 day men and 2 trappers. Outlet air measurement, 2,200 cubic feet. While the drainage of this mine was satisfactory, the rentilation, in parts of the mine, was not up to the legal requirements.

Milesville.-In fair condition when last examined.
Rostraver.-When last inspected the ventilation and drainage, in parts of the mine, required improvement. I directed that the act relating to bituminous coal mines be complied with.

Buffalo.-General condition of ventilation, fair. The second opening for this mine is a shaft located on the left side of the present workings and quite a distance from them. The passalgeway is not in the best condition. None of the employes make use of it at the present time, as the other route is nearer their homes. The officials of the mine make frquent visits to the shaft so as to keep it in such a condition that it can be made use of in cases of emergency.

I pollo.-It the time of my last visit, this mine was idle, but I fomd the workings in fairly good condition. During the rear a ventilating fan has been placed in position, which has greatly increased the rentilation in comparison with hat produced by the furnace. At present the fan is working at a great disadrantage owing to the position of the air course leading from it. To add to this, a door which is located at the math entranere to the mine has, as a necessity, to be opened so often to allow the trips to pass throngh, that it cuts off the ar from the mine to a great extent. I have suggested to the management that an entry be driven parallel with the main entry to
intersect one of the cross entries; this would not only make a direct ronte for the air current for quite a distance, but would also dispense with the door and its consequent annoyance.

Vesta Nos. 1 and 2.-These mines are, at the present time, practically one, as all the coal produced in them, except one entry, is rum over the former's tipple. On my last visit they were employing 14 machine men, 138 loaders, 14 drivers and 21 other persons. The condition of these mines, as regards drainage, is fair, but in parts of the mine the rentilation was not up to the legal requirements, owing to the air not being properly distributed. Cubic feet of air entering the mine, 36,720 .

Little Redstone.-In operation 185 days during the year. Cubic feet of air at inlet, when last visit was made, 32,880; additional air measurements were taken on entries \(\mathrm{S}, 9,12,14,17\) and cut-throughs or. entries 7 and 18 , and at outlet. With the exception of a few places where the rentilation was inadequate, the mine was in fair condition.

Umpire.-In fair condition when last visited.

\section*{Description of Fatal Accidents.}

Alvin Sheaffer, German, a miner, aged 34 years, was instantly killed January 24, in Washington mine, by a fall of slate. The deceased and George Worherley worked together in a twelve "foot" place that they were driving from entry 4 to 5 . At the time of the accident, Sheaffer was taking out posts from under the slate, when slate that measured fourteen feet long, twelve feet wide and eleven inches thick feli, part of which struck him, resulting as above stated. Sheaffer left a wife and three children.

On February 2, at Acme mine, John Fernell, Hungarian, miner, aged 20 years, single, was instantly killed by a fall of coal and slate, while "bearing in" under a "half shearing."

Edward Clemmus, American, driver, aged 18 years, received such injuries, by being caught between cars and coal pillar, that he died some eight hours after. 'The deceased was moving a trip of three loaded cars along entry No. 11 toward the double parting, and when near the entrance to the above entry, the trapper boy, who attends a door which is located between entries 11 and 12 called Clemmus to "stop," but instead of doing so he continued to come on. By this time. another driver. William Wilson, was on the main entry, also on the way towards the double paring, with a trip of two cars. The speed of both trips was such that they reached the parting of entry 11 at the same time: this resulted in a collision. The deceased was on the front end of the first car of his trip and, seeing that the trips would come together, he jumped off. Just as he did so, the car was thrown from the track, catching Clemmus between it and the entry pillar, re-
sulting as above stated. Clemmus had been warned about moving his trip on to the main entry, withont first being notified by the trapper that the track was clear. Only a few days before the accident he had a narrow escalpe from being caught in the same way. This accident oceured at Waltons Uprer Mine on February 17th.

On March Znd, Frederick Reese, American, a miner aged it years wats injured by a fall of slate in room 3 , entry 11 , Chamouni mine, and died about ten hours after. The deceased, Richard Thompson and Edward Grieze, worked together and a short time before Reese receised his injures a shot had been fired in the "half shearing;" some coal from the shot struck a post which had been under the slate and dislodged it. Thompson informed the writer that he asked the deceased to put the post up again, but he made reply that "the slate would stay "pa year." He then started to "bear in" on the corner of the butt, but had not done much until the slate fell, resulting as above stated. I camot refrain from stating that this accident was due, in grat measme, to carelessmess, and it conld have been averted if but ordinary care had been exercised. Reese left a wife and three children.

Joseph Perkins, English, a miner was fatally injured at the Amity mine, March 26, by having been caught by a loaded slate car while riding out of the mine. The deceased had finished his day's work and got on a trip of cars to ride out. On this trip, besides the coal cars was one of slate; between this and on the bumpers of a coal car, the deceased rode. When near the mine entrance the driver cut the slate loose from the trips so as to let it run on to a switeln used for a dirt dmmp; this was immediately followed by Perkins falling off the car on which he wats riding, and before he could reeover himself, the slate car was on him. The driver, (ieorge frooms, informed the writer that he s:aw lerkins slip off, and he tried to stop the slate car before it reached Perkins, but could not. Perkins was 63 years of age and leaves a widow.

By a fall of slate in C'oal Bhatf mine, on April 1. Alfred Fertina, Freneh, miner, was instantly killed. Deceased was ias years of age and a widower.

John Gallagher, brish, a miner aged 44 years, wats fatally injured April 9, in Chamomi mine, by slate discharging posts and striking him, resulting in his death some four days after. Gallagher left a wife and three children.

On April 2 g , Herman Stambagh, firman, miner, aged 55 years, was so badly injured af Suowden mine by a fall of roof coal that death resulted some seventy-fwo homs after. Deceased left a wife and three children.

John Taylor. American, stable hoss, aged :32 years, was instantly killed on Apollo mine fipple by having theen canght by a car. A full
frip of ears had been brought ont of the mine by the dilly, and a car of coal being reguired for the engine house, the last car was cht onf the trip, to be used at that place. The dilly rider snggested that the car be pushed to the engine honse, but Taylor said "it can be done much easier by the engine." He then attached the line to the wagon and signalled the engineer to start the engine; this was done, the deceased walking in front of the car. He had not proceeded far until he was seen to fall; the engine was stopped immediately, but not in time to prevent the car from rumning on him. An inquest was held and a verdict of accidental death rendered. Taylor left a widow but no children. This aceident oceured on May 4.

On May 11, Joseph Scheplick, Jolander, miner, aged 30 years, was instantly killed by a fall of slate in Caldedonia mine. The deceased worked in room 47 , entry 5 . At the time of the accident he was knocking coal. The slate that fell on him measured seren feet long, four feet wide and about twelve inches thick, and formed what is known in mining parlance as a "pot." The body of Scheplick was entirely covered ly the slate which had to be broken before the body could he gotten out. Deceased Jeft a widow but no children.

Stephen Balaback, Hungarian, miner, aged 28 years, was instantly killed by a fall of slate in Anchor mine on May 12. This accident orcurred in room 18 , entry 9 . At the time of the aceident, he was filling a ear from one side of the room. On examining the slate, I fonnd slips with the angle of fracture against safety. Balaback left a widow and two children.

John Galbasine, Italian, a miner, was instantly killed by being run over by the dilly trip in Ivill mine on May 24. The deceased was on his way out of the mine, and a trip of forty empty cars was standing near the main entrance, and when the deceased reached them lie, it is supposed, thought that they were going to be pulled out and put his dimer bucket and three picks, which he was carrying, into one of the cars. The trip started inward and he then made an attempt to remove the burket and pirks. During this time he was walking along the roadside, and before he realized his danger, he reached a narrow place and was thrown muder the cars with result as above stated. The deceased was 37 years of age and single.

John Leckman, Slav, a miner, aged 27 years and single, was injured in dastonville No. 1 mine, by a fall of slate. This accident ocemred on May 26, and at the time it was mot considered a serions case, but a fewdays after, he made a trip to Carnegie to ronsult a physician, and, upon reaching the Gastomville station, on his retmrn home, he walked to his boarding house; this, and other indiscretions on his part, cansed his injuries io take a dangerous turn, which resulted in his death on July 2.

On .Jme 5, Edward VanHorn, American, aged 23 years, a scraper
after machines, was instantly killed in Fayette City mine by a fall of coal. This accident occurred in room 52, entry 11. Deceased and Edward Axton worked together, and while running a mining machine at the face of room, a "slab" of coal twelve feet long, one foot thick and about six feet wide fell, striking VanHorn, with result as above stated. At the time of the accident there were two other miners, Abraham Timm and Alexander McFarland, in the room waiting for VanMorn and Axton to finish some work that they were at, so that they might go home together. After an examination of the place, and from the evidence produced, it seemed that this accident was unavoidable. - VanHorn was a single man.

At Mongah mine, June 12, Edward Roy, American, miner, aged 28 years and single, was instantly killed by a fall of roof coal. The deceased worked in room 14, on entry 12 , but the accident occurred in room 15, in which John Taylor and Moses Reed were employed. Roy had gone into this room for the purpose of partaking of his lunch, and while doing so the roof coal fell, striking him with result as stated above.

Thomas Booth, American, driver, was instantly killed in Hackett mine, June 16 , by being caught by his trip. The deceased was on entry 7 , on his way out to the tipple with a trip of three full cars, and when near room 7 of the above entry, he was, in some unknown manner, thrown under the first car. The electric lines pass up this entry, and it was suggested that he might have come in contact with them and been thrown under the car. The theory was also advanced that he might have been urging his mule to a faster gait and tripped, and, before he could recover himself, the car was on him. From the position in which the body was found and other circumstances connected with the accident, I am of the opinion that the latter theory is correct. Booth was a single man, aged 23 years.

On July 6, John Bollok, Slavish, miner, aged 53 years and single, was fatally injured by a fall of slate, in the Acme mine. He was removed to the Comellsville hospital, where he died on September 5.

Charles H. Keifer, American, driver, was fatally injured in Vigilant mine, November 1, by being run over by a trip. A short time previous to the accident the deceased, with two other drivers, William Lashing and David Bennett, entered entry 21 to gather full trips, so as to move them to the double parting. located on the main entry. The latter driver gathered a trip of four cars and started ont with them; in due time the deceased started with his frip after having been told by Lashing to whistle when he was ready for him to start. Not hearing the signal, Lashing started down the entry to ascertain the canse and heard Keifer ery out "Oh, My God, hurry up." Upon reaching the latter, he (Lashing) found Keifer with one leg, which was terribly mangled, across the rail; two cars, it is supposed, having
passed over it. Upon being questioned, Keifer said that he slipped on a piece of slate and was thrown under the cars. From this it is supposed that he had gotten off his trip to remove the sprags, the grade at this rossing necessitating their use. In investigating this accident, I found quite a difference of opinion in regard to the proper place to remove sprags, some claming that it was between rooms 25 and 26 and not where deceased was caught, while others who testitied before the coroner claimed that any point between rooms 25 and 29 was the place to remove sprags. The mine foreman, however, said that the proper phace is between rooms 25 and 26 , which place was made for the purpose.

In Fidelity mine, on November 4, Peter Ambrose, Iungarian, miner, aged 46 years, was so seriously injured by a fall of coal thar death resulted some three hours after. Ambrose left a widow and two children in Hungary.

Jacol, Ferri, Italian, miner, was seriously injured at the Ivill mine on November 24 , and died on Nevember 26 . This accident occurred in entry 51, by a fall of slate. This slate showed a slip running parallel with the entry pillar and some three feet from it; at right angles to this was another, the angle of fracture of each being against safety. Ferri was 42 years of age. He left a.widow and nine children.

On December 21, in Amity mine, Jacob Heasley, American, mine foreman, was so injured by a fall of roof coal that death resulted some ten days after. The deceased was superintending the taking down of some roof opposite room 32 , on entry 7 ; near by, a car was standing. and between this and the entry pillar stood the deceased, when suddenly some of the roof fell, catching Heasley between it and one of the wheels of the car, with result as above stated. He was is years of age and left a widow and two children.

Joseph Skawps, Slavish, miner, was instantly killed in Cincinnati mine on December 23, by being rmo over by the dilly trip. It is not positively known how this accident occurred, but it is supposed that he tried to eross the line to get into a shelter hole and before he could do so, the trip caught him, as some of his effects were found close by. The body was dragged some 420 feet and terribly mangled. The deceased left a widow but no children.
\begin{tabular}{|c|c|c|c|c|}
\hline Name of Colliery. & Name of Operator. & Location-County. & Name of Superintendent. & Postoffice Address. \\
\hline Anchor, & A. G. \& J. E. Leonard. & Fayette, & J. E. Leonard, & Roscoe. \\
\hline Arnold, & Johnson Coal Mining Co., & Fayette, & J. H. Moorefield, & Fayette City. \\
\hline Albany, & Snowden, Gould \& Co., & Fayette. & William Seddon, & Brownsville. \\
\hline Acme. & Stockdale Coal Co., ...... & Washington, & C. W. Braynell, & Monarch. \\
\hline Allen, & Allen Coal Co., & Washington, & C. TV. Braynell, & Monarch \\
\hline Anderson. & D. M. Anderson, & Washington, & D. M. Anderson, & Venetla, \\
\hline Abe Hay's, & Abe Hays Coal Co & Washington, & & Monongahela. \\
\hline Apollo. & C. Jutte \& Co., & Fayette, & R. J. Gregg, & Fayette City. \\
\hline Allequippa, & Bailey, Wilson \& Co., & Allegheny, & W. W. Whison & Camden. \\
\hline Amity, & S. S. Crump \& Co., & Allegheny, & S. S. Crump, & Pittsburgh. \\
\hline Bunola, & Bunola Mining Co., & Allegheny, & Joseph A, Stone, & Bunola. \\
\hline Banner. & J. M. Risher Coal Co.. & Washington, & R. P. Fisher, & Dravosburg. \\
\hline Blyth. Black Diamond, & Blyth Coal Co.. \({ }^{\text {W. }}\).
Wrown Son, & Washington,
Washington, & T. C. Conell, & Dunlevy,
Monongahela. \\
\hline Reaumont. & Purigione \& Garden, & Washington, & Samuel Pursglove. & West Brownsville. \\
\hline Buffalo. & Courtney Coal Co. & Washington, & James B. Surail, & Monongahela. \\
\hline Coal Bluff, & J. M. Risher Coal Co., & Washington, & William Smith, . & Coal Bluff. \\
\hline Cincinnatl. & C. Jutte \& Co., & Washington, & John McMinimy, & Courtney. \\
\hline Cliff. & J. M. Risher Coal Co & Washington, & R. P. Risher, & Dravosburg. \\
\hline & Catsburg Coal Co., Limited, & Washington, & Harry P. Jones, & Monongahela. \\
\hline \begin{tabular}{l}
Coal Centre, \\
Clipper.
\end{tabular} & P. J. Forsyth \& Co., & Washington, & P. J. Forsyth, & Coal Centre. \\
\hline Courtney & Winger Gas Coal Co & Washington, & Wm, Griffith, & Courtney. \\
\hline Calcdonia, & T. J. Wood, & Washington, & George W. Roberts, & Ella. \\
\hline Champion, & T. J. Wood, & Washington, & George W. Roberts, & Ella. \\
\hline Charleroi, & Charlerol Coal Works, & Washington, & Jesse K. Johnston, & Charlerol. \\
\hline Crescent, & California Coal Co. & Washington, & T. J. Underwood, & California. \\
\hline Climax, & Grange, Lysle \& Sons,
Smith \& Co., & Allegheny,
Fasette, & B. M. Thomas, & No. 8 Wood St., Pittsburgh. McKeesport \\
\hline Chamouni, & Tide Coal Co., & Fayette, & W. S. Gibson, & California. \\
\hline Crowthers, & Jonas Crowthers, & Fayette, & Lee M. Crothers, & Fredericktown. \\
\hline Cleveland, & J. H. Somers. & Fayette. & TV. P. Bates, & Belle Vernon. \\
\hline Christinia, & C. F. Goldenstrohm \& Co., & Allegheny, & C. F. Goldstrohm, & Duguesne. \\
\hline Eclipse River. ... & Eclipse Coal Co., ...... & Washington, & D. B. Blackhurr, & No. \& W'ood St., Pittshurgh. \\
\hline Eclipse Rallroad, & Osborne, Saeger \& Co., & Washington, & P. F. Stambaugh, & Venetla. \\
\hline Ella, & Ella Company & Westmoreland, & A. E. Speakman, & Sunny Slde. \\
\hline Fayette City. & Samuel O'Nelll, Attorney, & Fayette, & James O'Neil, & Fayette City. \\
\hline Faucett, & Equitable Coal Co., & Westmoreland, & J. W. Blewer, ... & Webster. \\
\hline Fidelity & Fox Folity Coal Co., & Washington, & Heorge Kin Dales, & West Brownsville. \\
\hline Germania. & Henry Florsheim, & Washington, & & Finlevville \\
\hline Gastonville, & Pittsburgh \& Chicago Gas Coal & Washington, & Geo. W. Schniderberg. & 239 Fifth Ave., Pittsburgh. \\
\hline Gallatin, & Irwin Basin Gas Coal Co., & Westmoreland, & D. W. Van Eman, "acting & Manown. \\
\hline Hackett,
Hilldale, & J, E. Boyle, .... & Washington,
Washington & J. E. Boyle. ..... & Hackett. \\
\hline Hilldate, Ivill. & Hilldale Coal Co..
James Jones, .... & Washington,
Washington, & S. D. Beedle, & Jones Station. Monongahela. \\
\hline
\end{tabular}


TABLE No. 2-Gives the total number of tons of coal mined in each Colliery, number of days worked, number of employes, number of persons killed and injured, number of kegs of pow der used, etc., in the First Bituminous District, for the year ending December 31, 1897.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Camden, & Allegheny, & 95.000 & 100 & 1,000 & & 96,900 & 130 & 219 & & 3 & & 250 & & 16 & \\
\hline Climax, & Fayette, & 15,470 & 207 & 23 & & 15,240 & 59 & 72 & & & 130 & & 2 & 5 & ...... \\
\hline Chamouni, & Fayette, & 314,347 & 960 & 25 & & 313,362
14,250 & 250 & 302 & 2 & & & & 1 & 17 & ....... \\
\hline Crouther, & Fayette, & 14,250 & & & & 14,250 & 121 & 27 & & & & & & 2 & \\
\hline Cedar 1Ith, \({ }_{\text {Cleveland, }}\) & Fayette, & 252, 333 & 4,000 & 450 & 247,883 & & 200 & 560 & & 13 & 1,600 & 500 & & 25 & \\
\hline Christina, & Allegheny, & 22,230 & & 260 & & 21,970 & 182 & 59 & & & 1,60 & & 3 & 4 & \\
\hline Ecllpse, & Washington, & 136,347 & & & & 136,347 & 200 & 158 & & \(\cdots\) & & & 6 & 14 & …… \\
\hline Ecllpse Rallroad, & Washington, & 136,952 & & 300 & 136,952 & & 160 & 275 & & & 1,800 & & 3 & 22 & \\
\hline Ella, .............. & Westmoreland, & 141,696 & 804 & 100 & 141,062 & & 204 & 201 & & & & & 2 & 12 & \\
\hline Fayette Clty, & Fayette, ....... & 241,693 & 1,900 & 769 & & 239,024 & 209 & 228 & 1 & 6 & & & 5 & 20 & \\
\hline Fuwcet, & Allegheny, \({ }^{\text {Westmoreland, }}\) & 55,592 & 670 & 1,300 & 53,592 & & 148 & & & & 200 & & 2 & 7 & \\
\hline Fow, & Washington . & 24,579 & 6.0 & 1,300 & & 24,579 & 210 & 56 & & 1 & 110 & & & 2 & \\
\hline Fldellty, & Washington & 90, 630 & 50 & 1,260 & 89,319 & & 120 & 85 & 1 & & & & & 7 & \\
\hline Gallatin, & Allegheny, & 24,760 & 249 & 301 & 21,337 & 2,873 & 68 & 160 & & 1 & 56 & & 3 & 9 & \\
\hline Germania, & Washington, & 43,893 & & & 43,893 & & 138 & 193 & & & 250 & & 1 & 8 & \\
\hline Gastonville No. 1, & Washington, & 99,736 & 1,390 & 260 & 98,068 & & 133 & 276 & 1 & 1 & & & 1 & 15 & \\
\hline Gastonville No. 2, & Washington, & & & & & & & & & & & & & & \\
\hline Hacket, & Washington, & 47,210 & 40 & ... & 47,170 & & 98 & 156 & 1 & 4 & 200 & & 1 & 14 & \\
\hline Hinldale, & Washington, & 36,652 & & & & 36,652 & & 139 & & & & & 2 & 8 & \\
\hline IVill, & Washington, & 116,194 & 2, 500 & 1,200
500 & 57.397 & 57,397 & 166 & 148 & 2 & \({ }_{2}^{2}\) & 400
600 & & 3 & 7 & \\
\hline Kittle A 1 p S & Washington, & 128,500
16,512 & 2,500 & 500
50 & & 125,500
16,462 & 166
230 & 166
41 & & ..... & 600
65 & & 1 & 12 & \\
\hline Little Redst & Fayette, & 182,114 & 832 & 335 & & 180,947 & 185 & 149 & & 6 & & 9 & 7 & 11 & \\
\hline Milesville, & Allegheny, & 29,939 & 125 & 200 & 15,720 & 13,899 & 100 & 100 & & & 125 & & 2 & 7 & \\
\hline Manown, & Aflegheny, & 90,073 & 2,500 & ....... & 80,573 & & 180 & 135 & & 2 & & & 6 & 11 & \\
\hline Mongah, & Allegheny, ... & 53,537 & 735 & & 11,592 & 41,210 & 214 & 90 & 1 & & 500 & & 3 & 9 & \\
\hline North Webster & Westmorelan & 51,994 & 1,200 & 200 & 50,594 & & 129 & 111 & & 1 & & & 2 & 8 & \\
\hline New Eagle, & Washington, & 26,553 & 200 & 367 & & 25,986 & 104 & 63 & & & 162 & & 2 & 3 & \\
\hline Nottingham, & Washington, & 41,495 & 449 &  & 41,046 & & 133 & 130 & & . & 250
300 & …… & 1 & & \\
\hline Oid Eagle, & Allegheny, .... & 40,317 & 500 & 250 & & 39,567 & 135 & 225 & & & 300
250 & & 6
3 & 10
6 & 1 \\
\hline Rostraver, & Westmoreland, ...... & 51, 896 & 1,000 & 1,000 & 16,200 & 33,696 & 225 & 125 & & 4 & 250 & & 3 & 6 & 1 \\
\hline Rock Run, & Allegheny, & 39,495 & 213 & 432 & & 38.850 & 191 & 133 & & & & & & 12 & \\
\hline Riverville, & Washington, & 25, 000 & 1. 516 & 300
224 & & 24,600 & 161 & 34
275 & & & 200 & & 1 & & \\
\hline Snowden, & Allegheny, & 131,508 & 1.516 & 224 & 129,768 & & 161 & 275 & 1 & & & & 4 & 15 & \\
\hline Stonesburg Hill & Fayette, .. & 128,481 & 405 & & & 128,076 & 178 & 165 & & & 500 & & & 8 & \\
\hline Stony Hili, & Fayette, .... & 75,000 & 160 & & & 74,840 & 156 & 110 & & 2 & & & 1 & 7 & \\
\hline Shepplar, & Westmoreland, & 93,000 & 350 & 100 & 92,650 & & 195 & 80 & & 3 & & & 3 & 8 & \\
\hline Sheonberg & Washington, & 14,868 & & & 14,868 & & 100 & 30 & & 1 & 200 & & & 2 & \\
\hline Tremont, & Fayette, & 144,497 & 1,745 & 375 & 54,126 & 88,251 & 182 & 175 & & & & & 6 & 11 & \\
\hline Umpire. & Fayette, .... & 65,337 & 150 & & & 68,187 & 150 & 145 & & & 288 & 20 & \({ }_{3}\) & 10 & \\
\hline Vigilant, & Washington, & 136,337 & 1.150 & -650 & & 134,537 & 180 & 210 & 1 & 2 & 1,200 & & 3
6 & 9 & \\
\hline Vesta No. 1, & Washington, & 390,630 & 5,222 & 1,351 & 9,977 & 374,080 & 196 & 240 & & 2 & 2,100 & & 6 & 23 & \\
\hline Vesta No. 2,1 & Washington, - & & & & & & & & & & & & & & \\
\hline Walton, Upper Mine, & Allegheny, & 152,400 & 228 & & & 152,172 & 109 & 454 & 1 & & 800 & & 4 & 23 & 1 \\
\hline Walton, Lower Mine, & Allegheny, & & & , & & & & & & & & & & & \\
\hline Washington, & Fayette, .. & 82,340 & 350 & & & 81,990 & 156 & 144 & 1 & & 325 & & 2 & 7 & \\
\hline Total, .......................... & & 6,459,200 & 39,668 & 23.152 & 2,488,409 & 3,901,592 & 10,294 & 10,665 & 22 & 101 & 19,308 & 897 & 164 & 691 & 5 \\
\hline
\end{tabular}

TABLE No. 3-Showing the number of each class of Employes at each Colliery in the First Bituminous District, during the year 1897.




TABLE No．5－List of Non－Fatal Accidents that occurred in and about the Mines of the First Bituminous Mine District，for the year ending December 31， 1897.


TABLE No. 5.-Continued.



\begin{tabular}{|c|c|}
\hline Washington, & \begin{tabular}{l}
Finger injuied by coal; amputated afterwards. \\
Injured by a fall of slate.
\end{tabular} \\
\hline Fayette & Injured by cars. \\
\hline Washington, & Injured by a fall of slate. \\
\hline Washington, & Injured by a truck running on him. \\
\hline Washington, & Leg broken by a fall of slate. \\
\hline Washington, & Finger injured by being caught between car and post. \\
\hline Fayette, & Burned in some unknown manner. \\
\hline Fayette, & Injured by a fall of slate. \\
\hline Washingto & Slightly injured by a fall of slate. \\
\hline Washington, & Seriously injured by a fall of \\
\hline Allesheny, & Injured by a fall of slate \\
\hline Fayette, & Leg broken by a fall of slate. \\
\hline Westmor & Seriously injured by a runaway car on incline. \\
\hline Westmoreland. & Slightly injured by a runaway car. \\
\hline Westmorela & Slightly injured by a runaway car. \\
\hline Fayett & Injured by a car running \\
\hline Westmorela & Injured by being caught between car and rib. \\
\hline Washingt & Injured hy being struck by a post. \\
\hline & Seriously injured by premature explosion of a blast. \\
\hline Westmorelan & Injured by a pick. \\
\hline Westmoreland, & Hand injured by being caughv veoweon post and rib. \\
\hline Westmoreland. & Injured by being caught between car and coal pillar. \\
\hline Westmoreland, & Injured by a fall of slate. \\
\hline Washington, & Injured by machine truck. \\
\hline Washington, & Injured by a fall of slate \\
\hline Washington, & Leg broken by being struck by a post. \\
\hline Washington, & Leg broken by cars. \\
\hline Washington. & Slightly injured by a fall of slate \\
\hline Fay \({ }^{\text {atte. }}\) & Severely injured by a fall of slate. \\
\hline Allegheny, & Injured by a fall of slate. \\
\hline
\end{tabular}

标落

\title{
SECOND BITUMINOUS DISTRICT.
}

\author{
(ALLEGHENY, INDIANA AND WESTMORELAND COUNTIES.)
}

\section*{Greensburg, Pa., February 9, 1898.}

Hon. James W. Latta, Secretary of Internal Affairs:
Sir: I have the honor to herewith submit my report as Inspector of Mines for the Second bituminous coal district for the seven and onehalf months ending December 31, 1897.

The coal and coke trade has been somewhat improved during 1897. In \(189\left(\right.\) the total production was \(7,364,771 \frac{1}{2}\) tons of coal and \(1,902,643 \frac{1}{2}\) tons of coke, while this year the production is \(9,134,797\) tons of coal and 2,505,350 tons of coke, showing an increase of \(1,770,025 \frac{1}{2}\) tons of coal and \(602,706 \frac{1}{2}\) tons of coke over the output of 1896.

As a consequence of the increased demand for coal and coke, a greater number of persons were employed. In 1896 the number of persons employed was 11,040 ; in 1897 , the number was 12,272 , an increase of 1,232 .

In 1896 there were 26 fatal accidents; in 1897 , there were 21 , a decrease of 5 . The non-fatal accidents in 1896 were 31 ; in 1897,52 , an increase of 21 , but among this number only a few were of a serious nature. Of the fatal accidents, one occurred outside of the mines, an explanation of which appears in another part of this report. Five fatal and fifteen non-fatal accidents occurred during the term of my predecessor, Mr. William Jenkins, which embraced the first four and one-half months of the year 1897, and a prosecution for violation of section 1 , article NXI, of an act relating to bituminons coal mines, approved May 15, 189:3, is reported by me at Mr. Jenkins' request.

The report contains the tables showing the location of the varions collieries in the district, the number of tons of coal mined and coke mamufactured, the number of tons of coal nsed for steam and heat, sold to local trade and used by employes, also the railroad shipments in tons of coal made from each mine, together with a statement of the number of each class of employes and the number of fatal and non-fatal aceidents which were reported as having occurred at the various mines.

Uron investigation into the cause of the fatal accidents I found
that a number were due to ignorame on the part of the unfortunates themselves of the dangers incident to the mining of coal or to the violation by them of orders given. While others could be classed as purely accidental, and which cond not have been averted.

I have, in another part of this report, given a statement of each of the fatal aceidents to which your attention is called.

\section*{Simmary of Statistics, 1897.}

Nimber of mines in the district, ......................... . . . \(\quad \boldsymbol{2}\)
Sumber of mines operated dming the year, . . . . . . . . . . . 66
Nmmber of mines idle during the year, ................. .
Number of mines opened during the year, ............. . . 2

Number of persons employed inside the mines, . . . . . . . \(\quad 9,326\)
Nimber of persons employed outside the mines, . . . . . . . 2,946
Total number of persons employed. . . . . . . . . . . . . . . . . .
Number of toms ( \(\because, 000\) lts. \()\) of coal mined during the
year, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(9,134,797\)
Number of tons (2,000 lbs.) of coal nsed for steam and
heat, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.312
Number of tons (2.000 lis.) of coal sold to local trade
and used by employes, . . . . . . . . . . . . . . . . . . . . . . .
Number of tons (z.000 ths.) of coal shipped dmring the
year, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\quad\) - 147,825
Number of tons ( 2.000 lis.) of coke produced during the
year, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\quad\) 2.505.3.30
Number of tons of coal mined for cach fatal acedent, . \(434.990 .: 3\)
Number of tons of coal mined for rach non-fatal acei-
dent, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(175,669.1\)
Number of persons cmployed for each fatall aceident. . . 584.38
Number of persons emploged for each mon-fatal acei-
dent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nimber of horses and mules in use, . . . . . . . . . . . . . . . . . . \(\quad 1.102\)
Nomber of steam locomotives in use inside the mines. 4
Nomber of steam locomotives in use outside the mines. 20
Nomber of clectrice motors in nse inside the mines, . . . . \(\quad 2\)
Number of compressed air locomotives in use inside the
mines, .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nimber of coke ovens halt dming the rear. . . . . . . . . . . 3 .
Nombler of coke overns in the district. . . . . . . . . . . . . . . . . . \(\quad\).,695
Number of kegs of powder reported as used in the miness \(\quad\) a3:
Number of ponmals of dynamite repurted as used in the
mines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Number of steam boilers in use, ..... 266
Number of fatal aceidents during the year, ..... 21
Nmmber of non-fatal accidents during the year, ..... 52
Number of widows by fatalities, ..... 12
Nimber of orphans by fatalities, ..... 33
Number of days worked by all the mines during the year, ..... \(15,170 \frac{1}{2}\)
A verage number of days worked by all the mines during the year, ..... \(22!9\)
Classification of Accidents.
Fital. Non-fatal.
By falls of slate, ..... 16
By falls of roof, ..... 9
By falls of coal, ..... 2
By falls of "horsebatek," ..... \(\because\)
By falls of coal and slate ..... 3
By falling down shaft.
by prematme blasts, ..... 3
By being smothered in coal bin, ..... 1
By mine wagons. ..... 14
By being struck by a post, ..... 1
By being caught between mule and post, ..... 1
By something which fell down shafi, ..... 1
By being struck by a dilly rope. ..... 1
Total. ..... 2152

The above figures go to show that rules should be strictly enfored to compel miners and other employes to be more careful.

I do not wish to be maderstood as baming employes for all aceidents that happen, though \(I\) am warranted in saying that a great number of them are due to want of vigilance and care.

The largest number of accidents, as shown ly the fable, was due to falls of slate, and may be attributed to some extent to errors of judg. ment on part of the miners. This being the case, they should be compelled to set up posts at regular distances, whether they pronomee the slate safe or masafe. The enforcement of a rule to this effect has been respectfully asked of all the mine foremen in the district, and I hope, ats a result, that the mumber of accidents from this canse will be diminished.

Some misunderstanding of the law appears to have prevaliled in some of the mines in the district with reference to holes for shelter on hauling roads, where men have to pass to and from their work, as, on
my first risit, I found some mines in which they had been sadly neglected. Howerer, I have called the attention of those in charge to this matter and am pleased to note that several have complied with my request, but am sorry to say that there are a few who seem somewhat slow to act in this regard. Why they do not, I am unable to say.

Another very bad practice prevails in some mines in the district, and that is the use of what are known as mixed lights in mines where fire-damp is being generated, especially when it is found and reported on rib falls by the fire boss in the morning, and safety ramps are given to the men who work in these places. This would be proper if the safety lamps were allowed to remain there, but this is not always the case, as, very often, another examination of the place is made by the mine foreman or fire boss after the men have commenced work, and if no fire-damp is then found, the safety lamps are taken from the men and they are allowed to work with open lights, notwithstanding that in many places where pillars are being drawn, the fall has closed the place up until it is impossible to tell whether or not there is any fire-damp two feet above the level of the roor.

This kind of management I am positively opposed to, and the managers of such mines are well aware of the fact, as I have given them my opinion on each visit made to their mines.

Three parties were convicted in the quarter session court of Allegheny county, June session, 1897, for violation of section 1, article XXI, of the bituminous mining laws of 1893 . There had been a dispute between the owner of the surface, and the lessee of the Ocean mine, in Wilkins township, about the right of the latter to ventilate througli the surface. The defendants were sons of the owner of the surface, and about the 28th of March, 1897, they obstructed the air shaft by throwing boards and dirt over the mouth of it, and so obstucting the "outcast," that the smoke from the furnace was driven back into the rooms, and some of it was seen coming out of the pit mouth.

This vitiated the air all through the mine, but as it generated no noxious gases, no accident occurred.

In order to bring the case mnder the provisions of the mining laws, it was necessary to prove that at least ten persons were employed in the mine on the date of the offense, and this was done by calling some of those who were working in the mine on that day, and by those who could testify to having seen that number in the mines that day. During the trial, the defense offered proof bearing on the civil phase of the issue, but this was ruled out by Judge Stowe, who held that this phase of the case should be settled in the equity courts, and that the only question at issne was whether or not the defendants had obstructed the air course.

The article under which they were convicted is as follows:

\section*{Article XXI.}
"Section 1. Any person or persons whomsoever who shall intentionally or carelessly injure any shaft, safety lamp, instrument, air course or brattice, or obstruct or throw open air ways, or take matches for any purpose, or pipes or other smokers' articles beyond any station inside of which locked safety lamps are used, or injure any part of the machinery or open a door in the mine and not close it again immediately or open any door the opening of which is forbidden, or disobey any order given in carrying out the provisions of this act, or do any other act whatsoever whereby the lives or the health of persons or the security of the miners or the machinery is endangered, shall be deemed guilty of a misdemeanor and may be punished in a manner provided for in this article."-Act of May 15, 1893, P. L. 87.

In due course, the defendants were sentenced to pay a fine and the costs of prosecution.

The information had been made by Inspector Jenkins brefore his term had expired. He, with Inspector Ross, appeared on the part of the Commonwealth.
D. R. Jones, Esq., of the Pittsburg bar, assisted in drawing up the indictment, and conducted the case for the Commonwealth at the trial, and John S. Ferguson, Esq., was counsel for the defendants.

On information received from Robert May, mine boss of the Standard mines, belonging to the H. C. Frick Coke Company, I insituted proceedings against Jack Roseman and William Kochesky before George S. Owens, a justice of the peace of this county. charging them with intentionally and carelessly opening the safety lamps which each of them carried at a place wherein none but locked safety lamps were allowed to be used by order of the mine boss, said safety lamps being burning at the time they were opened; also, charging them with using open lights in working places of the mine through which firedamp might be carried in the air current in dangerous quantities; also, charging them with taking a pipe and other smokers' articles into the same place.

The information also charged the defendants with wrongfully opening said locked safety lamps and with injuring them. in violation of section 5 of article \(V\), section 1 of article \(X X I\), of the act of May 15, 1893, P. L. 52.

A warrant was issued for their arrest and placed in the hano \(\dot{\theta} \dot{\theta}\) an officer, but at the present writing the defendants are still at large.

Accompanying this report is a photograph and plate of a new compressed air locomotive recently installed at the Carbon mines. These,
with the map and description of the hanage were kindly furnished by Mr. James S. Mack, chief engineer of the Carbon Coal Company.

All of which is respectfully submitted.
Very respectfully,
C. B. ROSS,

Inspector.
Description of Mines and Mine Improvements in the Second Bitmmin. ous District.

Mines On and Near the River Division of the Allegheny Valley Ratilroad.

Jucesco Drift.-Idle the entire year.
sandy Creek Drift.-I found this mine in very fatir condition on each visit. The arerage rolume of air jassing at the outlet was 37,080 cubic feet per minute, which entered at five separate inlets and was being well convaged to the face of the workings. The mine is also well drained.

During the year a new furnace has been built, size \(6 \times 7\) feet -42 feet of tire surface. This furnate was built at the onterop of coal seam, and a stack 30 feet high erected. On my last risit the furnace was not in full operation, as the main airway leading from the mine to the furnace was not completed.

The road throngh the third hill has been graded and laid with 45 pound steel rails; the roof has also been taken down, making the height about eight feet; this was done in order to allow the mine locomotive to pass throngh the hill, thereby decreasing the momber of mules in use at present; lengith of tmmel, about 2,000 feet. This makes three fummels through which the coal is hanled, and also two inclined places over which it pasies before it reaches the tipple. Mine foreman, Joseph Corbet .

Plum Creek Drift-Located near the terminus of the Plum Creek branch of the Allegheny Valley Railroad River division. This mine is now in excellent condition in regard to both ventilation and dranage. The quantity of air in circulation, when last measured, 66,600 cubic feet per minnte. which wats being well conseyed to the face of the workings. Mine foreman, John W'. Sterling.

Mines On and Near the Pittshmoh Division of the Pennsylvania Railroatd.

Weimman Drifi.-This is a small mine, employing twelve persons inside. On my last visit 1 measmed 2.400 eubic feet of air per minnte passing in af the inlet. Drainage good. Mine foreman, Wirimman.

Ocean Drift.-Ventilated at present by matural forces and employs only uine persons inside, and therefore does not come under the provisions of the law. But this is not the fault of the operators, as there is a furnace in the mine, which was always kept in operation until about the 2sth of March, 1897, when the owner or owners of the surface obstructed the furnace shaft by covering it with boards and earth at the lop, thereby compelling the mangement to quench the fire in the furnace and to reduce the number of persons employed inside below ton in order to comply with the mining law.

The pillar workings in this mine give off considerable black damp (C. O. \({ }^{2}\) ) and on each examination I found the ventilation very defective. legal proceedings were brought against the parties at fault, an explanation of which appears in this report. Mine foreman, Gottleib Vogele.

Hampton Drift.-The general rondition of this mine, when visited, was found very favorable. The quantity of air passing at the ontlet per minnte was 15,600 cubic feet, which was being fairly well conducted to the face of the workings. Mine foreman, Edgar Thompson.

Duquesue Drift.-Very little work has been done at this mine during the year; nevertheless, the drainage has been kept in very fair condition. The quantity of air passing at the ontlet, when last measmed, was 21,750 cubic feet per minute, which was being fairly well conseyed to the face of the workings, except in No. 2 butt on first face entry. I suggested that the latw relating to ventilation be eomplied with. Whether or not the above suggestion was carried ont, I am mable to say, as the mine closed down shortly after, and remains closed at present writing. Mine foreman, Mark James.
spring Hill No. 2 Drift.-On my last examination, I found the ventilation and drainage very good. The quantity of air passing at the outlet was 4s, 600 cubic feet per minute, which was being well distribnted aronnd the workings. Mine foreman, William B. Morris.

Oak llill No. 4 Drift.-The general eondition of this mine was satisfactory. On my last visit, I measmed 57,300 eblibe feet of air per minnte in cirnlation. The dratinage is very good. Mine foremati W'illiam 1'. Owe

Latimer No. + Irift.-The general condition of this mine, when last examined, was farorable, both in regard to rentilation and drainage. I measmed a volume of \(6: 3,750\) conbit: feet of air per minnte in cirenlafion, which was being farly well conducted to the working parts of the mine. Mine foreman, John Williams.

Pemn (ats Coall kinn lrift.-On earla examination of this mine. I found the ventilation and drainage very good. The quantity of air passing at the onllet wan \(2 \overline{-6} 810\) rubice feet per minute. Mine foreman, Willian Rodgers.

Pemn Gas Slope.-Idle the entire year.

Penn Gas. No. 1 shaft.-It each examination of this mine, I found the rentilation and drainage satisfactory. The average volume of air passing at the inlet per minute was 46,734 cubic feet. This rolume entered at the top of each butt entry and was fairly well conveyed to the face of the workings. Mine foreman, John Bolam.

Westmoreland Shaft.-This is a large mine, employing a great number of men. Mining machines are used to undercut the coal in many places. Blasting operations are carried on to some extent, and the mine is worked principally with open lights, and it requires very brisk air currents to carry away the smoke as fast as it is produced. In order to do this, check doors of canvas are placed on the butt entries, which convey the air to the face of the room and pillar workings; canvas brattices are also used in the entries beyond the last cut-through to carry the air up to the face.

The fan now in use has about all the work it is able to perform under present conditions. Quantity of air passing at the inlet, when last measured, 45,980 eubic feet per minute, and those in charge of the mine deserve credit for the manner in which they convey this quantity to the face of the workings. An extension of the endless rope system of hauling has been made in the workings of the mine for a distance of about 2,500 feet farther, thereby facilitating the hauling of coal. Mine foreman, James Thompson.

Pleasant Valley Drift.-This mine is in fair condition both in regard to rentilation and drainage. The last air measurement taken, slowed 19,200 cubic feet per minnte passing at the outlet. Mine foreman, Joseph H. Powell.

Hempfield Slope.-The general condition of this mine has been favorable on each examination. The average quantity of air in circulation was 39,540 cubir feet per minute, which was being well distributed around the workings. Mine foreman, E. B. Davis.

Monastery Slope-The general condition of this mine was satisfatctory on my last risit. I measured 40,000 cubic feet of air per minute in circulation, which was well conducted around the workings. Mine foreman, George W. Wilkes.

Latrobe Coal Works Slope.-The condition of this mine when last examined was satisfactory, both in regard for rentilation and drainage. The volume of air in circulation was 45,000 cubie feet per minute, which was being well distributed around the workings. Mine foreman, Stephen Arkwright.
II. Sixman Shaft.-The drainage in this mine when last examined was satisfactory, but the rentilation reguired improvement. I called the aftention of those in charge to the law relating to ventilation, and suggested that the same be complied with as soon as possible. Mine foreman, John C. Dover.

Loyalhanma Nos. 1 and 2 Shafts.-These mines have been found in
very fair condition in regard to ventilation and drainage. On my last visit, I measured 63,000 cubic feet of air per minute, at the inlet, which was being well distributed around the workings. An extension of the tail-rope system of hanlage has been made in the mines for a distance of 4,000 feet, which works very successfully. Mine foreman, E. W. Altman.

Pandora Shaft.-Very little work has been done in this mine during the year, owing to the lack of demand for coal. The ventilation is very good, and the drainage fair. The quantity of air in circulation, when last measured, was 51,300 cubic feet per minute. Mine foreman, Enoch Rowley.

Derry Shaft.-On each examination of this mine I found the ventilation and drainage very good. The average quantity of air passing at the inlet per minute was 57,000 cubic feet, which was being carried forward to the face of the working. During the year a new 12 -ton electric motor has been added to the machinery of this mine. This, with the one now in use, will be sufficient to haul all the coal produced in this mine for some time to come. Mine foreman, H. L. Henderson.

Atlantic Drift.-This mine is in fair condition. The workings are about all worked up to the boundary line, and two or three years will exhanst it entirely. A new slope opening is being made in a new coal field, which, when completed, will furnish a way for the coal for the ovens, and also that which is shipped from the old mine. It is the intention of the management to open up this new field and equip the same with machinery so that the outpont in the future can be doubled whenever required. The opening at present is down about 30 feet and is neatly timbered with 10 sets of \(10 \times 12\) oak timbera. Mine foreman, John Baker.

Saint Clair Slope.-This mine has been found in a very favorable condition. On \(m y\) last visit there was 20,090 cubic feet of air pes minute passing through the furnace shaft, and about 5,000 to 10,008 cubic feet was measured near the face of each butt entry. The drainage was well attended to. Mine foreman, Richard Meaghcr.

Millwood Shaft.-This mine was in fair condition when last examined. The quantity of air passing at the inlet, 21,080 cubic feet per minute, which was being well distribnted around the workings. Drainage, fair. Mine foreman, Thomas Thomas.

Lockport Drift.-This is a small mine and very seldom employes a sulficient number of persons inside to come under the provisions of the law. The ventilation is produced by natural forces. On examining this mine, I found it in fair condition. The quantity of air passing at the outlet was 4,200 cubic feet per minute. The drainage was also in fair condition. Mine foreman, John Walters.
. Export Drift.-Located at the terminus of the Turtle Creek branch of the P. R. R. On my last visit, I found it in a very favorable con-
dition, and was well pleased to learn that those in charge had taken steps to prohibit the use of impure oil in the mine. The quantity of air passing at the oullet was sti,000 enbic feet per minute. This volume enters at thaer separate inlets, and is well carried up to the face of the workings. The mine is also well draned. Mine foreman, Ceorge C'arroll.

Mines On and Near the Vonghiogheny Railroad, Which Rums From Irwin, on the I. R. R., to Sewickley, on the B. © O. R. R.

P'enn (ias No. 2 shaft.-This mine has been kept in fair condition. On my last visit, the quantity of air passing at the ontlet per minute was 43,120 cobbic feet. This volume was divided into three splits and was well distributed around the workings. The drainage is very good. Jline foreman, William Jamison.

Pemn (ass No. : Shaft.-ldle the entire year.
Pemn (ias No. 4 Inrift.-This mine has been idle since Augnst last and was not in opreration when visited. I measured 13,200 cubic feet of air per minnte passing at the inlet. This was being produced by natmal fores, as the furnace was not in operation. Mine foreman, James Absalom.

Mines On and Near the Manor Brameh of the Pemnsyluania R. R.
Claridge Drift.-This mine is in reasonably good condition. The quantity of at passing at the ouflet when last measmed was 21,060 cubic feet per mimute, which was heing fairly well conducted to the face of the workings. There is some fall of installing a fan at this mine in the near futwe, which, I hope, will be done, as the pillar workings erive off considerable black damp (C. O. \({ }^{2}\) ), and from present indications it will be only a short time until the furnace will be mable to produce a suflicient guantity of air to remove it. The dranage is rery good. Mine foreman, William Johnson.

Denmark slope.- It eath examination of this mine I found it in very fair condition. The quantity of air passing at the outlet, when last measmed, was 43,400 roblic feri per minnte, and from \(4,(600)\) to ! 4000 . rubir feet were passing near the face of each butt enfry. The fan was not rmaning at its regnal sped, owing to some repats which were being made in the shaft. Mine foremam, Edward Whife111:11.

Penn Manor Shaft.-This mine was in fatr condition when last examined. The quantity of air passing at the inlet per minnte was 53 , 200 chbic feet, which was being well disfribufed around the workings of the mine. The dranage was fairly good. Mine foreman, Sammel Fergison.

Mines On and Near the Mexandria Bramel of the Pemmsylyana R. R.
Alexandrial Drift.-On my first visit to this mine, the condition in regards to rentilation wats umsatisfactory. Upon examining the pillar workings, I found them to be giving off latge quantities of batck damp, which required strong cmrents of air to remove, and the furnace producing the ventilation did not have sufficient power to give the desired effect. However, this state of affairs did not exist long, as the rentilation has been improved by repeting a fan 16 feet in diameter, with blades \(6 \frac{1}{2}\) feet wide, driven by an engine \(12 x 16\) inches, coupled direct to the fan.

Upon my last visit I measmed 50,400 cubic feet of air per minnte passing at the inlet, with the fan ruming eighty revolntions per minnte and producing a water-gange of 1.4 inches. The aliway leading from the fan isobstructed by falls and water in several places, thas reducing the area and increasing the resistance. There are also several short curves, which are a great hindrance to the air on its course from the fan to the workings. I am informed by those in "harge that in the near future this airway will be straightened and the area made larger. This, if done, will reduce the "friction" and the fan will give better results. Mine foreman, Daniel Campbell.

Jamison Slope.-This mine was in fair condition when last examined, both in regard to rentilation and drainage. The quantity of air in circulation was 22,400 cubic feet per minute. Mine foreman. John A. Hart.

Mines \(O_{n}\) and Near the Unity Branch of the Pennsylvania R. R.
Puritan, or Baggarley-This is a new mine, situated on the Unity Brancli of the l'. R. R., in Enity township, Westmoreland comity, and is operated by the Puritan Coke Company. It is a slope opening in the Connellsville vein of coking coal, which has here an average thickness of eight fet and a grade of thirfeen feet per hundred, having been opened on the greatest pitch of the coal, on course-morth, so degrees west. The slope at present is 1,000 feet long. Two fate ent tries, with parallels for abre have been driven, one to the right and one to the left, for 1,000 feet eath. From off these face entries, butt entries are being driven, from which the rooms are turned at regnlar distances. The rentilation will be furnished by a fan ol feet in diameter, of the Gaibal pattern, which now is being erected. The atir will be conducted from the fan by means of an aliway of 70 feet area, which is split 100 feet from the fan into two aliwass of so feet wea each, one for each side of the mine, retmening by way of the fare entries to the slope, which is the retmen alway for the mine. The steam lines for the pmops will be lad in a heading driven exchasively
for them, 50 feet to the right and parallel to the slope, thus keeping the slope and manways free at all times from heat and steam.

The boilers were furnished by the Brownell Co., of Dayton, O., and consist of two 16 -foot ones of 503 -inch tubes each, having a horse power of 100 each. The boiler house is of sufficient size to double the boiler capacity whenever necessary.

The engines were built by the Kemey Company, of Scottdale, Pa. They are two first motion \(20-36\) inches. The boilers and pamps for the mines were manufactured by the Connellsville Car and Machine Company, of Comnellsville, I'a., as was also the "larries" which are used on the ovens.

The capacity of the mine at present is about 800 tons daily, all of which is charged into 276 bee-hive orens for coke, but by January 15, 1898 , the number of orens will be increased to 400 , as 124 block ovens are now almost completed. All the ovens were built by Owen Murphy, of Mt. Pleasant, Pa.

The charging on the ovens is done by a ten-ton locomotive of H. K. Porter make. The water for the boilers, ovens and town of Baggaley is furnished by the Puritan Water Company, from the well known as "Wolf Spring," which is a mile from the works. A \(12,000,000\)-gallon reservoir is now under construction, which will be 75 feet higher than the ovens, thus insuriag at all times an almost unlimited supply of the very best water.

The town of Baggaley, which was built in connection with the mines, consists of 150 houses of five rooms each, finished in hard wood; a cellar is under each house and a hydrant at every second block, thereby giving better conveniences and water facilities than the average of similar towns.

Great credit should be given those in charge for the manner in which this mine has been opened. I consider it one of the best slope openings in this district, from the fact that it has fom openings from the surface parallel with each other: first, the hanlage way; second, for steam pipes; third, fan waty or main inlet for ventilation and, fourth, the traveling way.

If those who contemplate opening mines in the future would take pattern from this mine in regard to the openings from the surface, there would be no trouble between the Inspertor and the operator or his agent in regard to ways of ingress and egress, as required by an act relating to bitmminons roal mines, approved May 15, 1s!3.

Gpon my last visit. I found the conditions very favorable and sug. gested that more attention be given to the erection of the fan which was on the ground, and I have since been informed that this has been done. Should ererything be carried out in extending the workings which is contemplated hy those in charge, there will be very little room for complaint in the future. The officials of the mines are John

McFadden, superintendent, H. I. Bollman, assistant superintendent, and Lemuel Smith, mine foreman.

Hostetter Slope.-General condition of mine satisfactory, when last examined. The ventilation is good through all parts of the workings; air in circulation, when last measured, 64,020 cubic feet per minute. Mine foreman, George Eustis.

Whitney Slope.-This mine has been in fair condition. The average quantity of air passing at the inlet was 56,050 eubic feet per minute, which was being fairly well distributed around the workings. Mine foreman, Terrence Donnley.
S. H. Smith Drift.-This is a small mine, located on the Ligonier Valley Railroad, near Latrobe, which when last examined was in favorable condition. The quantity of air passing at the inlet was 11,500 cubic feet per minute, which was distributed around the workings. The drainage was very good. Mine foreman, Daniel Craig.

Burrell Drift.-Located on the West Penn Railroad, east of Blairsville, in Indiana county. This mine was found in fair condition on each examination. Mine foreman, Robert S. Snedden.

Mines On and Near the Indiana Branch of the Western Pennsylvania Division of the P. R. R.

Isabella Furnace Slope.-On my second visit to this mine, I found the rentilation very unsatisfactory, there being only 8,640 cnbic feet of air per minute in circulation. I suggested that the law relating to rentilation be complied with, and that no time be lost in so doing. I visited the mine about three weeks afterwards and found that the quantity of air had been increased to 39,200 cubic feet per mimute, which was being fairly well distributed around the workings. Mine foreman, Morris J. Lewis.

Graff Drift.-This is a small mine and has been kept in very fair condition, notwithstanding that it has to depend on the natmral forces for ventilation. Quantity of air in circulation when last measured. 7,920 cubic feet per minute. Drainage, fair. Mine foreman, William Hamer.

Maher No. 2 Drift.-The general condition of this mine has bern favorable. Cubic feet of air in circulation when last measured was 7,830 per minute. The drainage is very good. Mine foreman, William Beveredge.

Smith's Drift.-Was well rentilated and drained and in fair condition generally when last examined. There was \(\mathbf{1 7}, 520\) cubic feet of air being produced, nearly all of which was being conveyed to the face of the workings. There is a new opening being made to this mine, which, when completed, will greatly facilitate the hauling of coal. Mine foreman, Roy Gerard.
\[
18-10-97
\]

Mitehell Drift and Graceton No. 1 Drift.-Idle the entire year.
Graceton No. 2. Irift.-This mine has been kept in good condition. The arerage quantity of air passing at the inlet was \(\mathbf{1 6 , 1 0 0}\) eubie feet per minnte. The drainage is very good. Mine foreman, James McKerhath.

Mines \(\mathrm{O}_{\mathrm{n}}\) or Near the Sonth West Branch of the Pennsylvania R. R.
Cireensburg No. 1 Drift-The general condition of this mine is very fair. Quantity of air passing at the inlet when last measured was :39,000 cubic feet per minute, which was being well distributed around the face of the workings. Quantities ranging from 6,000 to 9,000 cubic feet were measured near the face of eath butt entry. The dranage is very grood. Mine foreman, David Clark.

Gentral slope.-The general condition of this mine, when last examined, was satisfactory. The quantity of air passing at the inlet Was \(5: 3,120\) cubic feet per minute, which was being well distributed around the workings. There is trouble with local "dips" to some extent, which requires an extra amonnt of labor on the drainage, but, notwithstamding this mafural ditticulty, it is in very fair condition. Mine foreman, William I. Morgan.

Southwest No. 1 " \(\Lambda\) " Shafi.—General rondition of mine is good. Good sweeping air currents are condueted through all parts of the workings. The drainage is also in sattisfactory condition. Air in ciroulation, when last measured, 112.000 cubic feet per minnte.

The inside improsements are the extension of a branch of the tail rope system of hambige, a distance of 2,000 feet, to what is termed No. 3 lay oft, with an aremge grade of two feet to the lundred, thereby placing the lay off right among the miners. From the same matn hanlage the grading is about completed for amother branch to be about 1,300 feet long.

I new Yough pump has been added, size \(14 x 20 x 48\) inches, to the new pumping station which was arected in 1896. A new s-inch wooden diseharge line : 3,000 feed long has been latid from at \(10 \times 16 x 1 \mathrm{~s}\) inch Vongh permp, in the dip workings, which discharges the water direct (o) pumping station at bottom of shaft.

Two new brick oreqatsts have heen constructed aters the manway and hatalage for the prorpose of taking the air direed from the matn intalke into the dip workings, thus decreasing the length of the airways considerably.

The ontside improvements consist of moving of emgine and dynamo, which furnish the electrice light used in and about the mines. from the building near the fop of the shaft to the fan himiding, about 2,500 feet awaly, and the brick bulding, size \(18 x 2\) g feot. formerly used ats a power honse, has been comverted into a lamp honse, which makes a very convenient place for that purpose.

A new shop has also been built, size 16x:36x100 feet, entirely of brick, with steel trusses and shate roof, divided equally into carpenter, blacksmith and mathine shops. There is placed in the machine shop, one engine lathe, \(24 x 10\) feet, and one drill press, and the intention is to add to it a planer, thas enabling the operators to do all their own repair work, which will greatly reduce the cost of kecping up repars to mathinery. Mine foreman, John L. Duncan.

Southwest N". 1 "B" Shaft.-This mine was in good condition on each examination. All parts are supplied with plenty of fresh air. The quantity of air passing at the outlet, when last measured, was 86,480 eubic feet per minute. Mine foreman, John Whitfield.

Southwest No. 2 Slope.-The general condition of this mine is good, both in regart to rentilation and dratinage. I measured a volume of 106,400 cubic feet of air per inimute in circulation, which was being well conducted through the working parts of the mine. Mine foreman, William Howath.

Southwest No. 3 Slope.-The condition of this mine was satisfactory. The quantity of air passing at the outlet per minute was 43,040 culbic feet, which was being well conveyed to the face of the workings. The drainage was also in good condition.

The management should be highly commended for the precaution they have taken as a means of protection to both life and property, by introducing into this mine the use of locked safety lamps during the year.

The hanling has been extended about 1,000 feet during the year, thus putting the "lay ofl" within 200 feet of the nearest miner, and reduring the number of drivers from ten to eight. This is a tail rope haulage and has given the best of satisfaction. The ontside improvements are a new stable, which has been built (the old one laving been burned), the dimensions of which are 12 feet 6 inches by 40 x 94 feet, and is built entirely of brick, with steel trusses and slate roof. A hay house has also been built, 150 feet away from stable, which is conneeted by a 30 -inch gauge track, rumning throngh the full length of the statble. A light truck is used to take hay and grain from hay homse to stable. By this arrangement, the stable is made pratetically fire proof.

The hoisting shaft, which is 6: feet derph, has been retimbered with \(10 x 12\) inch tiaber frem top to bottom. This work was done while the pant was in operation. Mine foreman, Robert Hair.

Southwest No. 4 Slope.-General condition of mine, satisfactory. (iood sweeping air currents are conducted through all parts of the workings. The dranage is also in satisfactory condition. Air in eirenlation, when last measured. 44.500 cubie feet per minute. Locked saftey lamps has been introdnced into this mine during the year.

The same may be said of the management as was said in regard to No. 3 mine. Mine foreman, Rolert Morris.

Mines Situated Near the Terminus of the Scottdale Branch of the P. R. R. and Mt. Pleasant Branch of the B. \& O. R. R.

Standard No. 2 Shaft.-This is a very large mine and is in excellent condition. The rentilation is ample for the requirements, and is well distributed around the workings. Quantity of air passing at the outlet, when last measured, was 162,400 cubic feet per minute. The drainage is also very good. A new pump house has been built in connection with the present one. The new one is \(12 \frac{1}{2} \times 30\) feet, arched with brick. Mine foreman, Robert Hay.

Standard Slope.-Idle the entire year:
Mines On or Near the Sewickley Branch of the Pennsylvania R. R.
Mammoth Shaft and Slope.-Both mines were in good condition when last examined. All matters pertaining to health and safety receive proper attention. Air passing through the fan, when last measured, was 153,000 cubic feet per minute, which was being well distributed around the workings. One fan ventilates both mines.

The drainage in the shaft mine was very good. The slope has been idle the greater part of the year, and had been in operation only about two weeks when examined, but notwithstanding this, the drainage was in very fair condition. Mine foreman, Peter Lowther.

Mutual Drift.-When last examined, the condition of the workings and ventilation was satisfactory. Quantity of air in circulation, 16,080 cubie feet per minute. Mine foreman, William Alexander.

Strickler Slope.-This mine is a hard one to manage, owing to the soft bottom which keeps eontimally heaving up in the pillar workings. The work at present being mostly confined to drawing pillars, makes it troublesome for the miners and expensive for the company: The mine, howerer, has been kept in reasonably good condition, both in regard to rentilation and drainage. Quantity of air in circulation at inlet, when last measmed, 24,480 cubic feet per minute, which was well convered to the face of the workings. Mine foreman, Alexander Davenport.

Hecla No. 1 Shaft.-Trouble is experienced here from soft bottom, and in some parts the pillar workings give off considerable blackdamp (C. O. \({ }^{2}\) ), but the mine has been kept in very fair condition, both in regard to ventilation and drainage. Quantity of air passing at inlet, when last measured, 50,000 cubic feet per minute.

Room No. 19, driven from No. 7 butt entry, south, has been ent throngh into the Strickler slope mine in this manner: This room
had been driven some distance into the pillar of coal twenty-five feet thick, which had been left standing, and in driving along the line in the Strickler mine it was cut into, in December, 1896, connecting the two mines. No. 3 butt entry, south, was also driven into this 25 -foot pillar, and at the same point the Strickler people also cut into the \(2 \check{5}\)-foot pillar, and the workings coming together, connected the two mines, thus allowing the water to run from the Strickler into the Hecla mine.

Some time after the opening between the two mines at No. 3 butt entry, south, had been made, Mr. J. P. K. Miller, civil engineer in charge of the Strickler slope mine, and Thomas Laird, superintendent of the Hecla mine, agreed that I should examine the opening and that they would be willing to carry out whatever suggestion or opinion I would give with reference thereto. On the 20th of September, 1897, I went to the mine for the purpose of making this examination, and, in company with Mr. Laird, Harry Hagan, the civil engineer of the Hecla mine, and William Dean, mine foreman, I entered the mine and examined the same, and after carefully considering the matter, gave it as my opinion that the openings should be closed by a wall of masonry, laid in cement, to be three feet thick, and I so informed the persons present. Mr. Thomas Laird, the superintendent, agreed with me that this was the proper thing to be done, and that he would attend to carrying out the suggestions, and, with this understanding, I left.

I again visited the mines on October 19, and found that neither of the walls had been built and that no materials were in the mine with which to construct them. I also found that the opening into the strickler from said room No. 19 was inaccessible from either the Hecla or Strickler mine.

On September 20, the time I was called upon to give an opinion, I saw that materials could not be taken to the openings into the Strickler mine from room No. 19 through the Hecla side, for the reason that the pillars had been drawn at this point. The Strickler people, howerer, gave their consent that the material for the walls should be taken throngh their mine. Some time afterwards and before the materials had been taken into the mine for the wall, the Strickler people drew the rib which extended past this opening from room No. 19, thus allowing the roof to fall in and cutting off all access to this opering. Afterwards, I observed that the opening at No. 3 butt entry, south, was closed up by a wall of stone laid with sand and lime. Mine foreman, William Dean.

Hecla No. 2 Shaft.-All matters pertaining to the health and safety of the employes seem to be well looked after. Quantity of air in circulation at inlet, when last measured. 72.150 cubic feet, which was well distribuled around the workings. Mine foreman, William Snedden.

Calmmet Shaft.-The working of this mine has been confined to the development of the headings and the opening up of new work in one section. As little room and pillar work as possible has been done during the year. The object is to get to the boundary line in this section and work the coal in coming hack, on the retreating system. The ventilation is sufticient for the neressities of the mine and is well distributed around the workings.
'The outside improvement is a new lamp house, which has been erected during the year near the top of the shaft, size \(1 \geqslant x-2\) feet, with tile floor. At one end is a hallway, which is separated from the main building by a comnter, over which there is a wire screen, with three openings, through which the men receive their lamps from the persons in charge in the morning before going to work and return them in the evening after their day's work is over. Two revolving lamp, stands are placed in position near the combter and so arranged that the person in charge can give out all lamps without moving a great deal.

A cupboard is placed in the bulding in which is kept the lamp supplies, also the mine foreman and fire boss' daily report books, together with oils, bandages, linen, etc., as required by section 1, article XVIII, of an act relating to bituminous coal mines, approved May 15, 1893. Mine foreman, James Eaton.

United Shaft.-This mine has been found in very good condition at each examination. All parts are well rentilated, and proper attention given to all matters pertaining to health and safety of the employes. The improvement in drainage in this mine has been such that it deserves space in this report and should be carefnly noted by all interested in mine management. A dratinage of 13,900 lineal feet has been dug, of sufticient depth and width to ratry off the water from the different entries, withont including a drain which has been dug on No. 4 butt entry in dip workings, a distance of soo feet, with an average depth of three and one-hatf feet. Nine foremam. Patrick Reynolds.

Ilumplarey's Drift. - Smong the improvements made att this mine during the year was the erection of a ventilating fan of twelve feet in diameter, which was rmming very slowly on my last visit and pro-
 was in fair condition. Mine forrman, William M. Hart.

Marguerite brift- A new mine, situated on the sewirkley Branch of the S. W. F. R. R., in Vnity township. Westmoreland connty, and operated lye the Standard Contellsville Coke Company. The mine is a drift opening in the ('ommellsville soam of coking coal. The main openings have been driven a distance of 900 feet, from which two batis of "butt" entries are being driven to the left, from which rooms are durned at regnlar distances.

The rapacity of the mine is abont 250 tons of coal daily, all of which is made into coke. The main opening is on a level with the ovens, which allows the coal to be taken direct from the mine and charged into the orens from the mine wagons. A tipple is not needed. The mine mouth has been neatly timbered with twent y-one sets of sxi0 inch oak timbers. The ventilation, at present, is produced by a temporary furnace which will be replaced later by a ventilating fan.

Thirty-three houses of four rooms each have been built in connecfion with the works. The officials are Mr. L. F. Ruth, of Connellsville, general manager, and Mr. Robert Gordon, of Greensburg, superIntendent and mine foreman.

The drainage was good, and I measured 4,600 cubic feet of air in circulation.

\section*{Mines On the Hempfield Branch of the S. W. P. R. R.}

Greensburg No. 2 slope.-On each visit to this mine, 1 found the rentilation and drainage very good; 14,800 cubic feet of air was in circulation when last measmred.

Among the improvements contemplated at this mine are a new set of haulage engines, that are now on the ground and in comse of erection, which, when completed, will take the place of the old ones, that are too small, owing to the development of the mine and the increased trade. Mine foreman, John McIntyre.

Arona Slope.-When last examined, the general condition of this mine was favorable. The quantity of air in circulation was 54.000 cubic feet per minute, well distributed to the various working places. The drainage on the north side of the mine was very good, but on the south side it was somewhat defective. The water comse in that part is almost on a level with the creek bed, and the water from the creek, when it rises, enters that part of the mine.

Among the improvements during the year was the erection of a rentilating fan. 16 feet in diameter, with blades \(6 \frac{1}{2}\) feet wide, driven by an engine \(16 x 30\) inches, which was built by the Connellsville Machine and Car Company, of Connellsville, Pa. Dine foreman, William Nesbit.

Madison Slope.-Among the improvements made at this mine during the year was the chathging of the hanlage from the old roadway to a new one. By this rhange, a farther point in the mine was reathed by a more dired route. It the time of my last visit, I observed that in some of the entries the velocity of the alir curent was not sufficient to keep the workings free from smoke. This was caused by changing the hambage, which interfered with some of the doors and batiees nsed for conducding the air on its proper comse through the mine. If fomblment work on the doors and bratices and, when they are com-
pleted, will remedy this defect. The drainage is in very fair condition. Quantity of air passing at inlet, 39,000 cubic feet per minute. Mine foreman, Henry Gardner.

Ocean No. 1 Shaft.-I entered this mine on my first visit, June 3, about 8.30 A . M., and while I was going up the north main "butt" entry with the mine foreman, Mr. William Bainbridge, an explosion of tire-damp occurred in the northeast main entry, which forced a door through the frame and also blew out some four or five stoppings bet ween the north main butt and parallel entries, which cut the rentilation off from these entries, thereby allowing the gas to accumulate. When we reached the face, where the men were working, with safety lamps, the gas was down within eighteen inches of the bottom, where it exploded in the Davy safety lamp. This gas had accumulated in about a half hour, which proves that the entries generated fire-damp at that time very freely.

The miners were all taken out of that section of the mine and day men were put to work to rebuild the brattices and repair the door, after which the gas was removed.

About 5 o'clock P. M. we reached the face of the northeast main entry, where the explosion occurred, and found the gas extending down about two feet below the roof and back several feet to the last cut-through. I ordered the mine foreman to use brattices in these entries in order to carry the air up to the face so as to keep them clear of any accumulation of fire-damp, and also not to allow any shot firing in entries of this kind, as it was very dangerous.

He at once notified the men who were working in the entries not to fire any more shots unless authorized to do so by him.

The gas had been ignited by the flame from a shot, but fortmately no one was injured, as the men who were working in the entry had time, after they lighted the fuse, to get to another entry about 300 feet a way, before the explosion occurred.

On my second visit, I found the workings comparatively clear of firedamp. On the third visit, which was on December 15, I found the general condition of the mine and drainage very fair. I found standing gas on "rib" falls on first butt, north, but since have been informed that the greater part of it has been removed. The quantity of air in circulation, when last measured, was 132,700 cubic feet per minute, which was being well distribnted around the workings.
There were thirty safety lamps in use in the mine, and more will be introduced. The mine foreman ordered sixty new lamp bottoms to take the place of those which had been damaged on December 11 by a fire, which occurred in the fan engine house, where the safety lamps and supplies were kept. This fire also destroyed that part of the fire boss' daily report book which contained the daily reports of the fire bosses, with reference to the nature and location of any dangers dicovered by them during each examination of the mine.

The outside improvement is a new lamp house, which has been built of brick, and is located a short distance from the top of the shaft, in which will be kept all safety lamps and supplies used in connection therewith. Mine foreman, William Bainbridge.

Carbon Slope.-At each examination of this mine, it was found in satisfactory condition, both in regard to rentilation and drainage, with 52,000 cubic feet of air in circulation per minute. Mine foreman, Joseph Weightman.

At my request, Mr. James S. Mack, mining engineer for the Carbon Coal Company, under whose personal supervision the plant was installed, has furnished me the following description of Carbon Coal Company's pneumatic haulage, which may be of some benefit to companies contemplating a change in the method of haulage:

The plant consists of a "three stage" air compressor, and an eleventon phemmatic locomotive, and a pipe line consisting of 3,000 feet of (i-inch, and about 100 feet of 4 -inch, special wrought iron pipe.

The railroad is 40 -inch gauge and has an average grade of 1.2 per cent. and a maximum grade of 2.4 per cent. in favor of the loaded cars, the road being almost straight except for two curves of 70 feet radius, where it passes from No. 1 sonth main entry to No. 2 south main entry, and one curve of 30 feet radius. The rails are 40 -pound steel, laid on \(5 x 7\) ties. The locomotive hauls a train of thirty cars, the weight of each car being about 1,200 pounds empty, and 4,200 pounds loaded, a distance of 2,200 feet from foot of slope to the foot of No. 9 southwest butt, and back 3,200 feet to foot of slope, with one charging, making the round trip in from fifteen to twenty minutes, including the time of changing trips and charging. The time required for charging is from one to two minutes. It is expected that this haul will be ultimately increased to 4,500 feet each way. The ronte is out No. 1 south main entry to the foot of No. 3 southwest butt and then out No. 2 south main entry the remainder of the distance.

The compressor was made by the Ingersoll-Sergeant Drill Company, of New York, and is of the straight lime three-stage type. The air is drawn into an intake cylinder twelse inches in diameter and eighteen inches stroke, near the center of the machine, where it is compressed to eighty pounds pressure and delivered hot through an inter-cooler on top of the machine, consisting of an iron casing filled with thin tubes, through which cold water is constantly circulating, in which it is cooled and reaches the second compressing eylinder. eight inches in diameter, in which it is further compressed to about 200 pounds then, sent through a second inter-cooler and finally compressed to its final pressure of 800 pounds per square inch in a third c Cl inder four inches in diameter, from which it is delivered through a one and one-half inch opening to the pipe line. The sides and heads of the first two cylinders are water jacketed to assist in reduring the
temperature of the air during compression, the third cylinder being entirely immersed in the water box on the end of the machine.

The steam cylinder is sixteen inches in diameter and eighteen inch stroke, provided with the Meyer adjustable cut off valve and directly connected with the three air cylinders, which are all of the same stroke. The steam and air cylinders are all mounted on one solid bed plate with two heavy fly wheels. The capacity of the compressor is 216 cubic feet of free air per minute, compressed from the atmosphere to 800 pounds per square inch. The air is delivered from the compressor throngh short pieces of \(1 \frac{1}{2}\) and 2 inch pipe successively, then down the intake fan shaft through 100 feet of 4 inch and af feet of 6 inch pipe to a heavy east iron \(T\), provided with a drip cock to drain off any moisture which may collect in the pipes.

At the top and bottom of the fan shaft, riglit angle bends of threefeet radius were used insteat of L's, to reduce the friction.

From the above-mentioned T, the 6-inch pipe runs to a charging station near the foot of the slope and in the other direction about 2,700 feet along the main hanling road to a second charging station, which is not needed but has been put there for an emergency.

The pipe line acts as a reservoir for the compressor and has a capacity of about 600 eubic feet of air at 800 pounds pressure.

The most of the joints are coupled by an extra heary wrought iron sleeve, recessed at the ends for canlking with lead or copper. At the charging stations and bends, extra heavy flanged couplings are usea. These are male and femate and a lead gasket is used to make a tight joint. The pipe was furnished by the American Tube and Iron Works Company, and each joint was tested to 1,700 pounds per square inch at the mill.

The charging stations consist of a flange on the end of the 6 -inch pipe, reduced to 2 inches, and a piece of 2 -inch pipe on which is phaced a heary gate valve and a Moran right angle flexible coupling, with a suflicient length of extra heary pipe ending in the end of a quick acting screw coupling to reach the charging pipe of the locomotive, which rontains two Moran flexible joints and ends with the other half of the screw conpling, the whole being very flexible and giving considerable latitude in stopping to charge.

Between the valve on the pipe line and the one on the locomotive is a small bleeder valve to exhanst the air from the compling before me screwing the same.

The pnemmatic locomotives, shown on the opposite pare, was built by H. K. Porter \& Co., of Pittsturgh, lat. It is of the six wheel connected type, having three drivers, 24-inch diameter on each side, the cylinders being s-inch diameter and 14-inch stroke.

The general dimensions of the locomotive are 17 feet 6 inches long over bumpers, 5 feed ? inches wide and 5 feet high above the rail.




The tanks for storing the air are 14 feet and 16 feet long, respectively and 29 inches in diameter, holding 130 cubic feet of air and are designed to work under 750 pounds pressure.

The air from the two main tanks is conducted through a reducing valve to an anxiliary reservoir placed below and between them, and from which it passes through the throttle valve to the cylinders. In passing through the reducing valve, the pressure of the air is reduced from 750 pounds per square inch to 140 pounds per square inch. This valve is so constructed that the pressure in the anxiliary can be raised or lowered, depending on the work to be done, by an adjustment requiring but a few moments.

The ports of the engine are specially designed for the use of air, and there has been no trouble experienced from the exhaust freezing up.

The route orer which the locomotive travels is shown by the green line on the accompanying map, and at present the empty cars are thrown off at the different butt entries in going in, and the loaded ones taken on when returning. This is made necessary by a scarcity of mine cars and consumes considerable time. More cars are being built, however, and when they are put in service, alternate trips will be made to each entry, which will greatly facilitate the handling of the output.

Description of Fatal Accidents Which Oceurred in the Sceond Bituminous Mine Inspector's District of Pennsylvania, During the Year of 1897 .

John Pipan.-A Hungarian miner, aged 40 years, was instantly killed by a fall of slate while at work in Larimer mine, on February 2.

Kismanis Neizgoda, an Austrian miner, was instantly killed by a fall of coal in Latrobe coal works mine, February 23.

Michael Mets, a Slavish miner, was instantly killed by a fall of coal and slate in Hostetter mine, March 8.

David Franceskino, an Italian miner, was instantly killed by a fall of slate in Westmoreland shaft mine, April 15.

Joseph \(A\) gnew, a miner, aged 64 years, was fatally injured in Shaft No. 2, of the Standard mines, on A pril 24.

Augustino Rolands, an Italian miner, aged 34 years and single, was instantly killed at the Millwood mine, on June 17, by falling down a shalt, a distance of about 100 feet. After receiving the evidence of those who were present when the accident occurred, the coroner derided that a jury was not necessary for the reason that Rolands lost his life by an accident that was mavoidable.

Angnst Socco, an Italian miner, was instantly killed on Jone 22. abont 2.80 I'. M.. in Shaft No. 1, of Ocean mines, by a fall of slate.

John McDonald, a mine boss, aged 47 years, was instantly killed by being struck by a loaded dilly trip, while it was ascending the slope near the No. 2 Hat left, in Mammoth shaft mine, on August 2. Just how the accident occurred is not known, as there was no one present at the time. Mr. McDonald was for many years mine foreman at the Moyer mines, and left there about four weeks previous to his death to accept the foremanship at the Mammoth mine. He is survived by a widow and nine children.

George Dezeyak, a Slavish laborer, at the Alexandria mine, was smothered to death in the coal bin, on July 14, by the coal sliding down on him. The coal is crushed and washed at this mine, which makes it very fine, causing it at time to adhere to the sides of the bin, as was the case when the accident occurred.

James McNaught, an American driver, aged 21 years and single, was instantly killed in Hempfield mine on August 7, by a fall of roof.

Owen Morgan, an Irish miner, aged 39 years, was instantly killed by a fall of coal in Alexandria mine on August 13.

Frederick Wilhelm, an American miner, aged 17 years, was seriously injured by a fall of slate in Arona mine, August 13 . He was removed to the Mercy Hospital, at Pittsburgh, two days after the accident and died there on November 2.

Marco Bacic, an Austrian miner, aged 27 years, employed in Larimer mine, was instantly killed by a fall of slate on August 27.

Frank Piershe, an Austrian miner, aged 27 years and single, was seriously injured by a fall of slate on August 17, breaking his back and left amkle. He was removed to the Cottage Hospital, at Connellsville, where he died on September 10, twenty-four days after the accident.

Elmer Shultz, an American, a night pumper, was injured by a piece of rock or wood which fell down the shaft and struck him on the head, crushing his skull, as he was on the eage descending Ifecla No. I shaft, on the evening of September \(\&\), about 6.30 P . M. He died September 10, two days after the accident. On investigation. I discovered that there was no overhead cover on the cage which the decedent and a man named Jeffrey was on when the accident occurred. I was informed by the officials of the mine and others that persons were not allowed to ride on this cage, it being used exchsively for lowering materials into the mine.. Jeffrey stated that he knew it was against the rules of the mine to go down on the rage when he and Shult\% boarded it. The air shaft at this place is provided with a stairway for persons going into or out of the mine, when they cannot use the cage which is supplied with an overhead cover. John W. Bailey stated that Shult\% traveled the stairway about two weeks while they were engaged in putting new timber in the shaft. I found notices, properly signed and posted, at the top and bottom of the shaft, forbidding
any person to go up or down on the cage which was not provided with an overhead cover. Shultz was familiar with the rules of the mine, having been employed in and about it for several years.

Joseph Duffy, a miner aged 15 years, was instantly killed by a fall of slate in the Alexandria mine on September 21. The coroner held an inquest and a verdict of accidental death was rendered.

On October 14 Jacol Kupsley, a Slavish miner in Mammoth shaft mine, was injured by a wagon running over his right leg below the knee, crushing it so badly that he died on the afternoon of the same day.

Alexander Metz, an American miner, 40 years of age, was instantly killed in Strickler mine, on October 26, by a fall of "horse-back." A. J. Saylor, who was injured by the same fall, stated, at the investigaiion, that he considered the place perfectly safe and well timbered, and G. W. Pike, the driver who hauled a wagon from there about twenty-five minutes before the accident, said the same.

Marshall Major, an American miner, was instantly killed at Isabella Furnace mine by a fall of slate and rock, while at work on room pillar No. 19 on third cross of Martin's entry, November 6.

John Krackan, a German miner, was instantly killed in Penn Gas No. 1 mine, November 6 , by a fall of slate.

William Leasure, an American miner, was fatally injured by a fall of slate in Sandy Creek mine on November 16, and died on the 23d of the same month. The coroner held an inquest and a verdict of accidental death was rendered. Deceased was 17 years of age.
\begin{tabular}{|c|c|c|c|c|}
\hline Name of Colliery. & Name of Operator. & Location-County. & Name of Superintendent. & Postoffice Address. \\
\hline Alexandria, & Alexandria Coal and Coke Co., & Westmoreland, & Thomas Donohoe, & Greensburg. \\
\hline Arona, & Arona Gas Coal Co., & Westmoreland, & Harry F. Bovard, & larragh. \\
\hline Attantic. & Atlantic Crushed Coke Co. & Westmoreland, & H. C. Burket, & Greensburg. \\
\hline Burrell, & Burrell Coal Co., & Indiana, ...... & Thomas Maher & Blairsville. \\
\hline Calumet, & Calumet Coal Co., & Westmoreland, & R. O. Thonias, \({ }^{\text {J. Howard Pation, }}\) & Galumet. \\
\hline Carbon, & Carbon Coal \& Coke Co. & Westmoreland, & Wm. M. Singer, & Greensburg. \\
\hline Central, & H. C. Frick Coke Co & Westmoreland, & Charles Walters, & Feree. \\
\hline Denmark
Derry, & Manor Gas Coal Co. & Westmoreland, & A. P. Cameron, & Claridge. \\
\hline Derry, & Derry Coal \& Coke Co., & Westmoreland, & F. F. Saxman, & Latrobe. \\
\hline Export. & Westmoreland Gas Coal Co., & Westmoreland, & A. N. Humphreys, & Irwin. \\
\hline Greensburg No. 1 , & Greensburg Coal Co., & Westmoreland, & Thomas L. Jones, & Greensburg. \\
\hline Greensburg No. 2, & Greensburg Coal Co., & Westmoreland, & Thomas L. Jones, & Greensburg. \\
\hline Graft, .........1. & Blairsville Coke Co., Limited. & Indiana, & William Hamer, & Blairsville. \\
\hline Graceton No. 2. & Mccreary Coke Co., & Indiana, & Harry Mccreary, & Graceton. \\
\hline Hecla No. 1, & The Hecla Coke Co., & Westmoreland, & Thomas Laird, .. & South West. \\
\hline Hecla No. ?, & The Hecla Coke Co., & Westmoreland, & Thomas Laird. & South West. \\
\hline Hempfield, & Hempfield Coal Co., \({ }^{\text {c.......... }}\) & Westmoreland, & Thomas L. Jones, & Greensburg. \\
\hline Hostetter,
Hampton, & Hostetter Connellsville Coke Co. Hampton Coal Co. & Westmoreland, & John T. Rush, & Whitney. \\
\hline Humphreys, & Bessemer Coke Co.. & Westmoreland, & Wm. M. Hart, & Pleasant Unity. \\
\hline Isabella Furnace, & Isabella Furnace Co & Westmoreland, & W. C. Grist. & Blairsville. \\
\hline Jamison, & Tamison Coal Co., & Westmoreland, & Thomas L. Jamison, & Greensburg. \\
\hline Lockport, & Bollvar Coal and Coke Co.. & Westmoreland, & George H. Richards, & Lockport. \\
\hline Lucesco, .... & 1 lell Coal Co.. & Westmoreland, & & \\
\hline 1,atrobe Coal Works, & tatrobe Coal Co., ......... & Westmoreland, & D. W. Jones, & Latrohe. \\
\hline Loyalhanna No. \({ }^{\text {L }}\), & Toyalhanna Coal \& Coke Co., & Westmoreland,
Westmoreland, & R. M. Mckinney,
R. M. Mckinney. & Latrobe. \\
\hline Larimer No. 4. & Westmoreland Gas Coal Co.. & Westmoreland. & A. N. Humphreys, & Irwin. \\
\hline Millwood Shaft & Villwood Coal and Coke Co., & Westmoreland, & F. B. Kimmell, & Millwond. \\
\hline Madison. & 'radison Gas Coal Co. & Westmoreland. & Thomas Donohoe, Jr & Darragh. \\
\hline Mammoth Shaft, & H. C. Frick Coke Co., & Westmoreland, & Charles J. Coll, & Mammoth. \\
\hline Mammoth Slope. & IF. C. Frick Coke Co., & Westmoreland, & Charles J. Coll. & Mammoth. \\
\hline \begin{tabular}{l}
Monastery. \\
it Saxman
\end{tabular} & H. C. Frick Coke Co.
M. Saxman. Sr. \& Co & Testmoreland,
Westmoreland, & A. F. Sowning. & Latrohe. \\
\hline Mitchell. & Indiana Coal Co., & Indiana, ...... & Frank Kierman, & \\
\hline Maher No. 2 , & Maher Coal and coke Co., & Indiana. & Thomas MTaher, & Blairsville. \\
\hline Mritual. & II. C. Frick Coke Co. & Westmoreland. & Tohn M. White, & Tnited. \\
\hline Marguerit & Standard Connelisville Coke Co & Westmoreland, & Prbort Gordon. & Greensburg. \\
\hline No. 1 A Shaft, & Southwest Connellsville Coka Co., & Westmoreland, & TM. S Ramsay, & Mr. Pleasant. \\
\hline No, 1 B Shaft. & Southwest Connellsvile Coke Co., & Testmoreland, & Wm. \({ }^{\text {S }}\) Ramsay, & Mt. Pleasant. \\
\hline Ňn. 3 . & Sonthwest Connellsvile Coke Co.,
Southwest Connel'svily Coke Co., & Testmnreland, & I. I. Finch, & Mt. Pleasant. \\
\hline No. 4. & Southwest Connellsville Coke Co., & Westmoreland, & I. M. Whitelaw. & Alverton. \\
\hline
\end{tabular}


TABLE No. 2-Gives the total number of tons of coal mined and tons of coke produced in each Colliery, number of days worked, num-, ber of employes, number of persons killed and injured, number of kegs of powder used, etc., in the Second Bituminous District, for the year ending December 31, 1897.



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Latrobe Coal Werks, & 1 & & 146 & & 15 & & 6 & 172 & & 4 & & & & & & 223 \\
\hline Loyalhanna No. 1. & 1 & 2 & 19. & & 25 & 7 & 16 & 246 & \(\cdots\) & 4 & 3 & \(\cdots \cdots\) & 28 & 2 & 43 & 259 \\
\hline Loyalhanna No. 2, & & & 14 & & 2 & & 5 & 21 & & & 4 & 1 & 1 & 1 & 8 & 29 \\
\hline Larlmer No. \(\downarrow\) & 1 & \(\stackrel{9}{1}\) & 439 & ......... & 21 & 17 & 18 & 509 & 1 & 3 & 3 & 2 & 23 & 2 & 34 & 546 \\
\hline Mlllwood Shaft, & & 1 & 96 & ......... & 14 & 3 & 5 & 120 & & 3 & 3 & 1 & 13 & 1 & 21 & 141 \\
\hline Madison, \(\cdots\)...... & 2 & & 175 & ......... & 14 & 6 & 8 & 205 & 1 & 4 & 3 & & 18 & 2 & 28 & \(!33\) \\
\hline Mammoth Shaft, & 1 & 3 & 173 & & 14 & 3 & 16 & 210 & 1 & 6 & 7 & & 113 & 3 & 130 & 340 \\
\hline Mammoth Slope. & & & & & & & & & & & & & & & & \\
\hline Monastery, ....... & & 1 & 70 & ......... & & 4 & 12 & 101 & i & 2 & 8 & & 5 & 2 & 18 & 119 \\
\hline M. Saxman. & 1 & & 54 & & 8 & 4 & 5 & 72 & 1 & 2 & 1 & & 24 & 2 & 30 & 102 \\
\hline Mitchell. & & & & & & & & & & & & & & & & \\
\hline Maher No. 2. & 1 & & 32 & & 2 & & & 35 & & & & & & 1 & 1 & 36 \\
\hline Mutual, & & 1 & 40 & & 4 & & & 48 & 1 & 1 & 1 & & 23 & 2 & 28 & 76 \\
\hline Marguerite. & & & 50 & & 9 & 2 & \(\stackrel{2}{2}\) & 64 & 1 & 2 & \(?\) & & 28 & 4 & 37 & 101 \\
\hline No. 1 A Shaft, & 2 & 3 & 304 & & 23 & 3 & 35 & 370 & 2 & 6 & 15 & & 252 & 5 & 310 & 680 \\
\hline No. 1 B Shaft, & & & & & & & & & & & & & & & & \\
\hline No. 2, .. & 1 & 1 & 129 & & 13 & 1 & 10 & 146 & 1 & 2 & 3 & & 119 & \(\ddot{2}\) & 127 & 273 \\
\hline No. 3 , & 1 & 1 & 114 & & 12 & & 20 & 148 & 1 & 3 & 4 & 1 & 9.5 & 2 & 106 & 254 \\
\hline No. 4. & 1 & 1 & 71 & & 5 & & 9 & 87 & 1 & 2 & 3 & & 64 & 1 & 71 & 158 \\
\hline Ocean No. 1. & 1 & 3 & 247 & & 28 & 5 & 14 & 295 & 1 & 4 & 4 & 2 & 13 & 3 & 27 & 325 \\
\hline Oak Hill No. 4 , & 2 & & 360 & & 28 & 14 & 9 & 413 & 1 & 2 & 2 & & 22 & 3 & 30 & 443 \\
\hline Ocean, ... & 1 & & f & & 1 & & & 9 & & & & & 3 & 1 & 4 & 13 \\
\hline Flum Creek, & \% & & 193 & & 13 & 8 & 8 & 224 & & 6 & 2 & & 23 & 2 & 33 & 257 \\
\hline 1 'enn Gas No. 1. & 1 & 3 & 210 & & 23 & 4 & 9 & 250 & i & 3 & 4 & 2 & 18 & & 28 & 278 \\
\hline Penn Gas No. \(\frac{2}{3}\), & 1 & 3 & 241 & ........ & 27 & 5 & 10 & 287 & 1 & 5 & 4 & 2 & 22 & ........... & 34 & 321 \\
\hline Penn Gas No. \(3, .\). & & & & & & & & & & & & & & & & \\
\hline Fenn Gas No. \({ }_{\text {Penn }}\) Gas Coal Run. & 1 & \({ }_{1}^{2}\) & 186
105 & & 111 & 4 & 6
3 & 218 & 1 & 3 & 3 & 1 & \(\underline{21}\) & & 29 & 247 \\
\hline lenn Gas. . . . . . . . . & 1 & 1 & 105 & & 11 & 4 & 3 & 125 & 1 & 2 & & & 5 & & 8 & 133 \\
\hline Pleasant Vailey, & i & i & 130 & & 10 & 3 & 5 & 150 & & \(\stackrel{\square}{1}\) & & & 17 & 1 & 20 & 170 \\
\hline Penn Manor. & 1 & 1 & 60 & & 4 & 1 & 2 & 69 & & 1 & 3 & & 7 & 1 & 12 & \$1 \\
\hline 1'andora, .... & 1 & 1 & 90 & & 6 & 2 & 8 & 108 & & 1 & 3 & 2 & 3 & 2 & 12 & 120 \\
\hline Puritan or Baggales. & 1 & 1 & 110 & ......... & 10 & 4 & 2 & 128 & 4 & 5 & 6 & ........ & 35 & 8 & 58 & 186 \\
\hline S. H. Smith, & 1 & & 2 N & & & 1 & & 32 & & & & & 1 & 1 & 2 & 54 \\
\hline Strickler. & 1 & & 35 & & 5 & 1 & 1 & 46 & 1 & 1 & \({ }_{2}\) & & 5 & & 9 & 55 \\
\hline Standard No, 2 Shaft. & 1 & 4 & 241 & & 17 & 7 & 30 & 300 & 1 & 8 & 11 & & 205 & 4 & 229 & 529 \\
\hline Standard Slope, & & & & & & & & & & & & & & & & \\
\hline Saint Clair, .... & 1 & & 72 & & & 4 & 4 & S6 & 1 & 2 & 4 & & 31 & 2 & & \\
\hline Smith's. \({ }^{\text {S }}\) & 1 & & 40 & & 4 & & 3 & 48 & & & & & & 1 & 1 & 49 \\
\hline Sandy rreek. & 1 & & 190 & & 16 & & 8 & 217 & & 7 & 4 & & 23 & \(\frac{2}{5}\) & 36
19 & 253 \\
\hline Spring Hill No. 2. & \(\cdots\) & & 82 & & 7 & 2 & 2 & 95 & & 2 & 4 & & \({ }_{-8} 8\) & 5 & 19 & 114 \\
\hline United No. 1, . & 1 & 2 & 100 & & 14 & 3 & 10 & 130 & 1 & 4 & 5 & & 78 & \(\stackrel{2}{2}\) & 90 & 220 \\
\hline Whitney, & 1 & & 106 & & 8 & 1 & 9 & 127 & 1 & 3 & 5 & & 49 & 2 & 60 & 187 \\
\hline Westmoreland, & \(\stackrel{2}{2}\) & 3 & 3.0 & & 22 & 10 & 14 & 401 & 1 & 4 & 9 & 2 & 19 & 2 & 37 & 448 \\
\hline Weinman, & 1 & & 10 & & 1 & & & 12 & & & & & 34 & & 57 & 12 \\
\hline & & & & & & & & & & & & & & & & \\
\hline Total, & 71 & 59 & 7,791 & & 707 & 217 & 481 & 9,326 & 53 & 192 & 218 & 23 & 2,322 & 127 & 2.946 & 12,27? \\
\hline
\end{tabular}


TABLE No. 5-List of Non-Fatal Accidents that occurred in and ab out the Mines of the Second Bituminous District, for the year ending Dece mber 31, 1897.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & & Name of Person. & Occupation. & 4 &  & Name of Colllery. & Location-County. & Nature and Cause of Accident in Brlef. \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Jan. \\
Feb.
\end{tabular}} & 27. & George Bolish, & ariner, .............. & 27 & M. & United, ..................... & Westmoreland, .... & Collar bone broken and back bruised by a fall of slate. \\
\hline & 1, & Anthony Ginger, & & 17 & & Oak Hill No. 4, ............ & Allegheny, & Compound fracture of thigh bone by a fall of slate. \\
\hline & & \begin{tabular}{l}
David King. \\
Patrick Carroll, \\
.............
\end{tabular} & \begin{tabular}{l}
Miner, \\
Miner. \(\qquad\)
\end{tabular} & 40 & M. & \begin{tabular}{l}
Madison, \\
Coal Run, \(\qquad\)
\end{tabular} & Westmoreland,
Westmoreland,.... & Leg broken by a fall of slate, Injured about head, body and legs by a premature blast. \\
\hline & 8 , & Logan Opling & Laborer, .......... & 21 & S. & Arona, & Westmoreland, .... & \begin{tabular}{l}
premature blast. \\
Arm broken by being caught between mule and post.
\end{tabular} \\
\hline & 9. & Lewis Block, & & 30 & M. & Greensburg No. 1, .......... & Westmoreland, .... & Hip dislocated and back bruised by a fall of coal. \\
\hline \multirow[t]{3}{*}{Mar.} & 5. & \begin{tabular}{l}
John Engle, \\
Amos Price, \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Miner. \\
Driver.
\(\qquad\)
\end{tabular} & \[
\begin{aligned}
& 45 \\
& 27
\end{aligned}
\] & I. & \begin{tabular}{l}
Whitney, \\
South West No. 3,
\end{tabular} & Westmoreland. Westmoreland, .... & \begin{tabular}{l}
Leg broken by a fafl of coal and slate. \\
Three ribs broken by having been caught between wagon and coal pillar.
\end{tabular} \\
\hline & 11,
15
29 & \begin{tabular}{l}
Martin Menosky, \\
Joseph Bolanskey. \\
Fritz Henell.
\end{tabular} & \multirow[t]{2}{*}{\begin{tabular}{l}
Miner. \\
Miner. \\
Miner,
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 46 \\
& 35 \\
& 52 \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{M} . \\
& \mathrm{M} . \\
& \mathrm{Mi} .
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Central, \\
South west No. 3. \\
Standard Shaft No. \\
\(2, \ldots\)
\end{tabular}} & \multirow[t]{2}{*}{Westmoreland. Westmoreland, .... Westmoreland. ....} & \multirow[t]{2}{*}{Leg broken by a fall of roof. Injured about the body by a fall of roof. Small bone in foot broken by a fall of slate.} \\
\hline & & Fritz Henell, & & & & & & \\
\hline April & 24, & Lee L. Palmer, .......... & \begin{tabular}{l}
Miner. \\
Miner, \(\qquad\)
\end{tabular} & \[
\begin{aligned}
& 30 \\
& 35
\end{aligned}
\] & \[
\frac{\mathbf{M}}{\mathbf{M}}
\] & \begin{tabular}{l}
Greensburg No. 1, \\
Greensburg No. 1
\end{tabular} & \begin{tabular}{l}
Westmoreland. \\
Westmoreland. ..
\end{tabular} & These men were slightly burned about the face and body by the flame from a shot which ignited while they were tamping it. \\
\hline May & 30, & \begin{tabular}{l}
Andy Yaddo. \\
Peter Camarina,
\end{tabular} & \begin{tabular}{l}
Miner, \\
Miner,
\end{tabular} & \[
\begin{aligned}
& 30 \\
& 28
\end{aligned}
\] & \begin{tabular}{l}
M. \\
S.
\end{tabular} & Standard Shaft No. 2 , Loyalhanna No. 1, & Westmoreland, Westmoreland, \(\qquad\) & One rib broken by a fall of roof. Leg broken by a fall of slate. \\
\hline \multirow[t]{2}{*}{June} & 12. & Ira Baird, & Miner, ............. & \multirow[t]{2}{*}{38} & \multirow[t]{2}{*}{M.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Loyalhanna No. 1 . \(\qquad\) \\
South West No. 3, \(\qquad\)
\end{tabular}} & Westmoreland. .... & \multirow[t]{2}{*}{\begin{tabular}{l}
Leg broken and otherwise Injured by a fall of roof. \\
Arm broken by being run into by another trip.
\end{tabular}} \\
\hline & 15. & Wm. Mathews, & \begin{tabular}{l}
Driver, \(\qquad\) \\
Trapper,
\end{tabular} & & & & Westmoreland, .... & \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{gathered}
22, \\
23, \\
3, \\
27,
\end{gathered}
\]} & Patrick Kelley, ..........
John Cranyak, & \multirow[t]{2}{*}{\begin{tabular}{l}
Trapper, \\
Miner. \\
Miner. \\
Miner
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 15 \\
& 38 \\
& 37 \\
& 28
\end{aligned}
\]} & & & \multirow[t]{2}{*}{\begin{tabular}{l}
Westmoreland, ..... \\
Westmoreland, ....
\end{tabular}} & \multirow[t]{2}{*}{Back slightly injured by a fail of slate. Lea broken by being struck by a post. Collar bone and two ribs broken and shoulder fractured by a fall of slate.} \\
\hline & & James Nelson, \({ }^{\text {Ealdislow }}\) Shelkowski..... & & & \[
\begin{array}{|l|l}
\mathbf{M I} . \\
\text { Mr. } \\
\hline \mathbf{S}
\end{array}
\] & \begin{tabular}{l}
Saint Ciair. Madison. \\
Export,
\end{tabular} & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & & Name of Person. & Occupation. &  &  & Name of Colliery. & Location-County, & Nature and Cause of Accident In Brief. \\
\hline \multirow[t]{2}{*}{Aug.} & 1.
7.
11. & \begin{tabular}{l}
Joseyh McGinn, \\
Michael Galvin, \(\qquad\) \\
Antonia Cellnar, \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Trapper, \\
Miner, \(\qquad\) \\
Driver. \(\qquad\)
\end{tabular} & 13
39
41 & S.
M. & \begin{tabular}{l}
Export, \\
Hempfield, \\
Standard Shaft No. 2.
\end{tabular} & \begin{tabular}{l}
Westmoreland, .... \\
Westmoreland, .... \\
Westmoreland, ....
\end{tabular} & \begin{tabular}{l}
small bone broken in left toot by a wagon running upon it. \\
Finger broken and back slightly injured by a fall of roof. \\
Arm broken and wrist joint dislocated by being caught between wagon and coal pillar.
\end{tabular} \\
\hline & 12. & Harvey Rlchardson, .... W'm. Robinsun, ............ & \begin{tabular}{l}
Miner, \\
Driver,
\end{tabular} & 17
16
48 & & Smiths, Loyalhanna. & Indiana, Westmoreland, .... & \begin{tabular}{l}
Brulsed about the body by a fall of slate. \\
Injured about the stomach and loins by being caught between two wagons.
\end{tabular} \\
\hline \multirow[t]{6}{*}{Sept.} & 25, & James Armitage. Anthony Shope. Joseph Gubeck. & \begin{tabular}{l}
Miner, \\
Miner, \\
Miner, \(\qquad\)
\end{tabular} & 42
36
27 & M.
S.
S. & Penn Gas No. 2, ... Madison, Export, & Westmoreland, Westmoreland. Westmoreland, .... & \begin{tabular}{l}
Back slightly injured by a fall of slate. Leg broken by a fall of rock. \\
small bone in left ankle broken by a fall of slate.
\end{tabular} \\
\hline & 11, & L. A. Cobb, Thomas Crockett. & \begin{tabular}{l}
Miner. \\
Miner,
\end{tabular} & \[
\begin{aligned}
& 36 \\
& 24
\end{aligned}
\] & M. & Carbon, Latrobe Coal Works, & Westmoreland, .... Westmoreland .... & Leg broken by a fall of slate. Compound fracture of right leg below the knee by being struck by the dilly rope. \\
\hline & 18,
18, & \begin{tabular}{l}
Wm. Laird. \\
Salva Furlck,
\end{tabular} & \begin{tabular}{l}
Miner, \\
Miner, \(\qquad\)
\end{tabular} & 42
56 & M. & Saint Clair, Whitney, & Westmoreland, .... Westmoreland, .... & Lég broken by a fall of roof. Seriously injured about the body by a fall o: slate. \\
\hline & 28, & Amzi Struble,....... & Driver, ............ & 19 & S. & Mammoth Shaft, & Westmoreland, .... & Leg broken by being caught between wagons. \\
\hline & 30. & & Miner, ............... & 35 & M. & Mammoth Shaft. & Westmoreland, .. & Three ribs broken by belng caught between wagon and coal pllar. \\
\hline & 20. & Samuel C ltins. & Trapper, ............ & 15 & & Export, & Westmoreland, & Compound fracture of right arm caused by mine wagons running over it. \\
\hline \multirow[t]{3}{*}{Oct.
Nus.} & \[
\begin{aligned}
& 11, \\
& 12,
\end{aligned}
\] & \begin{tabular}{l}
Steve Hamrock. \\
Fobert Kirkpatrlck. ......
\end{tabular} & \begin{tabular}{l}
Miner. \\
Driver. \(\qquad\)
\end{tabular} & \[
\begin{aligned}
& 32 \\
& 21
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{M} . \\
& \mathrm{S} .
\end{aligned}
\] & \begin{tabular}{l}
Central. \\
Oak H111 No. 4.
\end{tabular} & Westmorelanil, .... Allegheny. & Three ribs broken by a fall of roof. Leg broken by falling under a trip of wagons. \\
\hline & & Jacob Saylor, ............ & Miner, .............. & 25 & M. & Strickler, & Westmoreland, & Injured about back and loins by a fall of "horse-back." \\
\hline & 26. & John Shuster, ............ & Miner, ............. & 57 & M. & Denmark, & Westmoreland, .. & Seriously injured loy a fall of "horseback." \\
\hline N゙и\%. & \[
\stackrel{n}{6}
\] & Samuel Padden. W'lliam Parsons, ......... & \begin{tabular}{l}
Miner. \\
miner.
\end{tabular} & 70
45 & M. & Penn Manor Shaft. Penn Gas No. 1, ..... & Westmorelanı. .... Westmoreland, .... & \begin{tabular}{l}
Leg broken by a fall of coal. \\
Injured about back and loins by a fall of slate.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & 30 & M. & Mlllwood Shaft, & Westmoreland, & Hip dislocated by being struck by a loaded trlp after he had lost control of it. \\
\hline 13. & G & Mi & 30
30 & M. & \begin{tabular}{l}
Loyalhanna No. 1. \\
Loyalhanna No. 1 ,
\end{tabular} & Westmoreland, & \begin{tabular}{l}
Foot crushed by a fall of slate. \\
Leg broken and bruised about head and
\end{tabular} \\
\hline 20. & \[
\mathrm{Jacol}
\] & Min & 56 & M. & Penn & Westmoreland, & \begin{tabular}{l}
back by a fall of slate. \\
C'ollar bone broken by a fall of coal and
\end{tabular} \\
\hline 22, & Anto & Min & 44 & M. & Expor & Westmoreland, & Finger crushed by a fall of slate, necessitating amputation \\
\hline 26. & Cha & Mi & 16 & & Standard & Westmoreland. .... & Shoulder dislocated by being caught between wagons and coal pillar. \\
\hline 30. & M & & 48 & A & nn Gas & We & Hand and shoulder slightly bruised by a fall of coal and slate. \\
\hline Dec. 2. & Jo & & 14 & & Ocean & Westmoreland, . & Right leg crushed by wagon running over it, necessitating amputation. \\
\hline 11. &  & Mi & \[
30
\] & M. & Sandy Creek, & Alleghen & Bruised about breast by being caught between wagon and coal pillar. \\
\hline 24. & Martin McNauskey, . & Miner, & 48 & M. & Central, ...................... & Westmoreland, .. & Finger broken by a fall of slate. \\
\hline
\end{tabular}

業

\section*{THIRD BITUMINOUS DISTRICT.}
(ARMSTRONG, BUTLER, CLARION, INDIANA, JEFFERSON, LAWRENCE, MERCER, WESTMORELAND AND BEAVER COUNTIES.)

Mercer, Pa., February 3, 1898.
Hon. James W. Latta, Secretary of Internal Affairs of Pennsylvania:
Sir: I herewith submit my annual report of the inspection of mines of the Third bituminous district for the year ending December 31, 1897, in compliance with section 11, of article \(X\), of the bituminons mining act, approved the 15th day of May, 1893.

I regret to report an increase in the number of fatal accidents during the year just closed, as compared with the year 1896. For the year 1896, only three fatal casualties occurred, while for this year ten persons lost their lives. The increase is something extraordinary for such a district as this, but the reason may be attributed to two causes, viz., a boiler explosion, which killed three men, something which has not happened in this district before during my-term of office; the other, as will be noticed in my description of the fatal accidents, by which four persons (Robertson, Nugent, Steel and Dixon) lost their lives through gross carelessness. In fact, two of the other three fatalties could have been averted by the exercise of ordinary care on thé part of the two men.

No matter what safeguards prescribed by law may be thrown around the miner while he is pursuing his usual.avocation, much will depend upon himself if he expects to secure the full benefits which would naturally and reasonably be expected to come from such enactments. The miner must put into use methods and means which common sense will dictate to him to employ for his own protection, together with the exercise of prudence and good judgment if he expects to escape the dreadful results which we are required to report vearl-

The number of fatal and non-fatal aceidents and their causes are set forth in the following table:
\begin{tabular}{|c|c|c|c|c|}
\hline Classification of Accidents for 1897. & Fatal. & Non-fatal. & Widows. & Orphans. \\
\hline By falls of roof, & & 7 & & \\
\hline By falls of coal. \(\ldots\) & 2 & 5 & & \\
\hline By explosions of a boiler and of powder, & 3 & 3 & & . \\
\hline By mine wagons, ..................... & & 6 & & . \\
\hline From miscellaneous causes, & & 3 & & \\
\hline Total, & 10 & 24 & 4 & 18 \\
\hline
\end{tabular}

In the following table will be found a comparative smmmary of the statistics, as gathered from the official returns of the coal companies of the district to this office, for the last two years:
\begin{tabular}{|c|c|c|}
\hline & 1597. & 1896. \\
\hline Number of mines in the district in operation, & 68 & 72 \\
\hline Number of miners (men, and boys) employed in the district, \({ }_{\text {Number }}\) ( \({ }^{\text {day men }}\) employed instde of the mines including the & 4,903 & 4,684 \\
\hline \begin{tabular}{l}
Number of "day men" employed inside of the mines including the mine foremen and trapper boys, \\
Number of "day men" employed outside of mines, .....................................
\end{tabular} & 718
580 &  \\
\hline Total number of persons employed outside and inslde of the mines, & 6,201 & 5,964 \\
\hline Number of short tons of coal produced, & 3,400,302 & 3.243.850 \\
\hline Number of short tons of coal produced per fatal casualty, ................... & 340,030 & 1,081.253 \\
\hline  & 141,679
620 & 190.817
1,988
1 \\
\hline Total number of days the mines were in operation, & 12.684 & 13.436 \\
\hline Average number of days the mines were in operation, .................... & 181.2 & 193.3 \\
\hline Average number of days for mines which were in operation 100 or more days during the year, & 195.4 & 20.4 \\
\hline
\end{tabular}

It will he observed from the above comparison of the number of employes and of the coal tomage for the last two years that there is an increase in the former of \(2: 37\), while in the latter the increase is 156,452 tons. Although there was a general strike, which lasted, in some instances, for three months, among the miners of the western part of the State, it seems to have had no effect in diminishing the running time at the mine nor of reducing the coal tomage, for the coal production shows an increase. The miners of Mercer, Butler, Beaver, Lawrence, part of Westmoreland and Jefrerson counties in this district all participated more or less in the strike, losing muth time, yet I am of the opinion that not much more working fime, if any, would have been made at the mines smpposing no strike to hawe taken place, as I have not heard of the trade sulfering for late of coal.

The mines, with but few exceptions, are in a very satisfactory condition. A brief deseription of each mine is given in another part of
this report. A deseription of all fatal and non-fatal accidents will be fonnd in tables Nos. 4 and 5 , also the full statistical matter will appear in tables Nos. 2 and 3.

All of which is respectfully submitted.

> Yours-very respectfully, THOMAS K. ADAMS, Inspector.

Description of Mines.
Mines Sitnated Along the Ahegheny Valley Railroad, in Armstrong and Clarion Counties.

There are ten mines located in this division of the district. The Monarch mine has resumed operation after having been abandoned for nearly three years. The Mahoning mine is practically not under the regulation of the mining act at present, while the Hardscrabble mine has not been in operation at all during the year. The other mines of this division of the district have been doing a reasonably good business, as no strikes among the miners along this railroad have occurred during the year.

Glen.-A new drift opening has been made here, located farther to the south of the old mine. All the miners who were working in the old mine have now been transfered to the new one. The main entry has heen driven through the front hill, thus making two openings. Althongh the rentilating furnace had not yet been built at the date of my last visit, a portion of the workings was reasonably well ventilated, buf the air current was not sufficient at the face of No. 1 butt entry. The mine was well drained. The total volume of air in circulation was about 5.400 cubic feet per minnte. The mine is being worked on the single entry plan.

Riverview.-A good business is being done at this mine at present. The coal is bronght from the interior workings of the mine to the rheck house, a distance of 4,300 feet by the tail rope system of hankage. The machinery in connection with this hanlage plant is all of a smbstantial character. During my last examination of this mine, the rentilating fan was rimning at forty-there revolutions per minnte and producing \(2 \mathbb{2}, 000\) eubic feet of air, but more than one-half of this quantity was lost through leakage before it reached the face of the workings; lowerer, the mine was reasonably well rentilated. As Was stated in my last reatrs report, a considerable portion of the workings of this mine are under water, but this will be remedied in the near future, as the company is having a water course level driven, which will be \(\pi 00\) feet long, in the solid rock beneath the coal suam, which will completely drain all the workings now inme dated.

Catfish Run.-This mine has been ruming almost continuously during the year. It my last examination, I found plenty of air passing at the inlet and outlet, but it was not being properly conseyed to the face of the workings. The most of the air was being lost before it reached the face of the entries, owing to the excessire leakage taking place at the different room doors. This, however, is one of the natural results of working a mine on the single entry plan. The drainage is being accomplished, in a large measure, by hauling the water from the swamps in water cars, which can only be, at best, a makeshift. My experience has been that whereever such primitive methods are used to drain mines, the hauling roads were always in a wet and muddy condition, and Catfish Run mine is no exception to the rule.

Eagle.-The company operating this mine has had a steady and sucressful year's rom. The coal reached by the old opening is about exhausted, but a new drift has been opened into a small property which lies about 1,000 feet farther to the south of the present, or old place. A tram-road has been built to comect the new mine with the old check house. The miners are being transferred from the old mine as fast as the development of the new one will allow. The quantity of air measured in both openings was \(9,38.5\) cubic feet per minute. The mine in which nearly all the miners were working was well ventilated. A small rentilating furnace has been built here. The drainage of the new mine was good.
Mineral Ridge.-The company's coal territory into which this mine was opened is about exhausted. The company has under consideration the putting in of a haulage plant, and should they decide to put in the machinery, they can reach large coal properties which lie beyond their present boundaries. I find that the ventilating furnace has not the power to produce sufficient air with which to ventilate the workings properly, hence, additional rentilating power will have to be provided at once if the workings are to extend any farther. The drainage was reasonably good.

Chureh Hill.-This mine does not give employment to many miners and it has not been ruming very steadily during the year. The total quantity of air in circulation in the mine was sufficient, but it was not conveyed to all of the workings as carefully as it might have been. In one of the butt entries, I had to stop, some of the miners as they were working ahead of the air current. The drainage, in parts of the mine, was defective, but as a large ditch would be completed in a couple of days after my visit, this dofect would be remedied forthwith.

Mines Located on the Low Grade Division and the Sligo Branch of the Allegheny Valley Railroad.

There are ten mines along these divisions of the Allegheny Valley railway. They are all in active operation except the Acme mine, which has been idle all year. The Brier Ridge mine, which was one of the largest producers of coal in this region, was abandoned last spring; also, Star No. 5 mine was exhausted early in the year The Carrier Brothers mine is now being operated under the provisions of the mining act.

Summerville, or Carrier Bros.-This is a small operation, which gives employment to twenty-two miners. The most of the product is used for coaling the locomotives on the Low Grade division of the Allegheny Valley railway. I measured about \(\$, 400\) cubic feet of air per minute passing at the inlet and outlet of the mine, but this quantity was not carried forward to the face of the workings; however, the mine was fairly well ventilated. An air shaft, 45 feet deep and \(5 \frac{1}{2}\) feet in diameter has been sunk, but the ventilating furnace has not yet been built. The mine is a drift opening. It is in good condition generally. The seam of coal is only two and one-half feet thick. The tipple is connected with the check house by an inclined plane 350 feet in length, on an angle of 20 degrees,

Oak Ridge.-This mine is in reasonably good condition, both in regard to ventilation and drainage. The coal is being taken from the property by three drift openings, and the ventilation is produced by two fans of the Clark type. These fans are jointly producing 32,000 cubic feet of air per minute, which is being reasonably well conducted to the face of the workings. They are working the Upper Freeport coal seam here, and its thickness averages about three feet nine inches. The double entry system in working out the coal prevails. The coal is hauled from the mine to the top of the plane by machinery-endless rope system-then it is let down the plane, which is about one mile in length, to the tipple. All the machinery in connection with this plant works admirably.

Fairmount Nos. 1 and 3.-The Upper Freeport coal seam is being worked at this mine. The workings of this place are directly over the excavations of No. 2 mine. The ventilation is produced by two Clark fans. I measured 35,280 cubic feet of air per minute, which was being fairly well distributed throughout the workings. The drainage was reasonably good for such a mine, considering the excessive quantity of water it produces, together with the very soft nature of the floor. The coal is hauled from the mine by the tail rope system of haulage, a distance of about one mile.

Fairmount No. 2.-They are working the Lower Freeport coal seam at this mine. The coal is being hauled from the interior workings
by the tail rope system of hanage for a distance of about one mile. It my last examination, I fonnd it reasonably well rentilated. The drainage was also good. I measured about 16,400 cubic feet of air per minute in eirculation in the workings, which is being produced by a six foot "Clark" fan.

Fairmount No. 4.-This is a comparatively new mine, which I found in rery grood condition. I measmred 18,360 cubic feet of air per minute in circulation in the mine. The interior workings were well rentilated. The tail rope system of hanlage has been put in operation at this place. Nearly all the coal produced here is being mined by coal cutting machinery, seven of the Harrison machines have been put in operation. These machines are driven by compressed air. The compressor, boilers and other connected machinery are all of a substantial character. This mine was idle for three months, owing to a strike among the miners about the prices to be paid per ton for machine mining. The three Fairmount mines are all worked on the double entry plan.

Cherry Run.-This mine was only in fair condition at the date of my last visit. There was a sufficient quantity of air passing into and out of the mine, but it was not properly conveyed to the face of the workings. I measmred \(8,8 \pi 0\) cubic fect of air in circulation. There is no properly constructed rentilating furnace here, but a coal fire was placed at the bottom of the air shaft as a substitute for it. The traveling way was not in proper condition for the miners to travel therein, but a shaft is being sunk at the face of the workings for this purpose. The drainage was reasonably good.

Diamond.-At my last examination of this mine I found it in very grool condition. I measured 10,200 cubic feet of air per minute in rireulation, which was fairly well distributed to the interior workings. The drainage is now very good. This mine is worked on the single entry plan.

Keystone No. 2.-This mine is comparatively new. An electric plant has been installed during the year. The most of the coal is being mined by the use of coal cutting machinery. Two machines of the chain cutter type, or what are known as the Jeffrey machines, are now in use here. The roal seam is about three and one-half feet thick. which is overlaid with a very strong and compact shale, making the natural conditions very farorable for the use of this class of machinery. A new rentilating furnace has been built, and an air shaft sunk at this mine during the year. I measured 10.500 cubic feet of air jer mimute in circulation, which was being well conducted to the face of the workings. The rentiation and drainage of the mine were good. The single entry plan of working ont the coal prevals here.

A rondale.-This mine is in very good condition, both in regard to rentilation and rainage. There was being distributed throughont the
workings 10,500 cubic feet of air per minute, which was a sufficient quantity for the mumber of persons employed.

\section*{Mines Situated in the Reynoldsville Region, Jefferson County.}

There are six mines located in the Reynoldsville region at present. but the sherwood mine has mot been operated moder the regralations of the mining act during this year.

Big Soldiel and shatue.-These two mines have their workings now connected and the bondany limes, which have separated them in the past have been partially destroyed, but no inconvenience is camsed thereby, as the same company operates both mines. The coal prodnced is brought to a common point of delivery by two separate systems of mine hanlage. It the spagne mine, the coal is hanled for a distance of a mile by the tail rope system, while for doing similar work and for about the same distance, the endless rope system is employed at the Big Soldier mine. The joint daily production for both places is about 4,300 tons. These mines have been running very steadily dming the year, and all of the mining has been done by coal cutting machincry of the Harrison type. There have been erected at these mines during the year slatek storage bins, elevators and revolring screens, which are all of the most efficient and modern design. This machinery is intended to prepare slack to supply the 200 bee hive coke ovens which have also been built here recently. The elevating and sereening apparatus have a capacity for preparing 700 tons of slack daily. The company operating these mines has had many fine new houses of modern design and with modern conveniences built for the use of the miners, and from appearance a beautiful village will soon be established here. Two fans, one twenty-four and the ofler six feet in diameter, and a large sized furnace, prodnce the ventilation. 1 measured 74,500 cubic feet of air per minnte, which was being condurted forward, in several separate emrents, to the face of the workings. The mines were reasonably well ventilated and the dranage was exerlent. The double entry plan of working is caried out here.

Hamilon.-This mine did not run very steadily during the year. It the date of my last visit, I found it in very good condition genemally, and I measmed 13,500 enbie feet of air per minnte circubating therein. This was well convered to the working places of the mine. The tail rope system of hambe is being put in operation here.

Bloomington.-This is a new drift opening. I found the interior of the mine well rentilated. The drainage was good in the two butt entries where the miners were employed, but the main face entries were being driven to the "dip," and are under water. The company contemplates putting in a new slope opening to the dip of the measures in the near future, \(I\) rentilating fan has been purchased and
will be erected soon. The ventilation is now produced by a small furnace, and I measured 9,000 cubic feet of air per minute near the face of the entries in the mine.

Henry Bros.-The narrow work of this mine has all been driven to the boundary lines of the company's coal property. There may be sufficient coal in the pillars of the mine to keep it in operation for a year or two at least. With the exception of one point in the interior workings of the mine, I found it well ventilated. The drainage was also good. I measured 9,000 cubic feet of air per minute being distributed to the face of the works here.

\section*{Mines Situated in Beaver and Lawrence Counties.}

There are twelve mines located in these two counties. At the Darlington mine, the number of persons employed has been reduced to less than ten, hence, it is not now under the provisions of the mining act. The other mines, when not on strike, were doing a fair business during the year.

Beaver--This mine is running steadily at present and producing a large tonnage daily. The coal is being mined by coal cutting machinery of the Ingersoll type-punchers-which are driven by compressed air. While the coal seam does not average three feet in thickness, the machines are apparently being operated economically and successfully. The weight of these machines is greatly to their advantage in contributing to their successful operation, especially where the coal seam is as thin as it is in this mine. I found the mine in very good comlition, both in regard to ventilation and drainage. The rentilation was produced by a double fan, six feet in diameter. I measured 21.000 cubic feet of air per minute in circulation, which was well distributed to the face of the workings. The single entry plan of working out the coal prevails here. The coal is hauled for nearly one mile from the workings to the tipple by the tail rope system.

A new drift opening has been made in connection with these works into an upper seam (Lower Freeport). The coal from this new opening is brought down to the tipple of the lower mine from a station inside the new drift, by a branch of the tail rope system in use at the lower mine. The distance from the mouth of this drift to the tipple is about 2,300 feet and the plane on which the mine wagons are lowared thereto is on an angle of about five or six degrees. A fan, eight feet in diameter, is the power used to product the ventilation, and I measured 9,600 cubic feet of air per minute produced by it. This place is not yet subject to the regulations of the law from the fact that there are not a sufficient number of persons employed.
loock Point.-I measured 10,000 enbie feet of air per winnte at the
ventilating furnace, but this power is capable of putting in circulation a much greater quantity of air when it is properly attended to. It the date of my last examination I found the mine, as a whole, in very good condition. The quantity of air measured was reasonably well conveyed to the working places of the mine. The drainage was also good. The coal is being mined on the single entry plan. This mine usnally runs very steadily, the most of its product being used for coaling locomotives on the littsburgh and Western Railroad.

Thompson Run.-This mine has not been in operation very steadily during the year, and at the date of my last visit it was idle owing to a strike existing among the miners. Since that date, the company has gone into the hands of a receiver. At a prior visit, however, I found the mine in reasonably good condition generally.

Connessing.-This small operation has had a very steady run during the year. Nearly all the product of this mine is used in coaling locomotives on the Pittsburgh and Western railroad. The coal seam here averages only about thirty inches in height. I found the mine in very good condition generally. There was an ample volume of air circulating throughont the workings. The drainage was also excellent. The quantity of air in circulation was 11,700 cubic feet per minute.

Pemn.-This mine has not been rumning very steadily during the year and at the date of my last visit it was again idle. At the last examination, when the mine was running, I did not find it in a very satisfactory condition, owing to the volume of air being insufficient at the face of the workings. I measured 5,400 cubic feet of air per minute at the furnace, but the fire in it was very low, which was one of the principal reasons for the insufticiency of ventilation.

Mehard.-This mine is being worked on the single entry plan, and as usual when the butt entries are driven up a distance of about 900 feet, the air current becomes weak, owing to the excessive leakage which takes place at the room doors along the entries. I found this to be the condition of things at this mine, although I measured 10,250 cubic feet of air per minute at the inlet and outlet. All other conditions were very favorable, except that the "second" opening was not in good condition for travel. However, another traveling way has been completed since my visit.

Excelsior Nos. 1 and 2.-The No. 1 mine will soon be exhansted, as there are only pillars to be drawn now, and they were pretty well taken out. The working places here were very well ventilated. No. 2 mine is yet a small operation. I found it in fairly good condition, both in regard to ventilation and drainage. A second opening has been provided and an air shaft six feet by five feet and eighty feet deep has heen smo. The rentilating furnace has not yet heen built.

Cannelton.-This mine is a small operation, but, owing to the fact 20-10-97
that all the coal to be taken ont of the property is the pillars, it will soon be exhansted. No regular system of working out the coal in the solid had been followed, hence, the mine was not in rery grod condition when last ex:mined.

Buts Camel.-This is the only mine from which cannel coal is taken in my district that is being operated muder the provisions of the law. This is a shaft opening and the entries are being driven in an east and west direction from the bottom of it. The eannel seam. in the swamps, attains a thickness of about nine feet, but the hasin is rery narrow, in fact the coal basin does not exceed in width in some parts of the mine, fifty to sixty yards. The mine is rentilated by a fan, and the air produced is conducted to the face of the workings in two separate carrents. The mine is in excellent condition, both as to its rentilation and drainage. I measured a total volume of air in circulation of 18,000 enbic feet per minnte.

Sterling.-I found this mine in farly good condition on my last risit. There has been considerable idleness at this place during the rear owing to the miners striking so frequently. All the miners then employed were working in one entry. The ventilation was sufficient for the number of persons employed. The drainage was also rery good.

State Line- I measured 40,220 cubic feet of air per minute at the inlet to this mine, but not one-falf of this quantity reached the workings in the interior but the mine is fairly well rentilated. The drainage is now good, exept in one of the butt eutries. The coal is bronght from this mine to the tipple, a distance of 6.750 feet, by the tail rope system of hambage. The plan of working out the coal is that of single entry.

Mines Sitnated Along the West Pemsylramia Railroad in Westmoreland and Armstrong Comnties.

There are twelve mines in active operation along this ratroad at present, all working in the Dpper Freeport coal seam, with the excepions of the Irommore mine, which is opened on the Pittsburgh bed. The \(\boldsymbol{A}\) rommore mine is operated on the donble entry system. while all the others in this region are being worked on the single entry plath. The lefight of the Tpere Freeport coal seam here will average about three and one-half feet. Which is overlad with an exedent shate roof and the mines being reasonably dry lithe expernse for "dead work" and in keeping them in a good condition is required, and, as a rule, the miners in this region have very comfortable and health ful places in which to labor.

Arommore. - This mine is in two divisions and the rentilation is produced ly 1 wo furmaces. The total quantity of ait cireulating in
the mine was 33,400 cubic feet per minute, but not all of this volume was at the face of the workings. The mine, as a whole, was reasonably well ventilated. The drainage was also good.
line Run.-Both in regard to ventilation and drainage this mine was in very fair condition. I measured 13,500 cubic feet of air per minute, but the volume was reduced very much before it reached the face of the butt entries. Of course, this is one of the natural results of the single entry system.

Leechburg No. 4.-At the date of my last visit the usual number of persons was not yet employed, as it had only been started up after the strike. I measured 20,000 cubic feet of air in circulation, which was well conveyed to the face of the working places. The mine, as a whole, was in splendid condition.

Riverview.-This is a comparatively new mine and I found it in splendid condition. Plenty of air was in circulation in all parts of the mine and the drainage was also good. An air shaft sixty-two feet in depth and six feet eight inches in diameter has been sunk and a rentilating furnace eight feet wide by five and one-half feet high above the grate bars, with an arch twenty-one feet long, has been built during the year. A second opening las also been provided. I measured 10,000 cubic feet of air per minute passing through the mine.

Haddon.-The ventilation in this mine was reasonably good and the drajnage also was splendid. An average volume of air was passing of about 9,300 cubic feet per minute. There are two separate splits of air in this mine, whereas if there was only one current the ventilation wonld have been more efficient. - Some improvements have been made in connection with the inclined plane here. The friction drum at the check house has been put under the track and "barneys" have been attached to the plane ropes and four cars are now run down the plane at each trip instead of one.

Gilpin.-I measured 20,000 cubic feet of air per minute flowing into and out of this mine. The general condition of the mine was very good. The air currents were fairly well distributed.

Bagdad No. 2.-This mine was not in very good condition at my last examination as fir as the quantity of air in the workings was concerned. At the filce of the entries the volume of air was not suflicient, but preparations were then being made to build a larger ventilating furnace, which lats since been built, and the superintendent has sent me the following data relative thereto: Size of furnace, seven feet wide by five and one-half feet high above the grate bars, the arch is sixteen feet long, with an air chamber on each side. The quantity of air being produced by this furnace is 28.320 eubic feet per minute. With such a volume in circulation, the mine must now
be in splendid condition in this respect. The drainage in the working parts when last examined was good.

West Penn-At the time I last examined this mine there were not many miners employed, and I found the volume of air circulating to be ample for the requirements. I measured 6,600 eubic feet of air per minute being distributed in the workings. The drainage was good.
Blackston.-I measured 18,720 cubic feet of air at the mine furnace, and about one-half of this quantity was being conducted to the working places. The drainage was very good. The workings, especially the entries, will soon be up to the boundary lines, but the company is opening a new drift in a hill opposite to the present opening which will take its place as it becomes exhausted.

Beale.-Near the face of the main entry an air shaft has been provided and a furnace built in order to provide more ventilation. The mine was in fair condition, both in regard to the rentilation and drainage. I measured 7,100 enbic feet of air per mimute on the return near the face of the works. The mine is practically dry, thus insuring good drainage. The miners found steady employment at this place during the year.

Kirkpatrick.-There was no broken time at this mine during the year. I measured, at the outlet, 14,700 eubic feet of air per minute, which was very well taken care of until it reached the inner workings. The mine, as a whole, was in very good condition.

Kerr.-This is a new drift opening which has come under the provisions of the mining law during the year. This mine supplies coal for the distilleries at Freeport and for the people living in that town and neighborhood. The mine was only in fair condition.

Mines Situated Along the Bessemer, Pittsburgh and Lake Eric Railroad and in Other Parts of Butler and Mercer Connties.

There are still twenty-one mines in those two comnties in active operation, and, although Gomersal, Ormshy slope. Keister and Jewell No. 1 have been abandoned, four other mines have been brought under the law during the year.

Hallville.-1 measured 10,690 enbic feet of air per minnte at the outlet of the mine, but not much of this reached the face of the workings. The mine was not in very good condition as to ventilation, as the air courses were not kept as clean as they should have been, and the doors on entrances of rooms had also been neglected. These details, always necessary to be attended to to insure sufficient ventilation, had been neglected, owing to the fact, no doult, of the mine having been operated so unsteadily for more than a year.

Claytonia.-This is a small operation which gives employment to
only about twenty miners. The drainage in Nos. 1 and 2 butt entries was somewhat defective, but a water course was being driven to remedy this defect. There was a volume of only about 3,400 cubic feet of air per minute in circulation, which was not sufficient for distribution in the workings to insure sufficient ventilation. An air shaft has been sunk aut preparations are being made to build a furnace so that the law in regard to rentilation can be complied with.

Stage.-This mine was not shipping coal at my last visit, and the only work being done was driving entries. The mine was in splendid condition, however. A rentilating furnace has been built and an air shaft sunk, thus furnishing the means for producing a large volume of air. I measmed, near the furnace with scarcely any fire in it, 11,800 cubic feet of air per minute.

Jewell No. 2.-This is a new drift opening and there are about thirty persons employed. A shallow air shaft has been sunk, and preparations are in progress for building a ventilating furnace. A second opening has also been completed to this mine. I measured 4,800 cubic feet of air at the outlet. An electric plant has been installed here, and they are now operating two chain coal cutting machines of the Jeffrey type. These coal cutters weight about 2,700 pounds each, and their weight may prove a serious disadvantage to economical and successful operation, especially where such a low seam of coal exists as there is in this mine; however, experience will prove this matter.

Standard.-This mine has been running very steadily during the year. While making my last examination, I measured, at the inlet and outlet, about 13,000 cubic feet of air per minute, but, owing to the cut-throughs between the double entries being almost closed with dirt, it was impossible for much of a current to get to the working places. Water was over the bed of the hanling roads in some part, but, no doubt, this was owing to some of the pumps. being stopped because of the mine being partially idle on the date of my last risit. The mine was not in as good a condition as it should have been. They are working by what they call the double gob entry system, but this is merely two rooms being driven parallel, which are intended to serve the purpose of double entries, but it has been my experience that the results looked for are never realized.

Royle.-I found this mine in very good condition, and, although there were only 4,000 cubic feet of air in circulation, but it was conducted to the face of the workings where only thirty miners were employed. The workings were in a very healthful condition, and as the mine was well drained, the miners had a very comfortable place in which to work.

Lake Erie.-I measured 9,600 cubic feet of air, which was being distributed throughout the workings of the mine, and this was a
sufficient quantity for the number of persons employed. The mine was in fairly good condition otherwise.

Mizner.-The quantity of air in circulation was conveyed to the face of the workings in two separate currents. The volume of air in the mine, which was well distributed to the miners places, was 17,100 cubic feet per minute, which was amply sufficient for all requirements. The mine was also well drained.

Enterprise.-This is a small operation and was giving employment to only about twenty persons at my last visit. The mine was in very fair condition, both in regard to ventilation and drainage.

Keystone Nos. 1 and 2.-The No. 1 mine was not in operation at my last visit, but No. 2 was. No. 2 was in very fair condition. I measured, at the inlet and ontlet, of the mine, 9,180 cubic feet of air per minute, which was being very well taken care of until it reached the mer workings. The dratinage was also good. The second opening was not yet completed, but they were working at it.

Black Diamond Nos. 1 and 2.-I measured 13,600 cubic feet of air in circulation, which was being carried forward very well into the face of the workings of No. 1 mine. The drainage was also reasonably good. In No. 2 mine, I measured \(10,7 \mathrm{~S} 0\) cubic feet of air in circulation, and the general condition was very good. The single entry plan of working out the coal prevails at both places. Owing to the strikes which took place among the miners at these two places, there has been much broken time.

Chestnut Ridge No. 2.-At the date of my last examination I found that the ventilation was not strong enough in portions of the workings, especially those adjacent to the workings of the old Chestnut Ridge mine. The new mine workings are connected with the old ones and as many of the miners were working in the rooms of the old place the ventilation had not yet been properly conducted to them. " The other parts of the mine were in fairly good condition.

Pardoe.-This mine was not in a very satisfactory condition. The rentilation was not sufficient at the face of some of the workings. They were busy driving solid air courses at the face of a portion of the works, so as to connect the different butt entries, which will, in a measure, remedy the defects in ventilation. It is almost impossible to establish good drainage here owing to the peculiar position in which the seam of coal is found. Several pumps are at work inside of the mine, but they fail to keep it free from stagnant water.

Witch Hazel.-This mine has been brought muder the regulations of the mining act during the year. The shaft was sunk to the block coal, but the coal territory is very limited in extent. At my last risit, I fonnd more than twenty persons employed, and I ordered that no more than the lawful number of jersons be employed until the second opening had been sunk and fitted with stairs to serve the pur-
pose of a traveling way. This second opening has been provided since my visit. The volume of air in circulation was not quite sufficient as the exhaust steam from the pumps was the only ventilating power they had, but when the workings progress farther into the coal property, such means will be inadequate for putting into motion a sufficient quantity of air for a mine of this size.

Carver.-The quantity of air in circulation was being conducted to the working faces of the mine in three separate currents. I measured 16,600 cubic feet per minute at the outlet of the mine, which was being well distributed throughout the workings. While the ventilation was reasonably good, the drainage was somewhat defective at two points in two of the butt entries. This is a very wet mine and some portions of the roof is very soft, requiring the entries in those parts to be driven very narrow, and as the floor is composed of a very soft fire clay, proper drainage is hard to maintain.

Stoneboro Nos. 2 and 3.-At my second last visit to No. 2 mine I found the inner workings poorly ventilated. These workings had reached a point at which the ventilating power was entirely inadequate to produce a sufficient quantity of air, hence, I ordered an air shaft to be sunk close to the working faces. At my last inspection I found that my directions had been complied with. A shaft sixty-one feet deep and six feet square had been sunk. Consequently, I found the ventilation much improved. I measured 12,500 cubic feet of air in circulation in the different parts of the mine. The drainage was fairly good. No. 3 mine has been idle most of the time during the year. At the time of my last visit, the company was putting in the tail rope system of haulage, by which the coal from the inner workings of No. 2 mine could be hauled out at this opening. The workings of these two places are now connected, and it will be a much shorter way to haul the No. 2 mine coal out of the No. 3 opening hereafter.

Hill.-The tail rope system of haulage has been introduced at this place recently. The coal will be hauled by this method for a distance of 2,500 feet. This company has made the same mistake as many others do, in not having the hauling machinery of sufficient power to do the required work; however, I am informed that a larger pair of engines will be substituted for the ones now in use. I measured 8,900 cubic feet of air per minute in circulation in the mine, which was being produced by a small furnace. The company has bought a ten-foot fan, which will be crected soon, which will be capable of producing more air than the present furnace. The mine was very well ventilated and drained.
\begin{tabular}{|c|c|c|c|c|}
\hline Name of Colliery. & Name of Operator. & Locatlon-County. & Name of Superintendent. & Postoffice Address. \\
\hline Acme. & Acme Mining Company & Clarion, & J. W. Hill, & East Brady. \\
\hline Avonmor & Avonmore Coal Company, ................. & Armstrong, & L. W. Hicks, & Leechburg. \\
\hline Avondale. & Avondale Mining and Manufacturing Co... & Clarion, & James Mitchell, & Lawsonham. \\
\hline Bloomington,
Butts, &  & Jefferson, & Alexander Dunsmo & Glen Richey, \\
\hline Blackstone, & Lewis Coal Company, ........................... & Westmoreland, & N. S. Hicks, & Leechburg. \\
\hline Bagdad No. 2 , & Bagdad Coal and Coke Company, .......... & Westmoreland, & N. S. Hleks, & Leechburg. \\
\hline Big Soldier Run, ...... & Jefferson \& Clearfleld Coal \& Iron Co..... & Jefferson, & John H. Bell, & Reynoldsville. \\
\hline Black Diamond No. \({ }^{\text {Black }}\), &  & Mercer,
Mercer. & Frank Filer, & Mercer. \\
\hline Beale, & J. G. Beale \& Co., & Armstrong & George Knepshield, & Leechburg. \\
\hline Beaver & Beaver Coal and Coke Company & Lawrence, & H. K. Hartsuff, & Wampum. \\
\hline Claytonla, & Claytonia Coal Company, Limited, & Butler. & Samuel KInsey, & Pump. \\
\hline Chestnut Ridge, & Fller, Westerman \& Co., & Mercer, & Enoch L. Filer, Jr & Grove City. \\
\hline Catfish Run, & Catfish Run Coal Company, & Clarion, & Charles J. Tigh & Catnsh. \\
\hline Cherry Run, & Cherry Run Coal Company, ................... & Clarion, & E. N. Miller, & Huey. \\
\hline Connessing, & Carver Coal Company, Connessing Coal Company, ......................... & Mercer, & Frank Filer, & \begin{tabular}{l}
Mercer. \\
Frisco.
\end{tabular} \\
\hline Cannelton, & Morgan Coal Company, & Beaver, & H. V. Sanor, & Cannelton. \\
\hline Church Hi & Church Hill Coal Company, & Clarion, & C. W. Horner & Dutch Hill. \\
\hline Diamend, & Diamond Coal Company. & Clarion, & W. S. Mitchell, & East Brady. \\
\hline Darlington, & Darlington Coal and Clay Works Company, & Beaver, & Charles Jenkins, & Darlington. \\
\hline Enterprise, &  & Butler, & Peter D, Sherwin, & Karns City. \\
\hline Excelsior, & Wampum Run Coal Company, ............. & Lawrence, & Matthew Gunton, & Wampum. \\
\hline Eairmount Nos. i \& \({ }_{\text {F }}\) 3, & Eagle Coal and Mining Company, & Clarion, & Joseph Lehner, & Red Bank Furnace.
New Bethlehem. \\
\hline Fairmount No. 2, ..... & Fairmount Coal and Iron Company, & Clarion, & S. Taylor Sheaffer, & New Bethlehem. \\
\hline Falrmount No. 4, & Fairmount Coal and Iron Company, & Clarion. & S. Taylor Sheaffer, & New Bethlehem. \\
\hline Gilpin, & Gilpin Coal Company, ......... & Armstrong, & L. W. Hicks, & leechburg. \\
\hline Glen, & J. R. Smith. & Armstrong. & J. M. Foltz, & Manorville. \\
\hline Hallville, & Grove Coal Company, & Mercer, & D. D. Morris, & Grove Clty. \\
\hline Haddon, & Haddon Coal Company, ..................... & Armstrong. & N. S. Hicks, & Leechburg. \\
\hline Hardscrabbl & Rrady's Pend Mining Company, Limited...
Hill Coal Company, Limited, ............. & Marion, & Cifillam Jenkins, & Jackson Center. \\
\hline Henry Bros., & Henry Brothers, .............. & Tefferson. & L. L. Henry. & Rathmel. \\
\hline Hamilton, & Iefferson and Clearfield Coal and Iron Co... & Jefferson. & Inhn H. Belr, & Reynoldsville. \\
\hline Jewrell. & C A. Jersell, & Butler. & T. J. Simpson, & Fleeger. \\
\hline Keystone No. \({ }^{1}\) & Turner Conl, Coke and Mining Company,... & Butler. & John L. Turner, & Ferris. \\
\hline Keystone No. 2, & Turner Coal, Coke and Mining Company... & Butler. & John L. Turner, & Ferris. \\
\hline Keystone, & Keystone Coal and Mining Company, ....... & Clarion, & John Henry, & Fast Brady. \\
\hline Klrkpatrick. & Kirknatrick \& Co.. Limited. & Armstrone. & S. T. Shoff, & Leechburg. \\
\hline Leechburg. & I.eechbure Coal and Coke Company, & Weetmoreland. & N. S. Hicks, & Leechburg. \\
\hline Lake Erle, & Take Erle Coal Company, & Pantler. & George Findtey, & Hilliards. \\
\hline Mizner. & F. A. Mizner. & Butler. & George Findley, & Hilliards. \\
\hline
\end{tabular}

Monarch, MIneral Ridge,
Oak Ridge,
Plne Run,
Pine Creek,
Penn,
Riverview,
Rlverview,
Rock Polnt,
Royle,
summerville
Stage.
Sprague
Stoneboro No. \(2, \ldots . .\).
Stoneboro No. 3, .................
Sterling
State Lin
Thompson Run
West Penn
Witch Hazel,
C. P. McCafferty,
T. J. Skıdmore \& 'Co

Oak Ridge Coal and Mining Co
Pine Run Coal Company,
Pine Creek Coal Company,
Filer Brothers.

Leechburg Coal and Coke Company
Rock Point Coal Company
Royle Coal Company,
arrier Brothers,
Jeorge Spears.
Jefferson and Clearfield Coal and Iron Co
Iercer Coal and Iron Co.
Mercer Coal and Iron
Sterling Coal Company,
State Line Coal Co
Peter D. Sherwin.
Thompson Run Coal Company.
West Penn Mining Company,
Witch Hazel Coal Company,

C. P. McCafferty

Henry Williams
East Brady.
West Monterey
L. W. Hicks,

Leechburg.
John L. Murray
Mosgrove.
Edwin N. Ohl, \({ }_{\text {Enock }} \mathrm{L}\). Filer........... New Castle
Enock L. Filer, Jr., ..........
N. S. Hicks,

William Brown
\(\stackrel{\text { R. }}{\text { W. Royle, }}\)
George G. Stage
James H. Spear
John H. Bell,
B. F. Esgar,
B. F. Esgar,
B. F. Esgar,

George Gould. ..
Heter D. Sherwin
Peter D. Sherwin,
L. W. Hicks

David Jacobs,
602 Mooney \& Brisban bulld ing, Buffalo, N. Y.
Leechburg.
Wampum.

Summerville.
Greenville.
Grove City
Stoneboro.
Stoneboro.
East Palestine. Ohio East Palestine, Ohio Sherwin.
Leechburg.
Wheeler.

TABLE No．2．－Gives the total number of tons of coal mined and tons of coke produced in each Colliery，number of days worked， number of employes，number of persons killed and injured，nu mber of kegs of powder used，etc．，in the Third Bituminous Dis－ trict，for the year ending December 31， 1897.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collierles． & Location－County． &  & \begin{tabular}{l}
ㅇ \\
등 \\
E \\
I
0
0
0
0
号 \\

\end{tabular} & jeay pue turats doj
pasn suoz ul［eoo jo кว！ &  & \begin{tabular}{l}
앙 \\
등 \\
플 \\
 \\
＂
\end{tabular} & ＇рәулом sкер јо ләqum & Number of persons employed． &  &  &  & \begin{tabular}{l}
 \\
咸
열 \\
낭 \\
害 \\
荨 \\
z
\end{tabular} &  & ＇soinur pue sasiou jo soquinn &  &  \\
\hline Avonmore， & Armstrong，．． & 84，183 & & & & 84，183 & 215 & 120 & & 2 & 200 & & & 10 & & \\
\hline Avondale，．．． & Clarion，\({ }^{\text {Jefferson }}\) ．．．．．．．．．． & 25，039 & ．．．．．．．．． & 23 & \({ }_{25}^{17}\) & 24,999
76,316 & 206 & & & & & & & 4 & & \\
\hline Bloomington，
Butts， & Jefferson，\({ }^{\text {Beaver，}}\) ，．．．．．．．．．．．．． & 76,341
26,045 & ．．．．．．．．． & 500 & 25 & 76,316
25,545 & 216 & 78
63 & ．．．．．． & & 790
114 & ， & & 6
3 & & \\
\hline Blackstone， & Westmorcland，．．．． & 45， 251 & & & & 45，251 & 184 & 79 & & & 6：0 & & & 5 & & \\
\hline Briar Ridge， & Clarion，\({ }^{\text {a }}\) ， & 15,000 & ． & & & 15，000 & 60 & 127 & & 1 & 50 & 25 & i & 10 & ．．． & \\
\hline Bagdad No． 2, & Westmoreland，．．．． & 24.840 & & 150 & & 24，690 & 207 & 44 & & 1 & 550 & & & 2 & ．．． & \\
\hline Big Soldier Run and Spra & Jefferson，．．．．．．．．．． & 969，976 & 39,020 & 12，320 & ．．．． & 881,762 & 245 & 846 & 2 & 4 & 7，220 & 3，100 & 9 & 134 & ．．． & 200 \\
\hline Black Diamond No．1，．．．． & Mercer， \(\begin{aligned} & \text { Mercer，} \\ & \text { Me．．．．．．．}\end{aligned}\) & 55,663
40,418 & ．．． & 3，500 &  & 52,163
39,318 & 140
128 & 148
114 & & ．．． & 390
300 & & 6 & 12 & & \\
\hline Black Diamond No．\({ }^{\text {Beale，}}\) ，． & Mercer，
Armstrong， & 40,418
40,525 & ．．． & 1，100 & \(\cdots \cdots 7{ }^{-1}\) & 39,318
39,825 & 128
204 & \(\begin{array}{r}114 \\ 54 \\ \hline\end{array}\) & & i & 300
1,080 & \(\cdots\) & 4 & 8 & & \\
\hline Beaver， & Lawrence，．．．．．．．．．． & 51,078 & & 249 & 321 & 50，503 & 197 & 166 & & 1 & 1，326 & & 3 & 14 & & \\
\hline Claytonia． & Butler，. & 4，500 & & & & 4，500 & 103 & 29 & & & & 200 & & 2 & & \\
\hline Chestnut Ridge， & Mercer，\({ }_{\text {Clarion，}}\) & 37， 764 & ．．．．．．．．． & 5，600 & \(\cdots{ }^{10}\) & 32， 164 & 171 & 98 & & 3 & 126 & & 5 & 6 & & \\
\hline Cherry Run， & Clarion， & 17，616 & & \(23^{\circ}\) & 50 & 17，541 & 157 & 47 & 1 & 3 & 50 & 20 & － 1 & 2 & & \\
\hline Carver， & Mercer， & 66,767 & & 4，400 & 1，000 & 61,367 & 198 & 132 & & & 410 & & 5 & 6 & & \\
\hline Connessing． & Beaver， & 22，627 & & 146 & 12 & 22，469 & 275 & 53 & & & 72 & 125 & & 5 & & \\
\hline Cannelton． & Beaver， & 14.440
4.500 & & & & 14,400
4.500 & 225
100 & 36 & & & 94 & & & 3 & ．．． & \\
\hline Church Hill， & Clarion，\({ }_{\text {Clarlon，}}\) & 4,500
20.000 & & & \({ }^{150}\) & 4.500
19,850 & 100
150 & 29
50 & & & 1 & & & 3 & & \\
\hline Darlington or Iron Mounta & Beaver． & 3，200 & & 200 & & 3．000 & 200 & 10 & & & 35 & & & 3 & & \\
\hline Enterprise． & Butler．\({ }^{\text {a }}\) ． ． & 16，873 & ． & & & 16．873 & 203 & 31 & & & 200 & 50 & & & & \\
\hline Excelsior． & Lawrence．．．．．．．．．． & 21,822 & & 125 & 200 & 21，497 & 142
240 & 105 & & & 100 & 100 & & 7 & & \\
\hline Fairmount Nos， 1 and 3 ， & Clarion，\({ }_{\text {Clarlon，}}\)（．．．．．．．．．．．．．． & 42,744
203.746 &  & 450 & ．．．．．．． 438 & 42，744
202,858 & 240
295 & 72
320 & 1 & & 2，600 & & & 4 & & \\
\hline Falrmount No．2，．．．． & Clarion，．．．．．．．．．．．．． & 105，831 & & 1，440 & & 104．387 & 295 & 140 & 1 & & 1，600 & & \(\frac{1}{2}\) & 2 & & \\
\hline Fairmount No．4，．．．．．． & Clarlon，．．．．．．．．．．．．． & 45，795 & & \({ }^{492}\) & & 15，303 & 212 & 140 & & & 1，300 & & 3 & 9 & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fairmount No. 4, & & ........ & 95 & ......... & 9 & 3 & 8 & 116 & |........| & & & & & & & \\
\hline Giıpin. .............. & 1 & ......... & 46 & & 3 & & & 50 & & 1 & & ......... & 12 & 1 & 25
5 & 141
55 \\
\hline Glen. . & 1 & & 48 & & 5 & , & 2 & 56 & ... & 1 & .......... & & 6 & 2 & 9 & 65 \\
\hline Gomersal, & 1 & & 30 & & 2 & & 3 & 36 & ... & & & & 1 & & 4 & 40 \\
\hline Hallville, & 1 & ......... & 40 & & 4 & & 1 & 46 & & 1 & & \[
\cdots \cdots]_{2}
\] & 1 & \(\stackrel{2}{2}\) & 4 & 40 \\
\hline Iladdon, & 1 & & 47 & & 3 & & & 51 & & 1 & 2 & 1 & 1 & \(\stackrel{2}{2}\) & 5 & \[
\begin{aligned}
& 55 \\
& 56
\end{aligned}
\] \\
\hline Hilli, ... & 1 & & 50 & ......... & 6 & 1 & 3 & 61 & 1 & 1 & \(\cdots\) & 3 & 2 & 1 & 9 & 70 \\
\hline Henry Brus. & 1 & & 27 & & 3 & 1 & & 32 & & 1 & 1 & 3 & 2 & 1 & 2 & 34 \\
\hline Hamilion, & 1 & & 175 & & 9 & 2 & 2 & 189 & & 1 & & & \(\ddot{8}\) & & 9 & \\
\hline Jewell, ... & 1 & .......... & 38 & & 2 & 1 & 2 & 4 & \[
\dddot{i}
\] & 1 & 2 & 1 & 1 & 1 & \(\frac{9}{7}\) & 198 \\
\hline Keystone No. 1, & 1 & & 36 & & 3 & & 1 & 41 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 47 \\
\hline Keystone No. 2, & 1 & & 49 & & 4 & & 1 & 55 & 1 & 1 & & 1 & & & 4 & 49 \\
\hline Keystone, .... & 1 & & 55 & & 3 & i & 1 & 61 & 1 & 1 & \(\cdots{ }^{\text {a }}\) & \(\frac{1}{3}\) & \(\ddot{2}\) & 1 & 10 & \(\stackrel{59}{71}\) \\
\hline Kerr, & 1 & & 10 & & & & 1 & 12 & 1 & & & & & & & 13 \\
\hline Kirkpatrick, & 1 & & 20 & & 2 & & 1 & \({ }_{23}\) & 1 & & & & & & 1 & 13 \\
\hline Leechburg No. 4 , & 1 & & 34 & & 1 & & & 36 & & & & & 2 & 2 & 1 & 24
40 \\
\hline Lake Eric, ....... & 1 & & 50 & & 4 & 1 & i & 57 & & 1 & & & 2 & 1 & 4 & 60 \\
\hline Mizner. & 1 & & 94 & & 5 & 1 & 2 & 103 & & 1 & & & 2 & 2 & 5 & \({ }^{60}\) \\
\hline Mehard, & 1 & & 94 & & 8 & & 10 & 113 & & 1 & 1 & & 6 & \({ }_{2}\) & 10 & 108 \\
\hline Mineral Ridge, & 1 & & 40 & & 5 & & 2 & 48 & & 1 & & \(\cdots \cdots\) & 2 & & 10 & 123 \\
\hline Mahoning, & 1 & & 15 & & 1 & & & 17 & 歫... & & 1 & & 2 & & 4 & 24 \\
\hline Monarch, & 1 & & 20 & & 2 & & 4 & 27 & & i & & 1 & 1 & & & 30 \\
\hline Oak Ridge, & 1 & & 228 & & 14 & 6 & 3 & 252 & & 3 & & ....... & 15 & & & 275 \\
\hline Ormsby slope, & 1 & & 65 & & 6 & & 4 & 76 & & 1 & 2 & 2 & 15
3 & & 10 & 275 \\
\hline Pine Run, ... & 1 & & 42 & & 2 & & 1 & 46 & & & & 2 & 3 & & 10 & 86
50 \\
\hline Pine Creek, & 1 & & 49 & & 3 & & 1 & 54 & & 1 & & 2 & 4 & 3 & & \\
\hline Penn, & 1 & & 50 & & 5 & \(\ddot{\square}\) & 2 & 60 & i & 1 & & & 6 & 3 & 10 & 64
70 \\
\hline Pardoe. ... & 1 & & 80 & & 10 & & 3 & 94 & & 1 & \(\ddot{3}\) & 2 & \({ }_{3}^{6}\) & 2 & 11 & 105 \\
\hline Riverview, Westmoreland county, & 1 & & 32 & & 1 & & 3 & 34 & & 1 & 3 & 1 & 3 & 2 & 4 & 105
38 \\
\hline Riverview, Armstrong county, & 1 & ........ & 100 & & 6 & 2 & 4 & 113 & & 1 & 1 & & 4 & 7 & 13 & 126 \\
\hline Rock Point, ............. & 1 & & 80 & & 5 & 1 & 2 & 89 & & 1 & & & 5 & 2 & 8 & 97 \\
\hline royle, ...... & 1. & & 37 & & 4 & & , & 42 & & 1 & & 1 & 1 & 1 & 8 & 46 \\
\hline Summerville or Carrler Bros., & 1 & & 29 & & 1 & & & 24 & & & & & & 3 & 3 & 27 \\
\hline Sprague, \% ..... & & & & & & & & & & & & & & & & \\
\hline Stage and Keister, & 1 & & 20 & & 3 & & 1 & 25 & & 1 & & & \(\ddot{2}\) & & & \\
\hline Stoneboro No. \({ }_{\text {Sta }}\) St, & 1 & & 82 & & 17 & & 9 & 109 & & 2 & & 3 & 5 & i & 12 & 121 \\
\hline Stoneboro No. \({ }^{\text {Sterling, }}\), & 1 & & 60 & ......... & 3 & 1 & 5 & 70 & & 1 & 2 & 2 & 4 & 1 & 10 & 80 \\
\hline Sterling.
Spears, & 1 & & 61 & & 4 & & & 66 & & 1 & & & 4 & & 5 & 71 \\
\hline Spears, \({ }_{\text {State }}\) & 1 & & 15 & & 1 & & & 17 & & & 1 & & & & 2 & 19 \\
\hline State Line.
Standard. & 1 & & S8 & & 7 & 1 & & 97 & & 2 & 2 & 1 & 7 & 1 & 13 & 110 \\
\hline Standard.
Thompson R (un, & 1 & & 82 & & 5 & & 3 & 91 & 1 & 1 & 2 & & 4 & 1 & 9 & 100 \\
\hline Thompson Run,
West Penn, ... & 1 & & 60 & & 5 & 2 & 2 & 70 & & 1 & & & 4 & 2 & 7 & 77 \\
\hline West Penn, & 1 & & 26 & & 2 & & & 29 & & 1 & & & 1 & 1 & 3 & 32 \\
\hline W'itch Hazel. & 1 & & 29 & & 3 & & & 33 & & 2 & 2 & & & , & 5 & 38 \\
\hline Total, & 70 & & 4.903 & & 398 & 82 & 168 & 5.621 & 19 & 78 & 67 & 54 & 257 & 105 & 580 & 6,201 \\
\hline
\end{tabular}
\$ The report of this mine is included with that of Big Sold ier Run.
Approximated by the Inspector
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & Name of Person. & Occupation. & \(\stackrel{\text { ¢ }}{4}\) & 灾 & 唇 & Name of Colliery. & Location-County. & Nature and Cause of Accldent. \\
\hline April 1. & Frank Harker, ...... & Miner, . . . . . . . . . . & 24 & M. & 2 & Falrmount No. 1, ...... & Armstrong, ........ & Was almost instantly kllied by a fall of roof consisting of "bony" and clay of several hundred welght, while heal. Harker was taking out a room rib in No. \({ }^{7}\) butt entry in company with Valentine Darr, another miner, and both men at the time of the accident. Darr heard the roof and rib cracking and he suga place of safety untll the squeeze had subsided and they were both acting upon the suggestion when the rock fell which caught Harkins before he could get past the mine wagon. Darr (as he stated his testimony. Both men were experienced and careful miners, and from the testimony produced at the Investigation and from the appearance of the place after the accident I am of the opinlon that they had used the necessary precautions making an examination of this mine, I discovered in certain portions of it that the roof was extromely treacherous and unless the miners exercise very good in great danger of losing their lives. \\
\hline
\end{tabular}
M.
Fairmount No. 2,
Was killed instantly by a fall of "top" coal. He was working with Isaac Mortimor taking out a room rib when he ribs were being drawn is very much disturbed by clay veins, which necessitates the miners using extra care. At
this point in the mine the coal seam is about seven feet thick. which is separated near the centre into two distinct
benches. Some of the lower bench coal benches. Some of the lower bench coal erable portion of the top coal hanging in a very loose condition. Both men were aware that the top coal was in a very unsafe condition and Mortimor had advised Robertson not to work under nor not heeded as he went under the loose coal to knock down some coal While Robertson was doing this, the top coal fell upon him with fatal results. Both men were experienced miners and knew of the danger they were in if coal, owing to its loose and faulted con dition.
Custer and another man were taking out a room rib when the accident occurred The men had gone into the mine at 6 o'clock A. M., and Custer was fatally injured between eight and nine o'clock Custer had just completed loading the third one when a flat iron shaped plece of slate fell from the roof upon him causing his death. Custer had sounded the roof just prior to its falling upon him and had discussed with his partner the propriety of setting posts to sup them up after the shot or loose coal was all loaded, but the delay proved fatal for Custer. By all appearance the working place of those men was reasonably well posted. There was no room ribs, as the roof generally al through this mine is a very strong and compact shale and a miner may work safely by exercising ordinary care.


\section*{Engineer \\ Laborer,}
\(\qquad\)
\(\qquad\)


Jefferson


Nugent was fatally injured by a fall of cual while he was taking out a chain pllar. He was shoveling some binder siate fiom beneath the undercut cual, when the whole mass fell upon him. He whinch ne was excavating, and in addition his undercutting nad reached a "ialse slip" or sooty cleat thereby making the mined coal extremely dangeruus tor a miner to work in front of. To say the least, it was gross carelessness untieal miner, such as ne was considered to be, to work in front of the loose mass of coal without having set sprags to it, or taking it down. He should not have taken such a risk, knowing that the place was under a squeeze. Nugent
was working with another miner, named Kıchard Kamsey, and both men were considered good, practical miners. Nugent lived some hours after the acci-
These three men were the victims of a boiler explosion. Love was killed inand Jackson for about two days after the explosion, but neither gained consciousness. The real cause of the explosion is a mystery and it is likely to remain so, as the only one likely to know the condition of the boiler was ever, is that the engineer allowed an xcessive pressure of steam to be carried. The superintendent of the mine allowed the engineer to work with only 70 pounds steam pressure. Possibly the engineer had allowed the water in the
boiler to become too low. Love, owing boiler to become too low. Love, owing had been doing something to the boiler, as he was in the boller house when the explosion occurred. Jackson and Dowlar were car trimmers and had gone into were sitting upon the brick work on the side of the boiler when the explosion occurred. The boiler was situated outside of the mine near the tipples, and was used for supplying steam for the holsting engine which hauled the coal up the slope. There was nothing developed at
the inquest to show that the boller was unsafe or defective, nelther did my own
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & Name of Person. & Occupation. & \(\stackrel{8}{8}\) &  & No. of orphans. & Name of Colliery. & Location-County. & Nature and Cause of Accident. \\
\hline & & & & & & & & \begin{tabular}{l}
investigation reveal that it had been in bad condition. The bofler was made of the best quality of steel piates
five-sixteenths of an inch thick. Spring water was used. There was no scale discovered on the plates of the boiler and the plates in any part of it were not less than one-fourth of an inch thick. It was twenty-eight feet long and forty-eight inches in diameter. original form and condition, was carried or blown for a distance of one thousand and fifty feet. Love had aimost a life's experience as an engineer and was considered a competent man. COPY OF INQUISITION. \\
Commonwealth of Pennsylvanla, County of Mercer: \\
An inquisition taken at Stoneboro in said county before Henry G. Lamb, coroner of sald county, and J. P. Hines, G. W. Porter, H. W. Tarr, W. H. Milford, W. H. McIntire, L. W. Odell, jurors, charged to inquire upon behalf of the Commonwealth as to how and in what manner David Love, here lying dead, came to his death, who, upon thelr respective oaths, do say that it appears from a vlew of the body and from the evidence of witnesses examined by us, that the sald David Love came to hls death at No. 2 mine of the Mercer Iron and Coal Company in sald county unon the 8 th day of November, 1897, from in-
furles caused by the explosion of a steam
\end{tabular} \\
\hline
\end{tabular}

Nov. 16, John Steele,
Miner,
John Steele

20 S.

Cherry Run, \(\qquad\)

Clarion, \(\qquad\)
boiler, and said coroner and jurors do that there is no evidence to indicate that the said boiler evidence to indicate that the said boiler was known to be in an unsafe condition or defective in any particular and that no blame attaches to the ing employes. Henry G. Lamb Coroner Was kilied by a fall of roof slate while working in his room. A day or two before the accident he had been shooting down the roof in the roadway to make height for the mules so that they could get into his room to haul out the loaded doing this work he had left hanging a large slab of slate which had been shattered and loosened from the effects of the last shot. He had been mining at the wall face and on hearing the slate giving way it appears that he was trying to get to a place of safety traveling side to the pillar which was along the side of the road, but while making his escape he was caught by the edge of
the stone and squeezed to death. He met his death early in the morning but the body was not discovered until between four and five o' clock in the evening. The driver had called to him from the entrance to his room about \(n\) ne o'clock in the morning, but getting no response he presumed that the boy was not at work, consequently he did not of a very compact shale and such as of a very compact shale and such as in which to work. Had he taken down the shot stone there would have been no danger. Possibly the boy was inexperienced in mining, although he had been working in the mines for some years.
eceived fatal injuries from beins squeezed between a loaded and an empty mine wagon. It seems that at the time of this accident a loaded and an empty trip of mine wagons at the mouth of Nos. 22 and 23 butt entries and on the empty track of the siding on the main that the drivers hauling in these butt entries should not accidentally run into the drivers who were hauling beyond this point in the main entry, young
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & Name of Person. & Occupation. & 威 &  & (\% & Name of Colilery. & Location-County. & Nature and Cause of Aceldent. \\
\hline & & . & & & & & & Dixon was stationed at the entrance to Nos. 22 and 23 butt entries, so that the drivers hauling therefrom passing into the inner workings, but instead of the boy attending to his duty at the assigned station he went in along with the driver who was hauling in the butt entry, and while coming out on the return the bumper of the first car, he was caught between the first car on the foaded trip and the empty trip of cars going into the main entry. The driver who was going into the main entry workings which were situated beyond this point, observed the condition of things and calfed to the boy to hiook out, off the wacon, but he unfortunately faffed to do so and the accident occurred. When the boy was hurt it was supposed by ail who were there that his injuries were of a very trifiling nature, thought that he would be around at work again in a few days, but he lived only about forty-eight hours. \\
\hline
\end{tabular}

TABLE No. 5-List of Non-Fatal Accidents that occurred in and about the Mines of the Third Bitundinous District, for the year ending December 31, 1897.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \stackrel{-}{\circ} \\
& \frac{9}{\pi} \\
& \hline
\end{aligned}
\] & & Name of Person. - & Occupation. & ¢ &  & Name of Colliery. & Location-County. & Nature and Cause of Accident in Brief. \\
\hline \multirow[t]{4}{*}{Jan.} & \(\stackrel{6}{7}\) & \begin{tabular}{l}
Pard Meals, \\
Michael Weaver,
\end{tabular} & \multirow[t]{4}{*}{\begin{tabular}{l}
Mule driver, \\
Miner. \\
Laborer, \\
Miner, \\
Mule driver,
\end{tabular}} & \[
\begin{aligned}
& 26 \\
& 33
\end{aligned}
\] & \[
\stackrel{\mathrm{S}}{\mathrm{M} .}
\] & \begin{tabular}{l}
Mizner, \\
Briar Ridge, \(\qquad\)
\end{tabular} & Butler, Clarion, & \begin{tabular}{l}
Leg broken by mine wagons. \\
Face and head cut by a fall of roof slate.
\end{tabular} \\
\hline & 22. & Lew White, & & 24 & S. & Big Soldier Run, . & Jefferson, & Finger cut off by a fall of roof slate. \\
\hline & & John Kelly, & & 60 & S. & Big Soldier Run, & Jefferson, & Three fingers taken off by a mine wagon; wheel passed over them. \\
\hline & 6. & John Dixon, & & 41 & M. & Big Soldter Run, & Jefferson, ........... & Finger bruised between a tail chain hook and the hook of a draw bar of a mine wagon. \\
\hline \multirow[t]{3}{*}{Mar.} & \multirow[t]{2}{*}{\[
\begin{gathered}
5 . \\
16,
\end{gathered}
\]} & Christ. Ross. William Parton, & \multirow[t]{2}{*}{\begin{tabular}{l}
Mule driver, \\
Miner,
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 20 \\
& 41
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\stackrel{\mathrm{S}}{\mathrm{M} .}
\]} & \multirow[t]{3}{*}{Big Soldier Run, Royle. \(\qquad\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Jefferson, \\
Butler,
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Brulsed by mine wagons. \\
Severely injured by a rock thrown from a shot of dynamite while excavating a drain.
\end{tabular}} \\
\hline & & Wiliam Parton, ............ & & & & & & \\
\hline & \({ }^{20} 17\). & Lotas Larveg. & Miner, & 32 & M. & & Butler, & Collar bone broken by a fall of coal. \\
\hline \multirow[t]{4}{*}{May} & \multirow[t]{2}{*}{12.} & \multirow[t]{2}{*}{Charles Battles, ..........} & \multirow[t]{2}{*}{Miner, \({ }^{\text {Miner, }}\), \({ }^{\text {c. }}\)} & \multirow[t]{2}{*}{18} & \multirow[t]{2}{*}{S.} & \multirow[t]{2}{*}{Catfish Run, \({ }^{\text {a }}\),} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Hand bruised while attempting to put a sprag into the wheel of a mine wagon.} \\
\hline & & & & & & & & \\
\hline & 18. & George Shearer, .......... & Mule driver, & 23 & M. & & Armstrong, & \multirow[t]{2}{*}{\begin{tabular}{l}
Bruised on the head and body by a fall of coal. \\
Burned by an explosion of powder while tamping a shot in a bore hole.
\end{tabular}} \\
\hline & 25. & James Blystone, & Miner, & 18 & S. & \multirow[t]{2}{*}{Avonmore, \(\ldots \ldots \ldots \ldots .\).} & Armstrong, & \\
\hline July & \({ }^{27}{ }^{2}\). & Rocco Caruso, & Miner, & 44 & M. & & Lawrence, & Back injured by a fall of roof slate. \\
\hline Aug. \({ }^{\text {Sept. }}\) & \({ }_{14}^{15}\). & Thomas J. Hofma & Laborer & 40 & M. & Oak Ridge, & Armstrong. & Leg broken by haulage machinery, \\
\hline & \({ }^{14} 8\). & Charles Frank, & Miner, \({ }_{\text {Blacksmith }}\) & 45
32 & M. & Beale. \({ }_{\text {Stoneboro }}\) & Armstrong. & Collar bone broken by a fall of coal. \\
\hline & 8. & Hays Fry, & Labore & 22 & S. & Stoneboro No. 2 & Mercer, & \begin{tabular}{l}
explosion. \\
Severely injured by a steam boller explosion.
\end{tabular} \\
\hline Dec. & 22.
4
10 & \begin{tabular}{l}
H. Walthour. \\
Ollver Fulmer, \\
Danlel Ferris,
\end{tabular} & \begin{tabular}{l}
Mule drlver. \\
Miner. \\
Miner
\end{tabular} & 17
32
28 & S.
M.
S. & Bagdad No. 2 , Sprague. \(\qquad\) Catfish Run, & Westmoreland, Jefferson, Clarion, & \begin{tabular}{l}
Body bruised by a fall of roof slate. \\
Leg broken by a fall of coal. \\
Arm broken by loaded mine wagon.
\end{tabular} \\
\hline
\end{tabular}

TABLE No. 5.-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  & Name of Person. & Occupation. & \% &  & Name of Colllery. & Location-County. & Nature and Cause of Accident in Brlef. \\
\hline 14,
24,
28,
29,
29, & L. Woolcutt, George Keister. Black Funk, Peter Miller, \(\qquad\) & \begin{tabular}{l}
Mule driver, \(\qquad\) \\
Miner, \(\qquad\) \\
Miner \(\qquad\) \\
Miner, \(\qquad\)
\end{tabular} & 42
47
35
31 & M. & \begin{tabular}{l}
Lake Erie, \(\qquad\) \\
Catfish Run. \(\qquad\) \\
Carrier Brothers, \(\qquad\) \\
Hamilton, \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Butler, \\
Clarlon,
\(\qquad\) \\
Jefferson, \(\qquad\) \\
Jefferson, \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Leg broken by mine wagons. \\
Injured by a fall of rock. \\
Brulsed between a door frame and a mine wagon. \\
Arm broken by a fall of roof slate.
\end{tabular} \\
\hline
\end{tabular}

\section*{FOURTH BITUMINOUS DISTRICT.}
(TIOGA, POTTER, BRADFORD, LYCOMING, CLINTON, CAMERON, MCKEAN AND ELK COUNTIES, AND ALL THOSE MINES IN CLEARFIELD COUNTY ADJACENT TO THE LOW GRADE DIVISION OF THE ALLEGHENY VALLEY RAILROAD; ALSO THE MINES ADJACENT TO THE CLEARFIELD AND SUSQUEHANNA BRANCH OF THE PENNSYLVANIA RAILROAD; ALSO THE MINES ADJACENT TO THE BUFFALO, ROCHESTER AND PITTSBURGH RAILROAD IN JEFFERSON AND CLEARFIELD COUNTIES.)

Blossburg, Pa., February 10, 1898.
Hon. James W. Latta, Secretary of Internal Affairs:
Sir: I herewith submit my annual report as Inspector of mines for the Fourth bituminous coal district of Pennsylvania for the year euding December 31, 1897, together with statistical tables compiled from the operators' reports returned to my office. The returns show :11 aggregate increase of 779,178 tons over that of the preceding year, which is due largely to an increased number of mining machines being used, and to steadier employment generally throughout the district.

The total number of fatal accidents has been very much decreased. The ventilation and drainage of the mines is fairly good, and continues to improve throughout the district.

One case of violation of section 1, article XXI, of the Bituminous Mining Law came to my notice during the year at the Berwind White shaft mine, in Clearfield county. The offense was of such a serious character and the evidence as to guilt being so clear that I had the miner arrested and bound over for court. When the case came before the court for trial he pleaded guilty, whereupon the court reprimanded him and sentenced him to pay the costs. The circumstances and facts of this case are more fully given in the body of the report.

Respectfully submitted, JAMES N. PATTERSON, Inspector.

\section*{Mining Statistics.}

Number of mines in district, ........................... . 66
Total production in tons of coal, . ....................... . \(6,541,943\)
Total production in tons of coke, ........................ 441,946
Quantity of coal, in tons, used for steam and heat, ...... 104,778
Sold to local trade and used by employes. ..... 29,726
Railroad shipments, in tons, of coal, ..... 4,848,677
Number of days work, ..... 7,364
Number of persons employed, ..... 9,581
Number of fatal accidents, ..... 9
Number non-fatal accidents, ..... 31
Number of kegs of powder, as per operators' reports. ..... 37,984
Number of pounds of dynamite used, ..... 23,896
Number of steam boilers, ..... 118
Number of horses and mules, ..... 905
Number of mine locomotives, ..... 32
Number of coke ovens, ..... 1,191
Number of tons produced per each fatal accident, ..... 817,742
Number of tons produced per each non-fatal accident, ..... 204,435)
Classification of Fatal Accidents.
By falls of coal, ..... 4
By mine cars, ..... 1
By falls of roof, ..... 2
By mine motor, ..... 1
Powder explosion, ..... 1
Total, ..... 9
Classilication of Non-Fatal Accidents.
By falls of coal, ..... 5
By mine cars, ..... 13
By explosion of powder, ..... 4
By falls of roof, ..... S
By mining machine, ..... 1
Total, ..... 31
Elk County Mines.

Hazel Dell.-On the date of my last visit to this mine, I found it in grood condition.

Dagns Mines,-Were each, on my last visit, found in good condition as to rentilation and drainage.

Pane Mine.-Was exhausted during the year.
Noble No. 1.-Mine not in operation on my last visit, but on the previous examination I found it in fair condition.

Noble No. 2.-The general condition of this mine was fair. All parts of the workings are fairly well ventilated. The drainage was
found good in some parts and not so good in the other parts. An electric haulage plant has been put in operation during the year.

Glen Fisher.-Was idle during the entire year.
St. Mary's Mines.-The general condition of each of these mines is fair.

Shawmut Mines Nos. 1 and 2.-The general condition of both mines was fair in regard to ventilation and drainage. In No. 1, I measured 16,500 cubic feet of air passing per minute, which is well distributed throughout the workings. In No. 2, I measured 15,900 cubic feet of air passing per minute, which is also well distributed.

Mead Run Mines Nos. 1and 2.-These mines are in much better condition than formerly. The ventilation has been considerably improved by the erection of stoppings and doors to conduct the air current aromed the working places. More attention is being given to the requirements of the law with the result that better conditions exist throughout the entire mine.

Shawmut No. 4.-This is a new opening made during the year.
Shawmut No. 8.-This is a new opening which was made about the beginning of the year and is equipped with mining machines of the Harrison type.

\section*{Jefferson County Mines.}

Coal Glen Mines, Nos. 2 and 3.-The general conditions of these mines has been very good during the year. Another drift is being opened into the lower vein, which looks very favorable at present. The coal is four feet eight inches in height. This makes the second opening to this vein. The ventilation is now produced by a Clark fan five feet in diameter. A larger fan is being erected, which will be driven by a twenty-five horse power gas engine.

Kurtz Mine.--This mine was not in operation when last visited.
Walston No. 1.-Mine not in operation when last visited.
Walston Nos. 2 and 3.-These mines are in good condition. Everything is being done to keep them in a healthful and safe condition. They have put in a new haulage engine, and sunk a shaft near theface of the workings for drainage and ventilation. They are building a very large washer for preparing coal for coke, which will soon be completed.

Brock Mines.-These mines are not in the best condition. The drainage and ventilation need improvement. The management oi these mines was changed on the first of this year and it is hoped thabetter results will follow soon.

Adrian Mine.-The quantity of air in circulation in this mine when last measured was 129,600 cubic feet per minute, which was leing fairly well distributed throughout the workings. On some occasions considerable volumes of explosive gas are encountered in the seventh
and eighth right headings, also in the eighth and ninth left headings, rendering the use of locked safety lamps necessary. A nother tail rope haulage has been put in fourth left heading.

Eleanora No. 1.-This mine is in good condition as usual. All parts of the workings were, at the time of my last visit, well supplied with fresh air. Quantity of air passing at the outlet, 75,000 cubic feet per minute.

Eleanora Nos. 2 and 3... The general condition of these mines has been very good during the year. Ventilation is produced by a twentyfive foot fan. The average volume of air passing at the inlet per minute was 160,000 cubic feet, which was being well distributed throughout all the workings. The large output of coal at this mine is practically all mined by mining machines of the Ingersoll and Harrisan type. They have in operation thirty-seven of these machines, which are equal to seventy-four in effect on account of being run day and night. At the No. 2 mine boilers have been erected on the line of the main slope, about 3,000 feet from the main entry, which are now pumping the bulk of the water through bore holes at that station. They have also increased the trackage room, both above and below the tipple. A tail rope haulage system, about 3,000 feet long, has been put in, thirty-four new coke ovens and fifteen houses for the workmen have also been built.

Beechtree No. 3 Mine.-When last visited the ventilation and dratinage in parts of the mine required improvement.

Beechtree No. 2.-This mine has been in operation only about onefourth time during the year. I measured 65,000 eubic feet of ar per minute at the outlet, which was being distributed throughout all the workings.

London Mine.-This is a large mine employing a great number of men. Mining machines are used to undercut the coal. Blasting operations are carried on very extensively, and it requires very brisk air currents to clear away the powder smoke as fast as it is produced. The two small fans now in use are not sufficient for the work required, and they should be dispensed with and a more powerful one provided. The quantity of air in circulation when last examined was 49,500 cubic feet per minute, which was being fairly well distributed throughont the workings.

Clarion No. 1.-This mine is in good condition, both as to rentilation and drainage.

Clarion Nos. 2 and 3.- Ire in good condition in all respects.
Clarion No. 4 was opened in the early part of 1896 . It has two openings, one on each side of the hill, the outside haulage being by two steam locomotives and the inside hamlage by mules. It is mtended to instal matchine hanlage, either by ropes or electricity, in the near future. They commenced loading coal for the trade on January

1, 1897, the present capacity being 1,400 tons per day. A complete Jeffrey electric mining plant was installed at the mine during the past smmmer and the machines, five in number, were started October 1. The equipment of the plant is as follows: One 225 horse power Ball automatic engine, two 125 horse power boilers, one \(50 \mathrm{~K} . W\). generator, made by the Ridgway Dynamo and Engine Company. The plant commenced with five machines, which have since been increase to eight, and has a capacity for twelve machines. The building is of brick, with iron truss roof and corrugated iron covering. The plant is said by experts to be one of the most complete mining machine plants in the country, while the results obtained from the machines compare favorably with the results obtained from the same height of coal anywhere. The coal is three feet thick, and the lower bench has a streak of bony coal in it which turus into slate at times and has no parting with the coal. The machines generally cut above or below this bony streak when it is possible, but at times they cut through it successfully, the only effect being a more frequent change of bits.

\section*{Tioga County Mines.}

Gurnee Mines.-Were exhausted during the year.
Antrim No. 1.-Has not been in operation during the year.
Antrim No. 5.-This mine, as usual, is in good condition. All parts of the workings were, at the time of my last visit, well supplied with fresh air. Quantity of air passing at the outlet 62,000 cubic feet per minute.

Gardner Mine.-This is a new mine opened during the year.
Bear Run.-The general condition of this mine was good, but some of the details in matters pertaining to the ventilation need closer attention. I observed that some of the doors were left standing open much longer than was necessary. I called the attention of those in anthority to the condition of the mine, with the result, as I have been informed that the ventilation has since been very much improved.

Arnot Nos. 3 and 5.-No. 3 mine was found in good condition.
No. 5.-This mine, at date of my last visit, was in a very satisfactory condition. A portion of the workings are under water, for which reason they are not being operated at present, but no danger whatever exists to the men working in other parts of the mine from this source. The ventilation and drainage in all the present working parts of the mine were in fair condition at the date of my last exami nation.

Fall Brook No. 2.--The general conditions of this mine are very good. The volume of air passing at the inlet per minute was 64,000 cubic feet, which was well distribnted throughont the workings.

Fall Brook No. 7.-This is a new opening and is located one and a half miles north from No. 2 chute. The tail rope system of haulage was put in this mine in last December.

\section*{Bradford County Mines.}

Long Valley Mines, Nos. 1 and 2.-These mines were not in operation when last visit was made. I examined both mines and found them, as regards ventilation and drainage, in a satisfactory condition. The inlet air measurement of No. 1 showed a volume of 32,000 cubic feet, and No. 2, 29,000 cubic feet.

\section*{Lycoming Connty Mines.}

Red Run Mines.-Three in number. Mines Nos. 2 and 3 are in good condition as to both ventilation and drainage. The ventilation at face of workings in No. 1 is not good, by reason of leakage of the air current through breaks in the overlying strata between the inlet and the face of the workings. They propose to remedy this by a drift opening near the face of the workings.

\section*{McKean County Mines.}

Instanter Mine.-The ventilation here is good. The drainage was not grood, but has recently been much improved by a water ditch constructed along the main hanlage way, 150 yards in length, with an average depth of two feet.

Lyman Mine.-The condition of this mine is fair as to both ventilation and drainage.

\section*{Clinton County Mines.}

Kettle Creek Mines.. .Nos. 1 and 2 are under very able management and in excellent condition. They are laid out and conducted on scientific priciples, and close attention is given to every detail by the general manager.

\section*{Clearfield Comity Mines.}

Williamsport Mines.-These mines were found in good condition. Among the improvements made here during the year was the instaliation of a complete tail rope haulage plant, and the erection of a ventilating fan.

Mount Carmel.-Not in operation during the year.
Winterburn.-Not in operation during the year.
Brittanic Mine.-Not in operation when last visited.
Cataract Mines.-Not in operation when last visited.
Helvetia Slope.-This mine was found to be in fair condition. They have put in a new hanlage road, 3,000 feet in length, also retimbered
the air-way from the fan to the main aircourse, which will improve the ventilation. A new man-way is in course of construction, and at present they are setting boilers and compressers near stanley, where they intend to make the main company station.

Rochester Mine.-This mine was in operation 190 days during the year. Volmme of air at outlet, 84,500 cubic feet per minute, which was well distributed throughout the workings.
sandy Lick.- A comection is being made between this and the Rochester mine, and they will be in the future operated as one mine, under the direction and control of one mine foreman.

Berwind shaft Mine.-Operations here were completed so far as to be able to mine coal for shipment during 1896. The rope haulage system is used for transportation. The machinery is located in a chamber west from the bottom of the shaft. The engine used is what is known as a "double engine," and is geared four to one. The drums are sixty-six inches in diameter and thirty nine inches long, and two miles of rope can be carried on each drum. The haulage rope is seveneighths of an inch thick, and the tail rope three-fourths of an inch in thickness. The trip can be moved at the rate of from five to six miles per hour. The water is drained to a sump under the pumps, from whence it is taken and can be held in check for twenty-four hours without interfering with the working of the men, so as to allow plenty of time for repairs in case of accidents to the pumps. The roal is mined by machines, run by power furnished by a Norwalk compressor, twenty-eight by thirty inches. A double hoisting apparatus is used to carry the product to the surface. The air is supplied by a 30 -foot fan. The battery of boilers has a capacity of 1,200 horse power. This being a gaseous mine, where no open lights are permitted, a miner having matches on his person struck one to light his pipe, contrary to the mining laws, in such cases provided, and was arrested and taken before a justice of the peace and bound over for trial at the quarter sessions court of the district in which the offense was committed. A true bill having been fomul against him, he pleaded gnilty; was reprimanded by the court and sentenced to pay the cost.


TABLE No. 2.-Gives the total number of tons of coal mined and tons of coke produced in each Colliery, number of days worked, number of employes, number of persons killed and injured, number of kegs of powder used, etc., in the Fourth Bituminous District, for the year ending December 31, 1897.



TABLE No. 3-Showing the number of each class of Employes at each Colliery in the Fourth Bituminous District during the year 1897.



TABLE No. 4-List of Fatal Accidents that occurred in and about the Mines of the Fourth Bituminous District, for the year ending December 31, 1897.

10
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & Name of Person. & Occupation. & \(\stackrel{4}{4}\) & cisuls do pojuxetn & 矿 & Name of Colliery. & Location-County. & Nature and Cause of Accident in Brier. \\
\hline \[
\begin{array}{lr}
\text { Jan. } & 21, \\
\text { Mar. } & 8, \\
& 10,
\end{array}
\] & \begin{tabular}{l}
Thomas Metcalfe, \(\qquad\) \\
Michael Micolosh, \(\qquad\) \\
Peter Fearman, \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Scraper, \(\qquad\) \\
Miner. \(\qquad\) \\
Miner, \(\qquad\)
\end{tabular} & \[
\begin{aligned}
& 16 \\
& 24
\end{aligned}
\] & s. & & \begin{tabular}{l}
London, .......... \\
Helvetia, \\
Berwind Shaft,
\end{tabular} & \begin{tabular}{l}
Jefferson, \\
Clearfleld, \(\qquad\) \\
Clearfield. \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Fatally injured while scraping from \(n\) coal cutting machine: died soon after. \\
Found dead on the dilly track; was evidently killed by trip cars. \\
Severely burned by an accidental explosion of blasting powder; died in Adrlan. Hospital on the 19th of same month.
\end{tabular} \\
\hline \(\begin{array}{ll}\text { May } \\ \text { Juiy } & 26, \\ \text { 20, }\end{array}\) & Joseph Sultelsy, ................................ & Machine man, ..... & \({ }_{33}^{40}\) & M. & 1 & Walston, \({ }_{\text {Eleanora }}\) No..... & Jefferson, .......... & Kiiled by fall of roof slate. \\
\hline Aug. 14. & Peter Pello & Miner, .............. & 17 & & & Kurtz \& Rinn. & Jefferson, & killed by fall of rock. \\
\hline Sept. 29, & Robert Jeffrey \({ }^{\text {Joseph Waslaskie. }}\) & Miner, ................ & 53 & M. & 6 & Eleanora No. 2, & Jefferson, & Killed by fall of coal. \\
\hline Oct.
Dec.
23, & Joseph Waslaskle, .................
George Harmon, & Miner, \({ }_{\text {Door tender, }}\) & 14 & S. & & Eleanora,
Bear Run, & Jefferson, ............ & \begin{tabular}{l}
Killed by fall of coal. \\
Leg erushed by falling from and being run over by an electric motor in the mine; died next morning at the hos-
pital.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Oct.} & 4. & James Heatley, ................... & Carpenter, & 45 & M. & Antrim, & Tioga, & Right hand badly mashed by a jack screw slipping, tnrowing the whole weight of car on his hand. \\
\hline & 21. & Marlana Farene, & Miner, ....... & 35 & M. & Adrlan, & Jefferson, & Leg tractured by a fall of slate. \\
\hline & 25, & Mick Larcosk!, & road cleaner, ..... & 47 & M. & Arnot, . \({ }^{\text {a }}\)............. & Tloga, ... & He got on a loaded trip which was on the side track to ride out when the cars came together, he sllpped off and fell on the side next the rib and had one or more ribs broken. \\
\hline & 26. & Willam Watkins, ................ & Miner, .............. & 32 & S. & Bear Run, & Tioga, ............ & Was injured while putting a large piece of coal on car, when the plece broke and fell on his foot. \\
\hline \multirow[t]{5}{*}{Nov.} & \[
\begin{aligned}
& 29, \\
& 10,
\end{aligned}
\] & Samuel Heron, Frank Sekala, & \begin{tabular}{l}
Miner, \\
Machine runner.
\end{tabular} & 63
35 & \[
\begin{aligned}
& \text { M. } \\
& \text { M. }
\end{aligned}
\] & Arnot, \({ }_{\text {Bear }}\) Run, & \begin{tabular}{l}
Tioga, \\
Tioga,
\end{tabular} & \begin{tabular}{l}
Leg broken by a fall of slate. \\
Bad wound on right leg; also brulsed on shoulder and hip. It appears that his clothing caught on the screw of the drill, tearing the flesh and clothing before the electric current could be shut
\end{tabular} \\
\hline & 10, & Rlchard Grant, & Miner, .............. & & & Bear Run, ........... & Tloga, .............. & Badiy squeezed about the thighs by \(=\) fall of slate. \\
\hline & 11. & Grand Linderman, & Rope rider, ........ & 21 & M. & Eleanora, & Jefferson, ........... & Squeezed between wagon and roof; his head was also badly bruised. \\
\hline & 24. & Louls Carlson, & ners' boy, ....... & & \(\cdots\) & Antrim, ............... & Tioga, ............. & Index finger of right hand cut off by minIng machine falling on it. \\
\hline & \[
\begin{aligned}
& 25, \\
& 29,
\end{aligned}
\] & Ignatz Zelg. Stan Rythman. & \begin{tabular}{l}
Miner, \\
Miner.
\end{tabular} & \[
\begin{aligned}
& 27 \\
& 27
\end{aligned}
\] & \[
\underset{\mathbf{M}}{\mathbf{M}}
\] & \begin{tabular}{l}
Adrian. \\
Morrls Run.
\end{tabular} & Jefferson, Tioga, ... & Leg and ribs injured by a fall of roof. Leg and arm brulsed by a fall of coal. \\
\hline
\end{tabular}

菜

\title{
Fifth Bituminous District.
}
(FAYETTE AND SOMERSET COUNTIES.)

\author{
Uniontown, Pa., February 8, 1896.
}

Hon. James W. Latta, Secretary of Internal Affairs, Harrisburg, Pa.:
Sir: I herewith submit my annual report as Inspector of mines of the Fifth bituminous district for the year ending December 31, 1897, in compliance with section 2, article \(\mathbf{X}\), of the act of Assembly approved May 15, 1893.
There has been a considerable improvement in the coal and coke trade during the year. The production of coal and coke over that of the year 1896 , is \(1,522,135\) and 863,668 tons, respectively. There were also 1,126 more persons employed than in the preceding year.

The number of accidents have increased this year as compared with last, both fatal and nom-fatal. This is not due by any means to the lack of care upon the part of the officials of the mines, for I am satisfied that the mines in this district are in a better and safer condition and are more attentively looked after by the officers in charge than at any former period. The increase of accidents is due to the fact that the workmen employed have been more careless, indeed, to use a stronger term, they have been more reckless, and have exposed themselves unnecessarily to danger. The increase in the number of non-fatal accidents is because the mine foremen have reported all trivial accidents that have occurred, a great number of which ought not to have been reported, as the law contemplates that only serious or fatal accidents should be reported to the mine Inspector.

There seems to be no hope of detreasing the number of fatalities in mines until the persons employed in them will realize the important fact that unless they themselves take ordinary precantions to insure safety while at work, no degree of vigilance on the part of the mine oflicials, nor mining legislation, will prevent accidents. By reading over the description of the fatal accidents in another part of this report, it will be observed that seventeen of the twenty-five are due to causes that were under the control of the deceased persons themselves, and were preventable if even ordinary precaations had been exercised. But when, instead of care being taken to prevent
them, the parties carelessly, recklessly and even criminally, and also against the warnings and entreaties of other persons, will, deliberately place themselves in positions of danger and virtually invite death, is it any wonder that accidents occur. When over 200 per cent. of the accidents occur as the result of contributory negligence, it seems to be a hopeless task to propose any remedy. The other eight fatal accidents were purely unavoidable.

I send with this report the usual statistical tables. All of which is respectfully submitted.

\author{
CHAS. CONNOR, \\ Mine Inspector, Fifth Bituminous District.
}

Summary of Statistics.
\begin{tabular}{|c|c|c|}
\hline & 1896. & 1897, \\
\hline Number of mines in & 66 & 66 \\
\hline Number of mines operated during the year, & 63 & 63 \\
\hline Number of mines dile during the year, ...... & 3 & \\
\hline Number of mines opened during the year, & 1 & 2 \\
\hline Number of mines abandoned during the year, & 1 & 4 \\
\hline Number of person employed inside the mines, & 4,809 & 5,688 \\
\hline Number of persons employed outside the mines, & 2,715 & 2,962 \\
\hline Total number of persons employed, ............................... & 7,524 & 8,650 \\
\hline Number of tons (2,000 pounds) of coal produced during year,.. & 4,979,410 & 6,501,545 \\
\hline Number of tons ( 2,000 pounds) of coal shipped during year, \({ }^{\text {a }}\) & \(1,075,620\) & 1,497,780 \\
\hline Number of tons (2,000 pounds) of coke produced during year, . & 2,629,541 & 3,493,209 \\
\hline Number of tons of coal producui for each fatal accident, ...... & 276,634 & 260,062 \\
\hline Number of tons of coal produced for each non-fatal accident, & 103,655
418 & \(\begin{array}{r}91,853 \\ \hline 16\end{array}\) \\
\hline Number of persons employed for each fatal accldent, \({ }^{\text {Number }}\) of persons employed for each non-fatal accident. & 418
157 & 346
122 \\
\hline Number of pounds powder reported as used in mines, ..... & 212,900 & 209,275 \\
\hline Number of tons of coal produced for each pound of powder
used & 23.4 & 22.4 \\
\hline Number of pounds of dynamite reported as used in mines,... & & 11.434 \\
\hline Number of tons of coal produced for each pound of dynamite used, & & 568.6 \\
\hline Number of tons of coal produced for each person employed & & \\
\hline In mines, .................................. & \(1,035.44\)
3,859 & \(1,125.45\)
5,552 \\
\hline Number of tons of coal produced for each person digging coal, & 1,290.34 & 1,171.02 \\
\hline Number of days worked by all the mines during the year, .... & 13,572 & 15,013 \\
\hline A verage number of days worked by all the mines in operation during the year, & 215.5 & 238.3 \\
\hline Average number of tons of coal produced per day for each person employed in the mines, & 4.8048 & 4.7228 \\
\hline Average number of tons of coal produccd per day for each person digging coal, & 5.987 & 4.914 \\
\hline Number of horses and mules in use in and about the mines,... & 737 & 767
8.390 \\
\hline Number of coke ovens in district. & 8.318 & 8,390 \\
\hline Number of coke ovens bullt durling the year, ..................... & 220 & 72 \\
\hline Number of mine locomotives in use, ........... & 11 & 11 \\
\hline Number of kegs of powder reported as used in mlnes, .......... & 8,516 & 12,611 \\
\hline Number of steam boilers in use, ......................... & 203 & 219 \\
\hline Number of fatal accidents during the year, & 18 & 25 \\
\hline Number of non-fatal accidents during the year, & 48 & 71 \\
\hline Number of widows by fatalitles, & 11
18 & 23
63 \\
\hline Number of orphans by fatallties, & 18 & 63 \\
\hline
\end{tabular}

Classification of Accidents.


\section*{Description of Mines.}

Bessie.-This mine is in good condition, and is being well looked after. Considerable developments have been made during the year. Two new overcasts were built, which carry the ventilation well up to and around the working places. Mining boss and superintendent, George Whyel.

Berlin.-This mine has not employed a sufficient number of persons to bring it under the provisions of the law at any period during the year.

Casselman.-The air current in this mine is not vigorous enough to properly ventilate the workings. Ventilation is produced by the radiation of heat from steam pipes, which enter the slope to supply steam to a hoisting engine underground, and also to the mine pumps. The motive column produced by this heat is not large enough to give sufficient power to overcome the resistance of the mine, hence, the air current is feeble and sluggish, and the powder smoke hangs in clouds in the working places. I have repeatedly called the attention of the mine superintendent to this condition of affairs, and he has just as repeatedly promised to remedy them, but as yet these promises have not been fulfilled. The mine boss has done all in his power to conduct a current of air up to and around the workings, but it unable to accomplish it simply because there is not power enough in the rentilating force. What is needed is a fan placed over the inlet shaft. Mining boss, John Connor.

Cumberland.-This mine has been very much improved in its condition, being very rapidly developed into new territory, where a good system of mining has been adopted. The old work has all been exhausted and the new work is well rentilated on the double entry system, and the mine is well looked after as to healthfulness and safety. A new chute has been built during the year, which improves
the means of handling the coal, and gives good results. Mining boss and superintendent, Fred. Rowe.

Clarissa.-Is in its usual good condition in all respects. This mine has favorable natural conditions which the management take advantage of, consequently the mine is safe, healthful and well taken care of. Mining boss, J. C. Moore.

Chester--The ventilation, drainage and general condition of this mine is good and leaves nothing to be desired. The mine boss knows his duties and performs them, with the result that his mine is in excellent condition. Mining boss, Edward Mooney.
Crossland.-I have simply to repeat what was said in last year's report with reference to this mine, viz: "That it is in excellent condition in all respects and is well and carefully looked after." Mining boss, David Walters.

Cheat Haven.-The condition of this mine is, upon the whole, good. It has been worked intermittently during the year, having spurts when forty or fifty men would be employed, then again not employing more than nine or ten men at times. The ventilation, with the exception of the inside heading on the left on the main entry, is good. Drainage is fair. Mining boss, Thomas Louden.

Edna.-Has employed only two persons during the entire year, who dig coal for domestic purposes.

Elm Grove.-This mine has been well developed during the year, the headings having been driven along very rapidly towards the boundary lines, with a view to recover the coal seam on the retreating method of working. The ventilation has been improved by adding another split to the air current. Several new overcasts have been made and the general condition of the mine has been improved. Mining boss, J. F. Anderson.

Elenora. - This mine is not under the provisions of the law at present, less than ten persons being employed. The rentilation is feeble, the power producing it not being strong enough. Part of the year, when a larger number of men were employed, a mining boss was in charge, but since the number of persons has been reduced. the services of that official has been dispensed with.

Fairchance.-This mine has been idle all the year.
Ferguson.-This mine had been idle for some time at the beginning of the year, but when the Hill Farm mine was closed down on account of the fire, operations were commenced in Ferguson, which is owned by the same company. The sudden stoppage of the Mill Farm mine and the imperative demand for coal to make coke to supply fuel for the furnaces of the company, made it necessary to operate the Ferguson mine night and day, owing to the lack of working places. The headings late been pushed and the work developed as rapidly as possible with a view of increasing the number
of working places in the mine, to enable operations to be carried on in the day time on single turn. The stoppage of the Hill Farm also made it incumbent upon the Ferguson mine to take care of the water which had formerly been pumped from Hill Farm. This necessitated the drillling of new bore holes and the removing of the pumps from one mine to the other, which was done under great difficulties. As the H. C. Frick Coke Company owned the surface overlying the Ferguson coal, objection was raised to the drilling of these bore holes, and said company applied to court for an injunction to restrain the Dunbar Furnace Company from drilling such holes. After considerable delay the court refused the injunction and permitted the drilling of the said holes upon the conditions that no mine or sulphur water should be delivered through the holes upon the lands of the H. C. Frick Coke Company. In the meantime, a line of water pipe was laid in the Ferguson slope, about 4,000 feet in length, through which the water will be pumped, pending the settlement of the injuunction proceedings, which is still being used for the purpose, until the arrangement for delivering it through the bore holes are completed. The exhaust steam from the mine pumps proved a very difficult problem to deal with. It was conreyed into an old room filled with water, as the only available means of disposing of it until the bore hole was drilled for its escape to the surface. Recent developments have disclosed that this was a very dangerous and expensive alternative, as the steam heated up the strata and decomposed the chemical constituents in it and the coal seam, and also the water to such an extent that spontaneous combustion took place, which resulted in setting the mine on fire at that particular place, which, at the present writing, is not yet extinguished. But as the fire was not discovered until 1898 , I will not give a detailed report of the same until that year, as it properly belongs to that period. Suffice it to say that in this particular instance, it has been demonstrated beyond question that a mine fire can be and is caused by the dangerous practice of exhausting steam into mine water highly impregnated with sulphur and pyrites of iron. Mine boss and superintendent, John W. Greaves.

Fairview.-The workings of this mine are now all confined to removing the pillars. These are rapidly being removed and the mine is fast becoming exhausted. The healthfulness of the mine is not impaired by the taking out of the pillars, as the numerous falls to the surface give an abundance of air at the working places. Mining boss, John Rees.

Grindstone.-This mine did not work for some time at the beginning of the year, having been idle for over a year before. When visited, it was in good condition, and was being well looked after; the ventilation, drainage and general conditions were excellent.

Great Bluff.-This mine is now worked out, and abandoned.
Grassy Run.-This mine has favorable natural conditions, and would be easy to keep in good order, if ordinary care were exercised, but more dependence seems to be placed on natural laws than mining science and intelligent experience for the running of the mine. Everything seems to be running without intelligent direction and the natural results follow, riz: The mine is not properly rentilated and the men are working in an atinosphere of smoke, almost thick enough to be cut with a knife. A furnace is built, which, on account of its location and the fact that it is not very often fired up, is practically of no service. On my last visit I could not get a measurement of air in any part of the mine. The drainage is good, but nature, rather than management, is responsible, for as the workings are all going to the rise, the water naturally runs away from the working places and out of the mine. Mining boss and Superintendent, John Meagher.

Hocking.-This mine is, upon the whole, in pretty fair condition. A few of the working places were wet, and the air not quite as vigorous as it should have been, but, upon the whole, there was not much room for complaint. There is an evident desire to have things right. and efforts are being made to have and keep them so. Mining boss, R. A. Winters.

Hamilton.-This mine was formerly known as "Morgan," but its name was changed to "Hamilton" on the reorganization of the company during the year. It is in fairly good condition, both as to ventilation and drainage. The present management shows a disposition to get it into and keep it in better condition than formerly. Mining boss and superintendent, Jos. L. Dixon.

Hill Farm.-This mine is now closed up and abandoned on account of a fire which broke out on the slope, which rendered its closing up imperative, not only for the safety of the persons employed therein and in adjoining mines, but also to preserve from destruction the coal yet unworked remaining in the property.

The fire first showed itself on the slope at what is known as No. 12 flat, on the right side of the slope. Let me say here, by way of explanation, that this was not the only fire in the mine; there was fire on both sides of the slope further out towards its mouth, as the result of the accident which occurred in the mine on June 16, 1890. This fire, howerer, had been kept under control by means of stoppings and water pipes conducted through them, and had no connection with the present fire. When the new fire was discovered at No. 12 flat, I was notified, and at once proceeded to the mine to make an investigation as to its extent and the possibilities of preventing it from spreading. Upon examination. I found that the fire had already
spread over a larger area than was at first supposed, extending nearly to No. 14 flat, over 300 feet below, and to No. 8 fiat, about 600 feet above No. 12 flat. This fire, however, was located in the gob behind the main slope pillar, which was over 100 feet thick. Through this pillar were seven openings to the slope. The proper thing to do was to close up these seven places with air tight stoppings so as to prevent the fire from reaching the slope. Orders were given to do this with all possible dispatch, but, unfortunately, the persons in charge of the mine were not equal to the emergency and allowed so much valuable time to be wasted by their trifling methods before operations were commenced, that the fire caught on some timbers at the mouth of No. 8 flat and the slope caught fire and burned like a furnace, assisted by the whole current of air in the mine. Through the carelessness of the officials in failing to provide a water line, which had been ordered, there was no water to fight the fire at this point, consequently, it was allowed to burn unchecked. This was about two weeks after the fire was first discovered, during which time, if prompt measures had been adopted, all the openings could have been closed up. I was called up during the night by telephone and informed of the new developments of the fire. I gave instructions to close up the slope and manway inside the mine, as near to the fire as possible, to cut off the supply of air. I telegraphed Inspectors Callaghan, Loutitt and Ross to come at once to the Hill Farm. When I reached the mine early the next morning, I found that no effort had been made to either fight the fire or cut off the air from it; also, that the fire had made such rapid progress that it was simply impossible to control or even check it. When the three other Inspectors arrived, a thorough investigation was at once made of all existing conditions in connection with the fire, and, after consultations with the management, it was the con census of opinion that the fire had got such a start on the slope that it would be impossible to fight it with any hope of success. It was, therefore, decided to close up the slope and the manway inside the mine and abandon it. In order to accomplish this quickly, temporary wooden stoppings were put up and daubed with cement to make them air tight. While this was being done, the material for permanent brick stoppings was beings conveyed into the mine through the Ferguson mine. When sufficient material had been accumulated, work on the brick stoppings was commenced. In the meantime, a line of pipe was being laid from the mine pump so as to allow the exhaust steam to escape throngh these stoppings up the slope, also a water line to secure water from the discharge pipe at bottom of bore hole, to fight the fire back in the cut throughs in the slope, when work would be commenced to build permanent stoppings in them to replace the temporary wooden ones. All of this work demanded prompt action, which, in order to secure, it was thought best to engage a com-
petent person to take charge of the work, which was done. The mine officials, however, not liking to be thus superseded, and deeming it a slight on their competency, resorted to every conceivable means of obstructing and hindering the progress of the work. However, in spite of these and other difficulties, a line of permanent brick stoppings was eventually erected in every opening on the right side of the slope, down to the solid coal, thus cutting off completely any air from reaching the fire. The mouth of slope and manway on the outside were also hermetically sealed. In the adjoining Mahoning mine, which was connected with Hill Farm in numerous places, a line of stoppings was also constructed by the owners of that mine, along the entire length of their manway, for the purpose of preventing any leakage of air through the gob to support the fire in the Hill Farm mine. Thus, the fire was completely surrrounded by air-tight walls and solid coal. By this means it is hoped to keep it within circumscribed limits.

The coal yet unworked in Hill Farm mine can all be recovered through the Ferguson mine, which adjoins it and belongs to the same company.

The cause of the fire was the exhaust steam from the mine pump having been allowed to enter through one of the openings on the slope pillar into the gob workings, where the coal had been excavated, and as there was no means of escape for it from these old workings, it heated up the strata to such a temperature that chemical action took place, liberating the sulphur in the coal, the oxygen and hydrogen in the steam, and making the condition favorable for the forming of sulphurated hydrogen, which ignites at a low temperature. The superheated steam, in conjunction with the heat produced by the chemical action of the decomposing gases, would raise the temperature sufficiently high to produce spontaneous combustion, and thus eause the gob to take fire.

This exhanst steam was delivered into the gob, my express orders having been to convey it up the slope into an abandoned bore hole by means of a line of pipe. To save the expense of this pipe, it was allowed to escape into the gob, with the result that the whole mine had to be abandoned.

I may say that before the stoppings were all built and the work of closing up the fire was completed, the company became disgusted with the obstructive tacies of the mine officials and asked for their resignation and appointed the person who was in charge of the fire to be superintendent of mines.

Hurst.-This mine is now in good condition, both as regards ventilation, drainage and otherwise. On the 26th of January, an explosion of fire-damp took place in the mine, ly which two men were killed and seren others were seriously burned and otherwise
injured. The explosion of fire-damp in this mine was in the nature of a surprise, as there had never been any gas encountered in the mine previously, nor has there been any found since. It would seem that there was a local pocket of it which was forced out by a fall, in the working plate of the deceased persons, as described more fully in the account of the accident as given in another part of this report. The coroner held an inquest, at which testimony was given by a number of witnesses bearing on the case. When, after the strictest investigation was made, the jury rendered the following verdict:
"That after hearing the testimony the jury find that Peter Hawser and Chas. McQuiston came to their death at the coal mine of Hurst \& Co., in Franklin township, Fayette county, Pa., on the 26th day of January, 1897, from an explosion of gats or fire-damp, which had been previously unknown in satid mine in a dangerous form, and that their death resulted from an unavoidable accident."

Inspector Henry Louttit, on hearing of the explosion, came to the mine to render assistance. He, in conjunction with myself, made an investigation of the mine after the accident, but found no trace of any explosive gas in any portion of it. At none of my previous visits had I ever at any time found gas.

The explosion was quite a violent one, as it knocked down doors, brattices and air crossings, threw cars ofl the track, knocked out posts, hurled the men along the heading for a considerable distance and burned and threw down a large mule which was on the heading at the time. Mining boss, John Harley.

Juniata.-The gravity plane in this mine has been extended 1,800 feet further up the hill, thereby shortening the mule haulage by that distance. The usual excellent condition of the mine is still maintained. There is nothing left undone to keep-it in a healthful and safe condition. Mining boss, Peter Connor.

Kyle.-This mine is also in good condition. The headings are still being driven ahead of the requirements for rooms, the object being to get to the far end of the coal field as soon as possible, and work from the inner end back towards the pit mouth. Ventilation, drainage and general condition, good. Mining boss, I. W. Reckard.

Keystone.-This mine has been idle all the year, in fact, for several years. The outside improvements have been allowed to fall to decay. It is abandoned and will be so considered in future.

Leith.-The air current has been improved by the shortening of the distance which it has to travel. The headings have been pushed to the limits of the property, and the coal is being worked back towards the shaft. The mine is in good condition generally, and is well looked after. Mining boss, W. J. Callaghan.
leisemring No. 1.-Considerable grading has been done on the
main butt heading and parallel to enable the mules to haul larger trips. A new rope haulage way has been cut diagonally across the workings to shorten the distance and to get rid of bends, as well as to secure a better grade. By this new road, a grade of one per cent. has been secured. The new haulage way will go right into the body of coal and make the distance short which the mules will have to haul to the side track. The working will then be concentrated instead of being scattered all over the mine, as at present. At the shaft bottom substantial improvements have been made to secure the roof over the side tracks. Stone walls have been built on each side of the roads. Resting on the tops of these walls are steel I beams, four feet apart, which extend across both tracks. On top of these beams, planks three inches thick are placed close together as lagging. The shaft bottom has been secured in this manner for a distance of 160 feet on the west side. Mining boss, Joseph L. Miller.

Leisenring No. 2.-This mine is in good condition in all respects. The rope haulage engine for the dip side of the shaft having proved too small for the increased output of coal from the workings, a new one, which is much larger, is being installed. The engine house, which is being blasted out of the roof is being made. The engine will shortly be put in position. Several new overcasts have been built during the year, which has secured a better distribution of the air current. Mining boss, John W. Foster.

Leisenring No. 3.-This mine is now in good condition throughout is entire extent. The bore hole, which was drilled some time ago for the purpose of removing gas from the gob working has proved successful in every particular. The hole was drilled down through to the coal seam before the ribs were worked back to it, and while the ribs were being drawn back, it did not drain off any of the gas in the gob until the roof had fallen immediately under the bore hole, which proves that gas will not escape from the gob through solid strata, but that. when the strata is opened up by falling, and a bore hole drilled over it, all the light gas will escape through it, and keep the gob falls clear of standing gas. Another bore hole has been drilled, in another section of the mine, from the surface, to drain off the gas when the ribs are being drawn out. The same results have occurred as in the former case, viz: No gas had been drained off from the gol, where it exists, on account of the ribs not being drawn back far enough to be under the bore hole. This shows, first, that gas will not eseape through solid strata into bore holes from gob falls; second, that gob falls can be kept free from standing gas by means of bore holes drilled from the surface immediately over them. Considerable improvement has been made at the shaft bottom on the south side; a brick arch has been built for a distance of 150 feet back from the shaft, which is thirteen inches thick, resting on stone
side walls two feet thick, and has a elear span of seventeen feet six inches. A new pump room, forty-nine feet in length at the shaft bottom has also been arehed in a similar manner. Mining boss, Edward O'Toole.

Lynn.-The mine is in good condition in all respects and is well looked after. Mining boss and superintendent, James Harding.

Laughead.-This mine is fast being worked out, all the workings being confined to pillar work. The ventilation is not as viggrous as it formerly was, by reason of the removal of the fan and the substitution of a small furnace. In one of the entries black-damp was produced in such volumes that lamps were extinguished and the men were unable to get into their working place. I ordered those places stopped until sufficient air was forced into them to carry off the blackdamp. This is one of the places where economy is practiced at the expense of the health of the workmen. Mining boss, Matthew Horn.

Lemont No. 1.-This mine has been greatly improved during the year. A new Capell fan has been erected, size, \(12 \frac{1}{2}\) feet in diameter, 10 feet wide, driven by a Taylor-Beck engine, size \(17 \times 18\) inches, direct connected. A new circular shaft, 12 feet diameter, has been sunk 110 feet deep for the prrpose of ventilation, over which the fan has been erected. From the bottom of this shaft two airways eonnect with the workings of the mine, where the air is distributed in abundant volume aromnd the working places. Shortly after the erection of the fan, a test was made of its capacity to force air into the mine, which for accuracy and completeness perhaps has never been exceeded, if indeed, ever equalled. Measurements were made simultaneously of the volume of air passing at various points in the mine; also, of the water gauge, the steam pressure at boilers and eylinder of engine, the number of revolutions of fan and indicator diagrams of horse power of engine, etc. While rmnning at the greatest speed during the series of twelve tests, the following results were obtained:

Water gauge, in inches, 4.0 .
Revolutions per minute of fan, 227.0.
Horse power of engine, 269.55.
Horse power in air, 246.24.
Volume in cubic feet, \(390,650\).
Useful effect of fan, 91.30 per cent.
Manometric efficiency, 57.24 per cent.
Mining boss, John A. Carrol.
Lemont No. 2.-This mine was in good condition in every respect. A section of the mine is ventilated by the new Capell fan located at No. 1 mine. This causes a greater volume to be distributed around the other seciions of the mine in No. 2. There is no lack of ventilation, however, in any portion of the workings. A new tubular boiler, 23-10-97

14 feet long by 60 inches diameter, has been added to the boiler capacity at the air compressor plant. Mining boss, Elias Plillips.

Morrell.-The coal at the lower boundary of this mine is rapidly being exhausted. All the coal is being mined from pillars and is getting well back towards the bottom of the slope. Several squeezes have occurred while drawing out the ribs and considerable coal has been lost in consequence. Considerable trouble is experienced in working the coal in consequence of the squeeze breaking the roof. Numerous falls occur on the roadways and in the working places, which makes it dangerous to life and limb and expensive to operate safely. The ventilation is good in all parts of the mine except at the outer end of the slope, where an old flat is being reopened for the purpose of recovering some ribs which were left standing years ago. Here, considerable black-damp is mixed with the air eurrent. It is in contemplation shortly to hole this place through to an old country mine, which will give a supply of fresh air and will remedy the present trouble. The drainage is defective in parts on account of the mumerous falls closing up the drains. Mining boss. James S. Connor.

Mahoning-Atlas.-This mine is made up of the workings and slopes of what was formerly two separate mines, viz, Mahoning and Atlas. They are connected underground with hauling roads, and the same ventilating fan gives air to both, and the same pumping arrangement drains both mines and they belong to the same owners. They are now consolidated into one mine under the management of the same mine foreman. The general conditions are good, the mine being' well rentilated, drained and looked after. Mining boss, Frank Rodgers.

Mt. Braddock.-The headings in this mine are still being pushed forward to develop the mine, but owing to the great demand for coal to charge the increased number of ovens which were built last year. the rooms are being worked ont as fast as they can be won out of the solid coal by the devclopments of the headings, and the plan is to draw no ribs until the boundary is reached. It is a question, however, whether, by leaving all the ribs standing for so long a time before drawing them, a squeeze will not overrun the mine whenever rib drawing is commenced, and a large part of the coal never be recovered. Time will determine the result, and I am of the opinion that it is rather a risky experiment, and may prove a costly one. The ventilation, drainage and general conditions for the safety of the mine are good. Mining boss, John Bit\%.

Mt. Hope.-This mine is in good condition in all respects. It has all the advantages of good natural ventilation and drainage and is well looked after. Mining boss, George Armstrong.

Nellie.-This mine is nearly worked out to the boundary lines. There is a large territory of solid coal, however, above water level as yet almost mitouched, which will not be developed until all below water is nearly worked out. The condition as to healthfulness and safety is good. The mine is being well cared for and will not suffer for want of attention. Mining boss, David Young.

Nellie.-This mine is in fair condition and were it not for the fact that the natural conditions are exceedingly good and very little attention is required to get grood results, it would not get so favorable a report, as scarcely anything is done to keep it in order. The mine foreman is one only in name. He is employed for some trifling sum to visit the working places of the miners, as required by law, just as a blind, and to technically cover the mine law, but he has no authority whatever. He digs coal all the time, just as any other miner does and visits around the working places between times. He simply acts as a stool pigeon with his certificates for the operator, who acts as superintedent and everything else, and does very little of anything. Mining boss, Arehie Cochran.

Oliphant.-This mine is now in good condition generally. A large sump has been made on each side of the slope, with a capacity for holding about eight or ten days' accumulation of water at its maximum rate of accumulation. The headings are still being pushed forward towards the boundary lines, and considerably more room has been opened out than is required at present. Comnection is made with the Wynn mine, which drains its water into this mine and is pumped by its pumps. The ventilation and drainage are good. Mine boss, James Small.

Oliver Nos. 1 and 2.-These mines are in their usual good condition and everything is being done to keep them so. A new "endless rope" system of hanlage is being installed in No. 2 mine similar in principle to the one in No. 1 mine. A large brick stack has been built on the top of the exhaust shaft at No. 1. The mine is being carefully looked after, and the health and safety of the persons employed are being continually cared for and there is nothing left undone that foresight can prevent. Mining bosses Albert J. Williams and Charles M. Porter.

Panl.-A new compressor plant has been installed at this mine for the purpose of furnishing air to run the mine pumps. A large pump has also been put in place near a bore hole from the surface, through which water will be discharged from the mine. Also, a large sump has been made in which to collect the water from the different sections of the workings, most of which will drain into it. The balance will be pumped into it by small pmops, which are also run by compressed air. When finished this will be a model pumping plant. The mine is in good condition throughout and is in good hands and will be well taken care of. Mine boss, Robert Nelson.

Percy.-This mine is now working on pillars and ribs, all the solid coal having been worked out. It is in good, healthful condition. Mining boss, Everhart Shipley.
Pine Hill.-A small force of men is employed at this mine, not enought to bring it under the requirements of the law. Its condition is fairly good.

Ponfeigh.-This mine was formerly known as the "Buffalo," but a change of lessees changed the name. When the present operators commenced to run coal, their plant was burned. They thereupon decided to open up a slope and haul coal from the mine by that method rather than rebuild a derrick over the old shaft. This took some time, consequently, they were not enabled to ship a large quantity of coal during the year. A new hoisting engine has been put in at the slope opening, a new tipple built and a fan erected over the old shaft, also, a new pump at the bottom of it, so that they are in good condition to commence operations this year. The ventilation and drainage are excellent. Mining boss and superintendent, William McDowell.

Redstone.-The air current in this mine has been reversed and better results obtained. The air now reaches the working places first, and the men get a better quality as well as greater quantity of it than before the change was made. Formerly, the air came through the rib workings and the gob and was polluted by noxious gases before it reached the men. These gases are now carried out of the mine by the air current, after having first supplied the wants of the men. The volume of air has been considerably increased by the change, as natural forces now help the ventilating apparatus instead of working against it as formerly. The mouth of the lower slope has been arched for a distance of 90 feet, with a 13 -inch thickucss of brick, resting on two feet thick stone side walls 8 feet 8 inches high. The mine is in excellent condition and is being well looked after. Mining boss, Elijah Parker.

Stewart.-This mine is as always, in excellent condition. Everything is done that will tend to the welfare and safety of the persons employed. The requirements of law are not only complied with, but even exceeded to seemre that object. A new bore hole has been drilled farther down the slope for the purpose of pumping water throngh it to the surface. At this place a large sump has been made to collect the water for the pump which will be placed there. Mining boss, Isaac (i. Roby.

Snider.-This mine has never at any time employed more than nine persons, therefore, I did not visit it during the year, as it did not come under the provisions of law. Three years ago I insisted that a furnace or some other artificial means of producing rentilation should be put in the mine to comply with the law. I was informed then that
they would reduce the number of men below the requirements of law and would never employ more than nine, persons and thus keep outside the law. This has been done ever since, and, consequently, I am powerless to act. Mining boss, Robert Wilson.

Smock.-A tail rope haulage has been installed in this mine during the year, which gives good results. The ventilation is somewhat weak at the extreme points of the workings. I could not get a sufficient volume to move the anemometer. This will have to be remedied, as explosive gas is generated in the working places, one person having been slightly burned during the year. The ventilating fan is not large enough to produce force suflicient to put the volume of air in circulation required for the necessities of the mine. The other conditions are generally good. Mining boss, Ben Holiday.

Smithfield.-This is a new mine which has been opened out during the year. It is a small operation and employes only 9 miners inside and six persons outside, at the coke ovens, of which there are twelve. The mine is opened out on a small knob of about twenty-five or thirty acres of coal. It is self draining and self ventilating, and holes can be made at any place as the covering is light. Mining boss, Joe Harlicheck.

Statler.-The ventilation is fairly good, but it is fearfully polluted by powder smoke from the incessant blasting of the coal during working hours. Mining of the coal is hardly ever done, it being shot out of the solid. It would require a volume of air like a hurrieane to keep a pure atmosphere in this mine. The drainage is good, the working places all going to the rise. Mining boss, Orlando Flesher.

Shaws.-This mine is in excellent condition. The ventilation is ample and well distributed around the workings. The drainage is also good, except in a few rooms which are in a swamp, where the water has to be bailed out so that the coal can be worked. Here the shooting of coal is regulated in such a manner that the atmosphere is always kept in a healthful condition, blasting is done only at the noon hour and after 4 P. M. Mining boss, James Phillips.

Standard.-This is a small mine employing only twelve men inside and two outside. The seam is low, about three feet eight inches, and lies in a series of waves or swamps, consequently the mine is not well drained at all points. The ventilation is mostly by natural means, although there is a furnace and an air shaft, which are seldom used. The air is, upon the whole, good, as there are very favorable natural conditions to produce a current; then, care is taken to blast the coal only at the time when work is suspended, so that the atmosphere is kept pretty clear and healthful. Mining boss, C. J. Baker.

Tub Mill Run.-During the year this mine employed a sufficient number of persons to bring it under the provisions of the law again.

This mine, like nearly all the others in the Salisbury region, has never been worked on any system except a "go-as-you-please" or "go-as-youcan" system, consequently neither the mine nor the rentilation is in a satisfactory condition. There are no means other than natural ones to ventilate the mine. Althongh at each of my visits there was a good current of air in circulation, this camot be depended upon. I notified the operators that some artificial means would have to be provided to comply with law. The drainage was good, except in a few low places. The most of the work being done in the mine at present is recovering rib coal. By the imperfect methods of mining the coal in the past, a great number of ribs will never be recovered. This is a great pity, for the conditions are very favorable for recovering nearly all of the coal seam if proper methods had been adopted to mine it. Mining loss, William K. Murray.

Thomas.-This small mine is in good condition and is well looked after in every respect. Mining boss, Benjamin Thomas.

Trotter---This mine is in its nsual good condition. An increase in the volume of air delivered into the mine has been made by increasing the area of the airways at the bottom of the inlet sliaft. These had been allowed to close up, gradually by small falls. They have been cleaned up, however, and some of the roof and sides blasted down. This was money well spent, as an increase of the volume of air by nearly one-third was the result. The headings are still being driven ahead of the requirements of the demand for pit room. Mining boss, James Hart.

Uniondale.-The workings in this mine are confined to the drawing of ribs, all the solid eoal having leen worked over. The ventilation and drainage are good, as are the other general conditions. Mining boss, James L. Allen.

Wynn.-This mine is now connected with the Oliphant, being ventilated by the same system and owned and operated by the same company and is under the control of the same mine foreman. It is in good condition in all respects. Mining boss, James Small.

Wheeler.-'This mine is now confined to pillar working and is being worked back towards the slope very rapidly. It is in good condition generally, both as to ventilation and drainage. Mining boss. John Yocnm.

Washington Nos. 1 and 2.-These mines are connected in such a manner by the same system of ventilation, drainage and haulage, and owned by the same company, that they may be considered together as one mine, although there is a mine foreman for each. The rentilation, drainage and general condition are excellent in every respect, leaving nothing to be desired in the way of improvement. A large hanlage engine has been placed inside No. 1 mine to haul the coal from the dip workings. The steam is conveyed to the
engines by a steam pipe through a 14 -inch bore hole from the surface. The exhaust steam is also conreyed up through the same bore hole and escapes into the atmosphere outside. This is accomplished by the casing of the bore hole being so much larger than the steam pipe within it, viz., twelve inches inside diameter of casing; outside diameter of steam pipe, six inches, thos allowing three-fourths of the area of the casing for the exhaust steam. This keeps the engine room extremely cool. This mine has produced the largest quantity of coal of any mine in the district, 714,988 tons. The mine having worked 311 days, gives an average daily output of 2,299 tons, thereby doubling the production over that of last year, during which there was an average output of 1,125 tons per day. This is one of the best equipped mines in western Pennsylvania for handling large quantities of coal, and is splendidly kept up by the officers of the mine. Mining boss for No. 1, George Santimeyer; for No. 2, John Bell.

Walker.-This is perhaps the worst ventilated mine in the whole district. No effort has been made to provide means for conducting the air current around the mines since the present lessee commenced operations. Previous to that time, the ventilation and general conditions of the mine were good. The natural advantages are very favorable, and if even an attempt to help nature was made, the mine could be kept in a comparatively healthful condition, but absolutely nothing had been done to conduct the air into the workings. A furnace had been built by the former operator, but even this was not used. As blasting is going on at all hours, the atmosphere of the working places is thick with smoke, which never moves, as there is no current of air in circulation. Frequently the men have to quit work and leave the mine. How they work in it at all is wonderful. The same person operates this mine who operates the Nellie mine, described in a former part of this report. Here, the same methods are adopted with reference to the employing a mine boss, viz: \(A\) person who holds a certificate of service under the law is employed as a cat's paw to the lessee. This individual digs coal just as the other miners do, but for a paltry sum he is engaged to visit the working places of the other miners, as a blind to comply with law, but which is virtually an evasion of it, and this is the extent of his boss-ship. The result of all this is that the mine is neglected and the persons employed therein are the sufferers. At my last visit, I found the air in such an awful condition that I at once notified the lessee that unless he would put air into the working places of the miners within three days, I would take steps to shut down the mine. This liad the desired effect, and a force of men was put to work erecting brattices and doors; also, to repair the furnace and fire it up. Within the specified time the ventilation was satisfactory. Mining boss, Thomas Conlehan.

Yoder-This mine has been shut down for an indefinite period. Its condition is fairly good. It did not employ a sufficient number of persons to come under the provisions of the law at all times. There was no mining boss employed on that account.

Youngstown-This mine is in good condition. The workings have been extensively developed during the year. The ventilation, drainage and general conditions are good. The mine is well taken care of and will not suffer for lack of attention. During the year a bore hole was put down for the purpose of pumping the mine water through to the surfacee, the present one having been inadequate. The new hole will give ample room for discharging all the water that the pumps are capable of pumping. Mining Boss, James Exton.

\section*{Description of Fatal Accidents.}

Charles McQuiston and Peter Hawser aged 35 and 23 years respectively were killed by an explosion of gas in the Hurst mine on January 26.

March 6.-Robert Hixenbaugh, hoisting engineer, at the Mt. Braddock slope, was instantly killed by the bursting of a steam separator in the engine room. Coroner P. F. Smith impaneled a jury and held an inquest; jury rendered the following verdict:
"That Robert Hixenbaugh came to his death from concussion of the brain caused by the bursting of the steam separator at the W. J. Rainey's Coke Works at Mt. Braddock, Fayette county, Pennsylvania, on the 6th day of March, 1897, while at his place of labor. The jury believing the separator to have been too weak to stand the required pressure."

John Gonda killed by having his skull fractured in Washington No. 2 Mine, belonging to the Washington Coal Coke Co.

The deceased on the morning of A pril Sth, about five o'clock had fired a blast in his working place and left said working place and was entering the working place next to his own. The man who was working in this next place was also preparing to fire a blast, and shouted to Gonda to go back as he was going to fire a shot. Gonda, instead of retreating, as he should have done, stood against the rib, at the entrance to this room. When the blast went off, a piece of flying coal from the shot struck him on the head, killing him instantly.

Harrison I). Flickinger was killed by a fall of coal in the Walker mine, belonging to the Merchant Coal Company, of Baltimore, Md.

Frank Hoadtz, aged is, died from injuries received while blasting "horse batc." in the Mahoning-i thas mine, owned and operated by the Cambria Iron Company.

Frank Brunclick, aged 39, was killed in Washington mine by a fall of slate and coal.

John Zomer, aged 31 years, a driver in the Cumberland mine, owned and operated by the Cumberland and Summit Coal Company, located near Myersdale, Somerset county, was fataly injured in the above mine, his head having been erushed between cars.

Dennis Reynolds, aged 40 years, was killed by a fall of slate in Redstone mine, operated by the H. C. Frick Coke Company.

Andy Lukatos, aged 45, was erushed and killed by a trip of mine cars in Washington mine. Lukatos was a miner and was traveling on the hauling road, where he had no business to be, as there was a good traveling road provided.

Anthony Linney, aged 34 , was buried beneath a fall of roof coal and slate, and died before he could be gotten out.

Joseph Kalina, 36 years of age, was working in Morrell mine, operated by the Cambria Iron Company. While engaged digging coal, the slate over it became loose, having an open end, and fell on him. He was killed outright.

John Rahaly, aged 39 years. This man met his death by the grossest recklessness. A man in the next rib to the deceased was drawing out posts preparatory to making a fall. The deceased, who had come into his place to wateh him draw the posts, said to him: "You 'fraid to draw posts; you no furstay draw post; me show you." He then took the axe from the other man and commenced to knock out the posts, never stopping to listen whether the roof was breaking or not. He was knocking out the second post when the whole mass of rock fell on him, killing hin instantly.

John Cornish was killed while drawing posts out of a rib in Leisenring No. 2 mine, operated by the H. C. Frick Coke Company. He had got all the posts out except one, which he had left to steady the roof while drawing out the other posts. The roof did not fall as he expected, when he got the posts out; therefore, to make it fall, he went back to knock out the one remaining post, which, when it was knocked out, allowed the whole area behind his "break row" to fall, which instantly killed him.

Joe Havanich, 28 years of age, was drawing stumps in Trotter mine, owned by the H. C. Frick Coke Company. He and another person were working together on the butt heading stumps, which had considerable of a "squeeze" on them. The roof was bad, and cross timbers had to be used to keep it up. However, there was no lack of timber in, and it was secured as well as possible under existing conditions. While the two men were loading a wagon, the roof began to break, work and fall. They ran out past the wagon down the heading, the roof falling behind them, when, suddenly, with a great crash, the whole roof came down, the outer edge of the fall catching
them as they ran, burying Hanaich under it; the other man, who was a step or two ahead, having been cut and bruised and he narrowly escaped death.

George Washington, aged 2s, and Harry Crawford, aged 37, both colored men, were killed in Leith mine, operated by H. C. Frick Coke Company, by a fall of roof.

Thos. B. Richardson was killed by a fall of roof while cutting away a stump, after he had drawn out his posts, in the Leisenring No. 3 mine, belonging to the H. C. Frick Coke Company.

John Burlock, age unknown, was instantly killed by a fall of slate in his working place in Leisenring No. 2 mine.

Pleasant Lynch, age not given, was instantly killed by a fall of slate in the Jeisenring No. 2 mine, owned by the H. C. Frick Coke Company.

Edward Tensky, aged 2s, while working in Trotter mine, operated by H. C. Frick Coke Company, had his wrist broken, the muscles of his back strained and was injured internally by a fall of slate. When taken home the doctor did not think anything serious would result, but he died on the 26 th of November.

Henry Stophaka, age 28 years, was killed in Elenora mine, operated by the J. D. Boyd Coal Co. Stophaka was undermining a breast of coal, which had been shattered by a previous blast of gunpowder. He had put the sprag in under it while he was undermining, but while at work he struck the sprag with his pick and knocked it out, when the coal fell upon him, crushing and bruising him to such an extent that he lived only a few hours.

David J. Crosby was killed under a trip of mine cars on the slope of the Stewart Iron Company's mine.

Mike Ochlane, aged 44, was killed by a fall of roof coal and slate in the Mahoning- Itlas mine, belonging to the Cambria Iron Company.

John Stickle, aged 49 years, was killed by a fall of roof coal and slate in the Crossland mine, owned and operated by the Atlas Coke Company

TABLE No. 1.-Showing Location, etc., of Collieries in the Fifth Bituminous District.
\begin{tabular}{|c|c|c|c|c|}
\hline Name of Colllery. & Name of Operator. & Location-County. & Name of Superintendent. & Postofnce Address. \\
\hline Bessic. & & Fayette, & George Whyel, & Perryopolis. \\
\hline Berlin. & Jno. O. Stoner, & Somerset, & Jno. O. Stoner, & Berlin. \\
\hline Casselman, & Casselman Coal Company, \({ }^{\text {Co................ }}\) & Somerset, & Wm. G. Hocking, ........... & Meyersdale. \\
\hline Clarissa, ... & James Cochran, Sons \& Co., ................... & Fayette. & P. G. Cochran, ............. & Dawson. \\
\hline Chester, & E. A. Humphries \& Co., ....................... & Fayette, & R. J. Humphries, . \({ }^{\text {P. }}\). & Vances Mills. \\
\hline Crossland & Atlas Coke Company, ........................ & Fayette,
Fayette, & James Henderson, .......... & Uniontown. \\
\hline Connellsville No. 1 , & Connellsville Coke Company, & Fayette. & Henry M. Wilson, ............. & Cheat Haven. \\
\hline Edna. & Connellsville and Ursina Coal and Coke Co., & Somerset, & E. H. Reid, & Scottdale. \\
\hline Elenora, & J. D. Bayd Coai Company, ........................ & Fayette, & J. J. Boyd, .................. & Uniontown. \\
\hline Fairchance, & H. C. Frick Coke Company, .................. & Fayette, & George B. Irvin. & Fairchance. \\
\hline Ferguson, & Dunbar Furnace Company, ..................... & Fayette, & John W. Greaves, & Dunbar \\
\hline Fairview, & Fairview Coal Company Redstone Oll, Coal and Coke Company, ...... & Somerset, & Thomas Rees, & Meyersdale. \\
\hline Great Bluff. & E. A. Humphries, ............................. & Fayette. & A. E. Humphries & Grindstone. \\
\hline Grassy Run, & Grassy Run Coal Company, & Somerset, & John Meagher, & Elk Lick. \\
\hline Hocking. & Chapman Hocking Coal Company, .......... & Somerset, & John T. Hocklng. & Meyersdale. \\
\hline Hamilton, & Duncombe \& Adams, ........................... & Somerset, & George H. Duncombe, ...... & Meyersdale. \\
\hline Hill Farm, & Dunbar Furnace Company, ................... & Fayette. & John W. Greaves, .......... & Dunbar. \\
\hline Hurst. & Warner Coal Company, & Fayette, & Whitney Warner, & Smock. \\
\hline Juniata, & Junlata Coke Company, ....................... & Fayette, & Adam Nicholson, ........... & Juniatavllle. \\
\hline Kyle. & H. C . Frick Coke Company, .................. & Fayette, & George B. Irvin, & Fairchance. \\
\hline Keyston & Keystone Coal Company, \({ }^{\text {co................. }}\) & Somerset, & E. J. Weld, & Meyersdale. \\
\hline Leith, l (senring No O . & H. C. Frick Coke Company, & Fayette, & Harry Whyel, & Uniontown. \\
\hline Leisenrlng No. \({ }^{\text {2, }}\) & H. C. Frick Coke Company, .................. & Fayette. & Chas. J. Warnock, & West Lelsenring. \\
\hline Lelsenring No. 3 , & H. C. Frick Coke Company, & Fayette, & W. H. Hugus, & Leisenring. \\
\hline Launghead. & Hanna Brothers, & Fayette, & James Harding, & Brownsville. \\
\hline Lemont No. 1 . & Martin Coke Company, & Favette, & \(\mathrm{F}_{5} \mathrm{D}\). Humph & Fairchance. \\
\hline Lemont No. 2, & McClure Coke Co., & Favette, & E. A. Humphries, & Scottdale. \\
\hline Morrell, & Cambria Iron Company, & Fayette, & Martin Meagher. & Connellsville. \\
\hline Mahonine-Atlas. & Cambria Iron Company, & Fayette. & Martin Meagher, & Connellsville. \\
\hline Mt. Rraddock, & W. J. Rainey, & Fayette. & J. M. Franklin, ............. & Mt. Braddock. \\
\hline Mt. Hope, & Isaac Taylor \& Co., & Fayette, & Isaac Taylor, & Dunbar. \\
\hline Nellie. & E. Statler. ........ & Fayette. & J. R. Loughrey & Dawson \\
\hline Otyphant. & H. C. Frlck Coke Company & Favette, & C. C. Gadd, ............. . . & Olyphant Furnace. \\
\hline Oliver No. & Ollver \& Snyder Steel Company, & Favette, & Fred. C. Keighley, ......... & Tniontown. \\
\hline Ollver No, 2, & Ollver \& Snyder Steel Company. & Fayette, & Fred. C. Kelkhley, ......... & Tniontown. \\
\hline Paי1. & W. J. Rainey. & Favette. & T. J. Mitchell, & Vanderbllt. \\
\hline Percy. & Percy Mining Co.. & Favette. & Louis de Saull & Percy, \\
\hline Pine Hill, & Walker \& Easton. & Somerset, & George K. W & Berli \\
\hline
\end{tabular}

TABLE No. 1.-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Name of Colllery. & Name of Operator. & Location-County. & Name of Superintendent. & Postoffice Address. \\
\hline Redstone, & H. C. Frick Coke Co., & Fayette, & Leonard Bullious, & Brownfield. \\
\hline Stewart, & Stewart Iron Co., Limited, & Fayette, & E. M. Peters, & Uniontown. \\
\hline Snider, & John Snider, ......... & Fayette,
Fayette, & John Snider, W . Boyd, & Uniontown.
Smock. \\
\hline Smithfield, & J. D. Boyd Coal Co., & Fayette, & J. D. Boyd, ... & Unlontown. \\
\hline Statler, & E. Statler, & Somerset, & E. Statler, & Elk Lick. \\
\hline Shaws, & Cumberland and Elk Lick Coal Company,.. & Somerset, & A. Chamberlin, & Meyersdale. \\
\hline Tub Mill \({ }^{\text {Standard }}\) & Brubaker \& Kimmel,
Fairview Coal Co., & Somerset, & J. C. Wetmiller,
Thomas Rees, & Berlin. \\
\hline Thomas, ... & Benj. Thomas \& Són, & Somerset, & Benj. Thomas, & Meyersdale. \\
\hline Trotter, & H. C. Frick Coke Company & Fayette, & P. J. Toomay, & New Haven. \\
\hline Wynn, ... & Reid C. Frick Coke Co... & Fayette, & R. B. Reld, & Dunbar. Olyphant Furnace. \\
\hline Wheeler, & Cambria Iron Company & Fayette, & Martin Meagher, & Connellsville. \\
\hline Washington No. 1, & Washington Coal and Coke Company, & Fayette, & John S. Newmeyer, & Dawson. \\
\hline Washington No. \({ }^{2}\), & Washington Coal and Coke Company, & Fayette, & John S. Newmeyer, .. & Dawson. \\
\hline Walker, ........... & Merchant Coal Company, .............. & Somerset, & E. Statler, ............. & Elk Lick. \\
\hline Yoder, & Ringler \& Hirsh, ... & Scmerset, & C. P. Hirsh, & Coal Run. \\
\hline Youngstown. & H. C. Frick Coke Co., & Fayette, & Chas. M. Shank, & Lemont Furnace. \\
\hline
\end{tabular}

TABLE No. 2-Gives the total number of tons of coal mined in each Colliery, number of days worked, number of employes, number of persons killed and injured, number of kegs of powder used, etc., in the Fifth Bituminous District, for the year ending December 31, 1897.


TABLE NO．2．－Continued．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collleries． & Location－County． & \begin{tabular}{l}
\％ \\
馹 \\
E \\
 \\

\end{tabular} & \begin{tabular}{l}
\％ \\
\(\stackrel{n}{\square}\) \\
E \\
5
0
0
0
0
0 \\
－
\end{tabular} &  &  &  &  & Number of persons employed. &  &  &  &  &  &  &  &  \\
\hline Leisenring No．3， & Fayette， & 296，000 & 197，656 & 6，333 & 600 & & 267 & 325 & 1 & 7 & & 2，300 & 9 & 42 & 2 & 504 \\
\hline Lynn，\({ }_{\text {Laughead，}}\) & Fayette， & 38，719 & 26，226 & 1，400 & \(8{ }^{20}\) & 1，200 & 279 & 69 & & 1 & 25 & 100 & 2 & 7 & & 50 \\
\hline Lemont No． 1 ， & Fayette，．．．． & 120,900 & 90，629 & 5，614 & 4，859 & & 278 & 202 & & 1 & & & 6 & 13 & & 227 \\
\hline Lemont No．2，．．．．．． & Fayette，．．．．． & \({ }^{1951,101}\) & 149,251
187,906 & \({ }_{7}^{2,488}\) & 1,509
1,166 & 40 & 270
311 & 307
346 & 1 & 5 & & \({ }_{333}^{15}\) & \({ }_{13}^{6}\) & \(1{ }_{30}^{16}\) & & 350
400 \\
\hline Morrell，－．．．．．．．． & Fayette， & 198， 246 & 153，000 & 3，853 & 1，570 & & 296 & 304 & 2 & 3 & & & 11 & 17 & & \({ }_{2 S 6}\) \\
\hline Mt．Braddock， & Fayette． & 131,219
\(3 \%, 238\) &  & 3，650 & 1,200
20 & & \({ }_{252}^{210}\) & 279 & 1 & 1 & 20 & & \({ }_{1}^{9}\) & \(\stackrel{22}{3}\) & & 390
40 \\
\hline Mt Hope，
Nellle， & Fayette， & 231.750 & 152，500 & 3.000 & & & 286 & 281 & & 2 & & & 3 & 32 & & 329 \\
\hline Nellie， & Somerset， & \({ }^{25,000}\) & & & & 25，000 & 200
249 & 41 & & 1 & 235 & &  & \({ }_{3}^{3}\) & & \\
\hline Olyphant． & Fayette， & \({ }_{271,568}^{1065}\) & 210，189 & 6，375 & 3，069 & 22，967 & 298 & 370 & & 2 & & 200 & 7 & 25 & & 328 \\
\hline Ollver No．\({ }^{\text {2，}}\) & Fayette， & 189，744 & 140， 270 & 4.150
4.350 & 940 & 21，610 & 236 & 250 & & & & & 4 & 19 & & 300 \\
\hline Paul， & Fayette， & 314.000
24,509 & 1617,500
15,501 & 4，350 & 324
200 & i，9．98 & 320
220 & 400 & & 1 & & 150 & 11 & 20 & 1 & 415
36 \\
\hline \({ }_{\text {Percy }}\) Pine Hili， & Fayerset． & 2.500 & & & & 2，500 & 120 & 10 & & & 20 & & & & & \\
\hline Ponfelgh， & Somerset， & 2， 0000 & & \({ }^{400}\) & & 2，000 & 200 & 24 & & & so & 10 & 2 & 2 & & \\
\hline Redstone， & Fayette，： & 127，055 & 156，782 & 7，084 & － 5388 & 338 & \begin{tabular}{l}
263 \\
312 \\
\hline
\end{tabular} & 120 & 1 & 3 & & 10 & 148 & 10 & 2 & \({ }^{446}\) \\
\hline Snlder， & Fayette， & \({ }_{94,677}\) & & 100 & 7，708 & & 215 & 9 & & & & & & \({ }_{8}\) & & \\
\hline Smock，\({ }_{\text {Smithfield，}}\) & Fayette， & 94.671
6.812 & 1.200 & 100 & & 5，000 & \begin{tabular}{l}
234 \\
150 \\
\hline
\end{tabular} & 101 & & 3 & 956 & & & 1 & & 12 \\
\hline Statler，． & Somerset． & 55.000 & & & & 55，000 & 250 & 134 & & & 500 & & & 10 & & \\
\hline Shaws， & Somerset． & 45．855 & －11，358 & 262 & 1，005 & 127．556 & 246
180 & 168 & & & 1，200 & & 2 & 13 & & 75 \\
\hline Standard，\({ }_{\text {Tub Mill }}\) & Somerset， & 25.000 & & & 7，650 & 17，350 & 180 & 45 & & & 240 & & & 4 & & ． \\
\hline Thomas． & Somerset， & 28．213 & & & & 28，213 & 286 & 30 & & & 280 & & & 1 & & \\
\hline Trotter， & Fayette． & 284.015
21.589 & 187，462 & \({ }_{681}{ }_{6}\) & 526 & & \({ }_{233}^{268}\) & 433
65 & & 5 & & 500 & 8
8 & 4 & & 74 \\
\hline wynn & Fayette， & 13.000 & 8.107 & 189 & & & \({ }^{63}\) & 73 & & & & & 2 & 5 & & 70 \\
\hline wheeler． & Fayette． & 89，099 & 67，317 & 1，475 & \＄91 & & 313 & 98 & & 3 & & 18 & 4 & 9 & & 103 \\
\hline
\end{tabular}

- Idle all year.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Names of Collieries.} & \multicolumn{8}{|c|}{Occupations of Persons Employed Inside.} & \multicolumn{7}{|c|}{Occupations of Persons Employed Outside.} & \multirow[b]{2}{*}{} \\
\hline &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  & \\
\hline Bessie, ... & \multirow[t]{8}{*}{1
1
\(\cdots \cdots \cdots\)
1
1
1
1
1
1
\(\cdots \cdots\)
\(\cdots\)
1
1} & & & 2 & & & 1 & & 1 & 1 & 2 & & & & & \\
\hline Berlin, ....... & & \multirow[t]{2}{*}{...........} & \multirow[t]{2}{*}{\[
\begin{array}{r}
80 \\
7 \\
76 \\
102
\end{array}
\]} & i & \({ }_{2}^{1}\) & & & \({ }_{35}^{8}\) & & & & & & & \({ }_{2}^{1}\) & 9 \\
\hline Casselman, & & & & 1 & \(\stackrel{2}{6}\) & & & 113 & \(\ldots . . . .\). & 1 & & & & 1 & \(\stackrel{2}{7}\) & \\
\hline Clarissa, \({ }^{\text {Cli }}\) & & ............. & 41 & 3 & 7 & & & 52 & & 1 & & & 36 & 2 & 39 & 91 \\
\hline Crossland, & & \multirow[t]{2}{*}{..........} & 46 & 2 & 4 & & . & 53 & & \[
{ }_{1}^{1}
\] & 1 & & 44 & 2 & 48 & 101 \\
\hline Cheat Haven. \({ }^{\text {Connelisville }}\) No. 1 & & & \({ }_{27}^{30}\) & 1 & \({ }_{2}^{3}\) & 4 & & \({ }_{37}^{39}\) & 1 & 1 & & & & & & 43 \\
\hline  & & \multirow[t]{2}{*}{\(\ldots\).......i} & 2 & & & & & 2 & & & & & & & & \({ }_{2}^{60}\) \\
\hline Elm Grove & & & & 1 & \({ }_{2}\) & & & & - & 1 & 3 & & 50 & & 60
1 & 158
20 \\
\hline Fairchance, & \multicolumn{2}{|r|}{\multirow[t]{6}{*}{}} & & 14 & & 2 & & & .......i & & & & & & & \\
\hline Ferguson, & & & & & 6 & & & 63 & & & 4 & . & \({ }_{4}{ }_{4}^{6}\) & 2 & & \\
\hline Grindstone. & & & 50 & 1 & 4 & 2 & 6 & 66 & & & & & 8 & 2 & & 82 \\
\hline Great Eluff, \(\dagger\) Grassy Run, & & & \({ }_{4}^{6}\) & 1 & 1 & & & & & 1 & & & 4 & 1 & \({ }^{6}\) & \begin{tabular}{l}
15 \\
48 \\
\hline
\end{tabular} \\
\hline Hocking, \(\begin{aligned} & \text { Hamilton, }\end{aligned}\) & & & 58 & & 5 & 2 & i & 67 & & & & & & & 2 & 69 \\
\hline Hill Farm, \(\ddagger\) & & & 44 & & 4 & & 1 & 50 & & 1 & & & 2 & & & 54 \\
\hline Hurst, & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} & & 2 & 3 & & & 52 & & & & & & & 9 & \\
\hline Junlata, & & & & & & & & & & 1
2
2 & & & \({ }_{53}^{94}\) & & & 252
147 \\
\hline Keystone, -..... & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l|r}
1 & 1 \\
1 & 3 \\
\hline
\end{tabular}}} & & & & & & & & & & & & & & \\
\hline Lelsenring No. 1 , & & & 178 & & 16 & 4 & 24 & 228 & 1 & 7 & 7 & & 101 & 3 & 119 & \({ }_{347}^{272}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Leisenring No. 2, & 1 & 3 & 153 & - & 16 & 4 & 13 & 190 & 1 & 5 & 5 & |........ & 118 & 3 & 132 & 322 \\
\hline Leisenring No. 3, & 1 & 4 & 158 & ........ & 13 & 4 & 13 & 193 & 1 & 6 & 7 & ......... & 115 & 3 & 132 & 325 \\
\hline Lynn, ............. & 1 & & 16 & ........ & 2 & & 2 & 21 & & & & & 1 & 2 & 3 & 24 \\
\hline Laughead, \({ }^{\text {a }}\) & 1 & & 25 & 1 & 2 & & & 29 & 1 & 2 & 2 & & 33 & 2 & 40 & 69 \\
\hline Lemont No. 1, & 1 & 1 & 100 & & 11 & & 10 & 123 & 1 & 4 & 6 & & 66 & 2 & 79 & 202 \\
\hline Lemont No. 2, & 1 & 2 & 140 & & 14 & 3 & 14 & 174 & 2 & 5 & 6 & ........ & 118 & 2 & 133 & 307 \\
\hline Morrell, & 1 & 3 & 137 & & 23 & 1 & 40 & 205 & 1 & 3 & 5 & & 130 & 2 & 141 & 346 \\
\hline Mahoning-Atlas, & 1 & 3 & 146 & & 14 & & 15 & 179 & 1 & 4 & 5 & & 114 & 1 & 125 & 304 \\
\hline Mt. Braddock, & 1 & 2 & 125 & 3 & 13 & & 5 & 149 & 1 & 3 & \(\delta\) & & 115 & 3 & 130 & 279 \\
\hline Mt. Hope, & 1 & & 22 & & 3 & & & 26 & 1 & & & & 12 & \(\frac{1}{3}\) & 14 & 40 \\
\hline Nellle, ... & 1 & 1 & 150 & 6 & 16 & 3 & 6 & 183 & 2 & 3 & 4 & ......... & 86 & 3 & 98 & 281 \\
\hline Nellie, & 1 & & 35 & & 3 & & & 39 & 1 & & & & & 1 & 2 & 41 \\
\hline Olyphant, & 1 & 1 & 80 & & 7 & & 7 & 96 & 1 & 2 & 3 & & 48 & 2 & 56 & 152 \\
\hline Oliver No. 1, & 1 & 3 & 160 & 2 & 17 & 4 & 34 & 221 & 1 & 10 & 4 & & 132 & 2 & 149 & 370 \\
\hline Ollver No. 2, & 1 & 2 & 126 & 1 & 18 & 4 & 14 & 166 & 1 & 2 & 3 & & 76 & 2 & 84 & 250 \\
\hline Paul, & 1 & 2 & 200 & & 18 & 2 & 5 & 228 & 1 & 5 & 5 & & 149 & 12 & 172 & 400 \\
\hline Percy, & 1 & & 15 & & 4 & & 4 & 24 & & 1 & 1 & & 13 & 1 & 16 & 40 \\
\hline Pine Hill, & & & 7 & & 2 & & & 9 & & & & & & 1 & 1 & 10 \\
\hline Ponfeigh, & 1 & & 15 & 2 & 1 & & & 19 & & & & & & 1 & 5 & 24 \\
\hline Redstone, & 1 & 3 & 155 & & 24 & 2 & 15 & 200 & 1 & 5 & 12 & & 134 & 3 & 155 & 355 \\
\hline Stewart, & 1 & 1 & 54 & ........ & 4 & 1 & 3 & 64 & 1 & 2 & 3 & & 48 & 2 & 56 & 120 \\
\hline Snider, & & & 8 & & 1 & & & 9 & & & & & & & & 9 \\
\hline Smock, \({ }^{\text {Sma }}\) & & 1 & 78 & . & & 1 & 2 & & & 2 & 1 & ........ & & 3 & 11 & 101 \\
\hline Smithfield, & 1 & & 7 & . & 1 & & & 9 & 1 & & & & 4 & 1 & 6 & 15 \\
\hline Statler, & 1 & & 125 & & 5 & & & 131 & 1 & 1 & & & & 1 & 3 & 134 \\
\hline Shaws, & 1 & & 124 & . & 13 & 3 & 4 & 146 & & 1 & 1 & ......... & 18 & 2 & 22 & 168 \\
\hline Standard, ..... & & & 9 & ......... & 2 & & & 12 & & & & & & & & \\
\hline Tub Mill Run, & 1 & & 35 & ......... & 4 & & 1 & 41 & & 1 & & & 2 & 1 & 4 & 45 \\
\hline Thomas, & 1 & & 26 & & 1 & & & 28 & & & & & 1 & 1 & 2 & 30 \\
\hline Trotter, & 1 & 3 & 195 & & 18 & 5 & 22 & 244 & 1 & 5 & 6 & & 174 & 3 & 189 & 433 \\
\hline Untondale, & 1 & 1 & 25 & 4 & 2 & 5 & 3 & 36 & & 1 & 1 & ........ & 26 & 1 & 29 & 65 \\
\hline Wynn, & 1 & & 40 & & 3 & & 2 & 46 & & 1 & 1 & & 23 & 1 & 27 & 73 \\
\hline Wheeler, & 1 & 1 & 44 & & 4 & & 4 & 54 & 1 & 2 & 3 & & 37 & 1 & 44 & 98 \\
\hline  & 3 & 1 & 375 & & 30 & 2 & 22 & 433 & 3 & 5 & 5 & & 115 & 4 & 132 & 565 \\
\hline  & 1 & & 35 & & 3 & 1 & 3 & 43 & & 1 & 2 & & 1 & & 4 & 47 \\
\hline Walker, . & 1 & & 47 & & 5 & & & 53 & 1 & 1 & & & & 1 & 3 & 56 \\
\hline Yorer, & & & 9 & & 1 & & & 10 & & & & & & 1 & 1 & 11 \\
\hline Youngstown, & 1 & 2 & 87 & & 12 & 2 & 11 & 115 & 1 & 4 & 7 & & 66 & 2 & 80 & 195 \\
\hline Total, ...................................... & 59 & 52 & 4,632 & 53 & 462 & 66 & 363 & 5,688 & 37 & 124 & 148 & & 2.542 & 111 & 2,962 & 8,650 \\
\hline
\end{tabular}
* Idle all the year.
+ Worked out and abandoned during the year, \(\ddagger\) Abandoned: report included in Ferguson Mine.



TABLE No. 5 -List of Non-Fatal Accidents that occurred in and about the mines of the Fifth Bituminous District, for the year ending December 31, 189 T.



John Morgan John Morgan
\begin{tabular}{|c|c|c|}
\hline 30 & M. & Elm Grove, \\
\hline 23 & M. & sorrell, \\
\hline -0 & \(\stackrel{\text { s. }}{ }\) & selte, \\
\hline 3 & s. & Mahonin \({ }_{\text {- At.as, }}\) \\
\hline 21 & 5. & Hurst, \\
\hline 34 & 11. & Leith, \\
\hline 65 & M. & Laughead, \\
\hline 21 & S. & Wheeler, \\
\hline 31 & M. & Leith, \\
\hline 30 & M. & Ferguson, \\
\hline 30 & M. & Ferguson, \\
\hline 26 & M. & Ferguson, \\
\hline 29 & M. & Lelsenring No. 1. \\
\hline 33 & M. & Leisenring No. \\
\hline 40 & M. & Leisenring No. 1, \\
\hline 29 & S. & Leisenring No. 3, \\
\hline 43 & 21. & Morrell, .. \\
\hline 19 & S. & Cheat Haven, \\
\hline 30 & M. & Smock, \\
\hline 30 & S. & Ferguson, \\
\hline 19 & S. & Cheat Haven, \\
\hline 38 & M. & Trotter, \\
\hline 37 & M. & Leisenring No. 3. \\
\hline 24 & M. & Trotter, \\
\hline 42 & M. & Mahoning-Atias, \\
\hline 17 & S. & Oliver No. 1. \\
\hline 34 & M. & Ferguson, \\
\hline 24 & M. & Oliver No. 1, .................. \\
\hline 37 & & Lemont No. 2, \\
\hline 38 & M. & Youngstown, \\
\hline 25 & S . & Trotter, \\
\hline 30 & M & Crossland, \\
\hline
\end{tabular}

\section*{Fayette,
Fayette,}

Fayette,
Fayette,
Fayette,
Fayette, Fayette, Fayette.
Fayette
Fayette,
Fagette,
Fayette,
Fayette
Fayette,
Fayette,

\section*{Fayette,}

Fayette,
Fayette,
Fayette,
Fayette,
Fayette,

Foot and leg hurt
suay bady wrulsed; 1 oof fell on him.
two fingers cut olf.
Arm and face hurt by slate falling. Leg broken by a tan of coas.
silghtiy bruised about hips; caught beshotsder and ankie hurt by a fall of
Ribs broken and shoulder fractured; roof tell on him. Head badly cut and back and shoulders severely hurt by a fall of roof coal and
Leg broken by a fall of coal.
Eadly bruised about body by a runaway
wagon.
Ribs bruised and head cut.
Severely bruised about the body. Two ribs These three men were ripping down slate when it fell on them, injuring them as above stated.
Head, back and legs injured.
Feet and legs scalded by steam and hot water from mine pump
Arm and side injured by being caught Small bone in leg broken: body hurt, and eye cut by fall of slate.
squeezed about hips: caught between the front or wagon and mule.
Wrist broken; caught between loaded
Hurt by fall of roof while drawing out
Left hif dislocated and left ear cut off by a fall of roof.
Contusion of leg and dislocation of foot by his heel catching bumper and throwHurt about hips by a fall of slate.
While dropping cars to the shaft bottom he was caught between the bumpers, crushing his legs.
Injured on breast and back.
Foot crushed by being caught between Right leg broken below knee by a fall of
Finger mashed while unloading a car of ties.
Arm fractured. Leg injured by a fall of roof coal and


\title{
Sixth Bituminous District.
}

\author{
(CAMBRIA, SOMERSET AND INDIANA COUNTIES.)
}

Johnstown, Pa., February, 1898.
Hon. James W. Latta, Secretary of Internal Affairs:
Sir: I have the honor herewith of presenting my annual report as Inspector of Mines for the Sixth bituminons district.

I am pleased to report a decrease in the number of fatal accidents from eleven, in 1896 , to eight, in 1897, while the total quantity of roal mined has been increased from \(4,722,571\) tons, in 1896 , to \(5,501,611\) tons, in 1897.

The mines have not only been maintained in their usual condition, but many of them have been greatly improved by the adoption of better plans of mining, upon which comments will be made in another part of the report. There will be found embodied herein also the usual tables and statistics, together with a description of each mine as regards ventilation and drainage, and the improvements and developments at the various collieries during the year.

Very respectfully,

> J. T. EVANS.

In the report for 1894 a table was given, showing the number of tons of coal mined per fatal and non-fatal accidents from the year 1885 to 1894 , inclusive. This showed 442,030 tons per fatal, and \(283,73 \pi\) tons per non-fatal accident. The two following years- 1895 and 1896 -showed 480,506 tons per each fatal and 260.846 tons per each non-fatal accident. The present report shows 687,701 tons per each fatal and 275,080 tons per non-fatal accident. Thms, there is a gradual decrease in the number of fatal accidents each year in proportion to the quantity of coall mined. The following is the list of acei dents for 1897, and how caused:

\section*{Fatal Accidents．}
By falls of coal， ..... 6
By falls of rock， ..... 1
By mine wagons， ..... 1
Total， ..... S
Non－Fatal Acerdents．
By falls of coal， ..... \({ }^{6}\)
By falls of rock， ..... 4
By mine wagons， ..... 5
By hamling rope， ..... \(\simeq\)
By falling from dipple． ..... 1
lis railroad cars， ..... 1
Burned by powder， ..... 1
Total． ..... 20
Number of widows， ..... 5
Number of orphans． ..... 7
Summary of Statisiocs．
Total mmmer of mines in the district ..... s8
Number of mines not working dming the year， ..... 10
Number of mines reported． ..... 78
Total coal production，in net tons， ..... 5，501，611
Total coke production，in net tons． ..... 240，559
Tolal coal used for steam and heat，tons， ..... 53，099
Total coal sold to local trade，tons， ..... ：3：3，43！）
Tooal coal shipmemts，tons． ..... 5，（0：3， 411 ！
Nomber of fatal aceqdents， ..... 8
Number of non－fatal aceddents， ..... 20
Number of tons of coal mined per eatrla fatal acerdent ..... （6ヘ7， \(\mathbf{7} 01\)
Number of tons of coal mined per each non－fatal acerident， ..... 
Number of men employed per each fatal ace ident． ..... 1，1：0
Number of ment rimployed per cath non－fatal aredent ..... 44
Number of employes，inside． ..... s．こ．）：
Number of employes，outside， ..... 76
Total mumber employed． ..... ふ！966
A verage mumber of days worked． ..... \(174 \frac{1}{2}\)

Improvements Made baring the Year 1897.
The following mines have put in improvements during the past rear: "Stineman," a new rope hatage; "Puritan No. 1," electric mining machines; "(ialitzin shaft," a new rope hanlage; "Gallitzin slope," electricmotors for hatnling, and electric mining machines; "Columbia," a rope hambege pant and a Stine fan; "Flanigan Rum," a fan to repatee a furnace; "Sterling No. \&," mining machines; "Jmiata," an Hectric plant to rmm mining mathines; "sterling No. 11," a compressed air plant to rom mining marhines; "Lameashire No. T," an eloctric plant for hamling and hitining coal; "W户est Bratheh," a rompressed ali plant from which the mining machines receive power; "Empire," a rompressed air plant from which power is obtained to rim the marhine punches which are used to mine coal; "Lorain," a compressed air plant to run the mining machines. For "Rolling Mill," mine, the Cambria Iron Company have contracted for and have started to ereet a very large compressed air phant, from which sufficient power will be obtained to run five alr locomotives and a snfficient number of machines to mine from twelve to fiftern hundred tons of coal per day.

\section*{Notes and Comments on the State of Mining in the District.}

A list of improvements introdued at the mines in the way of mathindy for hamling and mining is given above. Here I desire to note other impovements quiety being made at a very large nomber of the collieries, which are of more importance to mining men than the putting in of marhinery. I refer to changes that are taking plare in the system of mining hy the adoption of larger pillars, wider headings or hauling roads, the conducting of water through batck headings not used for hauling purposes, etc.

It is clear that the thee principal points to be aimed at in a system of mining are: First, eormomical methods; second, a plan by which the greatest nmmber of tons of marketable coal per alre can be mined; third, a system which will insmre safely and good samitary conditions in the mine. The methods of mining now being adopted, which I have alluded to above, will eover these points. It needs no argmonent to aonvince a man who has passed through a number of mines and compared the old system of narow headings and smatl pillars with the new system of wide headings and large pillars, as to which is the salfer and more eeonomidal metherl. No one kinows better than hewho has fried it how diflentt it is foconvineesome people of the superiority of other methods of mining over those to which they have been acerssomed. It is a rase where seefing nol, gremerally means believing not. Until they have been shown the newer and better sysfem in actual and suceressful operation. the invariable argument is, "it can't be done," withont any investigation whatever.

The adoption of such improvements in the plans of mining as we have mentioned, has brought some of our operations very nearly to the point of being model collieries, and it is a fact that in these cases the cost of mining has been reduced to the minimum, while the miners' wages have not been affected, and the safety and sanitary condition of the mines have been greatly improved. I am pleased to state that in this class of mines an unusual degree of interest is being taken in providing good rentilation for the men-something which is just as necessary to the successful operation of a mine as steam in a boiler is to the running of machinery. Yet there are thousands of dollars spent at some mines for the prrpose of increasing the production, without any effort being made to provide more air for the increased number of men necessary to raise the output. This is a great mistake. Let good ventilation first be provided for; then the mine will be in condition to be developed economically and safely.

However, we believe that a new era in the history of mining has dawned within the past few years, during which greater advancement has been made than in any similar period in the past. Now, the men who cling to the old fogy ideas of mining are no longer required, and to fill their places men of advanced ideas are being sought. The law, progress and lumanity demand that to such must be committed not only the economical operations of the plants comnected with the great industry, but, to a great extent, the health and safeiy of the many thousands who toil beneath the ground.

DESCRIPTION OF MINES.

\section*{Johnstown District.}

There are four mines located in this district, namely: "Rolling Mill," "Haws' Shaft," "Gautier No. 3" and "Conemaugh."

The first named is one of the largest in this inspection district. The sanitary condition is fairly good, as every precaution is taken by those in elarge to prevent accidents and to insure, as far as practicable, the licalth and comfort of the employes. It is, however, one of the most difficult mines in the district to keep properly ventilated, as the fan is so far away from the workings and the air has 10 be forced through so much of the old worked out places that it requires the greatest vigilance on the part of those in charge. I expect, before another annual report is made, to see a new fan placed here, near the face of the mine.
"Haws' shaft," "fiantier" and "Conemangh" mines are in tirst class condition as regards ventilation, drainage and safety. The two former are rentiated ly fans, and the latter by a furnace. A risit to either of these workings is always a pleasure. Years of experience in examining these mines have given me assurance that no part of the law is being violated.
"Ingleside."-The dranage and ventilation are good, and the general conditions for safety very satisfactory.

\section*{Somerset County Mines.}
"Krebs" is located at Listie, about two miles north of the town of Somerset. It is one of the largest collieries in the county, employing 119 men inside. The ventilation and drainage have been well taken care of, but the caracity of the mine has been increased to such an extent that the furnace is no longer adequate to do the work of ventilating. 1, therefore, expect to see a fan put in here very soon, as those in charge have a desire to keep the mine up to the requirements of the law in every detail.
"Ashland."--This colliery has not been operated very much during the past year. I examined it twice, and each time found it in good condition, both as regards ventilation and drainage.
"Stonycreek."-The draiaage, ventilation and general condition of this colliery are very satisfactory. Considerable trouble has been experienced here by local swamps in the seam of coal, which entails a great deal of expense in draining the water from the mine.

\section*{Scalp Level District.}

There will be found below a brief description, based upon a recent visit, of "Eureka No. 30," a part of the extensive workings now being developed by the Berwind-White Coal Mining Company, in the Scalp Level coal field, Somerset county.

The mine is located about three-fourths of a mile southwest of Scalp Level, and, like all the others which the Berwind-White Company is opening in the field, is on the B, or Miller, seam of coal. The direction of the main heading is south, twenty degrees west, and it will meet the outcrop of the coal on Shade Creek, in a distance of about two miles. This heading is driven fourteen feet in width, or wide enough for two tracks-one for empty trips going in and the other for loaded trips coming out. On each side of the main heading is a parallel air course, the air being split near the fan, one part going straight ahead along one course, the other erossing over the main hauling road and thence along the other parallel airway. At each pair of cross entries, which are to be very long, there will he an overcast, giving each pair a separate split of air.

The pillars between the main heading and the main airways will be 35 feet, and those between the main airway and the first room off the cross entry will be 125 feet on each side of the main heading. Each cross heading is turned off on a regular curve, so that the motors travel at as great a speed and with as little friction as possible. Cross
headings are turned every 390 feet. The rooms, in some parts of the mine, are turned off every \(4 \geq\) feet, giving a 24 foot room and an 18 foot pillat. The roon is driven narrow-! feet-for a distance of a 3 feet. before being widened out to 24 feet. In other parts of the mine three rooms are turned from one room neek. The latter method hats the ad rantage of giving a stronger pillar along the headings and makingr fewer frogs and switehes, thus lesseming the likelihood of the motor getting off the fratek from a poorly comstructed or misplated switch.

All the mining is done by machines driven by compressed atir. The mathines now used are the Ingersoll-siagent, Harrison \& Sillivan, all of the puncher type.

The mine is well rentilated by a \(12 x+0 \frac{1}{2}\) reversible Capell fan, driven by a \(17 \times 18\) inch Taylor engine, directly eonnected, and constructed almost entirely of steel.

The hanling is done entiely hy electrie motors, and not a horse or mule is in the mine. It present two general electric motors, weighing ten tons eath and rated at eighty horse power are used to do the Work. Eatch of these can easily haul thirty loaded mine cats on a grade of one per cent. aganst the loads. The machinery in the power house consists of two 242 horse power 1sx18 inch Ridgway engines. and two 150 kilo-watt demeral Electric dymamos, in which the power bisually earred with the load on is 500 volts. The fomdations are about completed for another \(18 x 18\) inch Ridgway engine and a 150 kilo-watt Thompson-Ryan generator. The power used to drive the
 sargent compressor: The fommation is in readiness for another of the same size. The steam for the engines, compressors, efe., is furnished by three eno horse power sterling water tube boikers.

The lipple is of white oalk, very sulstamtially buitt. On it are fwo Phillips antomatic (erossover dmups. The grades on both the loaded and empty trateks ate so artanged that the cars are hathded entirely by gravity. The tipple is capable of hamelling 3,000 tons of coal per day. alld the eapateity of the mine is expeeted to exeed 2,000 tons daily:

There are thre other mines opered, or being opened up, wear sealp, Level on the satme general plan as "No. :30," and the equipment of these, when completed, will be about the same.

\section*{South Fork Distriet.}
"Whebser No. 3 " is the largest mine in the distriet, having the greatest output of coal for \(18: 7\). There are two hatuling ropes and two fans for ventilating-one used for the wper part of the mine, lyingr above the water level, and the of her for the dip workings. The vertilation, datinage and gremeal conditions of this colliery are good, as
no expense is spared to have everything of the best, and the mine is conducted in every particular in aceordance with the law.
"Stineman."-This is also a large plant, with two divisions of work, one above the water level and the of her below, regniring two complete rope hambage systems. At present, one fan is used to rentilate both sides, whirh gives satisfaction, but the mine is being increased in capacity very fast, and the work is getting farther away each year, so that it reguires more rentilating power to meet emergeneres. and the operators are now making anofhe opening to place a second fan, which will be used exelnsively for the dip workings, that part of the mine now being rentilated withont any doors, except check doors, for forcing the air up into the rooms, as each heading is smppled with a fresh coment of air by the use of overasts in place of doors. The general condition of the mine is now satisfactory.
"Argye" is one of the mines rentilated by a furnare, and I would here state that if all who use this method had their fmontes atfended fo as it is here, there would not be so much canse for complaint abont furnace ventilation, exerpt from an eronomical point of view, or where it is nsed in an attempt to ventilate a mine employing \(150 \mathrm{ot}^{\circ}\) 200 men. The rentilation, drainage and general conditions of this mine are good.
" \mrora" is also ventitated by a furnace, which gives very good results, as the number of men employed never exceeds seventy-five inside. The condition of the mine, as regards rentilation and drainage, is good, and the general welfare of employes is rarefully looked after.
"Enclid" is rentilated by a fan, which gives satisfaction as to the quantity of alir produced, while those in charge take good ware of the distribution of it to the working places, which is a part of the duty of a foreman that is sadly neglerted in some instances, as a large volume of air may be forced into a mine, yet the men get very little benefit from it on accomnt of its not being conducted property throngh the working faces. The sanitary condition of the mine is very satisfactory.
"Sonth Fork."-The condition of this mine, I am sorry to say, has been rery unsatisfactory for some time, owing to so murh steam being conveped along the slopes, of which there are fwo, with a steam line on each. One of these slopes is supposed to be the inlet and the other the ontlet. but the heat from the steam line eanses the ar to have a tendency fo rise, which almost overpowers the fan in its efforts to force the air down the one slope. I fear the resnlt will he that one of the steam lines will have to be removed, thas carrying it all down one slope. I scarcely see how the mine can be properly ventilated until this ehange is made.

\section*{Portage District.}

There are seven mines in this locality-"Puritan Nos. 1 and \(2, "\) "Pilgrim," "Iyy Ridge," "Excelsior," "Sumner" and "Anchor." The last named, however, has been closed for some time.
"Puritan No. 1" is a shaft opening. The mining and hauling is done by electricity and the fan is operated by the same power. The rentilation, especially in the distribution of air and carrying it to the face of the workings, as well as the drainage, has been greatly improved during the past year. "Puritan No. 2 " is a drift opening, and is rentilated by the fan of the "Ivy Ridge," the two mines being connected and one fan providing ventilation for both.

The system of mining in the "Iry Ridge" has been somewhat changed during the year, the result of which has been to improve the rentilation and drainage. The parallel headings, or main airways of the mine, are now driven below the main hauling road, instead of above, thereby enabling them to carry the air in a larger volmme to the face of the workings, and to conduct the water from the main road into the lower heading, which gives a dry hauling road.
"Excelsior."-The ventilation of this mine is produced by a 12 -foot fan, which gives very good results in its volume, and the air is also well distributed. The drainage and general conditions are well looked after.
"Sumner."--This mine has not been operated very regularly during the year. For several months nothing but headings were being driven, employing only about ten or twelve men, but on my last visit they had increased the force to about thirty-five. Its sanitary condition is good.
"Anchor," as noted above, has not been operated for several months.

\section*{Bens Creek District.}

There are five collieries operated in this district-"Somman shaft," "Sonman No. 1," "Columbia No. 4," "Mentzer" and "Dysert." The two latter mines are old operations and are comected, one fan rentilating both, but very unsatisfactorily. The volume of air is above that required by law, yet, on account of so many old workings which it must pass through, where more or less black-damp is given off, the rentilation is not satisfactory, and it is a very difficult job to correct it, as they were opened up on the single heading plan, making it nearly impossible to put them into anylang like lawful condition.
"Colmmbia No. 4."-The condition of this mine is fair. The ventilation is produced by a furnace, which is at present too far away from the workings to do the work properly, and for this reason the operators propose to move it nearer the face of the workings. This change should give good ventilation, as the system of mining is the very best for the distribution of air.
"Somman No. 1" is one of the oldest mines in the district, and will soon be worked ont. There has been trouble at this place all along on account of rentilation, as there is with all mines which were opened up on the single healing plan, but I found, on my last visit, quite an improvement in both the ventilation and drainage, and am satisfied that the present plans will emable those in charge to keep the mine up to the stindard. On my last visit, I measured 15,000 feet of air at the inlet and about 8,000 feet at the extreme face of the mine.
"Sonman shaft."-The drainage, ventilation and general conditions of this mine are good. Each section of work has its own split of air and a back heading on the lower side of each hauling road, into which the water is conducted, thereby making all hauling roads perfectly dry. Haulage is by machinery, and the power used for pumping is compressed air.

\section*{Lilly District.}

Four mines are located at this point, namely: "Somman No. 2," "Bear Rock," "Lilly Slope" and "Standard." The two latter are conneeted and rentilated by one fan, set at the "Lilly slope" side. The general condition of these two mines is very satisfactory in every respect, the air and water being so conducted as to insure healtin and comfort to the employes.

The "Bear Rock" is a small operation, with two drift openings, and is ventilated by a small fire-place, called a furnace, but hardly sufficient to give good rentilation to the mine, although about thirty-five men only are employed.
"Sonman No. 2 " is also an old mine, but those in charge are now opening up another section, cutting off the old part entirely and drawing out all the pillars and stumps for the purpose of abandoning it. The new section is leing opened on the most improved plans of mining, the rentilation being good, but defeetive in the old seetion of the mine.
"Cresson Shaft" is the only mine located at this point. The depth is about 300 feet to the first seam of coal in the upper coal measmre, called locally the Lemon, or geologically, the fe, bed. The ventilation and drainage, when examined last, were fonnd to be in : fair condition.

\section*{Gallitzin District.}

Two mines are located at this peint-the "Gallitzin Shaft" and "Gallitzin slope." The latter is quite a large plant, being opened up in two sections-north and sonth. From the latter the coal is hated and mined hy electricity. On the north side, coal is hauled by rope, and the minng is done by machinery driven lye electricity. Ther ventilation, dratinage and general ronditions of the mine are very satisfac tory.
"(iallitzin shaft.-Ip to the present time the hanling hatd been done by mules, but the operators are abont completing a rope hatulage on the south side of the mine, where the bulk of the coal lies. Ventilation here is usially in a fair condition. On my last examination I fonnd the drainage very much improved, and the mine, as a whole, in a satisfactory condition.
"Amshury."- The ventilation of this mine has been usually rery fair, lut the dramage has been somewhat neglerted. Upon my last examination, however, I fomed the dranage considerably improwed, amb the general condition of the mine at a higher standard than formerly. The rentilation is produed hy a fan sixteren feet in dialloter.

\section*{Frogality District.}

There are three mines located in this district, owned by the Frugatity ('oal and Coke Company. They are "Dean Nos. 4, 5 and 6." The latter is a comparatively new mine hat has been developed very fast, and it now has a raparity of aboul 1,000 tons per day. The venti lation is produced by a fan and furnace, each ventilating a separate section of the mine. The general conditions of things here was satisfartory on my last examination. The other two mines are being fast worked out, as all the men are working on pillars and stmmes.

\section*{Barnesboro District.}
"Wiest branch."-The coal is mined here hy machines, driven by compressed air. This is a new mine, opened mp during the past year. but has berel developed very rapidly. The ventilation and drainage are carefully looked after. On my last examination I measmed 17, sol colbice feet of air in circulation, well distributed and carred to the face of the workings.
"Bmpire."-This mine is owned and operated by the same company as the "Whest bramel." The coal is also mined by machanery, drisel by compressed atir. The rentilation is not as wood ats it shombl be owing to the fan not yet having been pht in. The method now nserl to produce air is a temporary furnace, buit at the bottom of the shaft oxe which the fan is to be ereeded. The fan shomblate berenf long sine from the lenght of time it has been odered. The
 split of atir direed from the fan.
 sonably good eondition. A new oprening has bern made all al low point on the propery, which serves a donble perpose if wives drainage for the mine and ath additomal rimont of air, both of which add to fle samitary condition of the working.
"Jmiata,"-- In electric pant has bern dreded at this mine from

Which power is to be obtained for roming mining marhines. The ventilation is at present produced by a fomace, which gives satisfaction, as the mumber of miners is small. The intention is to increase the capacity of the colliery and then replace the furnace with a fan. The drainage and rentiation, when examined last, were in first-class condition.
"Delta."-I am somy (o) saly that the samitary condition of this mine, both as regatds ventilation and danage, has been rather wnsatisfactory dming the past yar. The detiefency in the reitilation is ratused by the intidequatey of the furnate to prodnce enough air, and, in addition, the workings are a great distaner a way, ronsequently, there is murlh friction to orerome. On my last examination, I fomb romditions somewhat improved, as a momber of emploves had been greatly redured amd the rolmom of air in ciroulation was suffidient to supply those remaining. The dratinage has been somewhat neglected, which wats cathed possibly hy the mine being idle so murh doring the past year, ime I do not suppose it rath half time. I hope and expere to give a more favorable report of the sanitary condition of this mine for the year \(18!8\), as 1 presmme it will be rom more regularly and will be looked after more elosely as to ventilation and drainage.
"Cymbria."-This mine is in a faromble condition, both as regards ventiation and drainage. The quantity of alir passing through the Workings is from 18,000 to \(2: 3000\) coblic feet per minnte-the latter quantity being measmed when examined last, and it was well dis. tributed and carried to the face of the mine. This quantity of air being in circulation where only from righty to ninely men are employed, spatis for itself. This is one of the mines where a fmenace is used to ventilate which gives satisfation, for the reason that it is propuly attended to, a brisk fire heing kepf in at all homs of the day.
 persons. The remtalion, drainage and gemeral conditions are very good.
"Lammalire No. 3."-The quantity of air in cirentation at this mine, when last examined, was 1 sisuo roble feet prer minute, and it Was well distributed in two emrents aromed the face of the workings. All matters pertaining to the health, safety and comfort of the employes reentre the most carefol attention.
"Lammashire No. fo" has beren partially rosed down for seremal months, there being msually hat fome men employed. Comsequenty it has not been examined for some time.
"Lameashire No. 7."-This is a mew plant. opened mphring the pres-
 No. 4," which has beroll pratioally abamdoned, and the roal is all faken ont through "No. 7 ." where an electrir motor is used for hanl-
ing, and electric machine cutters to do the mining. On my last examination of the mine I measured 20,000 cubic feet of air in circulation, which was fairly well distributed about the face of the workings. Drainage, I found much improved.
"Sterling No. 11."-The general condition of this mine is satisfactory with but one exception, which is that the air should be split into two currents. On my last examination, I brought this subject to the attention of the foreman, and a plan was adopted by which the current would hereafter be split. I would here state that I am not very much in faror of splitting air currents in shallow mines, where but from 90 to 100 men are employed and ventilation is produced by a furnate with a shaft of 30 or 40 feet in height, a current of 10,000 to 12,000 cubic feet at the utmost being in circulation. A volume of this size gencrally is much better not split, as the velocity is such that after having been split it will not carry off the heavier gases and powder smoke, but leaves the mine air continuously in a misty condition, while this is not the case with one current, since the velocity is so much higher and it carries away the smoke and heavier gases at once.
"Susquehanna."-When last examined, the condition of this working was satisfactory as regards ventilation and drainage, the air being well distributed and the water kept off the hauling roads. The quantity of air in circulation was 10,200 cubic feet per minute.
"Allport."-'This mine has been idle for some time, but was examined about three weeks before it shut down and found in good condition, the ventilation and drainage being carefnlly looked after.
"Summit."-The ventilation of this mine is up to the standard, and all matters pertaining to the health, comfort and safety of the employes are well looked after. The quantity of air in circulation, on last examination, was \(1 \mathbf{7}, 400\) cubic feet per minute.

\section*{Carrolltown District.}
"Elmora Nos. 1 and 2 " are the only mines in this district, the former being on the \(B\) seam and the latter on the \(E\) seam. Both are operated by the same company. The ventilation and drainage of "No. 1" I found in a fairly good condition. In "No. 2" the drainage in the lower section of the work was somewhat defective, but the ventilation was satisfactory. Both are ventilated by furnaces.

\section*{Spangler District.}
"Sterling No. 1:3."-This mine was not operated nearly fo its vap:acity during the latter part of the year. On my last examination about thirty-five men were employed. The ventilation and datinage were in fair condition.

\section*{Patton District.}

There are six mines here, shipping coal over the Beech Creek Railroad.
"Pation" mine is a small operation, located near Carrolltown. There was not much work done during the year. I examined the mine iwice, and each time it was in good condition as regards ventilation, but the drainage was a little defective on my last examination, owing, I believe, to its having been idle for some time.
" Isheroft."-The sanitary condition of this mine is fairly good, but some arrangement will have to be made for splitting the air, owing to the number of men, in order to comply with the law. The loeation of the furnace will be found very unfavorable for splitting the current. This is a matter that should be well considered in opening up a colliery and locating the veutilating plant.
"Columbia."-Unfortunately, the rentilating plant of this colliery is unfarorably located for splitting the air, as the fan is on the same side of the main heading as the cross heading, which necessitates the building over each cross heading of air bridges large enough to carry the whole volume orer them. If the fan were set on the opposite side of the main heading, a small overcast would suffice, as it would then be necessary to carry only the one current over it. On my last inspection I measured over 30,000 cnbic feet of air in circulation, and it was being fairly well carried to the face of the works. Another split is necessary in order to comply with the requirements of the law, and there is no question but that it will improve the sanitary condition of the mine.
"New Pardee."-This is the largest colliery at this point, and I am pleased to report its sanitary condition good. It is apparent, from an examination of the colliery, that everything is done in a systematic manner. All headings are driven as straight as an arrow, and are wide and roomy, giving sufficient space for drivers to pass their frips anywhere in the mine. Both main headings have a parallel airway on each site, thens making plenty of roon for the air, whith is divided into three splits.
"Moslammon."-When examined last, the ventilation and drainage were somewhat defective, which was cansed by wet weather. The rentilation was afrected by the water coming down the furnace shaft, thms checking the upeast eolmmon of air. The dranage was affeeted also by the large influx of water whirh eame through the strata. Tsually this mine is kept in fairly good condition.
"Flanigan Rum."-Is one of the largest collieries in the local dis frict, as many as 250 men having been employed here at one time. The rentilation was formerly podnced by a furnace, but the management has now put up a seven foot Stine fan. On my last visit the fan had heen creded but not started, as the steam comnection had not been made. I hope to see the fan improve the ventilation of this
colliery, as a seren-foot sine fan shonld deliver from 45,000 to 60,000 cubic feet of air per minute through a mine with arways such as there are here.

\section*{Hastings District.}
"Sterling No. S" is the largest of the five mines in this local district, and employs over 200 men. The rentiation is prodnced by a fan welve feet in diameter, which is inadequate, as the mine is very extensive and the air has several miles to travel before passing through the entire work. A shafi was opened two years ago at what was the extreme face of the mine at that time. This opening was utilized as an intake matil abont last July, since which time the connertion from it to the fan has been ent off by drawing that part of the mine batek and letting it fall in. The result of this is that the alir now has sereral thomsand feet fatther to thatel, consequently, the volume is reduced. Those in charge are working to make a new opening from another point, which will be utilized for pmping the water and shortening the ronte of the air. This will work a big improvement in the prmping and ventilation of the mine.
"Sterling No. 10 " is a small plant and employed only about fiften or twenty men when insuected last. The rentiation is produced lyg a furnater, which does the work very satisfactorily.
"Benton."-This mine is always fomb in very good condition as reards rentiation, drainage, ete., and the health and welfare of the employes are well looked aftere.
"Oak Ridge."-This colliery was idle for several months in the early part of the year, consequently it was not examined regularly. The ventilation, drainage and genetal conditions have always been found very satisfactory.
"Hastings Colliory."-This is quite a large mine, requiring consitherable work to kerp the ventilation יp to the stamdard, ats the distance fle air has to travel to pass theorg the entire work is now beroming very errat -atmost too muth for a fmorer For this reason those in rhatre contemplate putting in at fan at once, which will pobathy solve the dithe:nlty, as the system of mining is favorable for the distribution of air if they have the power to prodnee the volume. 1) matager amd gemeral condition of the colliery are good.
"Y'intondale Nos. 1 and \(3 "\) are located at the terminns of the Blatek Lick Bramelt of the P . R. R. The mining, hamling amd rentilating mathatery is operated by electricity. The dratange, ventilation and greneral comdition of the mithe are well looked after, as they rasonably rlatm that the better they keep the samitary condition of their mines the cheapere they wath ger the coat ont.
"Big Rum" is located on the same railroad brathelh. The mining is done here also by mathinery, driven by compresed atr. A Stine fan, seven fret in diameter, prodnes the ventitation. On my last
inspection, I found the rentilation good, but the dratinag, was de fective, on account of the operators intending to abandon that sece tion of the mine in a few weeks and take the coal ont through a new opening.
"Lotatin."-This mine is also on the Blatek Liek branch, and the mining is done by machinery, driven by compressed air. As the mine is new and only began to ship coal a few monthe ago, I have not had an opportunity to examine the inside workings.
"Nant-y-(ilo," another operation on the Black Lick brancla and the only one where pick mining is done, las been examined several times dming the year and each time found in good sanidary condition.

\section*{Dunlo District.}

There are two rollieries located at this point. Both are shafts.
"Yellow Rum."-This mine is operated by the Berwind-White Coal Gompany. The ventilation is well looked after, and the mine in general is judicionsly managed.
"Hemrietta shaft," operated by the Hemretta Coal Company. . I pate of the workings, are opened up on the dip of the coall from the bottom of the shaft by a slope, ath levels ate driven off abont every fol feed, with the rooms driven up with the rise of the coal. The other division of the mine is above the water hevel, from which the coal is hamled by a rope to the botiom of the shaft. The dranage and ventilation are in falr condition. To keep up the latter, however, it will reduire a larger fam, as the capacity of the mine is being increased beyond the power of the present one.



TABLE No．2－Gives the total number of tons of coal mined in each Colliery，number of days worked，number of employes，
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collieries． & Location－County． & \begin{tabular}{l}
־ \\
\(\stackrel{\alpha}{5}\) \\
． \\
¢
8
8
8
8 \\
菏
\end{tabular} & \begin{tabular}{l}
© \\
\(\stackrel{\text { ® }}{5}\) \\
\(\Xi\) \\

\end{tabular} &  &  & \begin{tabular}{l}
־ \\
\(\stackrel{n}{5}\) \\
E \\
 를
\end{tabular} &  &  &  &  &  &  &  &  &  &  \\
\hline Argyte， & Cambria， & 94， 251 & & 1，200 & 299 & & 351 & 159 & & 1 & S98 & 150 & 1 & 14 & & \\
\hline Aurora， J ． Haw & Cambria， & \({ }_{24,}^{25,296}\) & & ㄱ．．7．\({ }^{\text {sj }}\) & 30
100 & 35,260
22,561 & \({ }_{262}^{213}\) & 76
43 & & & 180
120 & 1，200 & 2 & 7 & & \\
\hline Aipha， & Cambria，．．． & 13，034 & & & & 13,624
34,633 & \({ }_{172}^{162}\) & \({ }^{26}\) & & & 100 & 100 & & 1 & & \\
\hline Asheroft．\({ }^{\text {allport }}\) A． i ， & Cambria， & 34.633
139,949 & & & & 34,633
139,949 & \({ }_{250}^{172}\) & \({ }_{137}^{69}\) & & & 100
700 & 50 & & \({ }_{12}^{6}\) & & \\
\hline Allport No．2， & Cambria，．．． & 20.042 & & & & 20,042 & 135 & 53 & & & 100 & 50 & & 4 & & \\
\hline Ashland，
Bear Rock， & Somerset，
iambria， & 7,140
30.000 & & & & \({ }^{7} .140\) & 119 & 23 & & & 57 & 10 & & \(\stackrel{9}{5}\) & & \\
\hline Bear Rock，
Eethel， & Somerset， & \％，336 & & & 50 & 29，266 & 216
50 & \({ }_{9}\) & & & 100 & 50 & & \({ }_{3}\) & & \\
\hline Big Ben
Benton， & Cambria，．．． & 72， 895 & & 1，246 & 470 & 71，179 & 234 & 104 & & & 600 & 500 & 3 & 12 & 1 & \\
\hline Benton，
Bell， & Cambria，．．． & 35,057
1.600 & & 13 & \({ }_{30}^{17}\) & 37,85
1.550 & 137
39 & － & & ． & \({ }_{16}^{226}\) & & & \({ }_{3}^{6}\) & & \\
\hline Columbla， & Cambria， & 113.433 & & & & 113.423 & 259 & 290 & 1 & & 409 & 50 & i & s & & \\
\hline  & Cambria，．．．．． & 36． 323 & ． & 371 & 1．12＞ & 35． 32.38 & 110 & 76 & & 1 & 178 & & 3 & 5 & & \\
\hline Conemaugh，．．． & Cambria，． & 45.506 & & 1，0io & 6． 257 & 32．102 & \({ }_{3 ; 1}\) & 59 & & & \({ }_{4}^{1.64}\) & & 1 & § & & \\
\hline Cymbria． & Cambria， & \(6 \mathrm{6.54}\) & & \({ }^{137}\) & － 136 & 6 S \％ 1 & 221 & 102 & & & \({ }^{437}\) & & & 9 & & \\
\hline Dean No．\({ }_{\text {D }}\) Dean No ， & Cambria，．．．．．．．． & 37.705
49.909 & 4．900 & 200 & 5，000 & 27.605
49.709 & \({ }_{242}^{255}\) & 51
60
60 & & & \({ }_{350}^{250}\) & & & 8 & 1 & 88 \\
\hline Dean No． 8 ， & Cambria，．．． & 119，952 & & 600 & & 119．382 & 2.7 & 126 & & & 600 & 300 & 2 & 10 & & \\
\hline Delta， & Cambria，．．．．．．．．．．． & 40.400 & ， & & & 40.400 & 93 & \({ }_{6}\) & 1 & & 125 & & & 6 & & \\
\hline Eymart． & Cambria，．．．．．．．．．． & \({ }_{44,465}\) & & 6.0 & \({ }_{150}^{1,173}\) & 79，\({ }^{79} 4.314\) & 112 & 129 & & & 200 & 50 & & 16
9 & 1 & \\
\hline Eimora No．2， & Cambria， & 24．090 & & & 50 & 24.040 & 67 & 94 & & & 100 & & & 9 & & \\
\hline Fimpire， & Cambrla，
Cambrla， & 29， 54.4
3,165 & & \({ }_{235}^{261}\) & & 29．9．987 & \({ }_{295}^{119}\) & 116 & & & 305
150 & & \(\stackrel{2}{1}\) & \({ }_{6}^{5}\) & & \\
\hline Eureka＊＊．．．3i．． & Somerset， & \({ }_{4}^{33,095}\) & & & & 42． 5 \％ 5 \％ & \(\begin{array}{r}235 \\ \hline 94\end{array}\) & 200 & & & 150
150 & & & 6 & & \\
\hline
\end{tabular}



REPORT OF THE INSPECTORS OF MINES. Off. Doc.


TABLE No. 4-List of Fatal Accidents that occurred in and about the Mines of the Sixth Bituminous District, for the year ending Dece mber 31, 1897.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & Name of Person. & Occupation. & - &  &  & Name of Collhery. & Location. & Nature and Cause of Accident in Brief. \\
\hline Feb. 12, 27, & \begin{tabular}{l}
Stephen Reffner, ......... \\
George CarlIn,
\end{tabular} & \begin{tabular}{l}
Miner, \(\qquad\) \\
Miner, \(\qquad\)
\end{tabular} & 40
19 & M. & 2 & \begin{tabular}{l}
Hastings, \(\qquad\) \\
Gallitzen Shaft,
\end{tabular} & \begin{tabular}{l}
Hastings, ........... \\
Gallitzen,
\end{tabular} & \begin{tabular}{l}
Fractured skull and collar bone broken; caused by a fall of coal. \\
Head crushed by a fall of coal.
\end{tabular} \\
\hline June 14, & Jue Lípko, & Miner, & & & & Yellow Run, & Dunlo, & Kliled by a fall of coal. \\
\hline Aug. 30. & John Monka, & Miner, ................. & 28 & M. & 1 & Delta, & Barnesboro, ........ & Struck on the head hy a fall of coal and instantly killed. \\
\hline Nov. \(\begin{array}{r}6, \\ 16,\end{array}\) & \begin{tabular}{l}
Joseph Sall, \\
John Denntz,
\end{tabular} & \begin{tabular}{l}
Miner, \\
Driver,
\(\qquad\)
\(\qquad\)
\end{tabular} & 30
30

30 & M. \({ }_{\text {M. }}^{\text {M. }}\) & 2 & \begin{tabular}{l}
Sterling No. \&, \\
Flanigan Run,
\end{tabular} & \begin{tabular}{l}
Hastings, \\
Patton, \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Klllea by a fall of rock. \\
Squeezed between car and roof: he was sent to the Johnstown Hospltal and died in three weeks.
\end{tabular} \\
\hline Dec. \(\quad 1 \stackrel{7}{\mathrm{~S}}\). & \begin{tabular}{l}
John Tilkey, \\
Nlek Myers,
\end{tabular} & \begin{tabular}{l}
Miner, \\
Miner,
\end{tabular} & 33
26 & \[
\begin{gathered}
\mathrm{S} . \\
\mathrm{M} .
\end{gathered}
\] & \(\ldots\) & \begin{tabular}{l}
Columbia, \\
Sumner No. 1.
\end{tabular} & \begin{tabular}{l}
Patton, \\
Puritan,
\end{tabular} & \begin{tabular}{l}
Head crushed by a fall of coal. \\
Fatally injured by a fall of coal while undermining.
\end{tabular} \\
\hline
\end{tabular}

TABLE No. 5-List of Non-Fatal Accidents that occurred in and about the Mines of the Sixth Bituminous District, for the year ending Dece mber 31, 1897.


湆

\title{
SEEEXTHI BITITIIINOIS DIISTRICT.
}

\author{
ALLEGHENY AND WASHINGTON COUNTIES.
}
\[
\text { Idlewood, Pa., February 14, } 1898 .
\]

Hon. James W. Lata, secretary of Internal Affairs:
Sir: In compliance with the requirements of the Bituminous Mining Aet, approved May 15, 1893, I herewith submit my annual report of the inspection of the mines of the Seventh bituminous district for the year ending December 31, 1897.

I am glad to be able to report that the mines in this district are, with but few exceptions, in reasonably good condition, both as regards ventilation and other matters relative to health and safety. At several mines where I had good reason to complain of the ventilaiion being inadequate, new ventilating fans have been provided and the quantity of air increased, to conform with legal and sanitary requirements.

The number of lives lost in and about the mines of this district during the year was 22, and the number of persons injured, 58. The most prolific cause of the accidents-both fatal and non-fatal-was from falls of slate and roof. Eighteen fatal and 31 non-fatal accidents being due to this cause. A description of each fatality is given in another part of the report. Any comments I might make in this connection would be only a repetition of what has been said in previous reports, and I will only add that the number of deaths and personal injuries are not excessive, when taking into consideration the dangerous roof conditions attending the mining of coal in this district; also, the very large number of unskilled miners employed, who are not competent to detect or to protect themselves from the dangers incident to mining; in fact, it is surprising to me and many others who are familar with the prevailing conditions, that the number of accidents are not more numerous. Notwithstanding the fact that nearly 60 per cent. of the mines in this district generate explosive gas, there was no fatal and only four non-fatal accidents due to explosions of gas, which speaks volumes in favor of the constant vigilance displayed by the mine ofticials.

On accomit of a dispute befwern the miners and operators about the price of mining, a strike was derlared by the miners on July 4 , which lasted until about sepember 10; during this period, operations at most of the mines in the district were entirely suspended. In riew of the fact that the miners and their families had been in a dephorable condition fitameially for several years past, the strike was fully experted for some time before its oecorrenee, and it conld hardly be expected that the men would consent to see their families living perpetally in a state bordering on semi-starvation without rasing a potest and participating in al strger to better their condition. The nsabll methods adopted by the statistician of completing the amomet of wages the laborers womld have earned had they contimed at work instead of going on strike, as a dead loss finambially, will hatdly apply in this case, for their carnings were barely sulticient to keep the wolf from the door, and throngh public sympathy their wants were sup)plied dmring the strike abont as well, if not better. than they would have been had they contimed working under the old conditions. Neither is it very probable that any considerable momber of the "proators sulfored any great finameial loss as a result of the suspension, for it is well known that the market price of their commodity was sueh that it was heroming a serious problem as to whether it would wot be better to allow the roal to remain in the ground rather than mine athl dispose of it without profit, and it is altogether probable that those engaged in the mining hosiness suffered less finanrially than did the ontside parties who were deprived of emploge ment and the porit from their busimess on aceonnt of the regular coal supply being susperaded.

As a result of the general suspension, during a period of mone than f wo months in the busiest season. We would natmally expert a large falling off in the fotal ammal production, but the dererase is not as great as might have Leren expected, fors, after the resmmption of operafions, rabluad cars were rushed forward in sumeient umber to keep the majority of the mines in full operation matil the elose of lake navigation, and the total protuction is only fiet.450 toms less than that of the previous year, and were it not for the fact that several largre mines were elased down throughonf the entire year, the production would not hate heen far short of that for the year 1896.
Number of tons, run of mine of coal mined. 5, 01000,375
Number of tons of coke prodnced, 1,500
Number of mines in district. ..... 72
Nomber of employes inside. ..... 9,119
Number of employes ontside. ..... 814
Total momber of employes. ..... 9.93:3
Number of persons killed in and about the mines ..... \(\because 2\)
Number of non-fatal injuries. ..... 58
Number of wives made widows by above fatalities, ..... 1:3
Number of orphans from same caluse, ..... - 8
Number of tons of coal produced per life lost. ..... 2・ス, \(2!(1)\)
Number of tons of coal produced per person injured. . . . ..... S1,21:3
Number of persons employed per life lost, ..... 451
Number of persons employed per non-fatal injury ..... 171
Number of horses and mules in use, ..... 6657
Number of steam boilers in use, ..... 150
\begin{tabular}{|c|c|c|c|c|}
\hline Cause of Accidents. & Fatal. & Non-fatal. & Widows. & Orphans. \\
\hline By falls of slate and roof, & 18 & & 10 & 23 \\
\hline By falls of coal. ...... & 2 & 8 & 1 & \\
\hline By mine cars, ............ & 1 & \({ }_{6}\) & 1 & 3 \\
\hline By explosions of gas, & & 4 & & \\
\hline From miscellaneous causes, . & 1 & & 1 & 2 \\
\hline Total, & 22 & 58 & 13 & 29 \\
\hline
\end{tabular}

The usual tabulated forms are contained in this report. I have also given a brief description of the general condition of eact mine, with the improvements made at the mines during the year.

All of which is respecifully submitted,
Yours respectfully,
JАМЕS BLICK,
Inspector.

New Mines Opered and dimerall Improwements Made at the Mines in the Seventh Bitmminons District Dmring the Vear 1897.

Vnlean.-Is a new mine opened by the V'ulcan Coal fompany. I main hanling slope has been driven to the coal seam and the matin and several ross entries have been adraneed several handerd feet into the coal tield. A substantial steed tipple hats been built and the mine equipped with an clectric mining plant. A \(13 \frac{1}{2}\) foot single inlef Capell fan has been provided to produce ventilation. This fan was fested up, to a speed of 2.27 revolutions per mimute. Quantity of air produced, 218,000 anbir feet per minote. W. G.. 4 inches.

At the llastings slope mine a 10 -foot Brazil fan hats been provided to produce rentilation.

A ventilating fan of the Gimibal type, 20 feet in diameter, has beren erected at the Essen No. 2 mine.
 erected. I test of this fan was made sereral weeks since, with the following result: Suerd of fan, : \(\because 40\) revolntions prer minute; quantity of air produced, 109 , 060 (rubic feet per mimute; W. Gi., S inches. The
\[
26-10-97
\]
above figures speak well for the fan; it also shows that the mine airways are in a very cramped condition.

At the Champion mine, an 11 -foot single inlet Capell fan has been erected.

\section*{DESCRIPTION OF MINES.}

\section*{Mines on the Monongathela River.}

Bellwood.-Both double and single entry systems of working are in vogne at this mine. The coal is mined by hand labor, rentilation prodnced by furnace power and the hatuling is done by animal power. At the time of my last visit, the condition of the workings was reasonably good, excepting that the air curn'nt was rather sluggish in two of the butt entries. Quantity of air passing at the outlets, 24,000 cubic feet per minute, and the air currents measured near the face of the several butt entries, varied from 3,000 to 9,000 eubic feet per minute.

Calhoun.-W'as in good condition when last inspected. Quantity of air passing at ontlet, 10,000 cubic feet per minute. There were but nine men employed inside.

Street's Run.-The general condition of this mine was also satisfactory when last examined. Quantity of air passing near the face of the workings, about 4,000 cubic feet per minute in each butt entry, and 12,800 eubic feet was passing at the furnace upeast shaft. The coal is mined by hand labor and hanled from the mine by animal power.

Hay's Street Rum Nos. 2 and :3.-When last inspected, I observed that some of the ventilating doors were left standing open longer than was necessary. by the drivers. Some of the room pillars were not eut through at the proper distance, and two of the entries were being driven beyond the legal distance, in advance of the air current. All other conditions were satisfactory. Quantity of air measured near the face of the workings varied from 4,000 to 12,000 cubic feet in the different butt entries, and 60,000 cubic feet per mimute was passing at the furnace outlet. The mine is worked on the donble entry system. The coal is mined by hand labor and it is hauled from the mine ly animal power.

Walton.-This mine is worked on the double enfry system. The coal is mined by land labor. Haulage is done by the head and tail rope method. Ventilation is produced by a 12 -foot fan of the Guibal type. When last visit was made I noticed that in one or two of the butt entries, in No. 1 section, the rentilation was sluggish and in No. 2 section there were too many men working in the same air current. All other conditions were favorable. Quantity of air passing in the different entries varied from 3,000 to 15,000 cubic feet per minute, and 52,000 cubic feet was passing at the outlet.

Beck's Run.-This mine was not in operation during the year.
Ormsby.-The general condition of this mine is satisfactory. Average quantity of air passing near the face of the different butt entries is about 9,000 cubic feet per minute, and 50,000 cubic feet at the furnace upeast shaft. The coal is mined by hand labor, and the hauling is done, partly, by steam locomotive and partly by the head and tail rope method. There are about seven miles of wre rope connected to the haulage plant. The coal in this mine is of excellent quality and is used principally for domestic purposes in the city of Pittsburgh.

Castle Shannon.-At the time of my last visit, the workings were found in reasonably good condition. Quantity of air passing at the furnace, 23,000 cubic feet per minute, and the quantity passing near the face of the workings varied in the different entries from 4,000 to 9,000 cubic feet per minute. The mine is worked by the single and double entry systems. The coal is mined by hand labor and it is hauled from the mine by animal power.

Knoxville and Rankin.-The coal produced at these mines is used for domestic purposes. At the time of my last visit there were not a sufficient number of persons employed in either mine to bring them under the provisions of the law.

Mines on the Wheeling Division of the B. \& O. R. R.
First Pool Nos. 1 and 2.-Both the double and treble entry systems of working are adopted at these mines. The coal is undermined by the use of mining machines, of the Harrison type. Haulage is done by the head and tail rope system. Vetilation is produced by a 25 -foot Vulcan fan. The same fan rentilates both mines. The workings are at all times kept in a safe, healthful condition as far as possible. The quantity of air passing at the outlet, when last measured, was 90,000 cubic feet per minute, which is well distributed to the working parts of the mine.

Lick Run.-When last examined was in reasonably good condition, excepting that one of the butt entries was driven too far in advance of the air current. Quantity of air passing at the inlet, 18,800 cubic feet per minute, and from 6,000 to 7,000 cubic feet is circulating through the various butt entries. The coal is mined by hand labor; hatulage is done by a steam locomotive, and a 10 -foot Brazil fan is used to produce ventilation.

\section*{Mines on the Little Saw Mill Run Railroad.}

Enterprise.-This mine, when last examined, was in fairly good condition. Quantity of air near the face of the workings, as measured in the different entries, varied from 6,000 to 14,000 cubic feet per
minute, which was equal to the requirement for the nmber of persons employed therein, and the quantity of air passing at the ontlet was 81.500 cubic feet per minnte. The double and treble entry systems of working are adopted in the development of this coal field, and the air currents are taken into the mine from inlet shafts near the face of the workings; by this method, many difficulties are removed and the matter of rentilation is much simplified. The coal is mined by hand labor. Haulage is done partly by two steam losomotives and partly by the head line system. A 2n-foot Vulcan fan is used to produce ventilation.

Venture.-At the time of my last risit some of the roadways were very wet and muddy. hut all other conditions were passable. There were 30,000 cubic feet of air passing at the outlet, and the quantity passing in the different entries varied from 5,000 to 10,000 cubic feet per minute. The mine is worked by the double entry system and the coal is mined by hand labor. The head and tail rope system is used to haul the coal from the mine. A 20 -foot Vulcan fan prodnces the rentilation.

Fox.-The general condition of this mine is reasonably good. About thirty men only are employed. The product is used principally for domestic purposes in the eity of Pittsburg. The mine is worked on the single entry system. The coal is mined by hand labor and the head rope system of hanlage is in use. The ventilation is produced by a 10 -foot fan of the Guibal type. Quantity of air passing at the outlet, when last examined, measured 15,000 eubic feet, and s,000 cubic feet was measured near the face of the entries.

Mines on the l'ittsburgh, Cincinnati, Chicago and St. Lonis Railroad.
Idlewood-During the carly part of the year the condition of this mine wats matisfactory. The roadways were wet and muddy. The refuge holes were obstracted by dirt and slate, and the rentilation was not properly conducted to the face of the workings, but at the time of my last visit, the conditions were very much improved in all respects. Guantity of air at ontlet, when last measmed, was 10.400 cubic feet per mimite, and 5,000 cubic feet was measmed near the face of the entries. The coal is mined hey hand labor, and the systen of hatmate is by amimal power. A small furnate is used to preduce the ventilation, but I have frepuently found the furnate fire negreected and the workings short of air.
(irant.-This mine is worked on the double entry system. The coal is mined by hand labor and it is hanled from the mine by amimal power. The rentilation is prodnced by a small furnace, which was passing 13.000 cubic feet of air per mimute when last measmed, and about 3,600 cubic feet was passing near the face of eath butt entry. The roadways are wet and muddy, and the condition of the mine is anything but good.

Fort Pitt-This mine is also worked on the double entry plan. The rentilation is produced by furnate power. The coal is undermined by machinery driven by electric power. An electric motor is also used to haul the coal from the interior of the mine to the tipple. The general condition of the mine, when last examined, was favorable. Qnantity of air at outlet, 24,000 cubic feet per minute, and about 5,200 cubic feet was measured near the face of each butt entry.

Cherry-When last visited was not in good condition. The air current was not properly conducted to the face of some of the entries. Guantity of air bassing at the furnace shaft, 24,000 eubic feet per minute. This, if properly distributed, would be abont equal to the requirements at the present time, but the time is near at hand when a more powerful rentilator will have to be provided. The coal is undermined by mathinery propelled by electric power. An electric locomotive is used to haul the coal from the mine to the incline plane outside. The system of working is partly on the single and partly on the double entry plan, but hereafter the system of single entries will be abandoned.

Boyd.-Was in fair condition when last examined. Buantity of air at the furnace outlet, 18,000 cubic feet per minute and the quantity measured near the face of the workings varied from 4,000 to 9,600 cubic feet in the different entries. The coal is mined by hand labor and the head and tail rope system of haulage is in use. Operations are conducted on the double entry system.

Pine Ridge.-Had but a few men at work at my last visit. The system of workmg is by double entry, and the coal is mined by hand labor. The rentilation is produced by a small furnace. Quantity of air passing at outlet, 6,100 cubic feet per minnte, and 4,000 cubic feet were measured near the face of the entries.

Oak Ridge.-Is in reasonably good condition. A 12 -foot Brazil fan is used to produce ventilation, which fan was passing 18,000 cubic feet of air per minute when last measured, and 10,000 cubic feet were measured near the face of the entries. The Harrison type of mining mathine is used to underent the coal, and the hanling is done by the head and tail rope method.

National.-This mine is worked on the double entry system. The roal is mined by hand labor, and is hauled from the mine by the head and tail rope system. A furnate is used to prodnce the ventilation. Quantity of air, as measured in the several butt entries near the face of the workings, varied from 5,000 to 9,000 eubic feet per minute; 35,000 cubic feet wats measured at the ontlet. On my first visit, I found the traveling way almost impassable by reason of water and roof falls. I ordered it to be cleaned up and the water drained away forthwith. On my last visit the conditions were reasonably satisfactory.

Champion.-An 11-foot single inlet Capell fan has been provided to produce rentilation, and all parts of the mine are now supplied with an abundance of fresh air. Quantity of air in circulation, 7T, 000 cubic feet per minute. Speed of fan, 132 revolutions; W. G., 1.1 inches. The speed of the fan can be increased to 275 revolutions, or more, if necessary. The Harrison type of machine is used to undermine the coal. The hauling is done by the head and tail rope system, and the coal field is being developed on the double entry system.

Laurel Hill Nos. 1, 2 and 4.-The condition of the No. 1 mine is better than during the early part of the year. The traveling roads, escape way and airways have been improved so that the air currents are conducted to the face of the workings better than formerly, but the ventilation and drainage camot be brought up to perfection until a shaft has been sunk at the face of the workings, which will shorten the airways about one-half and also act as a discharge outlet for the pumps used for drainage. Quantity of air at inlet, 65,000 cubic feet per minute, and from 5,000 to 11,000 cubic feet was measured near the face of the different entries. The coal is undercut by the Harrison type of mining machine. Haulage is done by the head and tail rope system, and the ventilation is produced by a 20 -foot Vulcan fan.

The ventilation in the No. 2 mine is also produced by a 20 -foot Vulcan fan, which was passing only 24,000 cubic feet of air per minute, when last measured; this was jnadequate, and I ordered the mine foreman to increase the speed of the fan. The air volume, as measured in the different entries near the face of the workings varied from 5,600 to 8,500 cubic feet per minute. Electric mining machines are used to undercut the coal, and an electric locomotive is used to haul the product to the bottom of the shaft.

The condition of No. 4 mine during the early part of the year was very unsatisfactory, but when last examined, considerable improvement was noticeable, especially in regard to the veutilation and the condition of the roadways. A passageway is now being driven from the face of the mine to the surface, which will be of great benefit to the ventilation and drainage, and it can also be used for a traveling way. Quantity of air measured near the face of the different entries varied from 4,000 to 18,000 cubic feet per mimute, and 65,000 cubic fret were measmed at the outlet. The Harrison type of mining machine is in use and the coal is hauled to the bottom of the shaft by the head and tail rope system. A 25 -foot Brazil fan is used to produce ventilation. The mode of operation at eath mine is by the double entry system.

Brier Ilill-When last inspected, the condition of this mine was not so good as on former visits; in some instances the ventilation was not properly conducted to the face of the workings and there were too many men working in the same air current. A verage quantity
of air passing near the face of the entries, was about 5,000 cubic feet per minute and 37,000 cubic feet were measured at the inlets, but the furnace was not being fired to its full capacity when the above measurements were taken. The coal is mined by hand labor, and it is hauled from the mine to the tipple by the head and tail rope system. The development of the coal field is conducted on the double entry system.

Nickel Plate.-This mine is under the same management as the Brier Hill mine, and the system of working, haulage and ventilation are the same, excepting that mining machines of the Harrison type are used to undercut the coal. Quantity of air passing near the face of the different entries varied from 5,000 to 15,000 cubic feet per minute, and 30,000 cubic feet at the outlet.

Jumbo.-Is in reasonably good condition. Quantity of air passing at the outlets, \(\pi 3,000\) cubic feet per minute and the quantity near the face of the several entries varies from 4,000 to 12,000 cubic feet. The mine is worked on the double entry system. The coal is underent by the Harrison type of machine. The hauling is done by the head and tail rope system, and the rentilation is produced by a 20 -foot Vnlcan fan.

Mansfield and Erie, Willow Grove and Primrose.-These mines were idle thronghout the year, and only about six men were employed in the Midway mine.

Mines on the Chartiers and B. \& M. Branches of the P., C., C. \& St. L. R. R.

Mansfield No. 2.-The condition of this mine was satisfactory when last inspected. Quantity of air at outlet, 64,000 cubic feet per minute, being well distributed to the face of the workings. The coal field is being developed on the double entry system. The coal is mined by hand labor. The head and tail rope system of haulage is in use and an 18 -foot fan produces the ventilation.

Nixon.-The condition of this mine is abont equal to legal requirements. All parts of the workings are reasonably well ventilated. A verage quantity of air near the face of each entry, about 6,000 cubic feet per minute and 53,000 cubic feet was measured at the ontlet. The mine is worked on the donble entry system. The link chain electric machines are used to undermine the coal, and it is hanled from the mine to the tipple by an electric locomotive. The ventilation is produced by furnace power.

Leasdale.-During the early part of the year the condition of this mine was rery unsatisfactory. The main airway was partially flooded by water, consequently the ventilation was not equal to the requirements. The main hanling road was not properly drained and
many of the refuge holes were obstructed by slate. On visiting the mine later. I found the condition much improved in all respects. The link chain electric type of machines are used to undercut the coal in one part of the mine, and mining is done by hand labor in the other part. The hauling is done by the head and tail rope system and a furnace is used to produce ventilation. Quantity of air passing near the face of the entries, when last measured, 6,500 cubic feet per minute and 18,160 cubic feet, was measured at the outlet.

Summer Hill.-This mine was also in poor condition during the carly part of the year, but when last inspected I observed quite an improvement. The main return airway had been cleaned up and enlarged. I main orercast had been built and some of the doors dispensed with, so that the air currents were conducted to the face of the workings much better than formerly. Quantity of air in the diflerent entries near the face of the workings varies from 4,500 to 10,000 cubic feet per minute, and 52,000 cubir feet was measured at the outlet. Ahout 30 per cent. of the air volume is lost by leakage and is of no benetit to the working parts of the mine. The coal is undermined patly by machinery and partly by hand labor. The link-chain type of machine is used, which is driven by electricity. A 14-foot hrazil fan is used to produce ventilation and the hanling is done by the head and tail rope system.

Bower Hill--Was fomd in reasonably good condition, both in regard to rentilation and irainage. I measured 36,000 cubic feet of air per minute passing at the outlet, and about \(\mathbf{6}, 000\) cubic feet was measured near the face of the various entries. The system of working is that of double entry. The coal is mined by hand labor and is hauled from the mine to the tipple by anmal power. A furnace is used to produce ventilation.

Bridgeville.-This mine is being developed on the treble entry system. The chaial link type of mining machine, deriving its power from clectricity, is used to undermine the coal, and it is hauled from the mine to the tipple by an electric locomotive. The ventilation is produced by a 16 -foot Vulean fan. Quantity of air at ontlet, when last measirred, 60,000 cubic feet per minute, and about 6,000 cubic feet was passing near the face of each entry. A squeeze had overran one part of the mine, but the section of workings affected are nearly worked out, and on account of the squeeze being local in extent, the operations in the main body of the mine will not be retarded.

Hastings Slope.-This mine was not in good condition during the early part of the year. The ventilation was inadegnate and the aircurrents were not properly conducted to the face of the workings. A 10 -foot Brazil fan was erected last spring to produce ventilation, and on my last visit, the condition was satisfactory. Quantity of air passing at the inlet, 26,000 cubic feet per minute, and 8,000 cubic feet
were measured near the face of the butt entries. The coal is mined by hand labor and is hanled to the bottom of the slope by animal power. The whole outside plant, with the exception of the fan and fin house, was destroyed by fire on October 29 and no coal has been mined since.

Boon.-Was in fair condition, but is not beyond improvement. I measured 23,000 cubic feet of air per minute passing at the outlets, but the air currents were rather sluggish near the face of some of the entries. The system of working is that of donble entry. The coal is mined by hand labor and the hauling is done by animal power. The ventilation is produced by a furnace.

Allison.-This mine was in reasonably good condition. Quantity of air passing near the face of the different entries, about 6,000 cubic feet per minute in each entry, and 31,300 cubic feet were measured at the outlets. The coal field is being developed on the double entry system. The mining is done by hand labor and the coal is hanled from the mine to the tipple by animal power. The ventilation is produced by two fire baskets. The dranage is also satisfactory at the present time.

Enterprise No. 2.-Operations were resumed at this mine the latter part of Jine, after a shut down of over one year. The drainage is imperfect, part of the workings being under water. The system of working is by domble entry, and the coal is hauled from the cross entries by mules, and is then taken up the slope by the head line system. The empty trips are run back into the mine by gravity, with the wire rope attached to the last car. The coal is mined by hand labor, and the ventilation is produced by a small fan. Quantity of air passing at the outlet, 14,700 cubic feet per minute, the same being pretty well distributed to the face of the workings.

Northwestern.-Was not in good condition when last examined, the air current was sluggish and the roadways were not properly drained and the shelter holes, in some cases, were obstructed by slate. Quantity of air passing at the inlet, 11,500 cubic feet per minute, and about 4,500 cubic fect was measured near the face of the entries. Very little work has been done for over one year past. The entries are driven donble. The coal is mined by hand labor and is hanled to the bottom of the shaft by animal power. The ventilation is produced by a small fan, which will not produce the required air volume when the mine is in full operation.

Vulcan.-This is a new operation opened during the year. The coal field is being developed in part on the treble entry system, while some of the cross entries are being driven double. The works are equipped with all the latest improvements for landling a large output of coal at a minimum cost. A \(13 \frac{1}{2}\)-foot Capell fan \(5 \frac{1}{2}\) feet wide has been placed in position to produce the ventilation. I made a
iest of it with the following results: Speed of fan, 227 revolutions per minute; quantity of air delivereã, 218,000 cubic feet; W. G., 4 inches; percentage of body output, 123; horse power 137; horse power of engine not taken.

Creedmore.-This mine is worked on the double entry system. The coal is undercut by the Harrison type of machine and it is hauled to the bottom of the shaft by animal power. The ventilation is produced by a 16 -foot Wilson fan, which is capable of delivering 100,000 cubic feet of air per minute, but the engine is not of sufficient power to drive it at the required speed, but arrangements are now being made to provide a larger engine. Quantity of air passing at outlet. when last measured, 32,400 cubic feet per minute, and the average quantity measured near the face of the entries was about \(\overline{5}, 000\) cubic feet in each entry.

Bishop.-This mine was found in very favorable condition when last inspected. I measured 80,000 eubic feet of air passing into the mine per minute, and about 10,000 cubic feet was measured near the face of each entry. The coal is mined by the Harrison type of machine and it is hauled from the cross entries to the bottom of the slope by animal power. The system of working is that of double eniry, except the main face entries, in which case three entries are driven. Ventilation is produced by a 16 -foot Wilsou fan.

Morgan and Standard.-Both of these mines were idle throughout the year.

Mines on the P., C. \& Y. R. R.
O. I. C.-W Was not in good condition when last examined. The refuge holes were partially obstructed by slate and the air currents were not properly conveyed to the face of the workings. Quantity of air at outlet, 14.000 cubic feet per minute, but only abont 4,000 cubic feet were measured near the face of the entries. The mine is worked on the donble entry system. The mining is done by hand labor and the ventilation produced by a furnace. The coal is hauled to the tipple by animal power.

Essen No. 2.-Is in better condition than formerly. A 20 -foot fan of the Guibal type has been erected during the past summer. I measured the air current shortly after the erection of the fan, and it was then passing but 27,000 cubic feet per minnte. The quantity of air near the face of the workings, at that time, was also inadequate, but some changes have since been made, and the speed of fan increased, which has about doubled the above volume. The mine hitherto has been worked on the donble entry system, but they are now developing the coal field on the treble entry plan. The coal is mindermined by the chain link type of machine, with electricity as the motive power, and an electric locomotive is used to hatul the coal to the bottom of the slope.

Essen No. 3.-This mine is also in much better condition than at the time of my last report, but the air current was still below the requirements in one section of the workings, and some parts of the works were receiving more air than was required. The plan of derelopment, method of mining and haulage are similar to that in rogue in the No. 2 mine. A 10 -foot double inlet Capell fan, 6 feet wide, is now used to produce the ventilation. At the time of my last risit I made a test of this fan, with the following results: Speed of far, 340 revolutions per minute; quantity of air delivered, 109,000 cubic feet; W. G., 7.9 inches; horse power developed 136 ; percentage of body output, about 70 ; horse power of engine not taken. The above results speak well for the fan, and it also shows that the airways are in very poor condition. The workings are extensive and the airways small, and there is not sufficient coal left to enlarge them, and about the only way out of the difficulty will be to make a main inlet shaft near the face of the mine, and place double doors on the main hauling road and use that for one of the return airways to the fan.

Federal Spring and Hickman.-These mines are operated under the same management. In the first named mine they are mining out the entry pillars, and the mine will soon be abandoned. Quantity of air passing at the outlet, 12,000 cubic feet per minute. In the Hickman mine, I measured 28,000 cubic feet of air per minute passing out at the furnace and the quantity measured near the face of the workings varied in the different entries from 4,000 to 11,000 cubic feet per minute. The total volume of air produced is not sufficient since the mining marhines have been introduced, but previous to that time, when the coal was mined by hand labor, the ventilation was about equal to the requirements. The mine is worked on the domble entry system. Haulage is by animal power, and the link chain type of machine is used to undermine the coal. Electricity is the motive power.

The Federal and Pittsburg Fuel mines have remained idle throughout the rear, and the Beachmount mine is not now in operation, and worked only for a short time during the year.

Pan Handle.-This mine is worked on the donble entry system. The coal is undermined by both the Harrison and chain cutter bar types of machine. The hauling is done by the head and tail rope system. A 16 -foot Brazil fan is used to produce the ventilation. Quantity of air passing into the mine, when last measured, 44,000 cubic feet per minute, the greater part of which was being conveyed to the face of the entries. I observed that many of the room pillars were not cut through as often as was necessary. On the whole, the condition of the mine is better than formerly, but the capacity of the rentilating fan is not equal to the requirements of the mine.

Essen No. 1.-W IV in reasonably good condition when last examined, but the air currents were not conveyed to the face of the workings quite as well as on former visits. Quantity of air at outlet, 70,000 cubic feet per minute. The mine is worked on the double entry system. The coal is mined by hand labor and is hanled from the interior of the mine to the bottom of the slope by the head and tail rope system. The ventilation is produced by a 20 -foot fan of the Guibal type.

Beadling.-The condition of this mine is very unsatisfactory. The airways are in poor condition, which was cansed mainly by a squeeze, which destroyed several of the butt entries and partially closed some of the airways. A 25 foot Vulean fan is used to produce the ventilation. This fan, when the last air measurement was taken, was passing \(2 \pi, 200\) eubic feet of air per minute. The condition of the airways and the mine in general can readily be deduced from the above figures. It the present time, they are opening up entries and airways into a new coal field and we may, perhaps, expect an improvement in the condition of the mine in the near future. The coal is undercut by the Harrison type of machine, and is hauled by animal power.

\section*{Mines on the Pittsburgh and Lake Erie Railroad.}

Moon Rinn-This is an extensive operation. The coal fiedd is being developed on the treble entry system. The coal is underent by the Harrison type of machine, which have compressed air for their motive power. Two electric locomotives are used to haml the coal from the interior of the mine to the tipple. Both fan and furnace power are used to produce the rentilation. Total quantity of air passing at the outlets, when last measured, 114,500 cubic feet per minute, and the conditions of the workings were satisfactory, excepting in two or three entries in No. 1 section, where the air volume was below the requirements.

Dixon- When last inspected, the fan was rmming slowly and the air eurrents were sluggish in one or two of the entries. Quantity of air passing at the ontlet, 26,000 cubic feet per minute, but the fan will produce 100,000 cubic feet if necessary. The mine is worked on the double entry system. The eoal is undermined hy the Harrison type of machine, and the hatuling is done by the head and tail rope system. A 10 foot single inlet Capell fan is used to prodnce the ventilation.

Margermm. -This mine was not in good condition when last examined. I fomd every door in the mine propped open, with one exception. Consequently, very little air was fomed near the fare of the workings. It is true that they were not rmming coal on that date but that was no expuse for there were a number of miners at work making coal ready, and the doors shonld have been kept shout and the air
conducted through its proper channel, whether there was any person working in the mine or not, unless operations were indefinitely suspended. Some of the shelter holes were also obstructed by slate, and the roadways were very wet and muddy. Quantity of air at outlet, 18,000 eubic feet per minute. The mine is worked on the double entry plan. The coal is mined by hand labor and is hauled from the mine to the head of the incline plane by mules, and is then run down the gravity plame to the tipple.

Montours.-This mine was in reasonably good condition when last inspected. Quantity of air passing at the outlet, 36,000 cubic feet per minute. The coal is mined by hand labor and the hanling is done by the head and tail rope system. The mine is worked on the double entry plan. A furnace is used to produce ventilation.

\section*{Mines West of the Allegheny River.}

Dine (reek.-Was in reasonably good condition when last inspected excepting that some of the shelter holes were obstructed by slate and dirt. Quantity of air at inlet, 22,560 cubic feet per minute, and about S,000 cubic feet was measured near the face of the entries, where the men were working. The system of working is that of double entry. The coal is mined by hand labor and the hauling is done by animal power. The rentilation is produced by a 12 -foot fan of the Guibal type.

Hite.-This mine has been kept in very good condition during the year. The coal field is being developed on the double entry plan. The coal is mined by hand labor and is hanled from the mine to the tipple by the head and tail rope system. An 8 foot single inlet Capell fan is used to produce the ventilation. A verage quantity of air pass. ing near the face of the entries, abont 6,000 cubic feet per minute, and 48,000 cubic feet were measured at the outlet.

West Tarentum.-The condition of this mine has been improved since my last rejort. The airways, doors and stoppings have been repaired. I measured 5,900 enbic feet of air passing the outlet per minute, which was being fairly well distributed to the face of the workings of the two butt entries that were being driven. About iwenty miners only are employed.

Brakenridge.-The condition of this mine is favorable. Quantity of air at the outlet, 16,500 cubic feet per minute, which was beingr fairly well distributed to the face of the workings. The coal is mined by hand labor and is hauled from the mine by animal power. A furnace is used to produce ventilation.

Natrona.-This mine is worked principally on the single entry sysfrom. The coal is mined by hatud labor, and it is hauled from the mine
by the head and tail rope system. Ventilation is produced by a 6 -foot Champion fan, which was passing 58,000 cubic feet of air per minute, but the whole of this volume was not being conveyed to the face of the workings, still the workings were in reasonably good condition as regards healthfulness and safety.

Freeport.-This is a small operation, employing less than ten men at the present time. The condition of the workings was passable when last inspected.

\section*{Fatal Accidents.}

On January 11, at the Fort Pitt mine, John Hutchison, a motormatn, was fatally injured by falling from the haulage motor, the front wheels of which passed over his body, crushing him in such a fearful manner that he died a few minutes after. Intchison was employed to haul the coal from the main parting in the mine to the tipple with an electric motor. At the time of the accident he was passing in through the mine entrance with an empty trip of cars, when, by some means he fell from his seat on to the road-bed in front of the motor, the front wheels passing over him before it could be stopped.

On January 20, John Skohol, a miner, aged 37 years, was killed by a fall of slate, in his working place in the Cherry mine.

Stanish Oshhoysky, a miner, aged 37 years, was fatally injured while riding from his work between the cars on a full trip. He was caught by the roof and dratgged on top of loaded car and crushed between the roof and coal on the car.

Burt B. Brown, a miner boy, aged 16 years, was killed in the first Pool, mine No. 1, on January 28. This boy was working with his father, shoveling slack back from the mining machine, when a small piece of slate fell from the roof and struck him on the head, causing instant death.

Casper Baust, a miner, was killed at the Venture mine, on February 1 , by a fall of slate.

John Jacob, an Austrian miner, was fatally injured by a fall of coal on February 4, in the Essen No. 3 mine.

Mike Baokvish, a miner, was fatally injured in the Essen No. 3 mint: on February 8, by a fall of slate; died on Februaty 24.

Lonis Mans, a miner boy, aged 17 years, was killed by fall of coal and slate, on February, 24, at the Nickel Plate mine.

Cillie Jackson. a miner, aged 27 years, was killed by a fall of slate in the Leasdale mine on Mareh 1.

Mike Winshen and Peter Copsha, two Polish miners, were killed by a fall of slate in the Pan Handle mine on Jume 17.

Joseph Napier, a miner. was instanlly killed by a fall of slate at the Bishop mine on June 19.

John Bettler, a miner, was killed at Essen No. 3 mine by a fall of slate on June 21.

August Tommy, an Austrian miner, aged 33 years, was killed by a fall of slate in the First Pool mine on July 2.

Peter Spiermont, a miner, aged 19 years, was killed by fall of slate on July 3 in the Nickel Plate mine.

Robert Hare, a miner, was killed by a fall of roof in West Tarentum mine on October 1.

Jolm McCluskey, Russian, a miner, age 30 years, was killed by a fall of slate at the Pan Handle mine on October 4.

Gambra Pellegrino, Italian, a miner aged 29 years, was killed at Essen No. 1 mine on October 4, by fall of slate.
doln Yellenack, Austrian, a miner, aged 27 years, was fatally injured in Dickson mine, on November 1, by a fall of slate; he lived about twenty-four hours after the accident.

John Plewe, a Slavish miner, aged 22 years, was killed by a fall of slate in his working place.

11 m . Whilholder, a miner, aged 56 years, was instantly killed in his working place at the Ormsby mine, December 27, by a fall of slate.

TABLE No. 1.-Showing Location, etc., of Collieries in the Seventh Bituminous District.
\begin{tabular}{|c|c|c|c|c|}
\hline Name of Colliery. & Name of Operator. & Location-County. & Name of Superintendent. & Postoffice Address. \\
\hline Ailison, & Cook \& Sons, & Washington, & R. M. Cook, & McGovern. \\
\hline Bower Hill, & Alex. Dempster, & Allegheny, & W. W. Dempster & Pittsburgh. \\
\hline Becks Kun & Mays Coal Company \({ }^{\text {Man }}\), & Allegheny, & George Kramer, & Munhall. Redman Mills. \\
\hline Beadling, & Beadling Brothers, . & Allegheny, & R. W. Smith, & Beadling. \\
\hline Brddgevill & Bridgeville Coal Company, & Allegheny, & John F. Hesac & Bridgeville. \\
\hline Buyd, & Boyd Coal Company, & Allegheny, & Jesse H. Sanford, & Carnegie. \\
\hline Beachmot & J. G. Mcmichael, & Allegheny, & J. C. McMichael, & Hickman. \\
\hline 13rakenridg & Brackenridge Coal Company, & Allesheny, & Alfred Hicks, .... & Leechburg. \\
\hline Broon, & Canonsburg Coal Company, Llmited, ...... & Washington, & E. T. Hitchman, & Canonsburg. \\
\hline Crier Hill, & Patterson 心 Sauters, \({ }_{\text {Ohio and Pennsylvania Coal Company, ................. }}\) & Washington, & J. D. Sauters, & McDonald. \\
\hline Champlon, & Robbins Coal Mining Company, ............. & Allegheny, . & G. We. Schluederberg & Pittsburg, \\
\hline Cherry, & M. Mccue ic Co.. \({ }^{\text {a }}\) (............. & Allegheny, & James Boyle, ... & 552 Fourth Ave., Pittsburg \\
\hline Castle Shannon,
Calhoon, & Pittsburgh and Castle Shannon R. R. Co.,. & Allegheny, & E. J. Reamer, & \({ }_{50}\) Carson St., Plttsburg. \\
\hline Cathoon, & II. S. \({ }^{\text {I }}\). Hays. \({ }^{\text {a }}\) & Allegheny, & L. C. Hays, & Homestead. \\
\hline Enterpris & Hartley \& Marshall. & Allegheny, & Beecher Hartley, & West End, Pittsburg. \\
\hline Essen No. & Essen Coal Company, & Allegheny, & Thomas Renshaw, & Fssen. \\
\hline Fssen Nos. 2 and 3 , & Esson Coal Company. & Allegheny, & William Baldwin, & Federal. \\
\hline Enterprise No. 2. & E. Morris \& Co., ... & Washington & G E. Thomas. & Arden. \\
\hline Federal. & Chartiers Block Coal Company, & Allegheny, & TVIlliam Baldwl & Federal. \\
\hline Freeport, & Freeport Coal Company, & Allegheny, & N. S. Hlcks, & \\
\hline Fox, & Thomas Fox, \({ }^{\text {Feral }}\) Coal Company & Allerheny, & Jas. T. Fox, & 121 Wabash Av., Pittsb'g. \\
\hline Federal spring. ......... & Federal Coal Company, .... & Allegheny, & R. P Grist, & Hickman. \\
\hline \begin{tabular}{l}
First Fool Nics, 1 and 2. \\
Fort Pitt,
\end{tabular} & First Pool Mon. Gas Coal Co, & Allegheny, & G. WV. Schluederb & 238 5th Ave, Pittsburg. \\
\hline Grant, ... & Hoosack Brothers, ............ & Allegheny, & C. J. Z . Ho Hoosack. & Carnegle. \\
\hline Hlekman & Federal Coal Company, & Allegheny, & R. P. Grist, ..... & Hickman. \\
\hline Hays Street liun Nos. 2 & Hays Coal Company. & Allegheny, & John Watson, & Hope Church. \\
\hline HastIngs Slope, & Slope Mines Coal Company, & Allegheny, & John Nelsh. & Bridgeville. \\
\hline Hite. & McFetridge Brothers, & Allegheny, & G. H. McFetridge. & Hite. \\
\hline Idlewood & Thos. D. Steen, Jr., ........... & Allegheny, & Thos, D. Steen, & Iflewood. \\
\hline Iumbo, Hili \%............. & Pittsburg Consolidated Coal Company. & Washington, & G. W. Schluederberg. & 232 5th Ave., Pittsburg. \\
\hline Laurel Hill No. 2, ....... & W. P. Rend \& Co., & Allegheny, & David Brown,
David Brown. & McDonald. McDonald. \\
\hline Llek Lun, & Keeling Coal Co., & Allegheny, . & Peter J. Keeling, & Pittsburg. \\
\hline 1.easdale, & Jesse H. Sanford, & Allegheny, & Jess e H. Sanford, & Carnegle. \\
\hline Montour & Imperlal Coal Company, & Allegheny, & L. S. Young, & Imperial. \\
\hline Mansfleld No. 2. & Mansfield Coal and Coke Company, & Allegheny, & Daniel Boden, & Carnegie. \\
\hline Mansfield and Erie. & Pittsburg Fuel Company, & Allegheny, & Daniel Borlen... & Pittsburg. \\
\hline M|iway, & Mldway Block Coal Company, & Washington, & G. W. Schluederberg, & Pittsburg. \\
\hline Moon Run, & Moon Run Coal Company. & Allegheny, & Jas. F Cook. & an Meter. \\
\hline Morgan. & Moon Kun Coal Company. & Allegheny, & N. F. Sinford. & Moon Kun. \\
\hline Natlonal. & Natlonal Coal Company, Limited. & Allegheny, & John F. Mullooly, & Noblestown. \\
\hline
\end{tabular}



Insoph Walton \& Co., Incorporated, .........
McFetridge Brothers,

Allegheny,
Allegheny,
Allegheny,
Allegheny,
Allegheny,
Allegheny,
Allegheny,
Allegheny:
Allegheny,
Washington
Washington,
Allegheny
Allegheny,
Allegheny,
Allegheny,
Allegheny,
Allegheny,
Allegheny,
Allegheny,

\(\qquad\) W. H. Linsley

John Owens.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) .................
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) Summer \(H\) \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
J. D, Sauters,

Peter J. Keeling. ................
G. W. Schluederberg, ......... J. H. Bates,
G. W. Schluederberg, .........
F. W. Mankedick.
F. w. Jones,
G. W. Sones, ...................

G W. Schluederb:rg,
G. W. Schluederber
W. L. Nancarrow

David Brown,
E. N. Wildman,

David Orr, ............
Gaurice Kapp. .............
Maurice Kapp,
G. McFetridge,

Joint.
Natrona.
Bridgeville
McDonald.
Pittsburg.
Pittsburg.
Box 38 , Carnegi
Box Pittsburg
Pittsburg.
Essen.
Pittsburg.
Pittsburg.
Hishop. Church.
Hope Cille.
McDonald.
West End, Pittsburg.
Bridgeville,
Pittsburg.
Carric

TABLE No. 2.-Gives the total number of tons of coal mined and tons of coke produced in each Colliery, number of days worked, number of employes, number of persons killed and injured, nu mber of kegs of powder used, etc., in the Eighth Bituminous District, for the year ending December 31, 1897.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Hastings Slope, & Allegheny, & 38,000 & & 1,100 & 150 & 36, 750 & 160 & 137 & & & & & & 8 & & \\
\hline Hite, ........... & Allegheny, & 80,300 & & 1,641 & 1,425 & 77,135 & 277 & 141 & & & 950 & ....... & 3 & 5 & & \\
\hline Hays Street Run Nus. 2 and 3,*. & Allegheny, & 114,208 & & 75 & 266 & & 103 & 340 & & & & & 2 & 2 & & \\
\hline Idtewood, .......................... & Alleghenv, & 27,700 & & 125 & 100 & 27,500 & 175 & 69 & & 1 & 5 & & 1 & 8 & & \\
\hline Jumbo, & Washington, & 164, 186 & & 4,700 & 625 & 158,861 & 160 & 305 & & 3 & & & 7 & 21 & & \\
\hline Lick kun, & Allegheny, & 16.402 & 4.7.0] & 1,100 & & 15,302 & 123 & 93 & & & & & 2 & 5 & 1 & \\
\hline Laurel Hill No. 1, & Allegheny, & 228,500 & 4,500 & 7,300 & 400 & 214,450 & 206 & 237 & & 4 & 800 & \(\ldots\) & 10 & 25 & & 51 \\
\hline Laurel HIII No. 2, & Washington. & 62,182 & & 1,900 & 500 & 59.732 & 108 & 157 & 1 & & 240 & & \({ }_{6}^{6}\) & 12 & 1 & \\
\hline Laurel Hill No. 4, & Allegheny, & 132,811 & & 3,828 & & 129,013 & 171 & 228 & 1 & 1 & 530 & & 9 & 24 & & \\
\hline Leasdale, & Allegheny, & 40,506 & & 300 & & 40,806 & 79 & 115 & 1 & 2 & & & 1 & 5 & & \\
\hline Montour. & Allegheny, & 30,960 & ......... & 320 & 470 & 30,170 & 134 & 91 & & & & & 2 & 8 & & \\
\hline Margerum, & Allegheny, & 89,515 & & & 100 & 89,415 & 166 & 176 & & \(\frac{2}{8}\) & 10 & 150 & & 10 & & \\
\hline North Weste & Allegheny, & 27,506 & & - 76 & 2,086 & 27,430 & 72 & 137 & & 2 & & & 2 & 2 & 2 & \\
\hline National, & Allegheny, & 47,121 & & & & 47,121 & 124 & 127 & & & & & 3 & 6 & & \\
\hline Natrona, & Allegheny, & 102,037 & ......... & 750 & & & 290 & 150 & & & 1,290 & & 2 & 15 & & \\
\hline Nixon. & Allegheny, & 77, 586 & & 636 & & 76,950 & 119 & 200 & & & & & 2 & 10 & 1 & \\
\hline Nickel Plate, & Allegheny, & 99,545 & & 2.000 & 2,000 & 95,545 & 183 & 147 & 2 & 5 & & & 3 & 12 & & \\
\hline Ormsby, & Allegheny, & 89,047 & & 2,230 & 86,817 & & 203 & 193 & 1 & & & & 4 & 15 & 1 & \\
\hline Oak R. C. & Allegheny, & 47.046 & & 800 & 125 & 46.121 & 187 & 53 & & & & & 2 & 5 & & \\
\hline \(\stackrel{O}{\text { Pan Handie. }}\) & Allegheny, & 52, 151 & & & & 52,151 & 145 & 109 & & & & & & 1 & & \\
\hline Pan Handle, & Allegheny, & 183.002 & , & & & 183,002 & 168 & 323 & 3 & 5 & & & 6 & 14 & & \\
\hline Pine Creek,
Pine Ridge, & Allegheny, & 3.5.318 & & 600 & 300 & 34,418 & 213 & 76 & & & & & 2 & 5 & & \\
\hline Pine Ridge, & Allegheny, & 13, 830 & & & & 13,630 & 80 & 52 & & & & & & 2 & & \\
\hline Ridgway Bishop,
Streets Run, & Washington, & 130.947 & & 1,870 & 2,000 & 127,077 & 135 & 189 & 1 & & & & & 12 & & \\
\hline Streets Run, & Allegheny, & 32.338 & & 625 & 313 & 31.400 & 172 & 53 & & & & & & 3 & & \\
\hline Summer Hill, & Allegheny, & 133,942 & & 342 & & 133,600 & 203 & 281 & & & & & 3 & 12 & & \\
\hline Venture.t & Allegheny, & \$7. 596 & & & & 52.728 & 197 & 229 & 1 & 2 & & & 3 & 14 & & \\
\hline Wuican, & Allegheny, & 25.000 & & 800 & & 24.200 & & 84 & & & & & 2 & 8 & & \\
\hline West Tarentu & Allegheny, & 87,787
9,345 & & & \[
\begin{array}{r}
948 \\
9.345
\end{array}
\] & 24,104 & \[
\begin{aligned}
& 160 \\
& 307
\end{aligned}
\] & 294
18 & 1 & & \[
100^{2}
\] & 150 & 4 & 20
1 & & \\
\hline Total. & & 5,000,375 & 4,560 & 62,245 & 194,859 & 4,310,237 & 9.640 & 9,933 & 22 & 58 & 5.453 & 605 & 150 & 667 & 13 & 55 \\
\hline
\end{tabular}
- Product shipped by river.
\(\dagger\) Product shipped by rlver in part.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Hickman, & & & 140 & & 12 & 6 & 5 & 164 & & 3 & 2 & & 5 & 1 & 11 & 175 \\
\hline Hastings slope. & 1 & 1 & 109 & & 8 & 2 & 2 & 125 & 1 & 2 & 3 & 1 & 4 & 1 & 12 & 137 \\
\hline Hite, ........ & 2 & 1 & 102 & 12 & 5 & 4 & 4 & 130 & & 2 & 3 & & 4 & 2 & 11 & 141 \\
\hline Hays Street Run Nos. 2 and 3, & 2 & 1 & 272 & & 22 & 6 & & 303 & 1 & 5 & 2 & & 25 & 4 & 37 & 340 \\
\hline Idlewood, ........................ & 1 & 1 & 50 & 5 & 5 & & & 62 & 1 & 2 & 1 & & 2 & 1 & 7 & 69 \\
\hline Jumbo, . & 1 & 2 & 239 & & 14 & 1 & 20 & 277 & 1 & 4 & 7 & & 14 & 2 & 28 & 305 \\
\hline Lick Run. & 1 & 1 & 65 & & 5 & 1 & 3 & 82 & 1 & 1 & 2 & & 6 & 1 & 11 & 93 \\
\hline Laurel Hill No. 1 , & 1 & 2 & 132 & 35 & 16. & 6 & 10 & 202 & 1 & 3 & 8 & & 20 & 3 & 35 & 237 \\
\hline Laurel Hill No. 2, & 1 & 2 & 108 & 3 & 9 & 4 & 7 & 134 & & 4 & 6 & & 10 & 3 & 23 & 157 \\
\hline Laurel Hill No. 4 , & 1 & 2 & 160 & 14 & 19 & 5 & 8 & 209 & & 9 & 9 & 1 & 4 & 3 & 19 & 228 \\
\hline Leasdale, & 1 & 1 & 98 & & 5 & 2 & 2 & 109 & & 1 & 1 & & 3 & 1 & 6 & 115 \\
\hline Montours, & 1 & & 65 & 3 & 6 & 1 & 3 & 79 & 1 & 1 & 2 & & 7 & 1 & 12 & 91 \\
\hline Margerum. & 1 & & 150 & & 9 & 3 & 3 & 166 & & 1 & & & 8 & 1 & 10 & 176 \\
\hline Mansfleld No. 2, & 1 & 3 & 275 & 20 & 14 & 3 & 4 & 320 & & 7 & 4 & & 13 & 3 & 27 & 347 \\
\hline Moon Run, & 1 & 2 & 281 & 15 & 21 & & 9 & 329 & & 6 & 4 & 1 & 18 & 3 & 32 & 361 \\
\hline North Western, & 1 & 1 & 111 & 6 & 5 & . 1 & 2 & 127 & & 3 & 1 & & 5 & 1 & 10 & 137 \\
\hline Natlonal, ...... & 1 & 1 & 100 & & 6 & 2 & 5 & 115 & 1 & 1 & 2 & & 7 & 1 & 12 & 127 \\
\hline Natrona, & 2 & & 95 & 10 & 27 & 3 & 7 & 144 & 1 & 2 & 3 & & & & 6 & 150 \\
\hline Nixon, .... & 1 & 2 & 175 & 10 & 7 & & 3 & 158 & 1 & 3 & 2 &  & 5 & 1 & 12 & 200 \\
\hline Nickel Plate. & 1 & 1 & 100 & 10 & 12 & 3 & 3 & 130 & 1 & 2 & 3 & & 10 & 1 & 17 & 147 \\
\hline Ormsby, .... & 1 & 2 & 157 & 6 & 10 & 1 & 6 & 183 & 1 & 2 & 2 & & 3 & 2 & 10 & 193 \\
\hline Oak Ridge. & 1 & 1 & 60 & 3 & 6 & 2 & & 73 & & 2 & 3 & ......... & 4 & 1 & 10 & 83 \\
\hline \(\bigcirc\) I. C., & 1 & & 95 & & 4 & & & 103 & 1 & 1 & & & 4 & & 6 & 109 \\
\hline Pan Handle, & 1 & 2 & 280 & 4 & 18 & 1 & 4 & 305 & & 3 & 4 & & 9 & 2 & 18 & 323 \\
\hline Pine Creek, & 1 & & 60 & 4 & 3 & 1 & & 69 & & 1 & 1 & & 4 & 1 & 7 & 76 \\
\hline Fine Ridge. & 1 & & 40 & 5 & 2 & & & 48 & & & & & 3 & 1 & 4 & 52 \\
\hline Jidgway Bishop, & 1 & 2 & 149 & 4 & 8 & 3 & 4 & 171 & & 3 & 3 & & 10 & & 18 & 189 \\
\hline Streets Run. .... & 1 & & 37 & 5 & 2 & 1 & 1 & 47 & & 1 & 1 & & 3 & 1 & 6 & 53 \\
\hline Summer Hill. & 1 & 3 & 240 & & 9 & 1 & 15 & 269 & 2 & 4 & \(\frac{2}{3}\) & & 3 & 1 & 12 & 281 \\
\hline Venture, & 1 & 2 & 175 & & 13 & 4 & 7 & 214 & & 2 & 3 & & 8 & \(\frac{2}{2}\) & 15 & 229 \\
\hline Vulcan. & 1 & & 60 & 2 & 5 & & 3 & 71 & 1 & 2 & 4 & & 4 & \(\frac{2}{2}\) & 13 & 84 \\
\hline Walton, & 1 & 2 & 238 & 14 & 18 & 3 & & 276 & 1 & , & 4 & & - & 2 & 18 & 294
18 \\
\hline West Tarentum, & & & 14 & 2 & 1 & & & 18 & & & & & & & & 18 \\
\hline Total, & 68 & 59 & 7.77 & 320 & 555 & 113 & 232 & 9.119 & 34 & 133 & 144 & 9 & 405 & \(\$ 9\) & 814 & 9,933 \\
\hline
\end{tabular}

\section*{No. 10 . \\ SEVENTH BITUMINOUS DISTRICT.}

TABI.E No. 4-List of Fatal Accidents that occurred in and about the Mines of the Seventh Bituminous District, for the year ending December 31, 1897.


TABLE No. 5-List of Non-Fatal Accidents that occurred in and about the Mines of the Seventh Bituminous District, for the year ending December 31, 1897.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & & Name of Person. & Occupation. & 呙 &  & Name of Colllery. & Locatlon-County. & Nature and Cause of Accldent in Brief. \\
\hline \multirow{7}{*}{June} & 11. & \multirow[t]{7}{*}{Frank Gravner, Pat. Callaghan, Albert Orros, J. Ward, Andrew Davidson, 12obert Schultz, Peter Cremeter, Willlam Chisnion, Ernest Weldner.} & Miner, ............... & 63 & S. & Margerum, ................... & Allegheny, ......... & \multirow[t]{7}{*}{\begin{tabular}{l}
Seriously Injured by fall of slate. \\
Foot injured by a post falling upon it. \\
Foot crushed by fall of coal. \\
Leg injured by fall of coal. \\
buot injured by fall of slate. \\
Back seriously injured by fall of slate. \\
Foot injured by fall of roof coal. \\
Fcot injured by fall of slate. \\
Foot seriously injured by the cutter chain of a mining machine.
\end{tabular}} \\
\hline & 11. & & Miner, ............... & 34 & & Margerum, \({ }^{\text {M }}\), & Allegheny, .......... & \\
\hline & 12, & & Miner, & \({ }_{3}^{40}\) & \(\xrightarrow[\mathrm{M}]{\mathrm{M}}\). & Mansfleld No. & Allegheny, \({ }^{\text {Allegheny, }}\) A....... & \\
\hline & 12, & & Miner, & 50 & M. & Nickel Plate, & Allegheny, & \\
\hline & 21. & & Miner,. & 50 & \({ }^{3} 1\). & First Pool, & Allegheny, .......... & \\
\hline & 223. & & Miner, \({ }_{\text {Miner, }}\) & 27 & M. & Allison, Nick , l . & Washington, ........ & \\
\hline & 24, & & Machine runner, .. & 32 & S. & Essen No. 3, .............. & Allegheny, & \\
\hline \multirow{3}{*}{Sept.} & 29, & John McDowal, ............ & Miner, & & & Laurel Hill No. 1, ...........
Beadlng. & Allegheny, .......... & \multirow[t]{2}{*}{Siightly injured by fall of slate. Leg broken by fall of slate.} \\
\hline & & John Crooper, \({ }^{\text {Joseph Kluretz, } . . . .}\) & Miner, \({ }_{\text {Miner, }}\) & 45 & S. & Beadling, \({ }_{\text {Moon Run, }}\).................. & \begin{tabular}{l}
Allegheny, \\
Allegheny,
\end{tabular} & \\
\hline & 30, & Mike Soushack, & Miner, & -38 & M . & Enterprise \(\mathrm{No}\).2 , & Washington, ........ & Aim broken by fall of slate. \\
\hline \multirow[t]{10}{*}{Oct.} & 6 , & John Chapple, & \multirow[t]{2}{*}{Miner,} & 35 & M. & Venture, ........................ & Allegheny, .......... & \multirow[t]{2}{*}{\begin{tabular}{l}
Seriously injured by a fall of coal and slate. \\
Injured by fall of slate.
\end{tabular}} \\
\hline & 8, & Joe Ganskl, ... & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 30 \\
& 62
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\frac{\mathrm{M}}{\mathrm{M}} .
\]} & Pan Hand & \multirow[t]{2}{*}{\begin{tabular}{l}
Allegheny, \\
Allegheny,
\end{tabular}} & \\
\hline & 11, & Robert Simms, & \begin{tabular}{l}
Miner. \(\qquad\) \\
Miner, \(\qquad\)
\end{tabular} & & & Idlewood, & & \begin{tabular}{l}
Injured by fall of slate. \\
Foot Injured by fall of slate, necessitating amputation.
\end{tabular} \\
\hline & 16,
19, & Joe Legreta, \({ }^{\text {John }}\), \({ }^{\text {Johalmers, }}\). & \multirow[t]{2}{*}{\begin{tabular}{l}
Miner. \\
Miner.
\(\qquad\)
\(\qquad\)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 4 ? \\
& 19
\end{aligned}
\]} & \multirow[t]{2}{*}{M.} & \multirow[t]{2}{*}{Beadling, Beadilng,} & \multirow[t]{2}{*}{\begin{tabular}{l}
Allegheny, \\
Allegheny,
\end{tabular}} & \multirow[t]{2}{*}{Leg broken by fall of slate. Eurned about face and hands by an explosion of gas. He passed a danger signal.} \\
\hline & 19, & John Chalmers, & & & & & & \\
\hline & \(\frac{29}{20}\), & Joe Bunta, J. C. Gray, & \begin{tabular}{l}
Miner. \\
Laborer,
\end{tabular} & \(\stackrel{23}{30}\) & S. & Essen No. 2, Venture, ... & \begin{tabular}{l}
Allegheny, \\
Allegheny,
\end{tabular} & \begin{tabular}{l}
Leg broken by fall of roof coal. \\
Foot hurt by a piece of slate falling upon
\end{tabular} \\
\hline & & & & & & & & \begin{tabular}{l}
it from a loaded car. \\
Injured by fall of coal.
\end{tabular} \\
\hline & 26. & James Vliliamson, & Miner, & 27 & M. & Jumbo, & Washington, ......... & Fcot injured by fall of slate. \\
\hline & 27. & Louis Vidal. \({ }^{\text {John }}\) & Miner, & 32 & M. & Essen No. 2, & Allegheny, .......... & leg broken by fall of slate. \\
\hline & \({ }_{6}\). & John Mettallck. & Miner, & 30 & M. & Dickson, & Allegheny, .. ....... & Sllghtly injured by fall of slate. \\
\hline \multirow{3}{*}{Nov.} & \multirow[b]{3}{*}{16. 22. 23.} & Edward Hannish & \multirow[b]{3}{*}{\begin{tabular}{l}
Miner, \\
Miner. \\
Mule driver
\end{tabular}} & & M. & Manseld No. 2, & Allegheny, & \\
\hline & & John Savnor,
John Tott, & & \multirow[t]{2}{*}{25
30
26} & \multirow[t]{2}{*}{M.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Creedmoore, \\
Essen No. 3, \\
Mansfleld No, 2, \\
Mansشeld No. \(2, \ldots . .\).
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Washington, \(\qquad\) \\
Illegheny, \(\qquad\) \\
Allegheny, \(\qquad\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Injured by flying coal from a blast. \\
Injured by fall of slate. \\
Foot Injured by a coal car passing over it.
\end{tabular}} \\
\hline & & John Morrls, & & & & & & \\
\hline
\end{tabular}
| James Donley,
Patrick Melkern, Chas. Margerello John Tunch

Ferdinand Messing
Timothy Drenin,

Door boy,
Miner,
Miner boy
Miner,
....
Mule driver,
Miner, ..................
\begin{tabular}{c|c|l}
14 & \(\cdots\). & Laurel Hill No. 1, \\
52 & M. & Mansfield No. 2,
\end{tabular}
Mansfiel
Walton,
Jumbo,
Jumbo,
Cherry,
Cherry.
.............
\(\qquad\) Allegheny,
Allegheny,
Allegheny, Washingto...........
Allegheny. Allegheny, Allegheny, .............

Arm and leg broken; was squeezed between car and side of entry.
Leg injured by fall of slate.
Leg injured by fall of slate. Burned about face and hands by an explosion of gas Leg injured by coal cars. Hurt by a fall of slate: not seriously.

家䢒

\title{
Eighth Bituminous District. \\ ( CLEARFIELD, CENTRE AND JEFFERSON COUNTIES.)
}

Philipsburg, Pa., February 13, 1898. Hon Jas. W. Latta, Secretary of Internal Affiirs, Harrisburg, Pa.:

Sir: I have the honor of presenting to you my third annual report as Inspector of coal mines for the year ending December 31, 1897, as required by article \(X\), section 11, of the Bituminous Mine Laws. The report contains the usual statistical tables relating to the names of companies and location of mines, the total production in net tons of coal, the number of each class of workmen employed in and about the mines, each fatal accident reported fully, together with causes and, where necessary, the manner of averting as far as possible any further occurrence of such accidents. Although there are quite a number of accidents that may be attributed to the carelessness of employes themselves, a new danger, however, shows itself in shape of clectric wires, these having caused two deaths during the year, and considerable care will be required to prevent future accidents from this source. Descriptions of these accidents are given in another place.

The mines have been kept in very fair condition as a whole, but there are several cases where the foremen were arbitrary and, instead of putting in force the provisions of the laws, they seemed rather inclined to violate them. It should be the foreman's first aim and object to see that the provisions of the law are observed by himself and the employes under his care, especially where life and limb are in danger, and he is expected to have more knowledge of the dangers that exist. Mention is here made because it often occurs that when investigating an accident, the officials say they had often warned the workmen of the danger, yet did not compel them to more thoroughly grard against it, which, if they had, would be the means of reducing the number of aecidents to a minimum. The total production in net tons of coal is slightly less than that of the preceding year, yet the number of fatal accidents is one in excess, while the non-fatal accidents are seven less, which, however, is a very fair showing compared with the average in the State.

There has been considerable improvement made at the mines during the year, but the rapid exhaustion of the Moshannon seam (geologically known as Bed I) is causing quite a number of small mines to be opened in the district to take out the remaining coal which other operators considered valueless years ago, and which some of the larger operators will not attempt to mine to-day, the mining of which causes a rather worse condition to exist owing to it being diflicult to properly open a mine having such a small coal area to be worked.

There is still very good coal to be mined, but it will require more permanent equipment and deeper openings to reach the seams, as shown by the accompanying columnar section of the actual coal measures in this locality. The case of the Commonwealth is. D. D. Jones, as mentioned in 1896 report, was carried to the Superior Court. and that honorable body having reversed the lower court, sustaining the constitutionality of the mine laws, and sending the case back to the lower court, where a verdict was reached in favor of the Commonwealth. A record of Superior Court case is in the hands of the district attorney and in the State Library. The Governor, in his message of 1897 , advised the establishing of a Bureau of Mining, which was carried out by the Legislature, and it will no doubt be a valuable addition to the mining industry. I remain, Very respectfully yours, JOSEPH KNAPPER, Inspector.

\section*{TABLE A.}
showing the Number of Fatal and Non-Fatal Accidents and Their
Causes.

\author{
Fatal. Non-Fatal.
}

Falls of slate roof, ................................... . . 3
Fan engine machinery, .............................. . . 1
Electric wires with 550 volts, ..................... . 2
Falls of coal, ....................................... . . . . . . . 10
Premature blast, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Mine machinery, ................................... . . .. 1
Hatulage rope, outside, ................................ .. .. 1
Ignition of powder, .................................. .. .. 2
Mine cars, .............................................. . . . .
(roal and slate, .......................................... .. 2
Total,
7
29

TABLE B.
Showing the quantity of coal mined, coke produced, mumber of persons employed in and about the mines, number of net tons mined per fatal and non-fatal aecident, together with powder consumed, number of days worked, etc.
Total number of tons mined, ..... 3,798,138
Total number of tons shipped, ..... 3,68:3,296
Total number of tons of coke shipped, ..... 23,500
Total number of tons mined per fatal aceident, ..... ก42,591
Total number of tons per non-fatal accident, ..... 130,970
Number of persons cemployed inside the mines, ..... 5,866
Number of persons cmployed outside the mines, ..... 417
Total number of persons employed in and about the mines, ..... 6,283
Total number of days worked, ..... 14,597
A verage number of days worked, ..... \(1641-3\)
Tons mined per employe, ..... 604
Kegs of powder consumed, ..... 22,405
Hurses and mules employed, ..... 693
Steam boilers, ..... 93
Stationery engines, and locomotives, ..... 10
Coke ovens, ..... 106
Number of mines that came under the provisions of the law during the year. ..... 82
Report of Pennsylvania State Hospital.
Total number of patients for 1897 , ..... 201
Number male patients, ..... 172
Number female patients, ..... 29
Number adults, ..... 164
Number children, ..... 37
Number foreigners, ..... 103
Number English and American, ..... 98
A number of the above foreigners have been naturalized.
A verage number of daily indoor patients, ..... 10
A verage number of daily outdoor patients, ..... 7
Classifications.
Number of miners treated, ..... 109
Other members of miners' families, ..... 35
Number of railroad accidents. ..... 6
Number of fractures of leg and thigh, ..... 22
Number of fractures of arm, ..... 27
Number of fractures of clavicle. ..... 14
Number of dislocations, ..... 7
Number of burns, ..... 12
Number of gun shot wounds, ..... 4
Number of spinal injuries, ..... 13
Number of fracured skulls, ..... 3
Number of major amputations, ..... 5
Number of minor amputations, ..... 16
Miscellaneous injuries, ..... 67
Number of deaths, ..... 2
Total number of days in hospital, ..... 3,565
Greatest number of days, one patient, ..... 319
Average number of days, each patient, ..... 35Physicians: Dr. Henderson, Dr. Andrews.Nurses: Miss Ploebe Gibson, Mr. Thos. Crawshaw.
M. A. FISHER,
Superintendent.
Report of Fatal Accidents During the Year 1897, With Causes and Suggestions.

A fatal aceident from an electric wire caused the death of Mike Lopik, Slavish nationality, aged 22 years, and being in this country only three months. He wats at work as a miner, in company with an elder person of the same nationality, the latter speaking broken English, in Eureka No. 22 mine, No. 4 drift, first right heading and No. S room, on the 4 th of March. He had to run a loaded car ont of his room about 11 A . M., and place it on the cross heading in front of the room, and, thinking he had time to spare, starked to pull a 12 -pound 'T iron rail off the cross heading into his room, but he could not get around the curve, owing to the full car being in the way. Instead of moving the car, he raised one end of the iron rail on the car and the other he put on his left shoulder, going into his room backwards, having his left arm over the rail. When he had pulled the rail around at right angles to the heading it came in contact with a live electric wire, charged with 500 volts, the shock forcing him to the ground and, according to the evidence of his partner, who was in a straight line and only 200 feet away, and who said he did not hear any noise, shows that he was rendered unconscions. Having his arm over the rail. he failed to release himself, thus pulling the rail down on his left breast and falling on the road ratl in one-half inch of water, which made a perfect circuit, because the opposite end still rested on the live wire. It was proven by John Burns, the engineer in charge of the gencrator, that the circuit breaker flew out at 11.05 A. M., and when it was put in again by him, for some unknown reason, the eurrent continned in its proper course. When the engineer and con-
ductor, Henry (iossar, Frenchman, and Willard Williams, American, arrived in first right headiug at 11.30 A . M., they met the obstruction of loaded cars, and saw fire flashing from the wire ahead. On investigation, saw the deceased lying on his back in an unconscious condition. They immediately got a picce of wood and removed the rail from his body, but found he was dead, he having been literally roasted on the left side. Had he been an expert electrician he could not have arranged an electrocntion with more assurance of results and yet he was ignorant of the danger. This is the first instance of a new danger in this section of the State in the coal mines. It is mentioned in report of this mine and the remedy to be applied.

Accident causing the death of Alex. Pollock, aged \(27 \frac{1}{2}\) years, mine foreman at \(A\) tlantic No. 2 mine, on the \(29 t h\) of \(A\) pril. About 6.30 A . M. he was in the fan house with his brother, W. C. Pollock, and while there he concluded to oil the engine, and while standing on the slides of engine which stand at an angle of 45 degrees, he attempted to fill the oil cups on cranks of engine, which was running at the time at sixty revolutions per minute, he following the cup with the can, and, at the same time, talking to his brother. He failed to catch the stroke of the engine, the crank came around before he could recover his balance, and struck the bottom of the oil can, causing the spout of the can to be forced into his right eye. He immediately told his brother that his eye was knocked out and before his brother had time to reach him, he fell backward unconscious, a distance of six feet five inches, striking steam pipe and burning the side of his head and neck, which caused paralysis. He remained unconscious until death occurred, on the 2d of May

Joseph Havanic, Slavish nationality, aged 32 years, miner in Mt. Vernon No. 7 mine. On June 17 he and his butty had mined the first cut of coal in turning a room off first left heading; the cut was mined three and one-half feet deep. They prepared a shot and fired it at 8 A. M., and according to his partner's statement, when he called for help he said the deceased had gone back to see the result of the blast, and while in a stooping position, looking under the coal, which had only partly fallen, a stone fell from the roof, striking him on the head and shoulders, causing instant death. The stone weighed from four to five hundred pounds. The day on which the accident occurred was the first shift for the witness to be in that mine, and before the officials had time to learn his name he left for parts unknown, so that all the necessary evidence from an eye witness conld not be obtained. It seems that the deceased had taken the stranger in the mine without the knowledge of the officials.

Enice Olsen, aged 50 years, German, miner in Eureka No. 7 mine, was, on the 25th of June, mining a cut of coal in an old room that had
stood idle for years in old Vukcan mine, being connected by No. 6 heading in Eureka 7. He lad started that morning to draw the pillar and, on examining the roof before commencing to mine, concluded that the overhanging roof of sandstone and fire clay, right where he had to mine, needed timbering. He set one prop at each end of the stone, which was very uneven on the under side, and two and one-half feet wide, seren feet long and one foot thick. He then consulted his partner, John Guston, asking him if he thought it was safe, and they both finally agreed to set another prop at the opposite end of the stone, but the pop having been set so close to the face and as the line of fracture was unseen by them, being even with the coal face, caused the stone to have the heaviest end hanging ontside of where props were set. Olson then lay on his left side and commenced to mine the cut of coal so that they would have coal ready when the track was laid, while his partner was opening a ditci to let some water ont. The dereased had mined the ent only three feet long and one and one-half feet deep when the stone fell, striking his shonlder and chest, causing almost instant death. Two other men, who were close by, also testified to the above. The deceased was known as a grood, skilfnl miner, and it is very seldom that I have to report carelessness of miners of thin mationality. This accident was mavoidable, and the stone that fell had hung there for several years without being disturbed. The old mine where this aceident oecurred has a very treacherous roof, as mentioned in the report elsewhere.

The aecident in Eureka No. 26 mine, on the 238 of July, which caused the death of David Mosher, Slavish nationality, aged 19) years, and in this comntry only a few months, is another ilhstration of the danger from electrir wires in mines using electric hanlage. It seems that David Mosher and Mike Met\%ar were mining coal in a room on second left heading and were nearer to face of cross heading than they were to the main heading. That afternoon they fired two shots in succession, which exinguished their hamp and they fonnd several matches which were damp and would not ignite, and they eoneluded fo go into the main heading and get a light from the engineer or conductor of electric locomotive, which they thonght would soon be along. thus rmming the risk of coming in contart with electrie wires charged with 200 volts, or of being strurk by the locomotive, instead of going to the face of cross heading, where they could hear miners at work and where no wires were on the heading. When near the main heading, Mike Mefzar being in the rear, according to his statement. told Mosher to look onf for the wires and keep low. A moment after, he heard the latter fall, then creeping after him found him on the main road between the rails, when he himself called for help. The roadman, Wm. Mothersbangh, eame to their rescone, and fonnd Mosher lying on his back and frothing at the month. Ther immediately took
him outside and twenty minutes later he was dead. There were no burns and only a small cut on his head about one-fourth inch long. When I was notified, I requested them to call a doctor. E. Card Edwards, M. D., made an examination and gave his opinion as follows:
"Death, in my opinion, was due to shock received from electrical trolley line cable for the reasons, namely: 'A rigor mortis generally oceurs in death due to electrical currents immediately after death, the face is usually bloated and discolored; putrification is very rapid, see Tody Legal Magazine, 5th vol., p. 141, also from the same anthority, page 136. Discharges which kill most suddenly, cause the least external injury.'
"Page 137. 'Wounds as though caused by a blunt dagger are not uncommon.'
"Page 138. "Cases are recorded where no external injury was to be found.'
"Page 141. 'Death is not always instantaneous.'
"Page 137. 'In many cases a marked absence of burning.'
"July 24, 1897. E. Gard Edwards, M. D., Ramey, Pa."
It seems to me that the first part of M. D. opinion does not agree with page 141. The same protection was ordered at this mine as was ordered at Eureka No. 22, and they were busy putting them in place when the accident occurred.

Accident on the 26th of July, cansing the death of Thomas Vanghn, miner, aged 62 years, by a fall of roof while he and five others were loading two cars of coal in Atlantic No. 1 mine. The six persons had heen working two days eutting over a pillar to take it ont, and had made a space in said pillar twenty feet along the pillar and thirteen feet throngh it, having seven props set. According to the statement of Wm. Vaughan, son of deceased, also Mark Burns, Wm. Burns, Samnel fallagher, all say they were waiting on eross headings for cars, and, having obtained two, they entered their place to load them, after an absence of tyenty-five or thirty minutes. No change having oce curred during their absence, and just as they got their cars loaded some one of them heard a piece of coal fall from the face and called for all hands to look out, as they were all together; Thomas Vaughan and a boy heing the most distant from a point of saffety, made an effort to get out; the boy succeeded in getting out all right, when William Vamghan turned to help his father a stone fell, striking the old man to the ground. The son seeing the roof was going to rave in, left, when the whole space of roof fell, cansing the instant death of Thomats Viughn, covering him completely. It took fom hours work to recover the body. The aceident was matvoidable on the workmen's part, but hetter judgment should hare bern used in not putting so many men
in one place, especially where pillar withdrawing was being done. as it is impossible to hear any sound of warning made by the weight of strata on the timber before the roof falls. The deceased was a skilled miner, having been in the mines fifty years, the other miners being equally skilled.

Andrew Gowitchie, Slavish miner, at Morrisdale shafk, aged 42 years, was seriously injured by a premature blast on the 2 d of August and died at the hospital on the 11th of August. This is the only fatal case that showed gross carelessness of all parties concerned. On the above date, Andrew Powlow and Andrew Gowitchie were driving an airway in Morrisdale shaft, and to the left of said heading a cross heading lad been turned, twelve feet from face of airway, and driven in five to six yards, the latter heading being driven by Miles Womer and George Harper. It was shown that on above date, the two parties were each preparing a shot, the Slav a bottom stone shot, the Englishman a coal shot, and the Slav, expecting that his shot would be destroyed by water, requested the other party to let them fire first, which was agreed upon. When all was ready, George Harper waited at the face of his heading to hear the Slav's shot. It seems that Andrew Gowitchie was so excited in firing first that in lighting his squib he applied the lamp flame in beyond the sulphur match, and firing the powder in the squib, which instantly put off the shot before he had time to move. Harper, hinking all was right. but not being able to see for smoke, ignited his shot and ran down the heading, and when the smoke had cleared away they returned and found Gowitchie lying on his side in an unconscious condition, six feet away from his own shot; there was no stone or coal around him. After his death, in the hospital, it was necessary to know to a certainty what caused his death, there being no external marks, but at the post mortem examination it was found that his skull had been fractured right across the top and in line with each ear, giving rise, in the doctor's opinion, to profuse hemorrhage. An old fracture showed itself at side of skull, but the doctors were of the opinion that the last injury alone was the cause of his death.

\section*{Clearfield County Mines.}

Acme Slope.-The rentilation and dranage of this mine is in very fair condition except in a few room faces which needed check doors. Improvements since the preceding year consist of sinking a new shaft at the face of the main slope and on left side instead of right, as in the preceding year, and increasing the volume of air 20,750 cubic feet in the workings by not allowing it to come in contact with the broken strata in the old workings before reaching the men. Also, the fan is placed to force the air into the mine instead of exhausting it, as
was the previous method, which has one good effect, as it canses the carhon dioxide given off in the old workings to pats diretty into the retmen and up the slope. The air is conducted in four splits from the downeast shaft, and through the mine to the refurn, and on my last visit, when in full operation, 40, 200 cobber feet of air was measured at bottom of shaft. The improvements were: Sinking anew shaft, Sxis feet diameter, 106 feet deep, used for ventilation and pumping of water, and extending the system of tail rope hatulage used on the slope into four right cross headings. James Jemicks, foreman.

Komp plant, \(\because\) Stockton 10 -inch pmons and 1 No. 10 and No. Sl:ameron pmons. The volmme of water is steadily increasing. Main slope, 3,600 feet to shaft.

Ahexander Mine.-This mine has not yet resmed operations.
Allantic No. 1 Mine.-When this mine was in full operation an arerage of 54, s00 enbic feet of air was in cirenlation in four currents, but owing to being in contact with ohd West Moshamnon works, where coal is now being mined by this company, the four currents camont be permanently maintained all through the mine, but I have found the general condition of the mine good during the year. Additions, new electric pamp, Jeanessille type, 4x!) double acting, comected to a five horse power motor, elerdric, type 18 , chass 2 , speed 1 , soto revohations per minute, made by General Electric ('ompany. At new pmoming station, a battery of six eylinder boilers, well honsed, has been also added, smplying steam for pump power for Ocean No. 2 and Atlantic No. 1 mine. Benjamin Badman, foreman.
 were kept in good condition during the gear, there hating been an a werage of : 4,100 cobbe feet of air in cirentation in fone currents. The noticeable difference from 1 stef report was a segmeere on one of the right heading pillars while withdrawing them, owing to their having been irregular in thickness and in places very thin. William Dehes, foremam.

Baltir Nos. 1 and :3, "I)" Seam.-The drainage of this opening hat been in poor condition, esperially during wet wather, owing to the large momber of breaks to the surface, cansed by removing the pillars, so that in time of rain the water pours in so suddenty and in such volume that the whole width of hatnlage way is at times thee to four inches dexp with water, but it could be improved greatly bẹ maintaining a ditch along the main heading, which has mot been dome heretofore A new man has been pared in charge during the last few months and he maty impore the defects. A rolmme of 10,000 cobber feet of air wats maintained but mot subleciently rirenlated in Hudson and skelenton headings; other plates were very fairly ventilated.
"E" Seam Opening.-In case of heavy rains, the drainage is unavoidably deficient owing to the shallow strata over the coal and the constant breaks that are met with, also owing to the seam thirty feet below having been mined out causing the coal and other strata to settle very unevenly, leaving in place what are known as breakers. or large spaces where the coal has dropped below the natural level, and the roof strata is all broken the same as gob falls, which requires skilled workmen to open and maintain haulage ways. It would have been more economical to have taken the upper seam first, but, owing to the lower seam proving most valuable, it seemed natural for this to be first taken out; however, a volume of 20,080 cubic feet of air was in circulation on my last visit. A new shaft has been sunk nearer the working face, which seems cheaper than trying to maintain a good airway, owing to the breakers spoken of. Arthur White, foreman.

Belsena No. 2 Mine, Formerly Sterling No. 1.-The "E" seam opening had 8,960 cubic feet of air circulating on my last visit, the ventilation having been in fair condition. Roads were dry, which was accounted for by their being drained into the old workings in the seam mined out thirty feet below. An opening called Compressor mine, on the " \(D\) " seam, was being worked with a few men, but no noticeable current was in circulation. The atmosphere outside was still, and in a few mimutes an opening could be made to the surface by knocking a few props out, the strata over the coal being very light, from six to fifteen feet on the crop line. It could not be said that the men were suffering for want of ventilation, but it was not up to the requirements of the law. Paul Hyde, foreman.

Belsena No, 3 Mine, Formerly Old Eureka No. 11, which B. W. C. M. Co. abandoned.-The mine was found in a healthful condition, both as regards ventilation and drainage, but the rentilation had to depend upon natural means and was at times deficient for the eighteen men employed. The heading stumps, or pillars, are being withdrawn, so that it is not expected that the mine will last very long. James McAlarney, foreman.

Belsena No. 4, Formerly Pine Run Mine.-This mine had been slut down for a number of years and went to wreck in the hatuge and airways, and it seems there never was an escape way made for use of men in case of emergency. On my visit on July 22, and again on October 21, I notified the operators that they mist make a second opening according to artick II, section 1 of the Bitmminous Mine Law, which notice they immediately complied with, by ordering a ronte surveyed and they have since informed me that the necessary opening had been made and a furnace put in operation to canse a permanent circulation of air. Roads were fairly well drained on my last visit. Frank Grimes, foreman.

Champion Mine has worked only eight men during the year when in operation, except a few weeks during the early part of the year, but owing to all the marketable coal having been exhausted, it is at present abandoned.

Coaldale No. 3 .-This mine is being rapidly exhatusted and the solid coal having been removed, the work is now contined to taking ont heading and a few room pillars, so that it has been rather difficult to maintain a permanent circulation of air. However, an average of 12,900 cubic feet of air was measured at the outlets, some points having a natural current, others being ventilated by a furnace, and, generally speaking, it has been in fair condition, although the drain age was at times, rather deficient. David Phillips, foreman.

Coaldale No. 5.-This mine, like No. 3, is confined entirely to taking out main and cross heading pillars, and by the time the next annual report is sent in it will be worked out if operated with any regularity; 18,000 cubic feet of air was in circulation by natural means, but at times was poorly circulated in working places. Roads were generally very wet and muddy, but nothing better can be expected until it is finished. Thomas W. Jones, foreman.

Columbia No. 5 Mine.-Has not come under the provisions of the law during the year.

Colorado No. 1 Mine.-A volume of 6,900 oubic feet of air was in circulation on my last visit on the Sth of January, 1897, and the mine was in fair condition, but has since been shut down for an indefinite period to allow the upper seam to be worked with safety. However, the only coal remaining is a portion of the main heading pillars. Foreman, when last working, James Dunsmore.

Colorado No. 2 Mine.-There was an average of 15,870 cubic feet of air eireulating, measured at furnace return, divided into two currents through the mine. The ventilation and drainage are, at present, in very fair condition, but the "three left" has heen a source of trouble, owing to the partial caving in of the airway. But on my visit in November, I requested, as a remedy, a connection with Glenwood mine, on the main drift of latter, and both companies readily consented, so that the cause of complaint, namely, of insufficient air. according to the foreman's report, is removed. James Gates, foreman.

Colorado No. 3 Mine.- Intil the month of August this mine did not come under the previsions of the law, having only eight men employed, but on my risit on November 10 a few men had been added, but the mine having been idle, cansed the partial closing of sections of the airway, which resulted in rather insufficient air in one section, which the foreman promised to improve. Drainage was found in grood condition. Robert Scense, foreman.

Columbia No. 5.-Like several others worked only a few men the
greater part of the year, so that it did not come mader inspection, but in such cases it still takes up my time in going to the mine to ascertain its capacity: A natural enrrent of air was emtering the mine of from 2,000 to 4,000 cubic feet. being variable.

Cuba No. \(2 .-1\) volume of 11,300 able feet of atir was measmred at upeast shaft, but the volnme was rather poorly circulated through the mine rooms owing to check doors not being in place on headings. The mine boss reported insinficient supplies in his report books. The roof aromid and ower the furnate had fallen to a height of eight or nine feet, and las a width of only six feet, which was ordered to be remedied on my last risit. Edward Jawson, foreman.

Decatur No. 1.-A volume of \(\quad 24,000\) cubic feet of air was measured at the furnace return, which was cirenlating through the mine in two splits. Both the rentilation and dranage were in good condition. John E. Hawkins, foreman.

Decatur No. 2.-This mine hats been idle the whole year.
Donegal Mine.-Wits mader the provisions of the mining law during the months of Angnst and september, and after my visit, and a request from me to build a furnace and make a traveling way, the number of men was reduced from seventern to four, the operator stating that he wond not be justitied in geing to the expense necessary to make the required improvements. Domald Craig, foreman.

Electric.-This mine has been well dratined throughont the year, but owing to the mine being gradually extended, the furnate has insullicient power to caluse the necessary volmme of atir to pass into the fatees of headings; the condition of battice on cross headings, ent holes, as mentioned in "as report, being built of bone coal, are leaky. Howerer, the operator hats promised to sink a mew shatla and build a new furnace meares the face of workings in the ne:ar future. Air passing present furnate, 20, 475 coble feet. W. S. Edwards, foreman.

Emeka No. 5 .-This mine hats heen operated very suceessfully during the vear considering the diftionlty racomatered by the squee\%e mentioned in my last report; also, to the ir having to keep chose walch on Ohd Franklin mine, which stands foll of water, and along at line of fanlt and thirty fect above this Eareka mine. Howerer, every pre rantion is being taken, and at pillar is leff sumberent to keep the I wo mines distinctly separate. As mentioned in ‘! 4 and '96 reports, the (ompathy hats a fire boss steadily employed for arer any danger from gas, which has not been seen for several years. The rompathy was Well rewarded, ats on the ! th of Marelh, while the fire boss was going his rounds in the morning, he diseovered a very large volume of fire damp in sixteen leff heading pillar workings, extending into several
gols and pillans, so that had a naked lamp preceded the safety lamp in the hands of the tire boss, serions results mast hate followed. I was motified hy superintendent \(A . \operatorname{s.}\) R. Richards of the ehange, and he requested my presemere and it was suggested that the section be worked exelnsively with locked safety lamps. One new locomotive beiler has been added at pmop shaft. I volume of 45,000 colbie feet of ar was dirculating in there rurrents. Thomats D. Forsythe, forematl.

Emreka No. 7 .-On my last visit, a volume of 65, 000 combie feet of air was cirenlating in three emments; the ventiation was fair in all parts exerpt first right hathing dip, which the operators promised to improwe. Dratinge wats in fair condition. The rentilation has been entirely ehanged from the method used in 18.96 , by using the fan as a forre instead of an exhanst. The company is now taking ont the standing piltars in old V'olann mine. Nention was made of the standing body of water being pemped ont of the latter mine in 1895 report. The roof in this old mine is generally composed of a mixture of sand stone and fire clay, and with very rongh and dangerous smrface. One new locomotive boiler has been added to hoisting shaft planf. Thomas Estep, foreman.

Emreka No. 12.-This mine is now working only on pillars in main D ross heading, and it is expected that the coal will be entirely mined ont during the next year. The ventilation and drainage were kept in reve fair condition dwing the year. An average of 10.400 enbic feret of ar was cirrulating throngh the mine in two cmrents. Thomas Blythe, foreman.

Emeka No. 1:3.-On my last risit to this mine, October 11, in 2 and 3 west headings the rentilation was rather insmificient, hut a promise to improve it was made. In other parts of the mine the ventiation was in fair condition. The rooms were kept dry, but the headings in places were pooly drained I may here state that the company is nof responsible for any deficiency, as the mine is operated by a conHatcor: M. Blythe foreman.

Eureka No. 14.- I volmme of 21,000 roble fere of air was measured at face, inlet having heen ehanged on Derember 14 from exhanst to forer fant. On the evening of my visit, the sixth and seventh right hearling rooms were smoky, hat elack doors wre ordered to be put II) on (eross headings and maintained. I have sinee beed notified this has heen done which shonld keep the ventilation in very fair condition for the momber of men employed. The dratiage was very fair af all points exerpt the rock rint on main headingr, which was deficient. William Fit\%gerald, foreman.

Emeka No. 16.-This mine was shat down in the latter part of 1896 and the whole of this rear, until becember, when it was again put
in operation. The airways and ditches were in such a terrible condition when it shat down that it will take some time to put the mine in proper order. Owing to the mine commencing operation so late in the year, it was impossible for me to visit it, but the indications are that it is to be operated on contract.

Eureka No. 18.-When this mine was in operation, the ventilation and drainage were in very fair condition. An average of 28,933 cubic feet of air was measured at furnace, circulated through the mine in three currents. Considerable trouble had been experienced duringr the year owing to malicious parties having set fire to the tipple on the \(2 d\) of April, completely destroying it, together with the scales and cars that were outside. The tipple was rebuilt by the 20th of April, when it was again destroyed by fire. It was completed and was again in operation at the time of my last visit on July 7 , showing the determination of the company to keep the mine in operation. James Blade, foreman.

Eureka No. 19.-This mine is contracted from the company by other parties, and like others of a similar character, has not been kept in as grod condition as necessary. The fan was running at a speed of 120 revolutions per minnte and producing a volume of 20,000 cubic feet of air per minute, which was insufficient for the 185 men employed. On my visit, October 14, the drainage was also deficient in places. I have received word since my last visit that the company will take charge of the mine on the 1st of Jamary, 1s9s. Adolph Cook, foreman.

Enreka No. 20.-The drainage of this mine has been in poor condifion during the year, and at face of main new dip heading, the rentilation was insufficient, but owing to the mine workings being cut up by having so much inferior coal, causing the company to divert their course in the direction of good coal, it was rather difficult to maintain good air at all times. The mine is being rapidly exhausted. The volume of air at the furnace was 26,912 cubic feet per minute. This mine was also operated by a contractor and could have been kept in better condition. E. F. Townsend, foreman; John Tyler, contractor.
limreka No. 21 .-The ventilation of this mine was in three currents, and an average volume of 18,533 cubic feet per minute was measured at the furnace. The air was rather deficient in eighth cross heading, but in other places was very good. Drainage very fair in working places but rather deficient on main hanlage places. Strata below coal is soft fire clay. New mamway has been made, making two escape ways. William Pollock, foreman.

Emeka No. 22.- 1 volume of 84,700 rubic feet of air per minute was passing ont at the fan and circulated through the mine in four main corrents and several out splits. The main headings are berom-
ing so long that it will be necessary to build brattices of brick and mortar to keep them air tight, because at the extreme face of heading it is rather smoky and some difficulty is encountered by the engineers of locomotives opening doors with their engines, which of ten results in a broken door which cannot, at times, be repaired for several hours, thus cutting ofl the air from the more extended workings. But, on the whole, the ventilation and drainage were in fair condition. A new danger has shown itself in the shape of live electric wires. It seems impossible to run an electric haulage system unless a naked wire is suspended along haulage way, and as the miner has to bring his car to the cross heading it is necessary for him to work near the wire. An accident from this source occurred on March 4 owing to the miners not knowing the danger of coming in contact with a live electric wire charged with 500 volts. A report is made in accident list of the case referred to. To avert any such accidents in the future. a piece of wood is fastened to the roof on either side of wire, at all crossingsand in front of each room, so that should the miner come near the wire he would come in contact with the wood referred to and not strike the wire. It seems to contradict the argument of electrical experts that instead of 500 volts being harmless, it causes nearly instant death under certain conditions. Foremen, Thomas Marshall and John Milsom.

Eureka No. 23.-The ventilation and drainage of this mine were found in good condition during the year, but owing to the coal being reduced in thickness to eighteen and twenty-four inches, and of inferior quality, it was deemed impracticable to mine it, and, consequently, the mine is now abondoned by this company. 25,200 cubic feet of air was measured at furnace return, which was circulated through the mine in three main and several sub currents. Foreman, John Carlan.

Eureka No. 24.-This mine was not in operation until mid-summer and on my visit on October 18 the ventilation was in very good condition. Drainage good, except on local spots. Foreman, John Allen.

Eureka No. 25.-This mine is now indefinitely shut down, all the coal having been taken out except a small portion of main heading pillars near the drift month, but on my last visit 2,400 cubic feet of air was measured at furnace, being a natural current and in fair condition for number of men employed. Drainage deficient in places. William Fit\%gerald, foreman.

Eureka No. 26.- \(\Lambda\) n unfortunate accident happened in this mine from the same cause as at Eureka No. 22, and the same remedy was applied. The ventilation and drainage were in very fair condition, the air being circulated throngh the mine in three currents. Electric hanlage is in use. John Carlan, foreman.

Fairmount Mine.-On my last visit, November 6 , the rentilation in
first and second right headings was deficient and in poor condition compared with the volmme measmed at the furnace, which averaged 13.440 conbic feet per minute. The defeets were pointed ont and ordered to be remedied. Wranage was defiejent in places. F. P. Burns, foreman.
(iearhart-Considerable difticulty has been experienced at this mine during the year owing to Lameashire No. 1 mine withdrawing main and ross heading pillars below, and only from twenty fo forty feet of strata between them. One section of Gearhart mine had to be abandoned for an indefinite perrod, and the iron rails and ties taken ont for the safety of the men. The ventiation amd dranage were kept in fair condition. At present it is only possible fo work nine men instead of 60 to 140 , ats formerly, ! , sitot enbie feet of air at furnace rireulated in one cmorent. Richard lohb, foreman.
(ilenwood Nos. 1 and 2.—On "I " and "E" seams of coal. The geneat comdition of both these openings was very good during the geat. With an aterage volume of 11.200 and \(17 . \pi 50\) cubic feed or air, being in two chrents in each opening. (harles l'anl, foremant.
(irampian No. 1.-This mine hats not been muder the provisions of the law at any of my visits during the year, having employed only from three to nine ment.

Raybold, formerly (irampian No. O.-This mine was sold dmrbug the year and is now in the hands of a new rompany. On my last visit, on the \(3 d\) of November, 19,000 cubic feet of air were measured at furnace retmen, cirenlated through the mine in two emrents. The third right heading was rather smoky, and rolume of air was deticient, but in ofler plates both ventilation and drainage were in very fatir fondition. Damiel D. Jones, foreman.
dimion.-This mine commenced operations again and has been under inspertion at intervals, employing eight men at times and then agan fwenty-six men, the former momber when any improvements Were requested. The mine is being run by eontractors, whose idea is fo take the eoal ont wihhout making any improvements. On one of my visits, one of them said there ought to be no mine law, as it was a misance; of comse, he did not know any better. My objections Were to the traveling way, it being a vertical opening. possibly fwentytive feed deep, with a rommon ladder plated in it in a vertieal posi tion for an exeape way, which seedns to hate been the only one since the mine was opened. It is the ouly one I could timd, and as this is the tirst time it has been in operation sime I have been laspeetor. I called the contrators attention to it, and in there dats after, the foree of men was reduced from nimetern to nine. Ther ventiation was in fair condition for the momber of men employed. A volnme of

heading dratinage was in bad condition. There have been thee foremen at different times during the year. David l'atrick and George Minns, contractors.

Highland.-This mine has had an werage of 4,son eubic feet of air cirenlating in one coment, but was rather insutiodent for the numberof menemployed. The furnace stack had been destroyed by tire just previons to my last risit, November j; which would aceount for some loss of atir ats it reduced the motive colmm nearly one-half, as the strata is very light over the coal at this point. Roads were generally dry. M. F. Walker, foreman.

Henderson No. \(2 .-O n\) my visit, \(I\) pril 14, the furnace was not in opreation and scareely any air in cireulation, and I ordered the furnate started at once. On the \(2 d\) of July, there were only 1, \&of cubic feet of air and ( \(\because\). \(\left({ }^{2}\right.\) blatek-damp was very noticeable. I request was made that in case of smspension the furnace should be put in operation one day prior to the statting of the mine. A new opening for atir and an escape way was ordered to be made in Mason heading, becamse the place wats working down throngh a long pillar, splitting jt. and there was a gob fall on either side, thus atfording no airway. The cover being only eight to twelve feet at one point an opening was made to the smrface so that the rentilation was satisfactory. In Oetober, 11.000 abbic feet of air was measured at the furnace. The great tronble is that the coal to be taken ont is in small blocks or pillars, left along erop line, with strata caved in on either side, so that at the present time the mine is in as good condition as can be expected. John Mamrere, Jr.. foreman.

Homestead.-Itid not come muder the provisions of the law during the year, employing only from five to nine men.

Herreford.-Like Homestead, has not done anything worth speaking of.

Imperial.-Ventiation was fair for part of rear, but haring made a large conneetion with old braine mine, in drawing room pillars and also from surface crevices, it has cansed the third right and Galbraith heading to have insulficient air, so I suggested to the operator that a new inlet should be made along crop line in Galbrath heading to cause the inlet current to enter that opening, and first pass along solid workings so that the men would get the full benefit of the rentilation. On my last visit 12.900 cubic feet of air was measured at furnace, but as stated before, did not reath the working faces in suffirient volsme. Drainage fair. James Dmasmore, foreman.

Jefterson.-The dranage and ventilation were in very fair condition dmeng the year. In damary of this year a request was made that some timber on main heading be repaired. which was afterwards done. I volume of 12,360 cubic feet of air was measured at furnace which eirenlated through the mine in two cmrents. John C. Johnston, foremam.

Kentuck.-This mine came under the provisions of the law in Octo ber and on that visit 3,040 cubic feet of air was in circulation in one current and by natural means, which kept the mine renilation good for the number of men employed. Drainage was also in fair condition. James Fleming, foreman.

Leader No. 1.-On my visit in June the furnace fire was poorly attended, which resulted in the upeast temperature being little in excess of the outside temperature, which rendered the furnace nearly powerless. I directed a constant attendant and some repairs on brattices which I have since been advised has been complied with. but the mine has scarcely been in operation since. An average of 5,220 cubic feet of air was passing out of the return. Roads generally dry. John O’Rorke, foreman.

Leader No. 2.-This operation consists in taking out the main and eross heading pillars and other small pieces of coal that have been abandoned by former operators. It is rather difficult to maintain a permanent current of air. However, the mine has been kept in a healthful condition but the rentilation was unavoidably scattered, owing to the position of the remaining coal to be taken out. John O'Rorke, the foreman of this mine works alternately at this and No. 1.

Lancashire No. 1.-During my visit on the 27th of May, black damp was very prevalent and the volume of air was insufficient to carry it off and keep the workings clear. The foreman was requested to cause a larger volume of air to circulate in the deficient section, and on my visit in November the rentilation was in fair condition. Generally the deficiency existed in third left and first right headings. The first mentioned section was drawing pillars, and had no permanent air route, becanse when this mine was opened, single heading system seemed to be the only method in this section. However, an average volume of 12,370 cubic feet per minute was passing out the return at furnace. The drainage was in poor condition on main haulage ways, but the working places were mostly dry. Richard Asheroft, foreman.

Lancashire No. 2.-This mine was not under the provisions of the law after the 25th of June, the force having been reduced to nine men. When visited previous to that time 5,000 cubic fret of air were in circulation in one current by natural means, which kept the ventilation in fair condition for the number of men employed. The drainage was generally in fair condition. The mine is nearly exhausted, and it is not expected that there will be more than nine men employed until it is completely worked out. Mathew Dixon, fore. man.

Leland.-On my last visit I noticed that considerable improvement had been made in renewing the leaky wood brattice, which generally speaking has to be renewed every five years. The ventilation was in very fair condition with 34,6 on cubic feet of air entering the
mine, and circulated through the workings in two main currents and three subsplits. Drainage was fair. Daniel Campbell, foreman.

Loraine.-This mine has been idle most of the year. On my first three visits the mine had not been in operation a great deal, but on July 23, on "D" seam opening, left drift, the furnace was not burning and there was scarcely any circulation of air. I directed them to light the furnace at once and on calling at the mine late in the afternoon, they complied. The "E" seam drift had 11,200 cubic feet of air passing out at furnatce return, circulated in one current through the mine. The roads were fairly dry, kept so by the old workings of the seam, thirty feet below. George Gould, foreman and contractor.

Lane Nos. 1 and 2.-No. 1 "D" seam has been in operation very little during the year, but No. 2 , on the "E" seam, worked very fair and had an average of 8,280 cubic feet of air per minute passing out the return at furnace. Ventilation and drainage were in fair condition. One objection to the system in vogue at this mine is that on the cross beadings they turn the rooms too near the main heading, having only eleven feet of pillar between it and the main airway in places. This, I called the superintendent's attention to, but he still thinks it sufficient owing to the light cover, which varies from forty-five to fifteen feet. In this case, it may last for a time, but it is bad practice to see how small the pillars can be left, when the same coal aids the output on withdrawing the pillars. Drainage was fair. John McGowan, foreman.

Lenore.-An average of 9,307 cubic feet of air jer minute was passing out at the furnace, which kept the headings in fair condition, but at faces of rooms the air was deficient. To improve this condition a substantial furbace is needed, having more power than the present one. The roof in this mine is very soft and full of breaks, cansed by the caving in of the strata below, when the Moshannon coal was taken out. The drainage was in fair condition. Charles Rodders, foreman.

Mounty Mine.-This mine has worked only a few men and did not come under the provisions of the law during the year.

Mabel.- \(A\) considerable improvement has been made at this mine during the year. I mentioned, in the 1896 report, that the furnace needed to be more substantial or a mechanical ventilator put in, meaning a fan. The company built a new furnace, and, as it was finished in the month of November and since my last visit, I cannot report as to its efficiency, except that the foreman said that it was all that could be desired. A new traveling way has been opened and in the inlet entrance the timbers are six feet wide, and five and one-half feet high in the clear. If the furnace is as cfficient as represented, rentilation should be in good condition. Dranage was very fair. Richard Morris, foreman.

Meadow Brook.- I volume of 6, 7 T0 cubic feet of air was entering the two inlets and circulating throngh the mine in one current. Gemeral condition of rentilation wats very good for the number of men employed. Drainage also fair. Joseph Higham, foreman.

Mapleton.-Has been kept fu fair condition as regards rentilation and drainage. An areage volnme of 7,900 conbic feet of air was passing ont at fmoner by natmal means. Thomas loggan, foreman.

Morrisdale shaft.-The generall rule of the oflicials of this mine in driving all openings on a straight line is still maintained, the same as indicated in the map published in 1895 report. in spite of the contimons local swamps and changing thickness of coal from fise feet to one foot. The roof is very treacherous in places, being a mixture of sand stone and fire elay, which rests on the coal with not a particle of hone coal between them, and generally a "smooth" exists from orie to five feet above this, and overlying it is a very hard sand stone; at other places, the sand stone is right on the coal. In other sections a bone coal and slate are resting on the coal, which is generally easy to take care of, and from which quite a mmber of aleeidents have occurred. The oftieds can be commended for their energy in this direction, as there has not been a single fatality from falls of roof, but the weidents have ocemred from other canses. One danger that existed was an old slaft and workings standing full of water. The company has no record of the depth of the shaft or the extent of the workings, becanse it had been opened abont the year 1sis. when maps were little thonght of in this section. The matter was talked over by the oflicials and myself, when they conchaded to pmon the water out of the shaft comereting the Morrisdale heading in their mine with it. This has since been done, and they are now busy driving from both places to eomert the headings to make a nearer inlet for ar and therely increase the volume by reducing the friction. On my last visit, 60,800 cubie feet of air were passing ont at the fan, which direnlated throngh the mine in three math and several split emrents. Bat this volume was not suflicient for the mmber of men on the day shift, and resulted in the ( 4 , Bryan, swallow, MrKinley and Lemon headings being insufferently ventilated. Other platess were in very fair condition. There are such a large mumber of local swamps that it is almost impossible to keep it always well drained, hot considering the irregularity of seam it was in very lair condition. Forromen, James Starford, ('. II. Milsom and Robert Cole.

Mt. Vernon No. 4.-The ventilation of this mine is in three cerrents from the hotfom of the fan shaft, which dming the year was well eon dacted thromgh the workings. but needed canvas on cross headings to deflect it into the rooms, which were very smoky fiom the continnons
shot firing. I direded that the neressatry changes be made. The roads were very wat and drainage was megleeted in places on hanlage Way. Harry M. Mc: \larmey, forman.

Mt. Vermon No. (i.-On my last visit, eight left amd six right headings off main one were insmificiontly rentilated, athl I directed that they should be improwed by reparing laky brattices; other places were in fair comdition. Drainage was fair in rooms, but there was room for improvement on hadings. James s. Camplell, foreman.

Mt. Vermon No. \(7 .-\) In arerage of 14.2 (in robbir feed of air was ratering the fwo inlets of this mine, and the right seefion was also in very fatir comdition, but the left workings neal face of main head ing had scarerly any dirulation owing to the airway at one point laving been cot into the leading for several yards, and the division having been filled in with slate to hide the defects and to prevent any person from getting in to see it. I sperial notiere was served upon the rontractor to remove the loose material and put in a substantial brattice at once, and in ten days after, I was notified that it had been done and that the air was passing around face of workings before returning to furnare. I new eseape way or seeond opening has been made and the old one abandoned during the year. Foreman and contractor, A. P. Isemberg.

Mt. Vernon No. \& shaft. This mine is full of water and not in operation.

Midvale No. 1.-This mine did not come meler the provisions of the law during the year, having only eight men employed.

Midvale No. \(2 .-W\). \({ }^{\text {an }}\) mbler the povisions of the law in the early part of the rear. A natmal riment of 2.400 cubic feet of air was is dirculation, which was not sufticient for the number of men employed. Dratinage also was dedicient in places. A notice wats given (o) the operators to pent the manway in comdition to comply with the law, and to put in a furbare and have it in operation ats soon ats fossible. When the fime of notice had expired, they notified me that they had concluded to work with nine men, leaving me no chance to enfore the order, until surlitime as they matimease their foree, poviding the necessaly rhanges are not made.

Ocean No. 2.-This mine was worked ont and abandoned during the latter part of November, and the prmps and other material taken ont. When in oprration a volume of 19,200 eubie feet of air was in cireulation through the workings. The dratatge was deficient in places. John Milsom, foreman.

Padder No. 2.-This mine had been idle a considerable part of the year, but on my visits ex, 000 coble feet of air was returning to the furnater and 1o, 0no forbice feet passing arond face of main heading, Where the miners wer at work withdrawing man heading pillars. Both the rentilation and drainage were in good condition. William fonsmore, foreman.
l'arks.-The ventilation produced by a small furnace is fairly well c:onducted through the mine, but the power of the furnace is insufficient to produce proper ventilation, as it becomes farther extended, but, owing to the coal area being uncertain, caused by numerous faults, the company does not feel justified in enlarging it or sinking a new shaft and building a furnace as was suggested. They have promised to build a new small furnace near No. 2 opening for the present emergency. An average of 6,900 cubic feet of air was returning to the furnace. The roads were generally dry. John Baker, foreman.

Qucen, or Leland No. 2.-The average volume of 6,700 enbie feet of air circulating through this mine keeps the ventilation in very fair condition for the number of men employed. The main haulage way was poorly drained; other places were fair. E. Brubaker, foreman.

Reading.-If the furnace was kept going in "E" seam, this mine would be well ventilated. A natural current of 3,240 cubic feet was j:assing out at the furnace. Roads were generally dry.
"D" seam was poorly ventilated owing to the power of furnace not being confined to the workings, which defect was cansed by imperfect brattices. On one occasion, I requested the foreman to improve the condition of brattices, but was informed that it was hard to get the necessarymaterial, but no such report appeared in his report book. In December, I wrote the company that the brattices had been neglected to such an extent that it would pay them to put in a new shaft and furnace; also, stating that they had not previously furnished the necessary material. They replied by stating that the foreman, who also acts as superintendent, had never asked for any material that he did not get. I expect that it will be improved in the near future. C. Maher, foreman.

Sterling No. 2.-Has reduced the force to nine men, so that it did not come under the provisions of the law.

Sterling No. 3.-On my last visit the ventilation was insufficient, ewing to a large fall in main airway, but previous to that time it was in fair condition. Drainage was rather deficient on main heading. An arerage of 10,375 cubic feet of air was measured at furnace return, being conducted through the mine in one current. W. Craig, foreman.

Schwinn No. 1.-This mine did not come under the provisions of the law during the year, employing only a few men.

Schwinn No. 2.- \(\langle t\) my request a new shaft has been sunk, and a furnace was directed to be built, but is not yet commenced. The ventilation was deficient during the summer months, and when I directed that some changes be made they reduced the fore to nine men. A sumicient natural current is circulating in cold weather.
lliliside, formerly Sieines.-Has not come under the provisions of
the law during the year, having only from four to nine men employed.
Troy Mine.-Only came under the provisions of the law for a few months during the year, and then only for such a short space of time that the operations were again suspended before my visit, but the mine was generally in fair condition. Foreman, David Patrick.

Union.- As reported in 1896, a new furnace was promised, which has been put at the botfom of a small shaft that has since been sunk, which is thirty-five feet deep, with stack thirty-two feet high. And since it has been put in operation, an average volume of 10,215 cubic feet of air was in circulation in two currents through the mine. Drainage was also very fair. Charles E. Henston, foreman.

Webster No. 4.-The ventilation in No. 1 drift was in fair condition, with an average of 27,066 cubic feet per minute circulating in two currents through the mine. The drainage on main heading was rather defective at No. 2 drift; air was rather deficient at face of crop heading, also the drainage on main heading. John Stoker, foreman.

Whiteside No. 1.-Only employed more than nine men for two or three weeks at a time, but was not in operation at any of my visits, usually having eight or nine men at work. Foremen, William Devling and John Farrel during the year.

\section*{Centre County Mines.}

Bear Run Mine.-Drift opening on "D" seam. Size of drift was described in 1896 report. The ventilation of this mine was not up to the requirements of the law, but the 5,750 cubic feet of air was fairly eirculated through the mine. A substantial furnace ought to be built, but the small coal area the company controls seems to deter the officials from going into any further expense. The present furnace is an ordinary cylinder boiler shell, four feet in diameter and possible six feet long, which rests on the floor of the return airway, with bars in the shell, possibly eighteen inches from the bottom side, which does not at all times produce sufficient air. Drainage was always good. John Quinn, foreman.

Black Diamond.-An arerage of 7,230 enbic feet of air was in circulation through the mine in one current. The middle heading was rather insufliciently ventilated, but other places were fair, but, as mentioned before, a large area of heading and room pillars are standing, which canses the rentilation to be seattered. The old pillars are rapidly being mined ont. The drainage was at all times good. John o'Neil, foreman.

Central.-A rolume of 6,000 eubic feet of air was cireulating through the workings of this mine at my last visit on June 30. Ventilation and drainage were in fair condition. The mine is now aban-
doned, coal having all been worked out. James sommerville, foremall.

Electric.-This mine has been well drained throughout the vear, but, owing to the workings beroming gradually more extensive, the furmate has insufficient power to canse the necessaly volme of air to pass into the face of headings. The condition of brattices on cross heading cont holes were mentioned in "os report as having been buit of bone coal and are leaky. Howerer, the operator hats promised to sink a new shaft and hold a mew fornace mearer the face of workings
 W. s. Edwards, foremam.

Gilem.-The rentilation and dranage of this mine were good, exrelt on fomth right heading, in which there was a defiecency of ar at face but by repaiting sereral leaky battices it eonld be put in boper comelition. Some defects existed on traceling way, which were ordered remedied. I have sinee reedived word that they would
 which was direnated throngh the mine in two emrents. samme! Pfout\%, foreman.
 throngh the mine in one eurrent, but was not properly conducted to the working faces. The loss seemed to he mased hy surface falls and deviees acting as inlets, and the air passing throngh the falls to the furmate. I requested that a section of the mine be batticed off, so as to aret this tromble, and to make a new inlet near face of matu heading near a crop line, which they promised to do. Hatinage was very fall.

Ophir:-This mine resmmed operations on the 16ith of Angrat, after several years of suspension, and was in poor conditon, the escape Way having caved in and the batioes being rery leaky: 7 , 000 (rnbic feet of atir was measmed at the fmoner, but was insulticiently circulated theough the mine, which will take time to improve. On my visit, I issued olfirdal notice to withdatw all men in exeess of fwenty butil the escape way was made fit for travel, which was immediately fommenered, ath I have siner been notitied of its completion. Another smsurnsion has oremed since my risit in septrmber. John Tail, foreman.

\section*{Jefferson Comity Mines.}

West Emreka No. 1.-Has not heen in operation during the rear.
 r-nher feet of air passing ont at the slope which kept the greater part of the mine in fair comdition. Improvements wers: I mew pmon
 shaft for a promping station in man left dip, being solsore power. 25 horse power and 10 horse power. Foreman, II. W. Morre.

West Eureka No. F.-This mine hats leen in fatir condition during
 the mine in two main coments. The drainage wals fall maler existing conditions. A part of this work runs along the line of a large a eek but difty feet away, and a heaw body of watere enters the mine through natmat fiatetmes in the strata, which is in the dip workings. The proximity of the reeek, together with a large mamber of reserved pieces of coal, makes it rather diftiont to mathatin airways and renfiation. An ideal of the quantity of water hamderd eath minnte when The weather is fatoral) is shown hey the rombing of a No. 12 Cameron fump, which discharges 1,150 gallons per minnte. Joseph Williams, foremath.

West Emreka No. f.- It the fate of roek tmmel in this mine a large rolume of light rarburetted hydrogen gats, or tiredamp, ateummbeded, the heading having been standing for sereral months, and the fomel baving taken ath grade for a comsiderable distance after lating passed a heary dip. The gats had rolleeted at face of heading and the swamp behind it was tilled with water. After prospecting the propCty from the surface with diamond dritls, they roncluded to make a miform grade, consequently the water was pmomed out and the gas removed. I pmomp shaft it fret deep is being excavated into an eseape way for the men. The general eondition of this mine has been very fair during the year, with an a verage volume of sl, 616 enbie feet of air in circulation per mimute, which was passing fhrongh the mine in three main and several sul) splits. Thomas Morgan, foreman.

West Eurva No. 10. - Ventilation and drainage were kept in very fair condition during the year, with an average volmene of 61,0 an cubic freet of alirereminnte passing out of the exhamst fan. Tail rope hamb age is now in use, and the platht ronsists of two tubular boilers and one patir of conpled engines; the latter were in use at West Eureka No. : slope when in operation ; they have \(1 \ddot{2} \mathrm{x} 12 \mathrm{in}\) int colinders. E. F. Reese, foreman.

West Emreka No. 11.-The drainage in the main heading has been kept in good condition, but on sereral aross beadings it was rather defective in places. Ventiation was very fair, having an arerage volnme of \(2 x .700\) erbiare feet of air per minnte passing out at the furnate, and direnlating through the mine in three matn and four sub splits. A great deal of work has bern done in going thomgh sand rock rolls in some plates and at others soft fire day, where the coald wodued from five fert to a few inches. Daniel Thomas, foreman.

West Emreka No. 12.-The ventilation of this mine lats been in very
 feet of atir in direnlation in three emprots. The drainage on matn heading rould have been kept in better condition. James Woods. foreman.

West Eureka No. 13.-This mine has not been in operation during the year, but was kept in condition to ship coal at any time.

Accompanying this report is a columnar section of the coal measures gathered in different sections of this district, taken from actual observations and measurements, which I am enabled to present through the courtesy extended to me by Charles E. Sharpless, mining engineer.



 220 feet vertivesty frem 3 ad \(D^{\circ}=\) save the ot luadena pa.
youn \(3+1\) st Pine Ren Cobe Guve s atonet






TABLE Nio. 1.-Showing Location, etc., of Collieries in the Eighth Bituminous Mine District.
\begin{tabular}{|c|c|c|c|c|}
\hline Name of Colliery. & Name of Operator. & Location-County. & Name of Superintendent. & Postoffice Address. \\
\hline Acme, & O. P. Jones, & Clearfield, & Jas. Jenninks, & Philipsburg. \\
\hline Alexandra & Thos. Elythe. & Clearfield, & Thos. Blythe, & Madera. \\
\hline Ntlantic No. 1, & Berwind White Coal Minlng Company, & Clearfield, & A. S. R. Richards, & Osceola Mills. \\
\hline Atlantic No. 2, & Berwind White Coal Mining Company, .... & Clearfield, & A. S. R. Richards. & Osceola Mills. \\
\hline Baltic Nos, 1 and 3, & Baltic Coal Company, ....................... & Clearfield, & T. J. Slinger, & Philipsburg. \\
\hline Bear Run, & Wilson Freeman Coal Company, ............. & Centre, & John Quinn, & Houtzdale. \\
\hline Black Diamond, & R. A. Jackson, Mining Cornpany, ................................. & Centre, & R. A. Jackson, & Osceola Mills. \\
\hline Belsena No. 3 , & Eelsena Coal Mlining Company, & Clearfield, & J. C. Curran, & Houtzdale. \\
\hline Belsena No. & Belsena Coal Mining Company, & Clearfield, & J. C. Curran, & Houtzdale. \\
\hline Coaldale No. 3 , & O. P. Jones, ............. & Clearfield, & D. R. Philips, & Philipsburg. \\
\hline Coaldale No. 5 , & O. P. Jones. & Clearfield, & T. W. Jones, & Philipsburg. \\
\hline Colorado No. 1, & Bloomington Coal Company, & Clearfield, & Alex. Dunsmore, & Philipsburg. \\
\hline Colorado No. 2 , & Elsworth \& Dunham, & Clearfield, & E. H. Elsworth, & Phillpsburg. \\
\hline Columbia No. \({ }^{\text {Cob }}\), &  & Clearfield, Clearfield & E. H. Elsworth, & Phillpsburg. \\
\hline Columbla No. \({ }^{\text {Cuba No. }}\) &  & Clearfield, & J. H. Crain, John Stratton & \begin{tabular}{l}
Osceola Míls. \\
Philipsburg.
\end{tabular} \\
\hline Cuba No. \({ }^{\text {D }}\), &  & Clearfield, & John Stratton, & Philipsburg. \\
\hline Decatur No. & John Nuttall \& Co., & Clearfield, & Geo. McGaffey, & Philipsburg. \\
\hline Donegal, & P. Gallagher, & Clearfield, & P. Gallagher, & Osceola Mills. \\
\hline Electrlc, & Thos. Heims, & Centre & P. Gallasher. & Osceola Mills. \\
\hline Eureka No. & Berwind White Coal Company, & Clearfleld, & A. S. R. R1chards, & Osceola Mills. \\
\hline Eureka No. & Berwind White Coal Company, & Clearfield, & A. S. R. Richards, & Osceola Mills. \\
\hline Eureka No. 19. & Berwind White Coal Company, & Clearfield, & A. S. R. Frichards, & Osceola Mills. \\
\hline Eureka No. 13, & Berwind White Coal Company, & Clearfield, & A. S. R. Richards, & Osceola Mills. \\
\hline Eureka No. \({ }^{14}\) Eureka & Berwind White Coal Company, & Clearfield, & A. S. R. Rlchards, & Osceola Mills. \\
\hline Eureka No. \({ }^{\text {E }}\) 16, & Berwind White Coal Company, ..............
Berwind White Coal Company, .......... & Clearfield, & A. S. R. Richards, & Osceola Mills. Osceola Mills. \\
\hline Eureka No. \({ }_{\text {No. }}\) Eureka 19. & Berwind White Coal Company. & Clearfield, & A. S. R. Richards, & Osceola Minis. \\
\hline Eureka No. 20, & Berwind White Coal Company. & Clearfield, & A. S. R. Richards, & Osceola Mills. \\
\hline Eureka No. 21. & Berwind White Coal Company, & Centre, & A. S. R. Richards, & Osceola Mills. \\
\hline Eureka No. 22. & Berwind White Coal Company, & Clearfield, & A. S. R. Richards. & Osceola Mills. \\
\hline Eureka No. 23, & Berwind White Coal Company. & Clearfield, & A. S. R. Richards, & Osceola Mills. \\
\hline Eureka No. \({ }_{\text {E }} 4\). & Berwind White Coal Company, & Clearfield, & A. S. R. Richards, & Osceola Mills. \\
\hline Eureka No.
Eureka
No.
26, & Berwind White Coal Company,
Berwind White Coal Company, & Clearfield, & A. S. R. Richards, & \begin{tabular}{l}
Osceola Mills. \\
Osceola Mills.
\end{tabular} \\
\hline Eureka No. \({ }^{\text {Fairmount, }}\) & Berwind White Coal Company,
Morris Liveright, & Clearfield, & A. S. R Liveright. & Osceola Mils. \\
\hline (ihem, & Ghem Conl Company & Centre. & Sam'l Pfoutz, & Osceola Mills. \\
\hline Gearhart. & T. J. Lee \& Co., Limited, & Clearfield, & Thos. J. Lee, & Phllipsburg. \\
\hline Glenwnod Nos. 1 and 2. & Tilllam Morris \& Co., & Clearfield. & C. Camphell, & Philipsburg. \\
\hline Gramplan No. 1. & Lohh Bros. \& Co., & Clearfleld, & John Lobb. & Gramplan. \\
\hline Gramplan No. 2,* & Lobb Bros. \& Co., Sandford \& Duncan & Clearfield, Clearfield. & Tohn Lobb. & \begin{tabular}{l}
Gramplan. \\
Philipsburg.
\end{tabular} \\
\hline Gigiohland. & Sandford \& Duncan. O. P. Jones, ......... & Clearfield. Clearfield. & Wm. P. Duncan, M. F. Walker. & \begin{tabular}{l}
Philipsburg. \\
Philinsburg.
\end{tabular} \\
\hline Henderson No. 2, & W'm. Gould, & Clearfield, & Wm. Gould, & Brisbln. \\
\hline Homestead, ...... & Sital Reese, & Clearfield. & Stlas Reese, & Philipsburg. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Name of Colliery. & Name of Operator. & Location-County. & Name of Superintendent. & Postoftice Address. \\
\hline Herreford. & D. H. Hughes, ................................... & Clearfield, & D. H. Hughes, & 93I Chestnut street, Philadelphia. \\
\hline Imperial, & J. Bennet Philips, ................................ & Clearfield, & Jas, Fleming, & Philipsburg. \\
\hline Jentuck, & Adams \& Co. & Clearfield, & Geo. B. Fridas & Phillpsburg.
Philijsburg. \\
\hline Klondyke, & Cbas. W. Runk. ........................... & Clearfield, & Chas. W. Runk & Philipsburg. \\
\hline Leatler No. & Achard Hughes \& Son, & Clearfleld, & H. M. Hughes, & Osceola Mills. \\
\hline Leader No. 3 & Rlchard Hughes \& Son, & Clearfield, & H. M. Hughes, & Oscenla Mills. \\
\hline Lancashire No. & Thos. Barnes \& Bro., & Clearfield, & Thos. Barnes, & Philijssurg. \\
\hline Lancashire No. \({ }_{\text {Leland }}\) & Thos, farnes \& Bro., \(\begin{aligned} & \text { Cambria Coal Mining } \\ & \text { Comany, }\end{aligned}\) & Clearfield, & Thos, Barnes, & Philipshurg.
Smoke Run. \\
\hline Leland No. 2, & Cambrla Coal Mining Company, & Clearfield, & Lewis \& Sons. & Smoke Run. \\
\hline Loraine. & Rearkirk Bros. \& Co., ...... & Clearfield, & Geo. Gould, & Brisbin. \\
\hline Lane Ncs, 1 and 2. & F. C. Todd \& Co. & Clearfield, & Fred. C. Todd, & Phillpsburg. \\
\hline Lenore. .......... & T. C. Heimes \& Co., & Clearfield, & Thos. C. Helms, & Osceola Mills. \\
\hline Morann, & S. J. Mountz, & Clearfield, & S. J. Mountz, & Morran. \\
\hline Mabel. \({ }^{\text {Meadowheo. }}\) & Morrisdale Coal Mining Company, & Clearfield, & Jas. Heading. & Morrisdale Mines. \\
\hline Meadowbrook,
Mapleton. & H. C. Cook \&
P. Co. & Clearfield,
Clearfield, & H: C. Cook,
1. Gallaghe & Philipsburg. Osceola Mills \\
\hline Morrisdale Shaft and & Morrisdale Coal Mining Company, & Clearfield, & Jas. Heading. & Morrisdale Mines. \\
\hline Moshannon, ............. & Chas. H. Rowland, & Clearfleld. & Chas. H. Rowland. & Houtzdale. \\
\hline Strachan, & John Stradian, ............. & Clearfield. & John Strachan, ..... & Philipsburg. \\
\hline Mt. Yernon No. & Enited Collieries Company, & Clearfield. & Thos. C. Whitehead. & Houtzdale. \\
\hline Mt. Vernon No. & United Collierles Company. & Clearfield, & Thos. C. Whitehead. & Houtzdale. \\
\hline Mt. Yernon No. \({ }_{\text {Mt, }}\) & Vnited Collieriex Company, & Clearfield. & Thos. C. Whitehead. & Houtzdale. \\
\hline Mt. Vernon No. 8 , milvale No. 1, .... & Vinited Colllerles Company,
Lobb \& Gould, & Clearfield,
Clearfield, & Thos. C. Whitehead,
Geo. Lobb, ......... & Houtzdale. Brisbín. \\
\hline Mimvale No. \({ }^{\text {a }}\), & Lobb \& Gould, & Clearfield, & Geo. Lobb, & Brisbin. \\
\hline nrlent. & Blair Bros. & Centre. & C. F. Blair, & Tyrone. \\
\hline Ocean N & Berwind White Coal Mining Company: & Clearfield. & A. S. R. Rlchards, & Osceola Mlls. \\
\hline Ouhir. & Cphir Coal Company, ............. & Centre. & Jacob Swires, .... & Philipsburg. \\
\hline Pardee No. & Bloomington Coal Company, & Clearfield. & Wm. Dunsmore. & Philipshurg. \\
\hline Phnenix. & M, Liveright. \({ }^{\text {Harbison }}\) (valiker & Centre, & Henry Liveright. & Osceola Mills. \\
\hline Parks, & Harbison \& Walker Co
Penn Iron Company & Clearfield. & H. M. Kurtz, & Woodland. \\
\hline Sterling No. 2 . & M. \& F. Craig \& Fros., & Clearfield. & Michael Craig. & Osceola Mlls.
Brisbin. \\
\hline Sterling No. 3. & M. \& F , Cralg, & Clearfield. & Michael Craig. & Brishin. \\
\hline Schwinn, & Henry Schwinn, & Clearfleld, & Henry Schwinn, & Houtzdale. \\
\hline Schwinn. & Henry Schwinn, & Clearfield. & Henry Schwinn. & Houtzdale. \\
\hline Hillside. formerly Stein & Steiner Coal Company, & Centre. & C. T. Fryberger, & Philipsburg. \\
\hline Summit, & Summit Coal and Coke Company, & Jefferson. & Isaac Smith, & Winslow, \\
\hline \begin{tabular}{l}
Trov. \\
I'nion.
\end{tabular} & Morrisdale Coal dining Company. & Clearfleld. & Jas. Heading.
A. S. Brown. & Morrisdale Mines.
Msceola Mils. \\
\hline west Fureka ソo. I. & Berwind White Coal Company, & Jefferson, & A. .J. Cook. & Horatlo. \\
\hline Wert Fureka No.4. & lierwind White Coal Company, & Jefferson, & A. J. Cook. & Horatio. \\
\hline West Eureka No. 5, & Berwind White Coal Company, & Jefferson. & A. J. Cook, & Horatio. \\
\hline
\end{tabular}

- Name chansed to Raybold.

TABLE No. 2.-Gives the total number of tons of coal mined and tons of coke produced in each Colliery, number of days worked, number of employes, number of persons killed and injured, nu mber of kegs of powder used, etc., in the Eighth Bituminous Dis-
trict, for the year ending December 31, 1897.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Collleries. & Location-County. &  &  &  &  &  &  &  &  &  &  &  &  &  &  & 'suәло әую૦ јо ләquinn \\
\hline Acme, & Clearfleld, ......... & 120,720 & & & 276 & 119,794 & 242 & & & & & & & & & \\
\hline Atlantic No. 1 , & Clearfield, ........ & 215,299 & & 3,789 & & 211,510 & 288 & 246 & & 1 & 432 & ......... & 8 & 15 & 3 & \\
\hline Atlantic No. \({ }^{\text {Baltic Nos. } 1 \text { and } 3 \text {, }}\) & Clearfield, \({ }_{\text {Clarfld, }}\) & 1166,864 & & & & 115,460 & \({ }_{239}^{238}\) & & & & & & & 15 & & \\
\hline Rear Run, ......... & Clearfield, & 10,68t & & 20 & 150 & 76, 715 & 249
160 & \({ }_{37}^{139}\) & & & 790
59 & & & \(\stackrel{21}{3}\) & & \\
\hline Black Diamond, & Centre. & 29,880 & & & 7,3\%0 & 22,500 & 207 & 56 & & & 240 & & & 10 & & \\
\hline Belsena No. & Clearfield, & 6,334 & & & 54 & 6,980 & 171 & 33 & & & 40 & & & 5 & & \\
\hline Belsena No. 4, & Clearfleld, ........ & \$, 867 & & & 25 & 10,692 & 176
198 & 17 & & & 30 & & & \(\frac{2}{2}\) & & \\
\hline Coaldale No. \({ }^{\text {coaldale }}\), & Clearfleld, & 29.685 & & 318 & 85 & 29,282 & 163 & 53 & .... & i & 280 & & \(\because\) & 2 & & \\
\hline Colorado No. \({ }^{\text {cose }}\), & Clearfield, \({ }_{\text {Clearfield, }}\) & 14,690
2,695 & & & 75 & 14,615
\(\substack{2,695}\) & 200
35 & \({ }_{33}^{25}\) & & & 70 & & & 5 & & \\
\hline Colorado No. \({ }^{\text {2, }}\), & Clearfield, & 34,022 & & & & 34,022 & 183 & 58 & & \(\cdots{ }^{1}\) & 300 & & & 6 & & \\
\hline Colorado No. \({ }_{\text {columbla }}\) & Clearfleld, & 4.060 & & & & 4,060 & 87 & 15 & & & 50 & & 3 & 6 & & \\
\hline Cuba No. 2 , & Clearfleld, & 4,311
13,010 & & & \(\cdots 100\) & 4.311
12.910 & 179
173
17 & 9 & & & \({ }_{8} 35\) & & & & & \\
\hline Central, & Clearfield, ........... & 13,274 & & & & 13, 274 & 124 & 23 & & & 65 & & & \({ }_{2}^{4}\) & & \\
\hline Donegal, \({ }^{\text {d }}\). & Clearfield, ... & 13,996
1,106 & & & 296 & 13,700
1,106 & 39
40 & 12 & & & & & & 16 & & \\
\hline Electric. & Centre. & 40,276 & & & & 40, 275 & 211 & 80 & & & 150 & & & 1 & & \\
\hline Eureka No. \({ }_{\text {E }}\) & Mearfild, & 184.077 & & 4. 4551 & & 179.520 & 279 & \({ }^{3} 32\) & & 2 & 203 & & 7 & 38 & & \\
\hline Eureka No. 112, & Clearfield. & 15,563 & & & & \({ }_{38,563}\) & 284
284 & 160 & & & 235
310 & & 4 & \({ }_{3}^{22}\) & & \\
\hline Eureka Fureka No. \({ }^{13} 14\) & Clearfield, ......... & 101.287 & & & & 101.287 & 265 & 133 & & & 550 & & 1 & 10 & & \\
\hline Fureka No. 16, & Clearfield, & 24,519
2.720 & & & & 24.809
2.720 & 70
13 & \({ }_{87}^{81}\) & & & 147 & & & \({ }^{8}\) & & \\
\hline Eureka No. 18, & Clearfield, & 55.007 & & \(235^{\circ}\) & & 54.772 & 146 & 94 & & & 115 & & ..... & 19 & & \\
\hline Eureka No. 19, & Clearfleld, & 120,651 & & 495 & & 120,186 & 268 & 188 & & 1 & 500 & & 1 & 20 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{17}{*}{\begin{tabular}{l}
のन \\
 \\
 \\
 \\
 \\
 \\

\end{tabular}} \\
\hline \end{tabular}
TABLE NO．2．－Continued．
\begin{tabular}{|c|c|}
\hline susao ayos jo raquinn & \(\vdots \vdots \vdots \vdots \vdots\) 弟 \\
\hline －sampouvout auplu jo גəquinn & \(\vdots \vdots \vdots \vdots \vdots\) ¢ \\
\hline －samue pue sasioy jo doquinn &  \\
\hline －shatioq meas jo argunn & \(\vdots\)\begin{tabular}{cc:c}
\(\vdots\) & \(\vdots\) \\
\(\vdots\) & \(\vdots\) \\
& \\
\hline
\end{tabular} \\
\hline  & 8388 \\
\hline  &  \\
\hline  &  \\
\hline ＇şupplove luag jo axquinn & 交 \(\left.\vdots \vdots \vdots \vdots\right|^{\text {－}}\) \\
\hline －pasopdura suosiad jo saquin &  \\
\hline porions ssep jo daquinn &  \\
\hline  &  \\
\hline  &  \\
\hline јеач pue meats 10j pasn suos u！ןevo jo スı！puenò &  \\
\hline  & \(\square\) \\
\hline  &  \\
\hline \begin{tabular}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular} &  \\
\hline  & \begin{tabular}{l}
̇ㅗㄱ \％i\％． 포풍 \\
 \\
 \\
\(シ シ ン ニ 2 ~\)
\end{tabular} \\
\hline
\end{tabular}

TABLE No. 3-Showing the number of each class of Employes at each Colliery in the Eighth Bituminous District, during the year 1897.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|c|}{Occupations of Persons Employed Inside.} & \multicolumn{7}{|l|}{Occupations of Persons Employed Outside.} & \\
\hline Names of Collieries. &  &  &  &  &  &  &  &  &  &  & Engineers and firemen. &  & 'иәши Киедшог дачว૦ IIV & \begin{tabular}{l}
sдәдәәяяооя \\

\end{tabular} &  & эр!szno pue әp!su! 'refor puedi \\
\hline \begin{tabular}{l}
Eureka No. 20, \\
Eureka No. \({ }^{21}\) Eureka No. \\
Eureka Nos. 23 and 26, \\
Eureka No. 24 , \\
Eureka No. 25 , \\
Falrmount, \\
Ghem, \\
Gearhart. \\
Formerly Gramplan, now Raybold, \\
Glenwood \\
Gulon, \\
Highland \\
Henderson No. 2, \\
Imperial, \\
Jefferson, \\
Kentuck. \\
Klondyke, Nos. 2 and 3, \\
Lancashire No. 1. \\
Lancashire N. \\
Leland No. 1, \\
Loraine. \\
Lane Nos. 1 and 2 , \\
Lenore. \\
Morann.
\end{tabular} & 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 &  & 70
661
297
83
83
29
15
27
27
65
57
50
13
17
24
60
47
21
5
20
106
42
47
9
32
59
48
48
8 &  &  &  &  & \[
\begin{array}{r}
84 \\
73 \\
73 \\
321 \\
96 \\
39 \\
18 \\
30 \\
31 \\
71 \\
62 \\
54 \\
15 \\
23 \\
27 \\
69 \\
50 \\
24 \\
6 \\
\hline 24 \\
121 \\
48 \\
57 \\
11 \\
36 \\
63 \\
52 \\
12
\end{array}
\] &  &  & - &  &  &  &  & 88
88
78
339
110
44
18
32
31
76
766
667
16
27
29
74
54
26
26
6
25
128
51
60
11
37
69
54
16 \\
\hline
\end{tabular}


TABLE No, 4-List of Fatal Accidents that occurred in and about the Mines of the Eighth Bituminous District, for the year ending December 31, 1897.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & Name of Person. & Occupation. & \% & 产 & 定 & Name of Colllery. & Location-County. & Nature and Cause of Accident In Brief. \\
\hline Mar. 4, & Mike Lopik, & Miner, & & & \[
\ldots
\] & Eureka No. 22, & Clearfield. & Fatally injured: partly by lourns and partiy by shock, while in contact with electric wire, charged with 500 volts, on haulageway in the mine. \\
\hline April 29. & Alex. Pollock, .............. & Mine foreman, .... & 27 & & & Atlantic No. 2, ......... & Clearfield, .......... & Spout of oil can forced into his rlght eye while ofling fan engine. \\
\hline iune 17 , & Josel.h Havanic, & Miner. \(\qquad\) & 32 & & 2 & Mt. Vernon No. 7. & Clearfield, & Struck ly falling stone, crushing head and chest. \\
\hline \[
25
\] & Elnc Olson, \(\qquad\) & Miner. & 50 & &  & Eureka No. 7. & Clearfielia, & struck by falling stone while mining a cut of coal, crushing head and chest, and causing instant death. \\
\hline July 23. & David Mosha, & Mner, & 19 & S. &  & Eureka No. 26, & Clearfield, & While wandering through the mine in the dark he came in contact with eiectric wire charged with 500 volts, causing death in 20 minutes. \\
\hline \[
26,
\] & Thomas Vaughan, & Miner. & & & 5 & Atlantic No. 1 , & Clearfield, & Roof slate fell over a space of 20 feet by 13 feet, completely covering Vaughan, causing instant death. \\
\hline Aug. \(\quad\), & Andrew Gowitchie, ...... & Miner, \(\qquad\) & & & \(\ldots\) & Morrisdale Shaft, ....... & Clearfield, & skull fractured, causing internal hemorrhage, by premature blast of stone shot, causing death in Phillpsburg Hospital on the 11th of August. \\
\hline
\end{tabular}

TABLE No. 5-List of Non-Fatal Accidents that occurred in and about the Mines of the Eighth Bituminous District, for the year ending Dece mber 31, 1897.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  & Name of Person. & Occupation. & - & \[
\begin{aligned}
& \frac{2}{x} \\
& \frac{\pi}{x} \\
& \frac{L}{5} \\
& \frac{J}{U} \\
& \frac{L}{4}
\end{aligned}
\] & Name of Colliery. & Location-County. & Nature and Cause of Accident in Brief. \\
\hline Jan. 1S, & George Hartshorn, ...... & Miner, .............. & 50 & M. & Lancashire, .................. & Clearfield, ......... & Collar bone and chest severely bruised by a fall of coal. \\
\hline \multirow[t]{8}{*}{Fetr.} & John Calloway, ........... & Miner & \(\stackrel{44}{23}\) & M. & Morrisdale Shaft, ............ & Clearfield. & Hand crushed by a fall of coal and slate. \\
\hline & Kemp Cook, .............. & Driver, ................ & 23 & M. & Eureka No. 18, ................. & Clearfield. .......... & Fracture of left leg above ankle while riding between two empty cars. \\
\hline & Samuel Smiles, & Driver, ............. & 40 & M. & Eureka No. 20, .............. & Clearfield, & Leg broken above ankle; riding between loaded cars. \\
\hline & Patrick Nuegan,
Wlliam Mars, & Miner, \({ }_{\text {Miner, }}\) & 52
27 & M. &  & Clearfield,
Clearfield, & Collar bone broken by a fall of coal.
compound fracture of leg by fall of coal. \\
\hline & Indrew Greece, & Mtner, & 45 & M. & Lancashire No. 1, .......... & Clearfield, & Jaw broken and sides severely bruised by a fall of coal. \\
\hline & John Kyrne, .............. & Miner, & 52 & M. & Eureka No. 26, ............. & Clearfield, & Leg severely bruised between two loaded cars. \\
\hline & & & \({ }_{25}^{45}\) & M. & Morrisdale Shaft, ............ & & Back brulsed by a fall of roof slate. \\
\hline & Willis Shoff, .............. & Miner and extra driver. & 25 & s. & Morrisdale Shaft, ............. & Clearfield, ....... & Left hip dislocated and fracture of right leg above knee caused by a fall of roof slate catching him on hips. \\
\hline Mar. 11, & John Zellinski................ & Miner. & 27 & S. & Eureka No. 5, ............... & Clearfield, ........ & Bad sealp wounds by a fall of top coal while undermining bottom coal. \\
\hline April. \({ }_{1}\) & \begin{tabular}{l}
Edward Brown, \\
Dantel Copetcla, ..........
\end{tabular} & \begin{tabular}{l}
Driver. \\
Miner.
\end{tabular} & 27 & S. & \[
\begin{aligned}
& \text { Eureka No. 5. } \\
& \text { Eureka No....................................... }
\end{aligned}
\] & \begin{tabular}{l}
Clearfield, ........ \\
Clearfield.
\end{tabular} & Leg fractured; caught between cars. Nose broken while riding between cars: they came in collision with other cars. \\
\hline May \({ }_{\text {6. }}^{6 .}\) & John Smith. OHiver carley. & \begin{tabular}{l}
Miner. \\
Miner.
\end{tabular} & 40
22
2 & \(\stackrel{\mathrm{M}}{\mathrm{M}}\) & \[
\begin{aligned}
& \text { Morrisdale Shaft, ............. } \\
& \text { Baltic No. 3, ................... }
\end{aligned}
\] & Clearfleld. Clearfield. & Fracture of ankle by a fall of roof slate. Leg fractured by fall of coal. \\
\hline \multirow[t]{4}{*}{Jine} & Robert Gunn, & Driver. & 35 & M & Reading. & Clearfield, & Right hip dislocated, ribs bruised, shoulder and head bruised and cut; fell between cars. \\
\hline & Metro Behon. & Miner, & & & Eureka No. 26, & Clearfield. & Head and leg cut and bruised; struck by electric locomotive. \\
\hline & John Herron, ............. & دitner, .............. & & 3 . & Eureka No. 19, ............... & Clearfield, & simple fracture of right leg below knee by fall of coal. \\
\hline & John Gllson, ............. & Drimer ........... & & M. & Retort, . \({ }^{\text {a }}\)................. & Centre. & Fracture of right leg above ankle while riding between cars. \\
\hline
\end{tabular}

TABLE No. 5. -Continued.


\title{
Ninth Bituminous District.
}
(ALLEGHENY, FAYETTE AND WESTMOIRELAND COUNTIES.)

Connellsville, Pa., February 9, 1898.
Hon. James W. Latta, Secretary of Internal Affairs:
Sir: I have the honor to submit herewith my annual report as Inspector of mines of the Ninth bituminous district for the year ending December 31, 1897.

The quantity of coal mined in the district during the year was §, 074,385 tons, or 136,507 tons less than was mined in 1896 . The quantity of coke produced and shipped was \(1,593,325\) tons, or an increase of 328,007 tons as compared with the year 1896. The decrease in the production of coal was caused by a strike, which continued for three months, and the increase in the output of coke was due to better trade, which, apparently, will continue during this year.

During the year nineteen lives were lost, the same number as last year. The number of non-fatal accidents was thirty-three, being nine less than for 1896.

It is evident that at least 50 per cent. of the fatal accidents were due to carelessness and the unusual risks taken by the victims. This is a matter complained of in every report. Some of these accidents result from ignorance of the danger and a large proportion of them are due to the fact that long experience in the mines leads the workmen to believe that they can take better care of themselvs than those who are employed to look after the safety of the mines and those employd therein.

Fifteen wives were made widows and fifty-five children orphans by these casualties. There is little to say regarding the healthful condition of the mines that was not in the report for 1896. There have been more mining machines introduced into the district, which was the cause of greater loss of life. A better class of machines and improved methods of machine mining are being adopted to reduce the liability to accidents. His Excelleney, the Governor of Pennsylvania, has appointed a Chief Inspector, and while the term of the appointee has been so far too short for the evidence of improvement, yet (465)
\[
30-10-97
\]
we have to give His Excellency our most sincere thanks for appointa man of expert knowledge and experience in matters pertaining to the safe and eronomical operation of mines.

I brief description of the mines is attathed herefo; also, a deserip)tion of the aceidents and the eiremmstamees attending them, fogether with the statistical tables, which will be found in their proper places in this report.

> All of which is respectfully submitted.
> BERNARD C.ILL.D(iHAN.

Accident Table for 1897.


Nationality of Persons Killed or Injured.

smmmary of Statistics for 1s! 6 .
Nomber of mines in the district . . . . . . . . . . . . . . . . . . . .
Nomber of mines operated during the tat. . . . . . . . . .
Nomber of mines idle during the ye:lr. . . . . . . . . . . . . .

Nimber of persons cmploted outside. .................
Total number of persons employed, . . . . . . . . . . . . . . . . . . .





Tower and Tipple, Davidson shaft.
Number of tons (z,000 pounds) coal produced for each person employed, ..... 596.35
Number of lives lost during the year, ..... 19
Number of tons of coal produced for eath life lost, ..... 267,072.9
Number of persons injured during the year, ..... 3:3
Number of tons of coal produced for each injury, ..... 153,769
Number of persons employed for each life lost, ..... 447
Number of persons employed for each non-fatal accident during the year, ..... 257
Number of days worked during the year, ..... 9,242
A rerage number of days worked at \(5!\) mines, ..... 150
Number of kegs of powder reported used, ..... 11,6:2
Number of pounds of dynamite reported used, ..... 9,241
Number of steam boilers used at the mines, ..... 152
Number of mine locomotives employed, ..... 5
Number of outside locomotives used for charging ovens, ..... 10
Number of coke ovens in operation in the district, ..... \(4,1 \because: 3\)

\section*{Mines on the B. \& O. Railroad.}
B. \& O. Mine.-This mine is in good condition, considering the length of time it will require to exhatust the coal, which will be abont another year. Ventilation and drainage are fairly good. Clair Stillwagon, mine foreman.

Davidson Shaft.-This report shows a new shaft, as the old one was destroyed by fire, the derrick having taken fire last Jannary. The depth of the shaft is 116 feet from the surface. The derrick is a first class one, and is 85 feet high, has a self-dumping cage, and the latter works successfully. A tail rope haulage has been put in, begiming at the proper distance from the bottom and the coal is caged from one side. The empty wagons, when dumped, pass with the loaded ones to the spot where the loaded wagons pass and the tatil rope reaches them, this being done as neatly as it is in the system of the Mitchell dump. No person's help is needed except the man who pushes the loaded wagons on the cage. The other portions of this bottom are as pretty and neat as conld be desired mondergromid. The sides are built up with sandstone and the electric lights display a wide space, with a roof 13 feet high. Iron girders, lagged with oak planking, are used to make the roof more secure. These girders are painted red and the sides of the interior walls are whitewashed. This mine is in good condition and is the property of the H. C. Frick coke Company. Mine foreman, John Stevenson.

Tyrone Mine.-This mine's record for 1897 has not materially changed from the year previous. Work was steady, the mine having been in opreration 310 days. Care is taken in every manner for the
safety of the workmen and for economy. Mine foreman, Thomas R. Kane.

Henry Clay.-This mine made a good record for the year, which ended with a mine fire, the origin of which is mnknown. The fire originated in a gob, in a portion of the mine which was abandoned two years ago. No shots had bern fired in the vicinity of the fire, no person worked withont safety lamps and no explosion was known to have oceurred. The fire is a complete mystery, and most have been calsed by spontaneous combustion, the tirst ocemrence of the kind in this region. One thing was fortmate in this case. The portion of the mine where the fire started, is lower than the workings and all that was necessary to do was to cement five brick stoppings and to fill the enclosed area with water, pmoped into the mine. As the fire has been seen on the top of coal, it is thought that it can be drowned out and no tronble is expected, nor is there any danger apprehended. The other portions of the mine are in good condition.

Sterling No. 1.-This mine was started in November, after having been in idleness for three years. I made a visit to this place and found everything in good condition. Mine foreman, Frank Cochran.

Jackson.-This mine is progressing well. All of the old ribs are being worked ont and the diggers will soon be into solid coal. Mine foreman, George Moore.

Sterling No. 2.-This mine is not in operation and has not been active for many months.

Eureka.-Many improvements have been made in this mine in the steep entries, and the rentilation has been bettered by the instalation of a small electric fan, which was put in at the top of one entry, while a road has been cut through to daylight, which serves as a traveling way for the miners and keeps them off the hanlage road. The other parts of the mine are in good condition. Mine foreman, James Bayley.

Smithton No. コ.-The persons who had this mine leased for fomr years have purelased and are operating it in as able a mamer as owners as they did when lessees. Mine foreman, James Henderson.

Port Royal No. 1.-Many repairs have been made during the year, including new shaft timbers a distance of twenty-five feet from the fop downward. A new derrick for hoisting has also been installed. A great imporement was made at the bottom by blasting down the roof six feet, making it just that many feet higher than formerly. The road wats then raised so that the loaded wagons bump oft the cmpty ones, which then ran to their destination withont further, assistance.

Enclid.- Is regards ventilation and dratage, this mine is in good condition. It is the intention of the eompany to repair the shaft, and, perhaps, to make it larger, as it is now too small to allow of the
passage of a large wagon. The contemplated improvements will be necessary as the mine is now developed far enongh to require them. Mine foreman, Charles K. McCaffrey.

Amyille.-This mine is in fairly good condition, considering the distance the coal has to be hauled by mules. There is no machinery of any kind in the mine. Mine foreman, samuel Jones.

Vough slope.-This mine has installed a number of mining machines, which have proven a success. The system seems to suit every person. Ventilation and drainage are good. Mine foreman, Charles K. McCaffrey.

Ocean No. 1.-Several electric motors are located at this mine, which are doing well, and the coal cutting machines are satisfactory. 'The workings are so far from the mouth of the mine that two motors are necessary for the hauling of the coal to the surface to ensure a large ontput. The Cappell fan is giving a large supply of air, 60,000 cubic feet per minute, but the mine is so extensive and there is so much powder used, that the company intends to sink a shaft at the far end of the workings, to assist the ventilation and for pumping. The drainage requires as much attention as the ventilation, and the contemplated improvements will be a great benefit to both. Mine foreman, William Goldsboro.

Shaners No. 2.-This mine is now in very good condition. The leadings are being driven with vim and an endless rope haulage is being put in, which will increase the output. This is the only mine in the district that takes advantage of the bad roof by driving the rooms wide and putting two roads in them. The safe point is that two good rows of posts are kept next the roads on both sides, and the bad roof is given a chance to fall in the middle. Mine foreman, Walter O'Malley.
(iulfey-This mine is in very good condition, since the swamp on the right side wats raised. There are no headings being driven, and unless some are started before long, the mine will not long remain in operation. Mine foreman, Edward Bell.

Big Chief.-A new company has taken possession of this mine, which is operating the plant snccessfully and keeping it in good condition. The new owner is the Youghiogheny River Company.

Osceola.-If the mud were deaned from the hanlage roads in this mine the condition would be improved. Barring this, the mine is in fair condition. Mine foreman, Maurice Beadle.

\section*{Mines on the Mt. Pleasant Branch.}

Rist.-A statement that everything about this mine is in first class condition covers all that can be said regarding it. Mine foreman, Charles Winingroth.

Morgan.-There is scarcely any solid coal left to mine in this pit, and, although all the work is done in ribs and stumps, I always find the plant in good condition. Mine foreman, Daniel Alsop.

White.-This mine is kept in good condition throughout the year. Mine foreman, William Miner.

Summit and Eagle.-I always find theste mines in good condition. with good ventilation and drainage. Mine foreman, John Nolan.

Franklin.-I have never visited this mine and fomd the requirements of the law disobeyed. Mine foreman, Jacob Dewalt.

Tip Top.-This mine was idle for a long time during the year, but is in operation now, and in good condition. Mine foreman, James Wardlow.

Valley.-On every visit to this mine, I have found it in good condition in every respect, as far as the requirements of the law are concerned. Mine foreman, James Jackson.

Scottdale Iron and Steel Company.-This mine supplied the steel mill with coal, but the firm is now using natural gas and the mine has been closed down.

Dexter.-On my last visit, I found the ventilation and drainage grood; also that most of the dirty coal has been worked out and the mine will soon have a nice, clean coal to work in. Mine foreman, S. S. Fairchild.

Painter.-This mine has been opened through to old Fountain, and a way is being prepared to pump the water so that all the coal can be worked ont to advantage. Dramage and rentilation will be improved, although both are failly good now.

Diamond.-This mine has worked none this year.
Bessemer--On my last visit I found the rentilation and drainage improved. If the care exercised now is continued till the mine is worked out, there will be no complaints.

Rising Sun.-This mine was idle most of the year, but was working when I visited it at the same ime I visited the Bessemer. The same mine foreman is attending to both mines, and the Rising sum mine is in good condition. Mine foreman, J. . . Trimbath.

Emma.-This is a small mine, but I always find it in proper condition, with good ventilation and drainage. Mine foreman, Adam Whitehead.

West Overton--This mine is now working altogether in new hill coal, but being so near the crop the coal gets red before the property line is reached. I can venture the opinion that the mine will not last long, althongh at present in good condition for the number of workmen employed. Mine foreman, John Boyle.

Buckeye.-This mine is kept in grod condition, and I find no complaints with the system adopted in the mining or the precantions for the safety of the employes. Mine foreman, fieorge Burns.

Mullen--Everything in this mine is progressing favorably. The ventilation and drainage are good. Mine foreman, Albert Williams.

\section*{Mines Along the Southwest Pennsylvamia Railroad.}

Plumer.-Before another year passes away this mine will have taken its place among those counted as exhausted in the Comellsville region. Even to the last it is kept in good condition. Mine foreman, William Bennet.

Coalbrook.-Very little need be said about this mine. It was opened \(u_{p}\), on a good system and this course is being continned. Mine foreman, M. F. Picard.

Grace.-Everything in this mine is up to the requirements of the law. Few entries can be driven, as the headings are about up to the property lines. B.S. Raygor is mine foreman.

Pennsville.-This is a small mine, but is always kept in good condition. Care is taken in its mining operations. Mine foreman, William Kooser.

Enterprise.-I have never until now had an opportunity to report this mine, as it was always idle. When I visited it, everything was in good condition, but from appearances there is little coal left to mine. Mine foreman, Andrew Neish.

Union.-This plant was not working when I visited it, but is now. It has changed hands, W. J. Rainey being the purchaser, and he has recently put it in operation. The coal is used in the manufacture of coke. The mine is now working nearly to its capacity.

Mayfield and Donnell.-These two mines were botlo idle during the year.

Mines Along the Pittsburgh and Lake Erie Railroad.
A delaide.-This is a very large mine and is always kept in good condition. All the requirements of the law are observed. A new coal crusher has ben put in the coal bin, for the purpose of crushing the coal used in the coke ovens. Thomas Harris is the mine foreman.

Moreland Slope and Fort Hill.-These two mines appear like two separate operations but really are only one. The slope was driven to its destination first and the coal worked ont continnously at the foot, until the first flat is nearly all worked out. This is a first class prevention against squeezes and is approved of in this mine. Mine foreman, William Sloan.

Rainbow.-This mine is turning out a large output of coal, having the old slope and the upper side both working advantageously. A small mine fire occurred in the beginning of May, but little other trouble was encountered. The fire occurred in the entry driven 160 feet from the main heading. As no cut through had been made, the fire was easily smothered. A workman put off a shot, which fired the coal, and as he could not extinguish the fire he quietly left it, telling
no one of the danger. Consegnently, it had a good start before il was discovered. Three weeks sutticed to smother it. Mine foreman, Dennis Wordly.

Wick Haven.-A new Cappell fan has ben installed at this mine, which is capable of producing about 10,000 cubic feet of air per minute. In now depends on the management to keep up the ventilation, for the means are at hand. Mine foreman, James Watkins.

Banning.-Some improvements have been made at this mine in the rentilation, but more air yet is needed. While the fan gives a good quantity, it would be well to find about the one-half of it at the bottom of the slope instead of one-tenth of it. This is absolutely necessary where gas is given off in large quantities. Mine foreman, Arthur Crossland.

Darr Mine.-This mine is in very good condition. It is the intention of the firm to put in an electric motor to haul the coal to the rope haulage. This seems to be the best method of overcoming the difticulty of keeping the rope in good working order, which is particularly difficult on account of its great length, which is about 4,000 feet. The quantity of coal to be hanled out of this mine prechudes the possibility of further extending the rope for loads. The ventilation at the bottom of this slope, 7,000 feet from the fan, is 48,000 cubic feet per minute, which is commendable. This slope, at one time, showed considerable quantities of explosive gas, but 1 have been mable to find any whatever since the ventilation has been improved. Mine foreman, Charles Watson.

Ocean No. 5.-This mine has been operated steadily since the strike mutil the beginning of the year. The interior is well attended 10. Mine formman, Frank Ridly. .

Port Royal No. 2.-This mine has made a good showing during the year as to improvements. An additional fan has been installed, which is to be used in catse of emergency. The interior work was progressing well until a short time before the close of the year, when a fire broke out at the foot of No. 9 antry. The fire started after exery person was out of the mine. An hom later the night water hanler entered and saw the fire burning in two trap doors and beginning to catch the coal. Knowing that he could not extinguish it himself, he hurried to the shaft and gave the alarm. The mine foreman and fire boss entered soon after, bringing other help. Three lines of hose were attached to a water smpply, and water was thrown on the fire all night and all the next day. But it defeated the efforts of the men and the area fired had to be abandoned and bratticed up, first a layere of wood and on the ontside of these brick ones were erected. The porfion of the mine endangered was then flooded to the roof, which was made easy by the lay of the passares, and it is expeeted that the fire has been smothered and that it will wase mo more tronble. Mine foreman for Nos. 1 and 2, William Goodfellow.

West Newton Shaft.-There is nothing new to report abont this mine. The mining machines are doing well. The mining is done mostly with two roads in a room, the latter being no less than thirtysix feet wide. Ventilation and drainage are good.

Forest Hill.-This large mine is still being extended. At present, a large quantity of explosive gas is encountered, both in the solid cintries and in the gob. On my last visit a large number of men were working with safety lamps, and the gas is well looked after. All the brecautions for the safely of the men are taken. Mine foreman, Robert Watson.

Iacific.-This mine was worked very little during the year, and Gperations will not be renewed for some time to come.

Sarah.-This mine did more work during 1897 than for many years previously. The rentilation is not as good as it shonld be, and will not be improved much till an entry is driven through to daylight. This is being done, and will be completed before long. This improvement is much needed to aid both drainage and rentilation. Mine foreman, John Thomas.

Ocean No. 2.-This mine is in very good condition. There is a good emrent of air going throngh every entry. The large number of coal cntting machines in this mine require plenty of air. The machine mining varies from that system adopted at other plants somewhat. Some of the rooms have two roads which are thirty-six feet wide, and the ribs are not often drawn ont. Other rooms are twentyone feet wide, with one road, and the ribs are taken ont afterwards. The company is adopting the best system to suit the circumstances. Mine foreman, Thomas Whiteman.

Painters \& Cornell.-There is no machinery in this mine. All the coal produced is pick-mined. This mine is always found in good condition. Mine foreman, John Frazor.

Dravo.-All the coal is mined by pick, and the mine is kept in grod condition while working, but when business becomes slack, like all the small operations, the pit is somewhat neglected. Mine foreman, Jolin Matthews.

Brown No. 2.-This mine did fairly well during the year. The owners have installed four cutting machines, the inventor of which is their own mathinist. The machine needs no truck on which to hand it from place to place, as the wheels are attached to the bottom frame which catn be taken off when the machine is in position for work. There is also an appliance attathed which makes it possible to shear the rib sides either on the entries or in rooms. Alex. Cochatae is the mine foreman.

Lyuch.-This mine has so few men working now that it does not come under the provisions of the mining laws. I visited it, however, and found it in good condition.

\section*{Mines Along the Belle Vernon Railroad.}

Belle Ridge.-This mine did not work much during the year. On my last visit, I found a new furnace built in one of the entries, which is doing good work. Everything else is satisfactory. Mine foreman, Andy Hunt.

Lovedale.-This is the first report I have made of this mine. It is now in operation under a new ownership. Most of the members of the new firm are miners. I have fonnd everything in good condition. Mine foreman, John Forsythe.

Horner \& Roberts.-These mines are now operated by a number of miners who style their firm the "Elizabeth Mining Company." One of the mines was not working when I made my last visit on accomnt of a fire which originated around the furnace. The furmace shaft had been bratticed off with material and filled in with clay and water. The danger appears to be over. The other mine was in fairly good condition. Mine foreman, John J. Johnston.

Gospel.-The coal at this mine has been abont worked ont and the mine will soon he exhausted also, unless the owners purchase the adjoining coal, which would not necessitate the opening of new inlets, but which afford opportunity of continuing the old ones. On my last visit, I fonnd everything in good condition. Mine foreman, John Besenthener.

\section*{Fatal Aecident List for 1897.}

At the Davidson shaft, on the afternoon of January 9, while Jicol Eromer and William Gaskill were working together in a butt room on River heading, a piece of coal from the roof fell and fatally injured Kromer; he died in three hours.

Valentine Paltic, a miner, aged 37 years, was fatally injured in the W'est Newton shaft by a fall of slate on January 21 and died next day.

Dominick Denord, an Italian miner, was fatally injured in his room by a fall of coal, on February 17 and died in the West I'enn hospital, at Pittsburg, a few weeks later.

John Kuryzki, aged 41 years, a Pole, was fatally injured at Port Loyal No. 1 mine, on February 6 , by a fall of slate and died the following day.

At Ocean No. 1 mine, Napoleon Lerella, an Italian, was fatally injured by a fall of slate and died shortly after.

Sieve Ratula was almost instantly killed on the evening of March 27 at Moreland slope, by a fall of coal, in No. :3 room, off No. \(\overline{6}\) tlat. The deceased was a Slav.

Frank Reicki, a German, was instantly killed by a fall of slate in Little entry, on 25 face, at Port Royal mine, on A pril 2.

At the West Newton slaft, Andy Holan, a miner, was instantly killed on May 3 by a fall of slate in 112 room, No. 7 entry.

At the Eureka mine, on May 6 , August Geiring, a German, was fatally injured by a fall of coal and died the same evening.

Joseph Auditanio, an Italian miner, was instantly killed on the crening of May 14, at Wick IFaven mine, by a fall of slate.

Mervin Thompson, a trapper and flag boy, was instantly killed on May 17, at Moreland slope, by heing caught between two loaded trips.

At the l'ort Royal mine, John Subina, a Russian Pole, was fatally injured by the cage on May 20; he lived six hours. He tried to get on the cage without the knowledge of the cager.

Jolin Mattus. a German, was instantly killed at the Port Royal mine on June 4, by a piece of slate falling upon him.

Ricardo Roko, an Italian, was fatally injured in the Darr mine, on June 8, while crossing over the loaded trip while the latter was in motion.

Lewis Bucsak, a Polish miner, was instantly killed in the Darr mine on October 11, by a fall of slate.

John Petrik, a Slavish miner, was instantly killed in the Darr mine on October 22, by a fall of roof coal and slate.

Frederick Blum, a German miner, was instantly killed on October 28 at the Summit and Eagle mine, by a fall of coal and slate.

Michael Hazel, a Mungarian, was instantly killed in the Wick Haven mine on November 9 , by a fall of slate.
\begin{tabular}{|c|c|c|c|c|}
\hline Name of Colliery. & Name of Operator. & Location-County. & Name of Superintendent. & Postoffice Address, \\
\hline Amyville, & Youghiosheny Gas Coal Company, & Westmoreland, & John W. Peters, & Suterville. \\
\hline Adelaide. & II. C. Frick Coke Company, .......... & Fayette, ....... & James A. Chllds, & Adelalde. \\
\hline Browns No. \({ }^{\text {Browns }}\), &  & Allegheny, & James A. Dewar, ....
James A. Dewar, & \begin{tabular}{l}
Boston. \\
Boston.
\end{tabular} \\
\hline \begin{tabular}{l}
Browns No. 2, \\
B. \& O., .......
\end{tabular} & W. H. Brown's Sons, .............. & Allegheny,
Fayette, & James A. Dewar, & Boston. \\
\hline Banning & Marietta \& & Fayette,
Fayette, & Peter Cammeron, & Connellsville. \\
\hline Belle Bridge, & Belle Bridge Coal Company, ...... & Allegheny & Wm, A. Fillaborn, & Belle Bridge. \\
\hline Big Chief, & John Blyth \& Co., & Westmoreland, & H. D. Thompson, & Robbins. \\
\hline Buckeye, & McClure Coke Company, & Westmoreland, & James Dumphy, & Stouffer. \\
\hline Besseme & Mcclure Coke Company, & Westmoreland. & James Devlin, .. & Mount Pleasant. \\
\hline Coal Broo & Mcclure Coke Company. & Fayette, & M. F. Picard, & Moyer. \\
\hline Davidson Shaft. & H. C. Frick Coke Company, & Fayette, & John I. Munson, & Connellsville. \\
\hline \begin{tabular}{l}
Dexter. \\
Donnell
\end{tabular} & Joseph R. Stouffer \& Co.. & Fayette, & S. R. Fairchilds, & Scottdale. \\
\hline Darr. & McClure Coke Company, & Westmoreland, & O. W. Kennedy, & Scottdale. \\
\hline Diamond & McClure Coke Company & Fayette, ....... & O. W. Kennedy, & Scottdale. \\
\hline Dravo, & Lake Shore Gas Coal Company, & Allegheny & C. H. Wiesser, & Roblins. \\
\hline Emma, & J. W. Overholt \& Co.. ..... & Westmoreland, & J. W. Overholt, & scottdale. \\
\hline Enterprl & McClure Coke Company, ....................... & Westmoreland, & D. Hurst, & Alverton. \\
\hline Eureka, & Eureka Coal Company, ...................... & Westmoreland, & Willam McCun & West Newton. \\
\hline \begin{tabular}{l}
Euclid. \\
Franklin.
\end{tabular} & Ohio and Pennsylvania Coal Company, & Westmoreland, & Michael Roy, & Fitz Henry, \\
\hline Fort Hili. & \({ }_{\text {W }} \mathrm{B}\) W. F. Reister, & Fayette, & T. J. Mitchell, & Summit Mines. \\
\hline Forrest HIII, & J. W. Ellsworth \& Co., & Allegheny, & Robert Watson, & Suterville. \\
\hline Grace. & J. w. Rainey, ....... & Fayette, & Thomas Johns, & Moyer. \\
\hline Gospel. & H. D. O'Neil, & Allegheny & H. D. O' Neil, & Flizaheth. \\
\hline Guftey Henry ciol. & Youghiogheny Coal Company, & Westmoreland. & J, B. Stone, & Scott Haven. \\
\hline Henry Clay, & H. C. Frick Coke Company, & Fayctte, & William C. Mullen, & Broad Ford. \\
\hline Horner \& Roberts,
Home Works, & Eilizabeth Mining Company,
Stouffer \& Willey & Allegheny & John J. Johnston, & Elizabeth. \\
\hline Hazlett. & Moclure Coke Company, & Fayestmoreland. & James Dumphy, & Stouffer. \\
\hline Jackson, & James Cochran, .......... & Fayette. ....... & P. G. Cochran, & nawson. \\
\hline Lynch. & H. D. Lynch. & Allegheny, & H. D. Lynch, & McKeesport. \\
\hline Lovedal & Lovedale Mining Company, & Allegheny & John Forsyth, & Flizaheth. \\
\hline Mullin. \({ }_{\text {Mayfield }}\) & Mcclure Coke Company, & Westmoreland, & James Dumphy, & Stonffer. \\
\hline Mayfield,
Morgan. & Mctlure Coke Company, & Westmoreland, & O. W. Kennedy, & Scottdale. \\
\hline Ocean No. \({ }^{\text {did. }}\) & H. C. Frick Coke Company, . & Fayette, & William C. Mullen, & Broad Ford. \\
\hline ncean No. 2. & Youghtogheny River Coal Company, & Allegheny, ... & J. \({ }_{\text {P }}\) S Stone, & Scott Haven. \\
\hline Ocean No. 4. & Youghiogheny River Coal Company, & Allegheny, & J. B. Stone, & Scott Haven. \\
\hline Ocean No. 5 , & Voughlogheny River Coal Company, & Allegheny, & J. B, stone, & Scott Haven. \\
\hline Osceola, & risceola Coal Company, ............... & Allegheny, & James W. Shields, & Fimblem. \\
\hline Pacific. & Youghiogheny River Coal Compa & Allegheny, & J. B. Stone. \({ }^{\text {a }}\) & Srott Haven. \\
\hline Painter \& Cornell, & I. W. Painter Coal Company, & Allegheny & Rohert Cornell. & McKeesport. \\
\hline Port Royal No. 1. & Port Royal Coal and Coke Company, & Westmoreland, & Willam Goorlfellow, & Ditz Henry. \\
\hline Port Royal No. 2. & Port Royal Coal and Coke Company, & Westmoreland. & William Goodfellow. & Fitz Henry. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Plumer, & H. C. Frick Coke Company, & Fayette, & John I. Munso & Connellsville. \\
\hline Pennsvilte, & J. D. Sherrick \& Co., ...... & Fayette, & John O. Sherrick, & Pennsville. \\
\hline Painter, & McClure Coke Company, & Fayette, & John H, Cutter, ......... & Scottdale. \\
\hline Rist, & H. C. Frick Coke Co., & Fayette, & William C. Mullen, & Broad Ford. \\
\hline lising Sun, & McClure Coke Co., & Westmoreland, & James Devlin, & Mount Pleasant. \\
\hline Rainbow, & Rainbow Coal Company, & Fayette, & John Morris, & Whittset. \\
\hline Sarah, .... & Douglas Coal Company, & Alleghen & J. C. Peairs, & Blythedale. \\
\hline Scottdate Steel Co & A. S. Livengood, .. & Fayette, & A. S. Livengood, & Everson. \\
\hline Shaners No. \({ }^{\text {Smithton }}\) & Criterion Coal Company, .......... & Westmoreland, & Walter O'Malley, & Youghiogheny. \\
\hline Smithton No. \({ }^{\text {Sterling No. }}\), & Waverly Coal and Coke Corupany, & Westmoreland,
Fayette, & John Harris, \({ }^{\text {James A Childs, } \ldots \ldots . . . . . . . . . . . .}\) & Smithton. \\
\hline Sterling No. 2 , & H. C. Frick Coke Company, & Fayette, & O. W. Kennedy, & Acottdale. \\
\hline Summit, & H. C. Frick Coke Company, & Fayette, & William C. Mullen, & Broad Ford. \\
\hline Tyrone, & Laughlin \& Co., Limited, & Fayette, & Clifton Wharton, & Broad Ford. \\
\hline Tip Top, & H. C. Frick Coke Company, & Fayette, & James Lynch, .... & Scottdale. \\
\hline Union: & W. J. Ralney, .... & Westmoreland, & William Duncan, & Alverton. \\
\hline Walles, \({ }^{\text {West }}\) Overton, & H. C. Frick Coke Company,
H. C. Overholt. & Fayette, ..... & James Lynch, & Scottdale.
West Overton \\
\hline West Newton, & Osborne, Saeger \& Co. & Westmoreland, & W. F. T. Allison, & West Overton. \\
\hline Wick Haven. & Youghlogheny Mining Company, & Fayette. & Frank Morrison. & Banning. \\
\hline White, & H. C. Frick Coke Company. & Fayette. & William C. Mullen & Broad Ford. \\
\hline Yough Slope. .................. & Columbus Gas Coal Company, ...... & Westmoreland, & Charles K. McCaffery, & West Newton. \\
\hline
\end{tabular}

TABLE No．2．－Gives the total number of tons of coal mined and tons of coke produced in each Colliery，number of days worked， number of employes，number of persons killed and injured，number of kegs of powder used，etc．，in the Ninth Bituminous Dis－ trict，for the year ending December \(31,1897\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Names of Colilerles． & Location－County． & \begin{tabular}{l}
\(\stackrel{\square}{\circ}\) \\
\(\stackrel{\text { © }}{5}\) \\
玉 \\
 ज़ं
\end{tabular} & \begin{tabular}{l}
\％ \\
\(\stackrel{5}{5}\) \\
ㄷ \\

\end{tabular} &  &  & \begin{tabular}{l}
\(\stackrel{\square}{\circ}\) \\
\(\stackrel{0}{5}\) \\
E \\
\(n\)
0
0
0
\(\frac{0}{5}\)
0 \\
\％ \\
안 \\
듣
\end{tabular} &  &  &  &  &  & \begin{tabular}{l}
\(\stackrel{y}{3}\)
ह
E \\
 \\
 \\
항 \\
名
总会
z
\end{tabular} &  &  &  &  \\
\hline Adelaide， & Fayette，．．．．．．．．．． & 238，500 & 158，642 & 2.874 & 570 & & 267 & 239 & & 2 & & & 4 & 16 & & 342 \\
\hline Amyville． & Westmoreland，．． & 17，300 & & & 400 & 16，900 & 120 & 107 & & & 20 & & & 8 & & \\
\hline Browns No． 2, & Allegheny，．．．．．．． & 109，351 & & 222 & 389 & 108，740 & 147
365 & 235 & & 2 & 100 & ．．．．． & 5 & 15 & ．．． & \\
\hline B ．\＆ O. & Fayette，．．．．．．．．．．． & \({ }^{76,768}\) & & & & 76,768
216,676 & 365 & \(\stackrel{3}{208}\) & & & & & \({ }_{10}\) & \({ }^{3}\) & & \\
\hline Banning．\({ }^{\text {Belle Bridge }}\) & Fayette，．．．．．．．．．．．． & 290,676
23,120 & & 4，000 & \(\cdots\) & 216,676
22,550 & 220
60 & 208 & & 2 & 125
10 & 4，300 & 10 & 16 & & \\
\hline Blg Chief，． & Westmoreland，． & 54.221 & & 90 & 60 & 54，071 & 98 & 156 & & 1 & 10 & & 1 & 6 & & \\
\hline Buckeye，． & Westmoreland， & 64,700 & 48，405 & & 421 & & 221 & 121 & & & & & 6 & 18 & & 160 \\
\hline Bessemer and Rising Sun & Westmoreland，．． & 65.800 & 49，416 & ．．．．．．．．＇ & 595 & & 258 & 80 & & & & & & 17 & & 273 \\
\hline Coal Brook，．．．．．．．．．．．． & Fayette，．．．．．．．．．．． & 84.600 & 63.504 & 413 & 1，445 & ．．．．．．．．．．．．． & 261 & 107 & & 1 & ．．． & & 8 & 12 & & 120 \\
\hline Davidson Shaft， & Fayette，．．．．．．．．．．．． & 17，987 & 95，583 & 2，209 & & & 30 & 217 & 1 & & & & 8 & 19 & & 330 \\
\hline Dexter． & Fayette，．．．．．．．．．．．． & 14，394 & 11，402 & ．．．．．．．． & 176 & & \({ }_{212}^{239}\) & 22 & & & 50
700 & 2，\({ }^{41}\) & & 3 & & 40 \\
\hline Darr，\({ }^{\text {Dravo，}}\) & Westmoreland，．．．．
Allegheny， & 353,84
40,000 & & ．．．．．．．．．．． & 300 & 353,847
39,700 & 212 & 358 & 5 & 4 & 700
50 & 2，100 & 10 & 20
8
8 & & \\
\hline Emma， & Westmoreland，．．．．． & 13，775 & 9.819 & 136 & 270 & & 235 & 27 & & & 50 & & 1 & 2 & & 36 \\
\hline Enterprise， & Westmoreland，．． & 6.100 & 4，551 & 10 & 5 & & 59 & 50 & & & & & & 8 & & 51 \\
\hline Eureka， & Westmoreland，．． & 153，000 & & 500 & 500 & 152，000 & 195 & 176 & 1 & & 400 & ．．．． & ， & 14 & & \\
\hline Euclld， & Westmoreland， & 38.910 & 228 & 1，589 & 130 & 36，963 & 97 & 102 & & & 50 & & 2 & 10 & & 20 \\
\hline Franklin， & Fayette， & 28，240 & 20，251 & 131 & 209 & & 233 & 387 & & & 5 & ．．．．． & & 5 & & 50 \\
\hline Fort Hill， & Fayette，．．．．．．．．．．．． & 218.000 & 168，000 & ＋180 & & & 300 & 287 & 2 & \({ }^{1}\) & 225 & 10 & 3 & 8 & & 325 \\
\hline Forrest 1fil， & Allegheny．．．．．．．．\({ }^{\text {Fayette，}}\) & 251.126
194,146 &  & 4,006
1,049 & 340
1,049 & 246，780 & 187 & 378 & & 1 & 738
650 & 10 & 4
3 & 17 & 1 & 407 \\
\hline Gospel， & Allegheny． & 17，000 & & 170 & 1， 180 & 16，650 & 172 & 69 & & & 122 & & 2 & 5 & & 407 \\
\hline Guffey，．．．． & Westmoreland，．．． & 120,009 & & & & 120，009 & 155 & 280 & & & 240 & 1，200 & & 21 & & \\
\hline Henry Clay & Fayette，．．．．．．． & 108.027 & 73，443 & 2，903 & 644 & & 265 & 112 & & 1 & 15 & ．．．．．． & & 9 & & 120 \\
\hline Horner \＆Roberts， & Allegheny，．．．．．．．．． & 55， 000 & & 100 & 100 & 54，800 & 155 & 139 & & 1 & 100 & ．．． & & 1 & & \\
\hline Home Works， &  & 11.082
46.936 & 9.110
30.226 & …397＊ & 605
1,200 & & 222
310 & 12 & & & 25 & & ．． & 1 & & 20
58 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lynch & Allegheny, & 4,000 & & & 4,000 & . \(\cdot 1\) & 220 & 1 & & & 50 & & & & & \\
\hline Lovedale & Allegheny, ......... & 6,543 & & & & 6,543 & \({ }^{26}\) & 92 & & & & & & 4 & & \\
\hline Mullin, & Westmoreland, .... & 55, 254 & 41,516 & 1,286 & 2,051 & & 253 & 92 & & 1 & ........ & & 1 & 9 & & 82 \\
\hline Morgan & Fayette, ...... & 32,973 & 21,982 & & 2 & & 266 & 23 & & & & & & 2 & & \\
\hline Ocean No. 1, & II estmoreland, . & 131,254 & & & & 131,254 & 154 & 325 & 1 & 3 & 788 & 50 & 3 & 10 & 2 & \\
\hline Ocean No. 2, & Allegheny, ...... & 236,714 & & & & 236,714 & 171 & 477 & & & 1,421 & 1,500 & 3 & 29 & 1 & , \\
\hline Ocean No. 5, & Allegheny, & 94,450 & & & & 94,450 & 108 & 261 & & ...... & 190 & & & 15 & & \\
\hline Osceola, & Allegheny, & 60,950 & & 482 & & 60,468 & 120 & 151 & & & 90 & & 3 & 8 & & \\
\hline Painter \& Cornell, & Allegheny & 44,600 & & & 25 & 44,575 & 130 & 102 & & & 100 & & & & & \\
\hline Port Royal Nos. 1 and 2, .... & Westmoreiand, & 194,918 & 22,541 & 10,758 & 743 & 146,903 & 200 & 265 & 4 & 2 & 1,324 & & 14 & 30 & 1 & 60 \\
\hline Plumer. & Fayette, ...... & & & & & & & 89 & & & & & & & & \\
\hline Pennsvil & Fayette, & 31,634 & 25,248 & 697 & 392 & & 223 & 55 & & & 34 & & 4 & 3 & & \\
\hline Painter, & Fayette. & 133,824 & 100.368 & 732 & 944 & & 260 & 157 & & & 100 & & 4 & 22 & & 92 \\
\hline Rainbow & Fayette, & 148, 111 & & & & 148,111 & 171 & 210 & & 3 & 100 & & 4 & 10 & & 228 \\
\hline Rist, & Fayette, & 240,081 & 160,510 & 1,389 & & & 266 & 264 & & . & 860 & & 4 & 30 & & 367 \\
\hline Sarah & Allegheny & 8.893 & & 45 & 100 & 8,748 & 70 & 51 & & & & & 1 & 2 & & \\
\hline Scottdale Steel Co & Fayette, & 11,655 & & 11,625 & & & 140 & 27 & & & & & & 6 & & \\
\hline Shaners No. 2, & Westmoreland, & 41.511 & & 600
1.095 & 60 & 41,511
33,200 & 130 & 106 & & & 50 & & 2 & 9 & & \\
\hline Smithton No. \({ }^{2}\) & Westmoreland, & 34, 350 & 5.000 & 1,095 & 60 & 33,200 & 182 & 135 & & 1 & 728 & & & 9 & & 117 \\
\hline Sterling No. 1 , & Fayette, & 17.049 & 11,567 & 128 & 25 & & 61 & 83 & & & 12 & & 2 & 8 & & 100 \\
\hline Summit, & Fayette, & 36. 025 & 23,338 & 68 & 91 & & 67 & 124 & 1 & & 30 & & 1 & 17 & & 222 \\
\hline Tyrone, & Fayette, & 116,769 & 82,992 & 532 & 995 & & 310 & 103 & & 2 & 350 & & 1 & 14 & & 141 \\
\hline Tip Top, & Fayctte, & 27.065 & 18,711 & 9 & & ............ & 77 & 96 & & ...... & & & 1 & 14 & & 121 \\
\hline Valley: & Fayette, & 202, 459 & 125.618 & 1,122 & 416 & & 262 & 204 & & & 1,000 & & 4 & 18 & & 251 \\
\hline Whest overton, & Westmoreland. & 66, 174 & 53,080 & & 398 & & 303 & 113 & & & & 40 & & \(\delta\) & & 110 \\
\hline West Newton Shaft, & Westmoreland, & 192.484 & & & & 192,484 & 184 & 246 & & 3 & 360 & & & 15 & & \\
\hline Whek Have & Fayette, & 174,719 & & 2,200 & & 172,519 & 175 & 25. & 2 & 1 & 150 & & 1 & 12 & & \\
\hline Whlte, & Fayette, & 88,675 & 25,176 & & & & \(\begin{array}{r}79 \\ 142 \\ \hline\end{array}\) & 109 & & & 100
200 & & 3 & 18 & & 200 \\
\hline Yough slope & Westnioreland. & 48,666 & & 1.200 & 2,692 & 44,774 & 142 & 109 & & & 200 & & 3 & & & \\
\hline Tota & & 5,074,385 & 1,593,325 & 54,998 & 23,212 & 2,878,708 & 9,242 & 8,509 & 19 & 33 & 11,622 & 9,241 & 152 & 624 & 5 & 4,123 \\
\hline
\end{tabular}

TABLE No. 3-Showing the number of each class of Employes at each Colliery in the Ninth Bituminous District, during the year 1897. \({ }_{8}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Names of Collieries.} & \multicolumn{8}{|c|}{Occupations of Persons Employed Inside.} & \multicolumn{7}{|l|}{Occupations of Persons Employed Outside.} & \multirow[b]{2}{*}{} \\
\hline &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  & \\
\hline  & \begin{tabular}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
2 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
2 \\
1 \\
1 \\
1 \\
1 \\
2 \\
1 \\
1 \\
\hline\(\ldots\)
\end{tabular} &  & 117
90
180
22
160
125
130
58
37
54
103
10
208
100
10
21
135
50
15
15
235
160
51
230
51
100
6 &  & 10
6
13
2
14
14
5
6
5
5
5
10
2
20
5
0
2
3
14
6
3
16
16
16
2
2
14
7
7 &  &  & 142
102
1024
304
186
136
148
74
46
666
122
13
315
108
14
26
169
99
19
159
269
190
66
236
644
127
7 &  &  &  & \[
\dddot{2}
\] & 84
3
3
20
1
10
15
5
37
30
38
89
8
30
\(\cdots\)
10
19
19
2
16
16
121
25
172
3 & 1
2
2
1
2
1
1
2
2
2
1
1
1
1
2
2
2
2
2
2
1
5
2
2
2
2
2
1
2
1 & 97
5
31
3
22
19
8
47
44
41
95
9
43
4
13
24
16
10
18
132
36
187
7 &  \\
\hline
\end{tabular}



TABLE No. 5-List of Non-Fatal Accidents that occurred in and about the Mines of the Ninth Bituminous District, for the year ending December 31, 1897.



\section*{Tenth Bituminous District.}
(HUNTINGDON, BEDFORD, FULTON AND BLAIR COUNTIES, AND THOSE PARTS OF CLEARFIELD, CAMBRIA AND INDIANA COUNTIES LYING ADJACENT TO THE BELLS GAP RALLROAD, AND THOSE PARTS OF CLEARFIELD, CENTRE AND CLINTON COUNTIES LYING ADJACENT TO THE BEECH CREEK RAILROAD.)

Altoona, February 14, 1898.
Fon. James W. Latta, Secretary of Internal Affairs, Harrisburg, Pa.:
Sir: In acrordance with the provisions of the Bituminous Mine Law, I have the honor of submitting to yon the report for the Tenth bituminous district for the year ending December 31, 1897.

The condition of the coal trade has been good during the year, and a large quantity of coal has been shipped. The general condition of the mines as regards rentilation and drainage was good on the whole, especially in the large oprerations, for it is at the small operations where we find the most difticulty, as some of these are leased by men of small eapital, who feel that improvements they make for rentilating the mine is so much money taken out of their pockets uselessly, for in madertaking to work the small mines, they seem to think that ventilation and dranage are the last things they must take into acrount in their calculations, and it is with such we have to contend in enforeing the law. The number of fatal acridents during the last year was seven, as compared with five for the preceding year. Of these, six were due to falls of coal, slate and rock, and the seventh man was killed by being canght befween the coke larry and a post. The deaths of three men lyy falls of slate wats owing to their not excreising any precation whatever to see that the roof was satfe, but they took the chances of the roof not falling, and paid the penalty with their lives.

One new mine hats been opened during the yar, and at another mine a tat rope hanlage plant has been put in, and the prospects for the coming yeat are that several companies will equip their mines wifh coal rotting mathines, for competition is so close that it is only
a question of time before they will all have to resort to machine mining or else go out of the business.

The number of miners in this, as well as other districts, is always greater at each mine than is really necessary for the production of the quantity of coal needed by the operator, and in places where the majority of the miners are employed this is necessary, as they have so many holidays during the year, and as each holiday means a drinking day for them, the result usually is that each man loses, perhaps, a couple of days, and the mine has to be shot down in consequence of there being no men at work, so that the operator, to protect himself, employs more men than are neressary for the quantity of coal he necds. lsut there are places where the miners are nearly all English speaking men, yet, at these mines, the number of miners is in exeess of what are needed for the quantity of coal required, and the result is that the men's earnings are very small in thr aggregate. In conseruluce of this, one of the managers at a mine in this district. resolved that he would employ only enough men to grive him the thount of coal he needed daily, and he did so and kept an account of lie men's earnings for the whole year, and it showed the difference in the earning capacity of miners when they are all working under conditions that are exactly alike, so far as the thickness of the seam, hardness of the coal and distribution of cars for each miner is concerned.

The name of the mine is omitted for obvious reasons, and in the table whith follows I have designated the miners by numbers instead of using their names, and so the following table and figures are submitted, and will, I trist, prove interesting:

Number of employes earning less than \(\$ 100\) by reason of leaving, and from work on improvements being completed. These are mostly men (mployed doing temporary work ontside:
\begin{tabular}{|c|c|c|c|}
\hline 1. & ......... & \$52 31 & Commenced work in November. \\
\hline 2, & .................... & 5574 & Left in February. \\
\hline 3. & .................... & 1500 & Left in January. \\
\hline 4. & ..................... & 8607 & (ione. \\
\hline 5. & & 8122 & Gone. \\
\hline 6, & . ..................... & 9392 & Gone. \\
\hline 7. & ...................... & 9972 & Gone. \\
\hline 8 , & .. & 7650 & Gone. \\
\hline 9, & & 400 & Gone. \\
\hline 10. & ...................... & 67 & Gone. \\
\hline 11. & ....................... & 7700 & Gone. \\
\hline 12, & ........................ & 9542 & Gone. \\
\hline 13. & ........................ & 1265 & Gone. \\
\hline 14. & & 1510 & Commenced work in December. \\
\hline 15. & & 770 & Gone. \\
\hline 16. & & 1760 & Gone. \\
\hline 17. & ..................... & 5936 & Gone. \\
\hline
\end{tabular}


Number of employes earning between \(\$ 100\) and \(\$ 200\) :


\section*{Number of employes earning between \(\$ 200\) and \(\$ 300\) :}


Number eatning between \(\$ 300\) and \(\$ 400\), mostly common laborers and men who work irregularly:
\begin{tabular}{|c|c|c|}
\hline 1, & \$491 23 & \\
\hline 2, & 36214 & Began work in January; never mined before \\
\hline 3 , & 37246 & Irregular work. \\
\hline 4, & 33783 & Fireman part time at boiler. \\
\hline 5 , & 34830 & Irregular work. \\
\hline 6, & 39159 & Breaking coal outslde. \\
\hline 7. & 32857 & Sickly man, works irregularly. \\
\hline 8 , & 38745 & Irregular man. \\
\hline
\end{tabular}

        37577 Breaking coal outside.
Total,
\(\$ 4,15095\)
Number earning between \(\$ 400\) and \(\$ 500\) :
\begin{tabular}{|c|c|c|c|}
\hline 1, & ...................... & \$439 50 & Carpenter. \\
\hline 2, & ...................... & 40669 & Miner. \\
\hline 3 , & & 49063 & Miner. \\
\hline 4, & ........ & 40578 & Miner. \\
\hline 5, & ........... & 49102 & Miner. \\
\hline 6 , & & 46951 & Miner. \\
\hline 7. & & 40462 & Miner. \\
\hline 8 , & .............. & 45633 & Miner. \\
\hline 9, & & 46597 & Miner. \\
\hline 10. & & 46860 & Miner. \\
\hline 11. & & 46601 & Miner. \\
\hline 12, & & 49777 & Miner. \\
\hline 13, & & 49315 & Miner. \\
\hline 14, & & 49983 & Miner. \\
\hline 15. & & 42254 & Miner. \\
\hline 16, & & 47745 & Miner. \\
\hline 17. & & 43864 & Miner. \\
\hline & Total, . & \$7,794 04 & \\
\hline
\end{tabular}

Number earming betwern \$500 and \$600:


21,
23141 Boy with father allowed half a turn.

Total, ........... \$10,837 15

\section*{Nomber of turns, 20 .}

Number of those earning between \(\$ 600\) and \(\$ 700\).


Total, .......... \$12,545 44
Number of turns, 20.

Averages, viz:
\begin{tabular}{|c|c|}
\hline Number of days mine running, & 307 \\
\hline Average per day, ................ & \$149.3 \\
\hline
\end{tabular}
20 men earning \(\$ 10.837 .15\), average, ..... \(\$ 54185\)
Number of days running, ..... 307
Average per day, ..... \(\$ 176.8\)
23 men earning \(\$ 11,863.18\).
Equivalent to 20 men, average, ..... \(\$ 59315\)
Number of days, ..... 307
Average per day, ..... \$1 93.2

In the aloove, there are, in all, sixty-one men or names. Some of these are boys, for whom half turns are allowed in some cases and in others whole turns, according to age. Since April 1 , the time and tonnage of every one, men and boys, have been kept separate, the miners allowing what is right, according to their ideas as to earnings of their boys. We have joined them together, according to families, as it is impossible to ascertain each separately. In the averages, we have allowed according to the turns, which is as near correct as we can get it.

The mine has been open every working day in the year.
We base the average upon the supposition that each man worked Gery day the mine was in operation, viz., 307, which is, of course, not correct, as not one of them worked every day, and a great many lost from ten to fifteen days during the year, and an average of 295 would be nearer correct to get at the actual time worked by each man. Even with this basis, which is against us, the average earnings are large and shows what a miner can earn.

\section*{Abstract of Work at Mine for 1897.}

T'otal number of men and names on the pay rolls during the year,

\(1,582 \quad 26\)

Net amount for actual labor,
\(\$ 39,98549\)

\section*{Viz:}

21 employes' earnings below \(\$ 100.00\), ....................................... \(\$ 90480\)
9 empluyes between \(\$ 100.00\) and \(\$ 200.00, \ldots . . . . . . . . . . . . . . . . . .\).

11 employes between \(\$ 300.00\) and \(\$ 400.00\), .................................. 4,150 95
-
53 Total, ................................................................................. \(\$ 9,49112\)
\(=\)
Of these men:
29 were discharged during year, ............................................ \(\$ 3,34039\)
3 began work during year, ................................................. 1,16717

4 laborers outside part, ......................................................... 1,384 34
7 miners working irregularly, ........................................... 2,690 25

\section*{-}

53 Total, .......................................................................... \(\$ 9,49112\)
\(=\)
17 men earning between \(\$ 400.00\) and \(\$ 500.00, \ldots \ldots \ldots . . . . . . . . . . .\).
21 men earning between \(\$ 500.00\) and \(\$ 600.00\), ................................ 10,837 15
23 men earning between \(\$ 600.00\) and \(\$ 700.00\), ................................. 11,863 18

114 Total, \(\$ 39,98549\)

It will be seen from the following summary that the production of coal is much greater, and the nmmber of employes, also, is greater than last year. The usial tables and a description of the mines and their condition follows. The report is respectfully submitted.

\author{
R. HAMPSON.
}

\section*{Summary of Statistics.}
Number of mines in the district, reported, ..... 62
'Iotal quantity of coal produced, ..... 3,261,976
Total quantity of coke produced, ..... 191,882
Enantity used for steam and heat, ..... 20,826
Guantity sold to local trade and employes, ..... 23.537
Quantity shipped by rail, ..... \(2,929,281\)
Total number of persons employed ..... โ,49:3
Aggregate number of days worked dming the year, ..... 12,162
Number of fatal accidents ..... 7
Number of non-fatal aceidents, ..... 18
Number of tons per fatal accident, ..... 46:5,996
Number of tons per non-fatal accident, ..... 181,220
Number of kegs of powder used, ..... 20,171
Number of pounds of dynamite used, ..... 12,545

\section*{DESCRIPTION OF MINES}

\section*{Gazzam Mines.}

These mines are located at Gazzam on the Beech Creek railroad, and at the present time there are two mines working, and the greatest number of miners are employed in the No. 1 mine. In this mins the seam will vary from seventeen to forty inches in thickness, with a very good slate roof over it. Where the thick coal is found is in the bottom of the swamps that are found in the mine, and as many of these swamps are below the level of the drift month, it makes it a hard mine to drain properly and owing to the low seam of coal a great deal of roof or floor has to be blasted to make height for the mules; in consequence of this, the headings do not look as neat as in flaces where litle or no rork is blasted down. The system of Working is lowding and aireomser amd rooms alre formed wif from the heading, and in some eases from the atir romese, where the grate is favorable for the parpose, and the rooms in cath case ate driven ipf for a distame of sixty yards, amd then the pillar is pulled batek. The verntilation of the mine wats very good dming the vear, as the stind fan is doing exeellent work. The sanilary rondilion was also goors.

No. 4 mine is located a mile from Ga\%zam over the hill, and they
lave had trouble in this mine from the commencement owing to the coal in many places pinching nearly out, and in having so many swamps, so the only workable coal they could get was found by following in the tronghs of the swamps. luring the last summer, the coal was so much narrowed down that the management coucluded to finish the mine and they are now engaged in bringing out the room pillars, and the heading pillars, and at the present rate of working it will not last more than one year at the utmost. The rentilation was rery good during the year, and everything is well attended to about the mine.

O'shanter Mines.-These mines are located about one mile from Mitchell station, on the Beech Creek railroad, and are two in number. No. 1 mine will average three feet in thickness of coal, with a band of cannel coal running from four to twelve inches in thickness on the top of the coal and next the roof, which coal is thrown into the gob as being worthless. The method of working is heading and air course, and rooms are turned off the heading and driven up sixty yards, and the pillar is then drawn back. This mine will not last much longer as they are pulling out the heading pillars, and also the room pillars that have been left. The rentilation, at the beginning of the year, was not rery good, but on my later visits it was in a fairly good condition, which was owing to the main air course having been closed up, and they were obliged to make a new one. In No. 2 mine, work has been confined to pulling ont the heading pillars, and it is also nearly worked ont.

This company did some work during the year at the Plane mine, at Mitchell station, and as soon as the two old mines ate worked out, they will transfer their operations to that mine, and they will put in a new opening that will strike the present face of the workings, so that it will then be a comparatively new mine.
bloomington.-These mines, two in nmber, are working the same rein as the Oshanter people, and the characteristics of the seam, as rugards height and roof are the same and there is the same camel coal found on top of the seam, and the method of working is also the s:ame in every respect.

In No. 3 mind they have done very little heading work during the fear, as on one side of the mine the headings had cut into No. 4 mine, or worked up to an adjoining propery. In the dip workings the ventilation was fomd in a good condition, but in the workings known as "WFood," the ventilation was not good on the first visit, but was in good condition on the subseguent visits.

In No. 4 mine the rentiation of the larger portion wat grond; the wher portion was not quite up to the standard at the first visit, but was much improved al the later visits. They have a large Brazil fan for rentilating these I wo mines, whirh is capable of doing good work.

They have a great deal of trouble hy water on the right of the main heading, and as it would have cost too much to get it out by water cars, and being too far away for steam to be used, they put a gasoline pump) in one of the old headings and it is now doing good work and keeps the dip clear of water. As regards the new slope, very little work was done in it during the year, bat they lad some miners at work a portion of the year driving up from the lower end, so as to avoid cost of pumping and they will not rush matters mint times show some signs of improvement, and then they will push it through the hill.

Kyler.-This mine is located a short distance from Munson station, on the Beech Creek railroad, and here the seam will arerage three feet of workable coal, with a bone coal one foot thick on the bottom and the same thickness of bone coal next the roof, so the merchantable (eall is in the middle. In the headings this bone coal is laken down, and it makes a good height for heading, and in the room the top bone is taken down so as to make a height for the miners to load cars; the rest of the bone is propped up. The method of working is heading and air course, and the rooms are tmed off the heading, and, when driven to their destination, the pillar is pulled back. This mine was idle on my first and second visits, and on the other visits, the rentilation was not very good in one portion of the mine, but the other part was all right and they were endeavoring to get the mine in good condition all around. This mine is now in over a mile. and they cannot drive rery far on the right before they strike the adjoining property, and on the left they may get perhaps twenty rooms and then run against a fault.

Royal Slope.-This mine is located one mile from Munson station, on the Beech Creek Railroad, and the same seam of coal is worked as at Kyler. The method of working is a little different here, for where the gromid will admit, the three heading system is practiced, and rooms are turned off the headings right and left, and the ventilation of both the headings is then carried in the center one. In the other portions of the mine the donble heading, and heading and air course plans are followed, just as the nature of the ground will permit. They have got the slope down to the property line and are now following along the line with a heading, from which eross headings are driven \({ }^{1}\), the grade and the intention is to work ont all the coal in the dip portion of the mine as soon as possible, which will allow the coal lying near the opening to be worked ont last. They have moch trouble with water and have to use steam pumps to keep the dip clear of it. They also have trouble with a poor roof, and a great deal of timber has to be med to keep the places safe. They lave a good Brazil fan, and the rentilation was very good at the different visits made during the year.

Douglas Slope.-This mine adjoins the above mentioned, and is on the same vein and the general plan of working is the same. They worked only a part of the year, and the ventilation was found to be good at the different visits made to the mine.

Harts.-This is a small mine and only during the winter months for a short period does it come under the provisions of the law, but it was found in very fair condition whenever I have visited it.

Forest.-This mine adjoints the Kyler mine, and in some portions tise two mines are cut into each other, and the same thickness of coal and general characteristics prevail as at Kyler. They have a great deal of trouble with faults in this mine, there being several small ones and then a big one throwing the coal down in most places twenty-six feet, so that it will be necessary, at some future time, to get an opening behind the fault so as to win the largest portion of the coal in the property. They did not work very much during the first part of the year, but on each visit the ventilation of the mine was good. They lave done little work in the new opening, and at my last visit they transferred the miners into No. 1 mine.

Winburne.-This mine is located one mile from Winburne station, on the Beech Greek railroad, and has worked fairly well during the year. The ventilation and the drainage were always found in good condition at the visits made to the mine. They have started work in a mine that was stopped several years ago on account of its going to the dip, and they took in a big lift of bottom so as to set as near the bottom as they possibly could, and now they are opening up the mine as fast as possible. They have made connections with the mine where the fan is located and after awhile the fan will be located at a more convenient point than at present. This is the same rein and the same method is followed as at the mines at Munson.

Girass Flat.-There are four mines, Grass Flat, Knox Run, Moravian and Pleasant Hill, all located on a branch road, which leaves the Beech Creek railroad at Viaduct station. The vein and general characteristics are the same as the mine last mentioned. The Grass Flat mine is the largest and also the oldest mine of the four, and the coal is hanled out by the tail rope system, and the present length of the hanlage is nearly one and a quarter miles. The ventilation and the drainage were very good during the year, and things are well looked after. They have much trouble with water, so they have, for years, been following the workings with a water level which has so far enabled them to drain the mine withont steam power. The fan used for ventilation also ventilates the Pleasant Hill mine.

Pleasant Hill.-This mine adjoins the last mentioned one and the same characteristics prevall here. The rentiation and drainage were very good during the rear. The workings on the sonth side of the main heading go to the dip for a portion of the dis-
tance and are drained by a water level, the same as in Grass Flat mine. The main heading is now standing in a dip, and a cross heading will be driven from water level to drain the face of the main head ing. They are now opening up quite a body of coal to the north of the main heading.

Knox Run.-This mine is located one mile from (irass Flat mine, and the thickness and chamacter of the seam are the same. They have pushed the headings a great deal during the year, and have a good body of coal now opened up, and are now developing the coal to the right of the main heading. The ventilation, during the early part of the year, wats not very good, but they have put down a shaft near the face of the workings and now the mine is in excellent condition.

Moravian.-Next to Grass Flat, this is the oldest mine of the four, and it is now in a long distance, and the workings to the left of the main heading went to the dip, so fast that it wats very hard to get the coal out of that portion of the mine, but now they have made a Water way into a hauling drift, and this will make a comparatively new mine, as a new main heading is being driven up the dip, and cross headings to the right and left are being turned from it, and in a short time a new rentilating shaft will be sunk near the face of the workings. The ventilation and drainage were good during the year, and everything was well looked after.

Sugar Camp.-These mines are located at snow shoe and the coal is shipped over the lennsylvania railroad. The mines have worked very well during the year, and they have shipped a large quantity of coal from the different openings.

In No. 2 mine considerable heading has been driven and they have also taken up a large streteh of bottom for drainage. The ventilation was very good during the year. In No. 3 mine, the work is nearly all confined to drawing ont pillars, but the mine will last for quite a long time yet as the headings are of great length and the coal is high as compared with the other openings. The ventilation was fairly good. In No. 4 mine, they have pushed the headings very fast, and have a large guantity of coal opened up. This is the largest mine they own, and they have kept the ventilation in good condition during the year. They have put in a new opening to get at a spur of coal they could not reach from No. 4, and the main heading will soon be cut into No. 4 mine.

Careytown.-This mine has worked very well during the year, and as the solid coal is worked out, they are now bringing back the room and heading pillars, and it will be cleaned out by next spring. The ventilation and drainage were very good.

Cherry Run.-This mine is located about three miles from Snow Sboe, and the coal will arerage about three feet in thickness, and
they are still having tronble with rolls and elay reins, which makes it a difficult mine to work properly, and they also have trouble with vater. They worked very well during the year, and the quantity of coal shipred was large for a mine of this eharater. The ventilation and dranage were good during the year.

Cato.-This mine is located on the Beech Creek railroad, and very little work was done dming the rear. I visited the mine only once, when the rentiation was fally good. They have put in a new opening and have cut off the hand from the dip workings. They are also putting in a new furnace for the new opening.

Glen White.-This mine is located three miles from Kittamning Point, on the lemsylvania railroad, it is a slope mine and the coal is hanled from the slope by a tail rope, and after being dmmped it is then rom down by a rope more than a mile, and is then taken up by mule tean, and hanled to the top of a plane, and dropped down to the tipple, where it is screened and the fine coal is used in the coke orens. They have driven the shope down a long distance and made a new double parting and turned off main headings; from these main headings, cross headings will be driven up grade and the rooms turned right and left on the level. They hase much trouble with clay reins and water and have stean pumps to keep the mine clear and they are prshing the slope so as to comnect with the workings of the Amshry mine; and when this is finished, the water will rmont by gravity. The rentilation was good during the gear.

Horse shoe.-This mine is located nearly three miles from Kittanning Point, and they are working the Miller seam, and here the bottom is very soft and the sand rock above the coal is rery thick and heary, with the result that in one pair of headings, when the rooms were worked \(\quad\) ph and the pillars were being pulled back, a squeeze (ame on and closed up the headings so that they were compelled to re! the coal from another point. They also encomitered a big roll and hate heen rompelled to go aromd it, so that the mine is not in as grod condition as the management comld wish it, but they had to work according to the lay of the grombl. The ventilation and dranage of the mine were good.

Delaney.-This mine is worked by the stme company that operated the Horse shoe mine, but it is on the formeot rein. There is a slope toming thronglt the hill, and a part of the workings are in the slope, and the other two opelings are in the hills beyond the battom of the slope. The roal is hated from the diterent openings hey means of the hambage rope that hanls from the slope workings. The tomble beading. and the three heading system is in vogme here, and the fooms are driven for at distance of 100 yards, and then the pillats are pulled hark. They have worked very steadily, and the rentilation in the different openings was very good during the year.

East End.-This mine is located at the east end of the (iallitzin tumel, on the lemmstrania raliond; the coal is reached by a slope and the tail rope system of hambige is in vogue. At present, the slope is down to the third lift, but they are hauling coal only from two lifts. The system of working is heading and air course, and the rooms are driven up grade for 100 yards, and the pillars are left in matil the fimal working, as the would not be able to handle the water if the pillars were pmilled out. The mine worked steadily during the year, and they opened up a good deal of ground, and the ventilation was found in grood condition at the different visits. They also moved the fan to a new shaft that was smok, and have fitted mp, the shaft with stairs for a traveling way, as the old traveling had become dangerous by reason of its fassing through old workings.

Lemon.-This mine is working on the same vein ats the East End mine and the method of working the headings and rooms is the same. The mine is getting in a long distance, and the hand ontsitle is also long. The roof in this mine is not so good as in the other mines and the miners have to exereise more care. The ventilation, on the first risit, was not very good, but was better on the subseguent visits. Ther are expecting, in a short time, to cut into an old mine and, when this is done, a new slaaft will be put down and either a fan or a good furnace will be put in for ventilating purposes, for the present furmace is nearly a mile away from the face of the work and camot ventilate the mine much longer.

Bradley.-This mine is working on the Miller seam, and the method is heading and air comse, and double heading, and they have worked steadily during the year, but, owing to the long hanl, the production is limited. This is a brushing coal, and no powder is used only in the laddings, and the rentilation was always found in very good condition. They have put down a shaft at the outcrop of one of the headings, which will improve the mine during the coming var.
l'orter.-This is a shaft mine and is working the same vein as the Bradley, and lies to the dip of the Bradley and the two mines are remmected at different plates. The method of working here was single heading, with the rooms turned off on both sides of the heading, then driven up a distance of surenty yards, and the pillas were left in, and so, for the last two rears, these pillars have been the main portion of work. The general condition of the mine was very fair.

Robertsdale.-This mine is located on the East Broad 'Top malroad, a narrow gange road raming from Mt. Inion, on the Pemestrania ratroad, to Roherdsdate. The mine is a slope which has been in operation for over twenty rears, and the area from whicll the eoal has been taken is very large. The seam here is a double one, the lower bench being four feet in thickness, then a band of slate ruming from four
inches to fourteen feet in thickness, then a seam of coal three feet in thickness with a hard sandstone roof. The mode of working is to drive the heading in the bottom bench, and the air way in the top bench, with holes through the rock at every thirty feet, except when the rock is over eight feet in thickness, and then the airway is driven on one side of the heading. The rooms are driven forty feet in width, with a thin pillar between each room, and 1 , for 100 yards, then the props are ent, or shot out, and the middle bench of rock and the top bench of coal allowed to fall. Then a new road is started from the mouth of the room to the top of the fallen rock, and the coal is then loaded out, and it is no uncommon sight to see from twelve to fifteen hundred tons of coal down at one time. They have much trouble with steep rolls, and there is a large quantity of water m the dips thus formed, and they have pumps worked by compressed air in these dips; at the foot of the pumping shaft there are very large and powerful steam pumps. The general condition of the mine was good during the year.

Woodvale Shaft.-This is a shaft mine, owned and operated by the same company which operates the Robertsdale mine, and is located abont one mile from the slope, the two mines having been connected on the inside during the past year, and now they allow a large body of water to flow to the foot of the Woodvale shaft and it is pumped from that point, as they have two large and powerful steam pomps capable of handling the large amount of water that sometimes aceumulates in the mine. The general plan of working is the same as at Robertsdale, and they also have much trouble with steep rolls, which makes it an expensive mine to work. The ventilation and drainage of the mine were very good during the year. The hoisting engines that have been in use since the shaft was sunk have been replaced by a pair of very powerful ones.

Fisher.-This is a small mine and working the same seam as the one last mentioned, hat here the lower bench is much thinner and the "per bench is also very thin. They have worked fairly well during the year and have put in a new opening in a piece of coal lying to the loft of the drift month, and have also sunk a shaft down to the coak. The ventilation was good on my first two visits, and on the other visits it was very fair.

Ocean No. 1.-This mine is worked only part of the year, as there was some difficulty in regard to price paid for yardage, and the bamber of miners is not very large. There are two seams worked from this opening, being connected inside by a tunnel through the rock. They have put down a shaft at the face of the workings, and the rentilation, which was poor on the first visit, was fomnd to be good on the other ones. This is a very old mine, the coal is thin and the roals, on aceomet of the very hatd rock are low, and this hard
lock has to be blasted down in the rooms to allow the mules to bring the cars in and take them ont.

Ocean No. 2.-This mine is working on the same vein as the Fisher and adjoins it and the two properties will be soon connected. The coal is of the same thickness and character and the method of working is heading and air comse, with rooms turned off the heading and driven mp 100 yards, and sometimes more. The mine is getting in : long distance, and the hatul is very hard, owing to the steep hills. The general condition of the mine was very fair during the year.
llmangdon.-This mine has worked like all the rest during the Year; the vein is similar and the mode of working is the same as those described above. The condition of the mine was fair during the year.

Carbon.-This is a small mine; there were from twelve to fourteen men employed during the year and its condition was fair. This mine hats much trouble with rolls, and they have been feeling their way along them as well as they could, hoping to find a gap in them at some point, and it seemed, on my last visit, that they had found one, and now they are in hopes of getting at better coal back of the roll.

Benedict.-They have worked very well at this mine during the year, and in the lower mine they have had considerable difficulty with rolls, and as the work became narrowed they put the miners into the upper seam, and are opening that, and mean to work from it in the future. The mine was in a fair condition during the year. These mines, Fisher, Ocean Nos. 1 and 2, Huntingdon, Carbon and Benedict are on the Shoup's Run branch of the Broad Top railroad.

Kearney.-Very little work was done at this mine during the spring and summer, as the furnace to which the coke is sent was out of blast for several months. In the Plane mine little work was done other than working out the rooms, and no headings had been driven. A connection has again been made with Cambria No. 1 mine and the mines are now working side by side. The ventilation was poor. In the slope, they have worked down far enough to get a lift to the right, and that side will now le worked, for the lift on the left has been worked out. The ventilation was very fair.

Cambria No. 1.-This was the only mine that the company worked during the year, and the ventilation and dranage were grood. In the shaft mine, they only had men enongh to mine coal for domestic use and for the use of the steam pumps.

Cumberland.-This mine has worked very well during the year, and they have devoted a great deal of attention to working out the coal in the bottom of the dip. On my last visit it was all deaned and now it will allow them a iarge lodgement for water. In the leadings and the rooms on the rise, they have had had roof all the year, and this has mate the mine very difficult to work, for, when bad
roof and a pitch as high as forty-five degrees are combined, it makes a bery bad combination for the operator and the miner, and they have atso much trouble by water coming from the roof, and so with bad roof, steep pitch and water, the work is very disagreeable all around. The ventilation on the whole was good, and they are trying to improve it by pushing an opening to the surface at the face of one of the pitch moms, and when this is made it will bring the air cmrent right to the face of the workings. They have tle tail rope system of haulage and a Brazil fan is used for ventilation.

Crescent.-Work was very fair at this mine, and they have pushed forward the headings all they could. They still have trouble with a very steep pitch on the left of the main heading, but on my last sisit it seemed to be getting more flat, while the pitch on the right hept more regular and the headings are kept regular. The mode of working is heading and air course, and the rooms are driven across the pitch for a distance of 100 yards. In the Chevington portion of the mine they are getting into a better roof and the coal is higher tian before. The condition of the mine was good during the year.

Warner:-There was not much work done here during the year. They put down a shaft on the top of the hill, which has improved the ventilation very much. They have a great deal of trouble with rolls, making it difficult to keep the mine in good condition.
Cuba.-There are two openings here, but the upper one has not worked mucll, and most of the work has been at the lower one. The mine is comnected witl an old mine at North Point, and as the airway was kept up to the face of the work, it was in very good condition during the year. The method of work is heading and air course, and rooms are driven up nearly 100 yards, and the pillars are left in. The seam of coal at this wine will average three feet in thickness, with a good rock roof.
Eureka.- Very little work was done here, and a squeeze came on and compelled them to make a new road along the onterops, to get at the coal lying beyond the squecze. The Morrisdale Coal Company has leased the mine and will endeavor to make the changes needed.
New Hampshire.-A little work was done at this mine at the begimning of the year, and then the parties operating it got in litigation with the owners and they had to give up the lease, and now other parties are to work it the coming year.

Cunard.-Work was very good at this mine all the year, but the production was not large, owing to the difficulties they have to confend with in way of rolls, fanlts and water. They have driven down the slope, but the ground is very irregular and when they turn off a cross heading it is sure to rom up against a roll, and then they have fo start at another point. On the north side they have had rolls and faults nearly all the year and now they have made a connection with
the Piper workings, and have drained the water out. The workings at the back end of the mine, on top of the plane, have been abandoned for the present, as it was found impossible to rentilate that portion of the mine, and they will endeavor to open ont the coal in the slope and on the north side of the workings, so that this will be handy to the shaft. The ventilation was not very good, owing to the difficulties above stated, but efforts are being made to put the mine in good condition.

Harvey Slope.-This mine has worked very irregularly during the year. I visited it only once, and then its condition was very fair. This is a slope mine, and they have trouble with very steep pitches, making it a diffenlt mine to work; they also have trouble with water.

Delta.-I was in this mine once during the year, and the ventilation was so poor that I notified those operating it to put the mine in poper condition to comply with the law, but they reduced the number of mines so as not to come under the provisions of the law. A new party will take hold of it at the begimning of the year and will put it in proper condition.

Durham.-This mine has worked very steadily during the year, and they have endeavored to keep their men fully employed, and have not row ded the mine so that these men have done better than other men in this meighborhood. I great deal of new work has been done, and the heading have been pushed a great distance. The method of working is heading and air course, and the rooms are driven across the piteh for 100 yards. The pillars have been left standing and will not be worked until the mine is nearly exhansted. The rentilation and dranage were very good, and everything is well looked after. and no expense has been spared to put the mine in first class condition.

Blands.-This is not a large mine; the coal is used to supply the engines on the Pennsylania and North Western railroad and the mine works nearly every day in the year. There are from thirty to forty men and hoys employed and the rein will arerage four feet in thickness, with a very fair roof. The system is heading and air course and the rooms are driven up about seventy yards and the pillars are then pulled batek. The ventiation and dranate were fair.

Fricks.-This mine is working on the same vein as the Bland mine, but the eonditions are very different. for here there is stome ruming from nine to twelve inches in thickness in the middle of the coal, and the roof is very poor and needs careful watching on the part of the miners. The double heading system and rooms driven up seventy yards, and the pillar is then bronght back, is followed here. The ventilation and the drainage were very good at my different risits.

Great Bend.-This mine is located a short distance from the Frick
mine and hats the same characteristics as regards poor roof and thickhess of stone in the middle of the seam. The same method of working is also followed. The rentilation wats fatir during the year.

Eldorado.-This mine was idle a portion of the year, as the lessees gave it "p to the owner, who is now working it. The condition of the mine was very fair at the diferent visits during the year. They have stuck a piece of poor coal in the main heading, and are now endeavoring to get heyond it, for there is a great part of the property yet unworked.

Edmiston.-This is a new mine, which was opened during the year for the purpose of supplying coal to the fire brick works, but they have rot employed mongh miners to come under the provisions of the law, but expert, in the coming year, to increase the fore of miners.

Mountaindale.-The bulk of the coal from this mine is used for coking pmposes, and the rein, which is a little orer two feet in thickness is a rery good coking coal. The method of working is heading and air comse; the rooms are driven up seventy yards and the pillar is then brought back. The rentiation was fair during the year. This mine will soon be worked out, and a new one opened early the coming year.

Pennsylvania.-This is a new mine opened the last year, located about one mile from Coalport, and the vein will not areage more than two and a half feet in thickness. The roof is not very good, it being so full of water seams that it is dangerons to work, and the miners have to exereise great care in keeping themselves safe. The plan is heading and air romse, and rooms are driven up for a distance of seventy yards, and then the pillar is pulled back. The rentilation and drainage were good.

Oakland.-This is not a large mine, only about twenty miners being employed, and as the coal dips all the way into the hill they have trouble with water, and have a small steam pump ontside to pump it out. The condition of the mine was very fatir at my different visits. They have put in a new furnace during the year.

Irvona.-Work has been good at this mine during the year, for they are now in very good coal, and seem to be away from the fanls that they have been troubled with for the last fom years. They have atade many imporements and the ventiation was good at the latter visits I made. The double heading system is followed here, and reoms are driven up 100 yards and the pillar is left until the mine is nearly worked out, as the workings are away below the bevel of the drift month, and the water that acemmulates has to be pumped out with steam pumps. They have fut a stationary engine on top of the slope fo prill the cars up, and will shortly put on a locomotive to rm from the tipple to the top of the slope. They have also put in a Stine fall and are now engaged in driving an arway in the high coal so as to
come ont at a point near the fan, as the present airway is too contracted.

National.-This mine has worked very well during the year, as the bulk of the coal is used for making coke. The headings in this mine have all struck against a roll, and they are not going to cut it at the present time, but will work ont the coal that is already opren, and they have cut a long diteh which has drained a large body of coal that will last a long time. The ventilation, at the begiming of the year was good, but in the smmmer and latter part of the year it was only fair. They are now engaged in clearing up the old No. 1 mine, and, as this mine beeomes worked ont, they will transfer the miners to No. 1.

Penn.-The mine has worked fairly well during the year, and the rentilation and datinage were very good. The coal in the dip workings is nearly all worked ont, and they are now working a piece of coal at the upper part of the property, which will not last very long. The method of working is heading and air course, and the rooms are driven up for 109 yards, and the pillars are then pulled out. This has been one of the best pieces of coal in the district, rmming from four to five and a half feet in thickness, and it has been very carefully worked.

Glenwood.-This property adjoins the Pem, and the coal is of the same character and thickness; the method of workings is also the same. A new opening has been made, and connections made with No. 4 opening, and now the coal on top of the hill in No. 4 is brought out at the new opening, which will allow the pulling ont of the pillars in the old mine. The gencral condition of the mine was good during the year, and everything is well looked after by those in charge.

Urey-There are three openings at this place, which are located in the next ridge to the Glenwood, and the coal and mode of working is the same. The mines have worked very well during the year, and a large quantity of coal was shipped from them. The ventilation and drainage were very good.

Burnside.-This is a small mine, which was opened during the year, on the line of the Pittshmegh and Eastern raiload, and very litile work other than developing it has been done.

Dongherty.-This is a smatl mine, located at the terminus of the narow gange railroad rmoning from Altoona to Donghery, and the coal is all sold in Altoona for domestic purposes, so that dming the shmmer months very liftle work is done and the busy season is during the fall and winter. Most of the work during the year was in the rooms and pillars, no heading work having been done. The condition of the mine was good.

Tunnel.-This is a small operation at (iorton Iteights, on the Beerh Creek railroad, and the work consists of taking the pillars out of one of the old Tunnel mines, and it is nearly worked out. The condition of the mine was very fair.



Bedford,
learfield
Clearfield,
Huntingdon
Indiana,
Claarfi
Clearfield
Hearfield, ...............................
Huntingdon
Clearfield,
Centre
entre,
Indiana,
Bedford,
Huntingdon.
H. C. Dlck,

WV. W. Hegarty
W: H. Sweet,
IV. H. Sweet.

John T Slinger
C. H. Porter,
R. A. Shillingfor

John Morrls,
F. F. Lyon.
John Somerville
J. F. Marsteller

Edward Quirk .............. Thomas Quirk
Thomas Bellis, .....................
G. McIntyre,
F. F. Lyon,

Hopewell.
O'Shanter
Doalport
Glen Campbell
Philfpsburg.
Holldaysburg
Peale.
Munson
Robertsdale
Vinburne.
Snow Shoe.
Gorton Helghts.
Gorton Helghts
Urey.
Robertsdate.

TABLE No. 2.-Gives the total number of tons of coal mined and ters of coke produced in each Colliery, number of days worked, number of employes, number of persous killed and injured, nu mber of kegs of powder used, etc., in the Tenth Bituminous Dis-



Fricks,
Gazzam No. i
Gazzam No.
Glen White,
Great lsend,
Harvey slope.
Harts,
Horse
Horse shoe,
Huntingu
Hickes,
Irvona.
Kearney,'
Kelleys,
Knox liun
Kyler,
Lemon,
Moravian,
National,
New Hampshire,
O'shanter,
Ocean No,
Ocean No. \({ }^{1}\)
Penn.
Pennsylvania
Porter shaft.
Pleasant Hill
Royal Slope,
Robertsdal
. \(1 . .\).
Sugar Camp No. 1.
Sugar Camp No.
Tunnel
Urey No.
Urey No. 2 ,
Warner,
Woodvale.
Total,
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 40
173
125
44
132
29
140
145
75
25
30
30 & \(\left|\begin{array}{r}\cdots \cdots \cdots \\ \cdots \cdots \\ 1 \\ 2 \\ \cdots \cdots \cdots \\ \cdots \cdots \\ \cdots \cdots \cdots \\ 1 \\ 1 \\ 2\end{array}\right|\) & \[
\begin{aligned}
& 3 \\
& \frac{3}{7} \\
& 3 \\
& 3 \\
& 7 \\
& 3 \\
& 7 \\
& 6 \\
& 2 \\
& 3 \\
& 2
\end{aligned}
\] & \(\ldots \ldots \ldots\)
\(\cdots \cdots \cdots\)
\(\cdots \cdots\)
\(\cdots\)
2
2
2
2
\(\cdots \cdots\)
2 &  \\
\hline \[
\begin{array}{rr}
1 \\
1 \\
1
\end{array}
\] & 7 & \(\cdots \cdots . .\). & \[
11
\] & 2 & 3
1 \\
\hline 1
1
1
1
1 & 156
63
87
36 & \[
\left\lvert\, \begin{gathered}
\cdots \cdots \cdots \\
\cdots \cdots \\
7
\end{gathered}\right.
\] & \[
\begin{gathered}
\dddot{6} \\
3 \\
\dddot{2}
\end{gathered}
\] & \(\frac{2}{2}\) & 2
2
2
4 \\
\hline 1 & 131 & & 9 & 5 & 2 \\
\hline 1 & 59
26 & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & 6
2 & 1 1 & 1 \\
\hline 1 & 39 & 6 & 2 & & \\
\hline 1 & 12 & 2 & 1 & & 1 \\
\hline 1 & 25
37 & ......... & \(\frac{2}{3}\) & i & 1 \\
\hline 1 & 37
58
5 &  & \(\frac{3}{7}\) & 1 & 1 \\
\hline 1 & 50 & & 2 & 1 & 1 \\
\hline 1 & 22 & 4 & 4 & 2 & 4 \\
\hline 1 & 140 & & 8 & 3 & 1 \\
\hline 1 & 94 & \(\cdots\) & 4 & 1 & 4 \\
\hline 1 & 167 & 7 & 19 & 3 & 10 \\
\hline 1 & 129 & & 8 & 1 & 2 \\
\hline 1 & 199 & & 6 & & 20 \\
\hline 1 & 62 & & 3 & & 1 \\
\hline 1 & 25 & . & 2 & & \\
\hline 1 & & …… & \(\frac{2}{3}\) & 1 1 & 1 \\
\hline 1 & 55
27 & & 3
1 & ...... & 1 \\
\hline 1 & 39 &  & 11 & 3 & 9 \\
\hline 62 & 4,430 & 100 & 293 & 79 & 124 \\
\hline
\end{tabular}








\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & Name of Person． & Occupation． & 药 & 菏 & 去 & Name of Colllery． & Location－County． & Nature and cause of Accident in Brlef． \\
\hline \begin{tabular}{lr} 
Jan． & 12, \\
Mar． & 10, \\
& 11, \\
Aug． & 5, \\
& \\
Sept． & 8, \\
& 10, \\
Ncv． & 1,
\end{tabular} & \begin{tabular}{l}
Joe Vallick， \\
Paul Mock， \\
Albert Rappy， \\
Gust Nelson， \\
Peter Bearsick， \(\qquad\) \\
Martin O＇Hara， \(\qquad\) \\
John Saltorskey， \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Miner， \\
Miner， \\
Miner， \\
Miner \(\qquad\) \\
Miner， \(\qquad\) \\
Miner． \(\qquad\) \\
Coker， \(\qquad\)
\end{tabular} & \[
\begin{aligned}
& \because \\
& \hline 40 \\
& 20 \\
& 28 \\
& 28 \\
& \ldots \\
& 28 \\
& 20
\end{aligned}
\] & \begin{tabular}{l}
s． \\
s． \\
M． \\
S．
\end{tabular} &  & \begin{tabular}{l}
Sugar Camp， \\
Tunnel． \\
Glen White． \\
Bloomington， \(\qquad\) \\
Sugar Camp， \(\qquad\) \\
Glenwood， \(\qquad\) \\
Kearney， \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Centre， \(\qquad\) \\
Centre， \\
Blair， \(\qquad\)
\(\qquad\) \\
Clearfield， \(\qquad\) \\
Centre， \(\qquad\) \\
Indiana， \(\qquad\) \\
Bedford， \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Killed by a fall of slate in his room． Killed by a fall of draw slate． \\
A plece of slate fell upon him instantly killing him． \\
Went back to see how a shot had worked and must have been examining it，when a stone fell from the roof of the heading upon him，killing him． \\
A plece of rock fell and struck him on the head，killing him instantly． \\
A plece of slate about 12 feet in length fell upon him，killing him， \\
This man was the larry runner at the coke ovens and after flling his larry at the bin，started with it，and in jump－ ing on it was caught between the larry and a post and was so severely squeezed that he died．
\end{tabular} \\
\hline
\end{tabular}


潾

\section*{INDEX.}
Page.
Communication to the Governor, ..... i
Letter of transmittal, ..... ii
Table of contents, ..... v
Introduction to report, Bureau of Mines, ..... vii
Fatal accidents per 1,000 employes and tons of coal mined per fatal accl- dent in and about anthracite mines from 1870 to 1897 inclusive, ..... vili
Fatal accidents per 1,000 employes in and about bituminous mines and tons mined per fatal accident from 1878 to 1897 inclusive, ..... ix
Result of prosecutions for violations of the mining acts in Scotland for 1896, ..... xi
Results of prosecutions of mine owners and managers for offenses under the mine acts in that country for same period, ..... xii
Results of prosecutions for violations of the mine laws of Pennsylvania in 1897, ..... xiii
Number of employes in 150 anthracite mines; number native born, aliens and naturalized citizens, ..... xiv
Number of employes in 400 bituminous mines; number native born, aliens and naturalized citizens, ..... xiv
Causes of strikes in 54 mines, loss to employers, and loss of wages to em- ployes. ..... \(x \mathrm{v}\)
Production of fire clay and shale from coal mines, ..... xv
Deductions from Mine Inspectors' reports, ..... xvi
Table showing production, shipments, etc., in 1897, compared with those of 1896 , in anthracite collieries, ..... \(\bar{x}^{\mathrm{xij}}\)
Table showing production, shipments, etc., in 1897, compared with those of \(\mathbf{1 8 9 6}\), in bituminous collieries, ..... xxiv
Table showing causes of accidents and number attributable to each cause in anthracite collieries during 1897, ..... xxvi
Table showing causes of accidents and number attributable to each cause in bituminous collieries during 1897, ..... xxviii
Table showing production of coal and coke in tons, number of employes, number of accidents, etc. ..... xxx
Production of anthracite coal and number of employes in and about the mines by counties, ..... xxxii
Production of bltuminous coal and coke and number of employes in and about the mines by countles, ..... xxxly
Method and cost of flushing culm into anthracite mines, ..... xxxy
Laws relating to coal mining, ..... liv
An act to protect miners in the bituminous coal region of the Common- wealth, approved June 1, 1883, ..... lv
An act to provide payment to the miner for all clean coal mined by him, ..... lvil
Page.
An act to provide for the recovery of the bodies of workmen enclosed, buried or entombed in coal mines, approved May 9, 1889, ..... lvii
An act to provide for the examination of miners in the Anthracite region of this Commonwealth, and to prevent the employment of incompetent persons as miners in anthracite coal mines, approved May 9,1889 , ..... 1viii
An act to provide for the health and safety of persons employed in and about the anthracite coal mines of Pennsylvania and for the protection and preservation of property connected therewlth, approved June 2, 1891, ..... cx
An act relating to bituminous coal mines and providing for the health, safety and welfare of persons employed therein, approved may 15, 1893, ..... exii
An act equallzing and fixing the compensation and mileage of the mem- bers of the several examining boards, etc., etc., approved June 26, 1895, cxxxviiiAn act for the better protection of employes in and about the coal minesby preventing mine superintendents, mine foremen or assistants fromreceiving any sums of money or other valuable consideration from menwhile in thelr employ, and providing a penalty for violation of the same,approved June 15, 1897,exxix
An act establishIng a Bureau of Mines in the Department of Internal Af- fairs of Pennsylvania, defining its purposes and authority, providing for the chief of said Bureau and assistants and fixing their salary and ex- penses, approved July 15, 1897, ..... \(\operatorname{cxxx}\)
An act requiring the weighing of all bituminous coal before screening,and providing a penalty for the violation thereof, approved July 15,1807 , exxxivAn act to protect the lives and limbs of miners from the diangers resultingfrom incompetent miners working in the anthrasite mines of this Com-monwealth, etc., etc., approved July 15, 1897,exxxy
FIRST ANTHRACITE DISTRICT:
Letter of transmittal, ..... 1
Table "A," showing production of coal and number of employes for each company, ..... 2
Table " \(B\)," shewing number of fatal accidents and number of tons of coal produced per life lost, ..... 2
Table " C ," number of fatal and non-fatal accidents and tons of coal nroduced per accident ..... 3
Table " \(D\)," occupations of persons killed or injered, ..... 3
Table "E," classlfication of accidents, ..... 4
Table " \(F\)," nationality of persons killed and injured, ..... 4
Remarks on fatal accidents ..... 4
Mine foremen's examinations, ..... 6
Table No. 1, showing location, etc., of collieries, ..... 8
Table No. 2, gives number of tons of coal mined, number of days worked, etc., In each colliery, ..... 9
Table No. 3, number of each class of employes, ..... 13
Table No. 4, list of fatal accidents, ..... 17
Table No. 5. list of non-fatal accldents, ..... 20
SECOND ANTHRACITE DISTRICT:
Letter of transmittal, ..... 25
Table "A," showing production of coal by each company, number of employes, etc. ..... 26
Table B, number of fatal accidents and quantity of coal produced for each fatality ..... 26
l'age.
Table C, number of fatal and non-fatal accidents and tons of coal produced per accident, ..... 27
Table D, classification of accidents, ..... 27
Table E, occupations of persons killed and injured, ..... 25
Table \(\mathbf{F}\), nationality of persons killed and injured, ..... \(2 \Omega\)
Other fatalities, ..... 28
Mine formen's examinations, ..... 30
Remarks on coal production, ..... 30
Table No. 1, showing location, etc., of collieries, ..... 41
Table No. 2, number of tons of coal mined, number of days worked, etc., ..... 43
Table No. 3, number of each class of employes, ..... 46
Table No. 4, list of fatal accidents, ..... 49
Table No. 5, list of non-fatal aceidents, ..... 56
THIRD ANTHRACITE DISTRICT:
Letter of transmittal, ..... 63
Tons of coal mined by the various companies, ..... 63
Number of fatal and non-fatal accidents and tons of coal produced per life lost and per non-fatal injury, ..... 64
Number of persons employed by each company and number of em- ployes per life lost and person injured, ..... 65
Mine foremen and assistants' examinations, ..... 65
Burning of Maltby and Hunt breakers, ..... c. 6
Colliery improvements during 1897, ..... 66
Recapitulation of fatal accidents, ..... 70
Table showing number of each class of serious non-fatal accidents, number of each class of employes and nationality of persons injured, ..... \(7!\)
Table No. 1, showing location, etc., of collieries, ..... 72
Table No. 2, number of tons of coal mined, number of days worked, etc., ..... 74
Table No. 3, number of each class of employes, ..... 77
Table No. 4, list of fatal accidents, ..... 80
Table No. 5, list of non-fatal accidents, ..... 82
FOUIRTH ANTHRACITE DISTRICT:
Letter of transmittal, ..... 87
Total production of coal for 1897, ..... ऽ9
Table A, showing number of lives lost, tons of coal produced per fu- tality and per non-fatal injury, etc. ..... 90
Classification of accidents, ..... 91
Mine accidents, ..... 91
Table B, showing production of coal, number persons employed, num- ber of each class of fatal accidents, etc. ..... 36
Table C, showing production of coal for each of the first two decades and of the last seven years, number fatal accidents of each class, etc., ..... 97
Table D, showing production, average number of accidents for each year of the two first periods of ten years each, etc., ..... 98
Mines and mine inspection, ..... 96
Examination for mine foremen's certificates, ..... 107
Table No, 1, showing location, etc., of collieries, ..... \(10: 1\)
Table No. 2, number of tons of coal mined, number of days worked, etc. ..... 110
Page.
Table No. 3, number of each class of employes, ..... 114
Table No. 4, list of fatal accidents, ..... 118
Table No. 5, list of non-fatal accidents, ..... 123
FIFTH ANTHRACITE DISTRICT:
Letter of transmittal, ..... 125
Tons of coal mined by each company during 1897 , ..... 125
Number of fatal accidents and tons of coal mined per life lost, ..... 126
Number of non-fatal accidents and tons of coal produced per person injured, ..... 126
Number fatal and non-fatal accidents and tons of coal mined per acci- dent, ..... 127
Comparative table showing number of tons of coal mined, number fa- talities, etc., for ten years, ..... 127
Nationality of persons fatally and non-fatally injured, ..... 127
Comparative table showing causes, etc., of fatal accidents for ten years, ..... 128
Recapitulation of fatal accidents, ..... 129
Recapitulation of non-fatal accidents, ..... 130
Examination for mine foremen and assistants, ..... 131
Colliery improvements during 1897, ..... 131
Remarks on fatal accidents, ..... 137
Cranberry mine fire, ..... 138
Table No. 1, showing location, etc., of collieries, ..... 141
Table No. 2, number of tons of coal mined, number of days worked, etc., ..... 142
Table No. 3, number of each class of employes, ..... 146
Table No. 4, list of fatal accldents, ..... 150
Table No. 5, list of non-fatal accidents, ..... 155
SIXTH ANTHRACITE DISTRICT:
Letter of transmittal, ..... 161
Examination for mine foremen ..... 162
Number of persons employed inside and outside the mines, and nature of their employment, ..... 162
Quantity of coal produced for 1896 and 1897, ..... 163
Table showing number of fatal accidents and quantity of coal pro- duced per life lost, ..... 163
Number of persons killed, injured, etc., for flve years, ..... 164
Table of comparison of various companies as to death rate per year, ..... 165
Nationallities of those killed and injured. ..... 165
Fatal accidents and their causes, ..... 165
Non-fatal accidents and their causes, ..... 166
Summary for 1897, ..... 166
Names of collieries and number of accidents that occurred at each, and names of foremen, ..... 167
Description of collieries, ..... 168
IReport of an inquest, ..... 169
Table No. 1, showing location, etc., of collleries, ..... 172
Table No. 2, number of tons of coal mined, number of days worked, etc., ..... 173
Table No. 3, number of each class of employes, ..... 175
Page.
Table No. 4, list of fatal accidents, ..... 177
Table No. 5, list of non-fatal accidents, ..... 184
SEVENTH ANTHRACITE DISTRICT:
Letter of transmittal, ..... 189
Table A, comparative statement of fatal casualties for three years, ..... 191
Table B, showing number tons of coal mined by each company, number of easualties and number tons mined for each casualty, ..... 191
Table C, showing comparisons of non-fatal casualties for three years, ..... 191
Table D, showing comparison of coal shipped, etc., ..... 192
Table E , general comparisons for three years, ..... 192
Table \(\mathbf{F}\), number of persons employed by the several companies and number of fatalities, ..... 192
Method of mining and robbing pillars, ..... 193
Table No. 1, showing location, etc., of collieries, ..... 196
Table No. 2, number of tons of coal mined, number of days worked, etc. ..... 197
Table No. 3, number of each class of employes, ..... 193
Table No. 4, list of fatal accidents ..... 201
Table No. 5, list of non-fatal accidents, ..... 203
EIGH'TH ANTHRACITE DISTRICT:
Letter of transmittal, ..... 207
Summary of production, etc. ..... 208
Classification of accidents, ..... 209
Nationality of those killed and injured, ..... 209
Number of each class of employes inside, ..... 209
Number of each class of employes outside, ..... 210
Examination of candidates for mine foremen, etc. ..... 210
Description of fatal accidents, ..... 210
Improvements made during 1897, ..... 214
Table No. 1, showing location, etc., of collieries, ..... 219
Table No. 2, number of tons of coal mined, number of days worked, etc., ..... 220
Table No. 3, number of each class of employes, ..... 222
Table No. 4, list of fatal accidents, ..... 224
Table No. 5 , list of non-fatal accidents, ..... 226
FIRST BITUMINOUS DISTRICT:
Letter of transmittal, ..... 233
Mining statistics, ..... 234
Description of mines, ..... 235
Description of fatal accidents, ..... 245
Table No. 1, showing location of collieries, ..... 250
Table No. 2, number tons of coal mined, number of days worked, etc., ..... 252
Table No. 1, showing location, etc., of collieries, ..... 250
Table No. 4, list of fatal accidents, ..... 256
Table No. 5, list of non-fatal accidents, ..... 257
SECOND BITUMINOUS DISTRICT:
Letter of transmittal, ..... 261
Summary of statistics, 1897 , ..... 262
Classification of accidents, ..... 263
Page.
Dissertations on causes of aecidents, ..... 263
Convictions for violations of mining laws, ..... 264
Description of mines and mine improvements, ..... 266
Deseription of a pneumatic haulage plant, ..... 281
Description of fatal aceidents, ..... 283
Table No. 1, showing location, ete., of collieries, ..... 286
Table No. 2, number tons of coal mined, number of days worked, etc., ..... 288
Table No. 3, number of each elass of employes, ..... 290
Table No. 4, list of fatal accidents, ..... 292
Table No. 5, list of non-fatal accidents, ..... 293
THIRD BITUMINOUS DISTRICT:
Letter of transmittal, ..... 297
Classification of accidents, ..... 298
Comparative table of production, ete., for 1896 and 1897, ..... 298
Description, ete., of mines, ..... 299
Table No. 1, showing location, etc., of eollieries, ..... 312
Table No. 2, number tons of coal mined, number of days worked, etc., ..... 314
Table No. 3, number of each elass of employes, ..... 316
Table No. 4, list of fatal aceidents, ..... 318
Table No. 5, list of non-fatal accidents, ..... 325
FOURTH BITUMINOUS DISTRICT:
Letter of transmittal, ..... 327
Mining statistics, ..... 327
Classification of fatal and non-fatal aecidents, ..... 328
Description, ete., of mines, ..... 328
Table No. 1, showing location, ete., of collieries, ..... 334
Table No. 2, number tons of coal mined, number of days worked, etc., ..... 335
Table No. 3, number of each class of employes, ..... 337
Table No. 4, list of fatal accidents, ..... 339
Table No. 5, list of non-fatal accidents, ..... 340
FIFTH BITUMINOUS DISTRICT:
Letter of transmittal, ..... 343
Summary of statisties, ..... 344
Classification of accidents, ..... 345
Deseription of mines, ..... 345
Table No. 1, showing location, etc., of collieries, ..... 363
Table No. 2, number tons of coal mined, number days worked, etc., ..... 365
Table No. 3, number of each class of employes, ..... 368
Table No. 4, list of fatal accidents, ..... 370
Table No. 5, list of non-fatal accidents, ..... 372
SINTTH BITUMINOUS DISTRICT:
Letter of transmittal, ..... 375
Fatal accidents, ..... 376
Non-fatal aceidents, ..... 376
Summary of statisties, ..... 376
Improvements made during year and comments on state of mining in district, ..... 377
Deseription of mines, ..... 378
Table No. 1, showing location, etc., of eollieries, ..... 390
Table No. 2, number tons of coal mined, number days, worked, etc., ..... 392
Page.
394
Table No. 3, number of each class of employes,
396
Table No. 4, list of fatal accidents,397
SEVENTH BITITMINOUS DISTRICT:
Letter of transmittal, ..... 399
Statistics of mines, number of employes, etc. ..... 401
Number of accidents and their causes, ..... 401
Improvements made and general description of mines in distriet, ..... 401
Description of fatal accidents, ..... 414
Table No. 1, showing location, etc., of collieries, ..... 416
Table No. 2, number tons of coal mined, number days worked, ete. ..... 418
Table No. 3, number of each class of employes. ..... 420
Table No. 4, list of fatal acciclents, ..... 422
Table No. 5, list of non-fatal accidents, ..... 42:3
EIGHTH BITUMINOUS DISTRICT:
Letter of transmittal, ..... 427
Table showing number of accidents and their causes, ..... 428
Table showing quantity of coal mined, coke produced, number of em- ployes, etc. ..... 429
Report of Pennsylvania State Hospital, ..... 429
Report of fatal accidents during 1897, and their causes, with some suggestions. ..... 430
Description of mines, ..... 434
Table No. 1, showing location, etc., of collieries, ..... 454
Table No. 2, number tons of coal mined, number of days worked, etc., ..... 456
Table No. 3, number of each class of employes, ..... 459
Table No. 4, list of fatal accidents, ..... 462
Table No. 5, list of non-fatal accidents, ..... 463
NINTH BITUMINOUS DISTRICT:
Letter of transmittal, ..... 465
Accident table for 1897, ..... 466
Nationality of those killed and injured, ..... 466
Summary of statistics for 1897 , ..... 466
Description of mines, ..... 467
Description of fatal accidents, ..... 474
Table No. 1, showing location, etc., of collieries, ..... 476
Table No. 2, number tons of coal mined, number days worked, "te. ..... 478
Table No. 3, number of each class of employes. ..... 480
Table No. 4, list of fatal accidents, ..... 482
Table No. 5, list of non-fatal accirients, ..... 483
TENTH IBITUMINOUS DISTRICT:
Letter of transmittal, ..... 485
Table showing earnings of miners, etr. ..... 456
- Summary of statisties. ..... 491
Description of mines, ..... 491
Table \(\mathrm{N} \circ\). 1, showing location, ete.. of collieries, ..... 5,01
Table No, 2, number tons of coal mined, number of employes, etc: ..... 506
Table No. 3, number of each class of employes, ..... 508
Table No, 4, list of fatal accidents, ..... 510
Table No. 5, list of mon-fatal accidents, ..... 511

菜
-
-


Kresq: \({ }^{3}\)
```


[^0]: + Not reported.
 - Calculated by considering the entire region as one district.

[^1]: ＋Increase 159% compared with 1596
 －Decrease 1597 compared with 1896 ，

